上海市第二中学2019-2020学年高二上学期期末数学试题

合集下载

2022-2023学年高二上学期期末考试数学(文)试题

2022-2023学年高二上学期期末考试数学(文)试题

2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。

2021-2022学年上海市嘉定区第二中学高二年级上册学期期末数学试题【含答案】

2021-2022学年上海市嘉定区第二中学高二年级上册学期期末数学试题【含答案】

2021-2022学年上海市嘉定区高二上学期期末数学试题一、单选题1.已知直线的方程为,则该直线的倾斜角为( )0x b +=A .B .C .D .3012015060C【分析】设直线的倾斜角为,则.αtan α=【详解】由已知,设直线的倾斜角为,则,αtan α=[0,180)α∈所以.150α=故选:C2.若展开式的二项式系数之和为,则展开式的常数项为( )1nx x ⎛⎫+ ⎪⎝⎭64A .B .C .D .6122032C【分析】利用二项式系数的性质求得的值,再利用二项式展开式的通项公式,求得n 结果即可.【详解】解:因为展开式的二项式系数之和为,则,1nx x ⎛⎫+ ⎪⎝⎭264n =6n =所以,6621661rrrr r r T C x C x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭令,求得,620r -=3r =所以展开式的常数项为.3620C =故选:C.3.椭圆的左、右焦点分别为,过焦点的倾斜角为直22221(0)x y a b a b +=>>12F F ,1F 30 线交椭圆于两点,弦长,若三角形的内切圆的面积为,则椭圆的A B ,8AB =2ABF π离心率为( )A B C .D 12C【分析】由题可得直线AB 的方程,从而可表示出三角形面积,又利用焦点三角形及三角形内切圆的性质,也可表示出三角形面积,则椭圆的离心率即求.【详解】由题知直线AB 的方程为,即,)y x c =+0x c +=∴到直线AB 的距离,2F 22c d c==又三角形的内切圆的面积为,2ABF π则半径为1,由等面积可得,∴1184122c a ⨯⨯=⨯⨯.12c e a ∴==故选:C.4.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,ABDA '3m AA '=4m BD =深,平面BDEC 是水平面,末端宽,无深,长(直线到的距离)3m 5m CE =6m CE BD ,则该羡除的体积为( )A .B .C .D .324m 330m336m342mC在,上分别取点,,使得,连接,,,把几BD CF B 'C '3m BB CC ''==A B ''A C ''B C ''何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算.【详解】如图,在,上分别取点,,使得,连接,BD CF B 'C '3m BB CC ''==A B '',,则三棱柱是斜三棱柱,该羡除的体积三棱柱A C ''BC ''ABC A B C '''-V V=ABC A B C '''-四棱锥.V+A B DEC '''-()311123636336m 232+⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭故选:C.思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力.二、填空题5.点到直线的距离为________.()1,110x y ++=利用点到直线的距离公式即可得出.【详解】利用点到直线的距离可得:d 故答案为6.已知球的表面积是,则该球的体积为________.16π323π设球的半径为r ,代入表面积公式,可解得,代入体积公式,即可得答案.2r =【详解】设球的半径为r ,则表面积,2416S r ππ==解得,2r =所以体积,3344322333V r πππ==⨯=故323π本题考查已知球的表面积求体积,关键是求出半径,再进行求解,考查基础知识掌握程度,属基础题.7.与同一条直线都相交的两条直线的位置关系是________.平行,相交或者异面【分析】由空间中两直线的位置关系求解即可【详解】由题意与同一条直线都相交的两条直线的位置关系可能是:平行,相交或者异面,故平行,相交或者异面,8.已知直线与平行,则()()1:3410l a x a y -+-+=()2:23220l a x y --+=___________.=a 3【分析】根据平行可得斜率相等列出关于参数的方程,解方程进行检验即可求解.【详解】因为直线与平行,()()1:3410l a x a y -+-+=()2:23220l a x y --+=所以,解得或,()()2324(3)0a a a -----=3a =5a =又因为时,,,5a =1:210l x y -+=2:4220l x y -+=所以直线,重合故舍去,1l 2l 而,,,所以两直线平行.3a =1:10l y +=2:220l y -+=所以,3a =故3.(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.9.已知某圆锥的高为4,体积为,则其侧面积为________.12π15π【分析】设该圆锥的底面半径为r ,由圆锥的体积V =πr 2h ,可解得r 的值,再由勾13股定理求得圆锥的母线长l ,而侧面积S =πrl ,代入数据即可得解.【详解】设该圆锥的底面半径为r ,圆锥的体积V =πr 2h =πr 2×4=12π,解得1313r =3.∴圆锥的母线长l 5,∴侧面积S =πrl =15π.故15π.本题考查圆锥的侧面积和体积的计算,理解圆锥的结构特征是解题的关键,考查学生的空间立体感和运算能力,属于基础题.10.过点作圆的切线,则切线的方程为 ________.()23M -,22:13C x y +=23130x y --=【分析】由已知可得点M 在圆C 上,则过M 作圆的切线与CM 所在的直线垂直,求出斜率,进而可得直线方程.【详解】由圆得到圆心C 的坐标为(0, 0),圆的半径,22:13C x y +=r =而||CM r===所以点M 在圆C 上,则过M 作圆的切线与CM 所在的直线垂直,又,()23M -,得到CM 所在直线的斜率为,32-所以切线的斜率为,则切线方程为:23()2233y x =--即23130x y --=故答案为.23130x y --=11.在正方体中,二面角的大小为__________(用反三角1111ABCD A B C D -1A BD A --表示).【分析】作出二面角的平面角,并计算出二面角的大小.【详解】设,画出图像如下图所示,AC BD O = 由于,所以平面,11,,BD AC BD AA AC AA A ⊥⊥⋂=BD ⊥1OAA 所以,1,BD OA BD OA ⊥⊥所以是二面角的平面角.1A OA ∠1A BD A --所以.11tan AA A OA OA ∠===所以二面角的大小为1A BD A --故12.某学校要从6名男生和4名女生中选出3人担任进博会志愿者,则所选3人中男女生都有的概率为___________.(用数字作答)0.845【分析】由排列组合知识求得所选3人中男女生都有的方法数及总的选取方法数后可计算概率.【详解】从6名男生和4名女生中选出3人的方法数是,310120C =所选3人中男女生都有的方法数为,333106496C C C --=所以概率为.9641205P ==故.4513.已知双曲线的两条渐近线的夹角为,则双曲线的实轴长为()22211x y a a -=>3π____.【分析】根据已知条件求得,由此求得实轴长.a 【详解】由于,双曲线的渐近线方程为,1a >11,1y x a a =±<所以双曲线的渐近线与轴夹角小于,x 4π由1tan 6a π==a =2a =故14.两个人射击,互相独立.已知甲射击一次中靶概率是0.6,乙射击一次中靶概率是0.3,现在两人各射击一次,中靶至少一次就算完成目标,则完成目标的概率为_____________.0.72【分析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,若甲、乙两个各射击1次,至少有一人命中目标的概率为.1(10.6)(10.3)0.72---=故0.7215.已知曲线的焦距是10,曲线上的点到一个焦点的距离是2,则点22116x y a +=P 到另一个焦点的距离为__________.P或10.2【分析】对参数a 进行讨论,考虑曲线是椭圆和双曲线的情况,进而结合椭圆与双曲线的定义和性质求得答案.【详解】由题意,曲线的半焦距为5,若曲线是焦点在x 轴上的椭圆,则a >16,所以,而椭圆上的点到一个焦点距离是2,则点到另一个焦点的距162541a a -=⇒=P P离为;2若曲线是焦点在y 轴上的椭圆,则0<a <16,所以,舍去;16259a a -=⇒=-若曲线是双曲线,则a <0,容易判断双曲线的焦点在y 轴,所以,不妨设点P 在双曲线的上半支,上下焦点分别为()16259a a +-=⇒=-,因为实半轴长为4,容易判断点P 到下焦点的距离的最小值为()()210,5,0,5F F -4+5=9>2,不合题意,所以点P 到上焦点的距离为2,则它到下焦点的距离.12||810PF PF =+=故或10.2-16.已知球的半径为4,圆与圆为该球的两个小圆,为圆与圆的公共O M N AB M N 弦,,若,则两圆圆心的距离___________.4AB =3OM ON ==MN =3【分析】欲求两圆圆心的距离,将它放在与球心组成的三角形中,只要求出球心MNO 角即可,通过球的性质构成的直角三角形即可解得.【详解】∵,球半径为4,3ON =∴小圆N ∵小圆中弦长,作垂直于,N 4AB =NE AB∴中,NE=ME =ONE ∵,NE =3ON =∴,6EON π∠=∴,3MON π∠=∴.3MN =故答案为.3三、解答题17.已知二项式的展开式中各二项式系数之和比各项系数之和小240.求:3nx ⎛ ⎝(1)n 的值;(2)展开式中x 项的系数;(3)展开式中所有含x 的有理项.(1)4(2)54(3)第1项,第3项,第5项481x 54x 2x-【分析】(1)由题可得,解方程即得;22404n n+=(2)利用二项展开式的通项公式,即得;(3)利用二项展开式的通项公式,令,即求.34Z 2r -∈(1)由已知,得,即,22404nn+=()2222400nn--=所以或(舍) ,216n =215n=-∴.4n =(2)设展开式的第项为.1r +34442144C (3)3C rr r rr r r T x x ---+=⋅=令,得,3412r -=2r =则含x 项的系数为.2243C 54⋅=(3)由(2)可知,令,则有,2,4,34Z 2r -∈0r =所以含x 的有理项为第1项,第3项,第5项.481x 54x 2x -18.已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0.(1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长.(1)证明见解析;(2)当时,l 被C 截得的弦长最短,最短弦长为16m =-【分析】(1)求出直线l 的定点,进而判断定点和圆C 的位置关系,最后得到答案;(2)当圆心C 到直线l 的距离最大时,弦长最短,进而求出m ,然后根据勾股定理求出弦长.【详解】(1)直线l 的方程可化为y +3=2m (x -4),则l 过定点P (4,-3),由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P 在圆内,故直线l 与圆C 总相交.(2)圆的C 方程可化为:(x -3)2+(y +6)2=25,如图所示,当圆心C (3,-6)到直线l 的距离最大时,弦AB 的长度最短,此时PC ⊥l ,又,所以直线l 的斜率为,则,36343PC k -+==-13-11236m m =-⇒=-在直角中,|PC |,|AC |=5,所以|AB |=APC △=故当时,l 被C 截得的弦长最短,最短弦长为16m =-19.年世界人工智能大会已于年月在上海徐汇西岸举行,某高校的志愿者201820189服务小组受大会展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如图所示,、两个信号源相距米,是的中点,过点的直线与直线的夹角为,A B 10O AB O l AB 45机器猫在直线上运动,机器鼠的运动轨迹始终满足:接收到点的信号比接收到点l A B 的信号晚秒(注:信号每秒传播米).在时刻时,测得机器鼠距离点为米.08v 0v 0tO 4(1)以为原点,直线为轴建立平面直角坐标系(如图),求时刻时机器鼠所O AB x 0t 在位置的坐标;(2)游戏设定:机器鼠在距离直线不超过米的区域运动时,有“被抓”的风险.如果l 1.5机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?(1);(2)没有.(40),【分析】(1)设机器鼠位置为点,由题意可得,即,P 008PAPB v v v -=810PA PB -=<可得的轨迹为以、为焦点的双曲线的右支,分析取值,即得解双曲线的方P A B ,,a b c 程,由可得P 点坐标.||4OP =(2)转化机器鼠与直线最近的距离为与直线平行的直线与双曲线相切时,平行线l l 1l间的距离,设的方程为,与双曲线联立,求出的值,再利用平行线间的1l y x m =+m 距离公式,即得解【详解】(1)设机器鼠位置为点,、,P ()50A -,(50)B ,由题意可得,即,08PAPB v v v -=810PA PB -=<可得的轨迹为以、为焦点的双曲线的右支,P A B设其方程为:,则、、,C 22221x y ab -=0a >0b >5c =4a =3b =则的轨迹方程为:(),P C 221169x y -=4x ≥ 时刻时,,即,可得机器鼠所在位置的坐标为;0t ||4OP =()40,P (40),(2)由题意,直线,设直线的平行线的方程为,:l y x =l 1ly x m =+联立,可得:,229161444y x m x y x =+⎧⎨-=≥⎩,22732161440x mx m +++=,解得,22(32)47(16144)0m m ∆=-⨯⨯+=27m =又,∴,∴,04x ≥032247mx =-≥m =即:最近的点,1ly x =l此时与的距离为,即机器鼠距离,l 1l d l 1.5>则机器鼠保持目前运动轨迹不变,没有“被抓”的风险.20.设四边形为矩形,点为平面外一点,且平面,若ABCD P ABCD PA ⊥ABCD ,.1==PA AB 2BC =(1)求与平面所成角的大小;PC PAD(2)在边上是否存在一点,使得点到平面BC G D PAG 的值,若不存在,请说明理由;BG (3)若点是的中点,在内确定一点,使的值最小,并求此时E PD PAB △H CH EH +的值.HB(1)(2)(3)位置答案见解析,HB =【分析】(1)利用线面垂直的判定定理证明平面,然后由线面角的定义得CD ⊥PAD 到PC 与平面PAD 所成的角为,在中,由边角关系求解即可.CPD ∠CPD △(2)假设BC 边上存在一点G 满足题设条件,不放设,则(02)BG x x =≤≤得,进而得答案.AG =P AGD D APG V V --=1x =(3)延长CB 到C ',使得C 'B =CB ,连结C 'E ,过E 作于E ',利用三点共线,'EE AD ⊥两线段和最小,得到,过H 作于H ',连结HB ,在min ()CH EH +='HH AB ⊥中,求解HB 即可.Rt 'HH B △(1)解:因为平面,平面,所以,PA ⊥ABCD CD ⊂ABCD CD PA ⊥又因为底面 是矩形,所以,ABCD CD AD ⊥又平面,,,AD PA A AD PA =⊂ PAD 所以平面,CD ⊥PAD 故与平面所成的角为,PC PAD CPD ∠因为,,PD =1CD =所以tan CD CPD PD ∠==故直线PC 与平面PAD 所成角的大小为(2)解:假设BC 边上存在一点G 满足题设条件,不妨设,则(02)BG x x =≤≤AG =因为平面,到平面PA ⊥ABCD D PAG所以,即P AGD D APG V V --=1133AGD APGS PA S ⋅=△△因为111,22AGD APGS AD AB S AP AG =⋅==⋅=△△代入数据解得,即,1x =[]10,2BG =∈故存在点G ,当时,使得点D 到平面PAG 1BG =(3)解:延长CB 到C ',使得C 'B =CB ,连结C 'E ,过E 作于E ','EE AD ⊥则''CH EH C H EH C E +=+≥===当且仅当三点共线时等号成立,',,C H E故,min ()CH EH +=过H 作于H ',连结HB ,'HH AB ⊥在中,,,Rt 'HH B △1'3HH =2'3H B =所以.HB ===21.设椭圆的左、右焦点分别为,,离心率为2222:1(0)x y C a b a b +=>>1(,0)F c -2(,0)F c,短轴长为12(1)求椭圆的标准方程;C (2)设左、右顶点分别为、,点在椭圆上(异于点、),求的值;A B M A B MA MB k k (3)过点作一条直线与椭圆交于两点,过作直线的垂线,垂足2F C ,P Q ,P Q 2a x c =为.试问:直线与是否交于定点?若是,求出该定点的坐标,否则说明理由.,S T PT QS (1);(2);(3)是,.22143x y +=34-5,02⎛⎫ ⎪⎝⎭(1)由题意,列出所满足的等量关系式,结合椭圆中的关系,求得,,a b c ,,a b c ,从而求得椭圆的方程;224,3a b ==(2)写出,设,利用斜率坐标公式求得两直线斜率,结合点(2,0),(2,0)A B -00(,)M x y 在椭圆上,得出,从而求得结果;2200334x y =-(3)设直线的方程为:,,则,联PQ 1x my =+()()1122,,,P x y Q x y ()()124,,4,S y T y 立方程可得:,结合韦达定理,得到2234121x y x my ⎧+=⎨=+⎩()2234690m y my ++-=,结合直线的方程,得到直线所过的定点坐标.()121223my y y y =+PT 【详解】(1)由题意可知,,又,所以,122c a b ⎧=⎪⎨⎪=⎩222a b c =+224,3a b ==所以椭圆的标准方程为.C 22143x y +=(2),设,(2,0),(2,0)A B -00(,)M x y 因为点在椭圆上,所以,M 2200143x y +=,20002000224MA MBy y y k k x x x ==-+- 又,2200334x y =-.2020333444MA MB x k k x -∴==--(3)设直线的方程为:,,则,PQ 1x my =+()()1122,,,P x y Q x y ()()124,,4,S y T y 联立方程可得:,2234121x y x my ⎧+=⎨=+⎩()2234690m y my ++-=所以,12122269,3434m y y y y m m +=-=-++所以,()121223my y y y =+又直线的方程为:,PT ()()()()211244y y x x y y --=--令,0y =则()()112212121212121241482242y my y y x y y y my y x y y y y y y -+---=+==---,()()()()121212121282355222y y y y y y y y y y --+-===--所以直线恒过, PT 5,02⎛⎫⎪⎝⎭同理,直线恒过, QS 5,02⎛⎫ ⎪⎝⎭即直线与交于定点.PT QS 5,02⎛⎫⎪⎝⎭思路点睛:该题考查的是有关椭圆的问题,解题思路如下:(1)根据题中所给的条件,结合椭圆中的关系,建立方程组求得椭圆方程;,,a b c (2)根据斜率坐标公式,结合点在椭圆上,整理求得斜率之积,可以当结论来用;(3)将直线与椭圆方程联立,结合韦达定理,结合直线方程,求得其过的定点.。

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A版数学高二弧度制精选试卷练习(含答案)1

人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。

上海市光明中学2019-2020学年度高一数学第一学期期末考试(详解版)

上海市光明中学2019-2020学年度高一数学第一学期期末考试(详解版)

光明中学2019学年第一学期期末考试高一数学试题命题人 向宪贵 审题人 蔡晓荣 2020.01考生注意: l .本试卷共有19道试题,满分100分.考试时间90分钟.2.答卷前,考生务必在答题纸上将学校、班级、姓名、学号、准考证号等填写清楚.友情提示: 诚实守信,沉着冷静,细致踏实,自信自强!一、填空题(本大题共有10道小题,1-6题填对得3分,7-10题填对得4分,满分34分)1、函数12()f x x =的定义域是 ;2、不等式111x <-的解集为 ; 3、函数2()1(0)f x x x =-≥的反函数1()f x -= ;4、函数()ln(2)f x x =-的递增区间为 ;5、方程96370x x -⋅-=的解是 ;6、已知函数()f x 为偶函数,且当0x >时2()1f x =x x -+,则当0x <时()f x = ; 7、已知函数⎩⎨⎧≥-<=)4(),1()4(,2)(x x f x x f x ,那么(5)f 的值为____________;8、函数2()f x x bx c =++与函数21()x x g x x ++=在区间1[,2]2上的同一点处取相同的最小值,则()f x 在区间1[,2]2上的最大值是 ;9、直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 ;10、设函数定义域为R ,对于给定的正数K ,定义函数取函数.当=时,函数的单调递增区间为 .二、单选题(本大题共有4道题,每道题只有一个正确选项,选对得4分,满分16分)11、下面四个条件中,使a b >成立的充分而不必要的条件是( ).A 1a b >+ .B 1a b >- .C 22a b > .D 33a b >()y f x =(),(),(),().K f x f x K f x K f x K ≤⎧=⎨>⎩()2x f x -=K 12()K f x12、定义域为R 的函数()f x 是奇函数,且在[0,5]x ∈上是增函数,在[5,)+∞上是减函数,又(5)2f =,则()f x ( ).A 在[5,0]x ∈-上增函数且有最大值-2 .B 在[5,0]x ∈-上增函数且有最小值-2.C 在[5,0]x ∈-上减函数且有最大值-2 .D 在[5,0]x ∈-上减函数且有最小值-213、若函数()f x 为R 上的偶函数,且()f x 在[)0+∞,上单调递减,则不等式(21)()f x f x -≥的解集为( )A. 113⎡⎤⎢⎥⎣⎦,B. [)1,1,3⎛⎤-∞+∞ ⎥⎝⎦U C. (][),11,-∞+∞U D. (],1-∞ 14、有下面四个命题:①奇函数一定是单调函数;②函数3(0)xy k k =⋅>(k 为常数)图像可由3x y =的图像平移得到;③若幂函数a y x =是奇函数,则a y x =是定义域上的增函数;④既是奇函数又是偶函数的函数是0()y x R =∈.其中正确的有( ).A 3个 .B 2个 .C 1个 .D 0个三、解答题(本大题共有5道题,满分50分)15、(本题满分8分,第一问4分,第二问4分) 已知1{|39}3x A x =<<, {}2|log 0B x x =>. (1)求A B ⋂和A B ⋃;(2)定义{|A B x x A -=∈且}x B ∉,求A B -和B A -.16、(本题满分10分,第一问4分,第二问6分)函数()2x f x =和3()g x x =的图像的示意图如图所示,两函数的图像在第一象限只有两个交点()()111212,,,,A x y B x y x x <(1)请指出示意图中曲线12C C 、分别对应哪一个函数;(2)设函数()()()h x f x g x =-,则函数()h x 的两个零点为12x x 、,如果12[,1],[,1]x a a x b b ∈+∈+,其中,a b 为整数,指出,a b 的值,并说明理由.17、(本题满分10分,第一问4分,第二问6分) 已知函数3()log 0,13m x f x m m x -=>≠+(). (1)判断()f x 的奇偶性并证明;(2)若12m =,试用定义法判断()f x 在3,+∞()的单调性.18、(本题满分10分,第一问3分,第二问7分)科学家发现某种特别物质的温度y (单位:摄氏度)随时间x (时间:分钟)的变化规律满足关系式:122x x y m -=⋅+(04x ≤≤,0m >).(1)若2m =,求经过多少分钟,该物质的温度为5摄氏度;(2)如果该物质温度总不低于2摄氏度,求m 的取值范围.19、(本题满分12分,第一问3分,第二问4分,第三问5分)已知函数1()22x xf x =-,()(4lg )lg ()g x x x b b R =-⋅+∈. (1)若()0f x >,求实数x 的取值范围;(2)若存在12,[1,)x x ∈+∞,使得12()()f x g x =,求实数b 的取值范围;(3)若()0<g x 对于(0,)x ∈+∞恒成立,试问是否存在实数x ,使得[()]f g x b =-成立?若存在,求出实数x 的值;若不存在,说明理由.上海市光明中学2019学年第一学期期终考试高一数学试题参考答案一、填空题(本大题共有10道小题,1-6题填对得3分,7-10题填对得4分,满分34分)1、[)0,+∞2、(,0)(2,)-∞+∞U 3、1(1)f x x -≥-4、()2,+∞5、3log 7x =6、2()1f x =x +x +7、88、49、5(1,)4 10、二、单选题(本大题共有4道题,每道题只有一个正确选项,选对得4分,满分16分)11、A 12、B 13、A 14、C三、解答题(本大题共有5道题,满分50分)15、(本题满分8分,第一问4分,第二问4分)解:(1)()1{|39}1,23x A x =<<=-; --------1分 {}()2|log 01,B x x =>=+∞ --------2分()1,2A B ⋂=, --------3分()1,A B ⋃=-+∞--------4分(2) (]1,1A B -=-, --------2分[)2,B A -=+∞--------4分16、(本题满分10分,第一问4分,第二问6分)【解】(1)C 1对应的函数为3()g x x =,--------2分C 2对应的函数为()2x f x =. --------4分(2)计算得1,9a b == --------1分理由如下:令3()()()2x x f x g x x ϕ=-=-, --------2分 (,1)-∞-由于93103(1)10,(2)40,(0,(10)210909)2h h h h =>=-<=<=->-,--------4分 则函数()x ϕ的两个零点2(1,2),(9,10)i x x ∈∈--------5分 因此整数1,9a b == --------6分17、(本题满分10分,第一问4分,第二问6分)【解】(1)()f x 是奇函数;证明如下: 由303x x -+>解得3,3x x <->或; 所以()f x 的定义域为(,3)(3,)-∞-+∞U 关于原点对称. --------1分∵()3333m m x x f x log log x x --+-==-+-=()13()3m x log f x x -+=--, --------3分 故()f x 为奇函数.--------4分(2)任取1212,3,x x x x ∈+∞<(),且 - ()()1212123333m m x x f x f x log log x x ---=-++=()()()()12123333m x x log x x -++-, --------2分 ∵()()()()()112221333036x x x x x x -+-+-=<-,∴()()()()121203333x x x x <-+<+-,即()()()()1212330133x x x x -+<+-<, -------4分 当12m =时,()()()()12112233033x x log x x -+>+-,即()12()f x f x >.--------5分 故()f x 在3,+∞()上单调递减.--------6分18、(本题满分10分,第一问3分,第二问7分)【解】(1)由题意,当2m =,令122222252x x x xy -=⋅+=⋅+=, 04x ≤≤Q 时,解得1x =, -------2分因此,经过1分钟时间,该物质的温度为5摄氏度;--------3分(2)由题意得1222x x m -⋅+≥对一切04x ≤≤恒成立,则由1222x x m -⋅+≥,得出22222x x m ≥-,--------2分 令2x t -=,则1116t ≤≤,且222m t t ≥-,--------4分构造函数()221122222f t t t t ⎛⎫=-=--+ ⎪⎝⎭, 所以当12t =时,函数()y f t =取得最大值12,则12m ≥.--------6分 因此,实数m 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.--------7分19、(本题满分12分,第一问3分,第二问4分,第三问5分)【解】(1)()0f x >即22x x ->,∴x x >-,∴0x >.--------3分 (2)设函数()f x ,()g x 在区间[)1,+∞上的值域分别为A ,B ,因为存在[)12,1,x x ∈+∞,使得()()12f x g x =,所以A B ⋂≠∅,--------1分∵()122x x f x =-在[)1,+∞上为增函数,∴3,2A ⎡⎫=+∞⎪⎢⎣⎭,--------2分 ∵()()2lg 24g x x b =--++,[)1,x ∈+∞,∴()(],4g x b ∈-∞+,∴(],4B b =-∞+.--------3分 ∴342b +≥即52b ≥-.--------4分 (3)∵()()2lg 240g x x b =--++<对于()0,x ∈+∞恒成立,∴40b +<,4b <-,--------1分且()g x 的值域为(],4b -∞+.--------2分∵()122x x f x =-为增函数,--------3分 且0x <时,()0f x <,∴()0f g x ⎡⎤<⎣⎦.--------5分∴()0f g x b ⎡⎤+<⎣⎦,-------6分∴不存在实数x ,使得()f g x b ⎡⎤=-⎣⎦成立. --------7分。

2018-2019学年上学期高二数学12月月考试题含解析(371)

2018-2019学年上学期高二数学12月月考试题含解析(371)

永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<2. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .33. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假5. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <06. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .210.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .三、解答题19.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.0250.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.024 6.63520.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈ (1)当3k =时,求函数()f x 在[]0,5上的值域; (2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.12. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A .【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.4.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.5.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.6.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A7.【答案】C【解析】解:如图,++().故选C.8.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.10.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.12.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为. ∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】2 【解析】18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j (j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令0f x '=得121,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++= 即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+, ∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3). 【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。

上海市上海中学2018-2019学年高二上学期期中数学试题(原卷+解析版)

上海市上海中学2018-2019学年高二上学期期中数学试题(原卷+解析版)
此时z最大,

由于B在直线 上,故m=1
故选:A
【点睛】本题考查了线性规划,考查了学生数形结合,转化与划归的能力,属于中档题.
16.如图, 的 边长为 , 分别是 中点,记 , ,则()
A. B.
C. D. ,但 的值不确定
【答案】C
【解析】
试题分析:因为 分别是 中点,所以根据平面向量的线性运算 可得 ,所以 由 可得 ,故选C.
(1)求向量 与 的夹角 ;
(2)若 ,且 ,求实数t的值及 .
【答案】(1) ;(2) , = .
【解析】
【分析】
(1)由向量的数量积,代值计算即可;
(2)由数量积为0,代入计算即可.
【详解】(1)因为

解得:
因为 ,所以 .
(2)

化简得:
解得:此时=Fra bibliotek==
=
【点睛】本题考查向量数量积的运算,属基础题.
19.
如图,在平面直角坐标系xOy中,平行于x轴且过点A(3 ,2)的入射光线l1
被直线l:y= x反射.反射光线l2交y轴于B点,圆C过点A且与l1,l2都相切.
(1)求l2所在直线的方程和圆C的方程;
(2)设 分别是直线l和圆C上的动点,求 的最小值及此时点 的坐标.
【答案】(1) 所在的直线方程为 ,圆C的方程为 (2)
【解析】
【详解】(1)直线 设 .
的倾斜角为 , 反射光线 所在的直线方程为
.即 .
已知圆C与 , 圆心C在过点D且与 垂直的直线上,
考点:平面向量的线性运算与数量积运算.
三、解答题
17.已知二元一次方程组的增广矩阵为 ,请利用行列式求解此方程组.

2022上海高二数学满分攻略(沪教版2020第一册)第18讲导数的概念及其意义(核心考点讲与练)练习

2022上海高二数学满分攻略(沪教版2020第一册)第18讲导数的概念及其意义(核心考点讲与练)练习

第18讲导数的概念及其意义(核心考点讲与练)一、平均变化率【例1】(2018·上海市吴淞中学高三期中)如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图像是( )A .B .C .D .【例2】(2022·北京延庆·高二期末)函数2()f x x 在区间[2,4]上的平均变化率等于( ) A .2B .4C .6D .8【例3】(2021·广西河池·高二阶段练习(理))在导数定义中“当0x ∆→时,()0yf x x∆→'∆”,x ∆( ) A .恒取正值 B .恒取正值或恒去取负值 C .有时可取0D .可取正值可取负值,但不能取零【例4】(2021·江苏·高二专题练习)“天问一号”于2021年2月到达火星附近,实施火星捕获.2021年5月择机实施降轨,在距离火星表面100 m 时,“天问一号”进入悬停阶段,完成精避障和缓速下降后,着陆巡视器在缓冲机构的保护下,抵达火星表面,巡视器在9 min 内将速度从约20000 km /h 降至0 km/h.若记与火星表面距离的平均变化率为v ,着陆过程中速度的平均变化率为a ,则( ) A .0.185m s v ≈/,210.288m s a ≈/ B .0.185m s v ≈-/,210.288m s a ≈/ C .0.185m s v ≈/,210.288m s a ≈-/ D .0.185m s v ≈-/,210.288m s a ≈-/ 二、瞬时变化率【例1】(2021·广西·高三阶段练习(文))已知某物体位移S (米)与时间t (秒)的关系是323S t t =-,则速度为9米/秒的时刻是( ) A .1秒末 B .0秒末 C .3秒末D .1秒末或3秒末【例2】(2021·全国·高二课时练习)一物体的运动满足曲线方程s (t )=4t 2+2t -3,且s ′(5)=42(m/s),其实际意义是( )A .物体5 s 内共走过42 mB .物体每5 s 运动42 mC .物体从开始运动到第5 s 运动的平均速度是42 m/sD .物体以t =5 s 时的瞬时速度运动的话,每经过1 s ,物体运动的路程为42 m 【例3】(2021·山东·高三阶段练习)现有一球形气球,在吹气球时,气球的体积V (单位:L )与直径d (单位:dm )的关系式为36V d π=,估计当1d dm =时,气球体积的瞬时变化率为( )A .2πB .πC .2π D .4π 【例4】(2021·北京海淀·高二期中)一个小球作简谐振动,其运动方程为()10sin 3x t t ππ⎛⎫=- ⎪⎝⎭,其中()x t (单位:)cm 是小球相对于平衡点的位移,t (单位:s )为运动时间,则小球的瞬时速度首次达到最大时,t =( ) A .1B .56C .12D .13【例5】(2021·重庆·高二期末)1999年12月1日,大足石刻被联合国教科文组织列为《世界遗产名录》,大足石刻创于晚唐,盛于两宋,是中国晚期石窟艺术的杰出代表作.考古科学家在测定石刻年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的含量M (单位:太贝克)随时间t (单位:年)的衰变规律满足函数关系:()573002t M t M -=,其中0M 为0=t 时碳14的含量,已知5730t =时,碳14的含量的瞬时变化率是ln 220-(太贝克/年),则()2865M =( )太贝克.A .573BC .D .1146【例6】(2021·全国·高二课时练习)枪弹在枪筒中的运动可以看作是匀加速直线运动,其路程(单位:m )与时间(单位:s )的关系为()212s t at =,如果枪弹的加速度52510/a m s =⨯,且当31.610t s -=⨯时,枪弹从枪口射出,求枪弹射出枪口时的瞬时速度.三、导数的概念【例1】(2021·全国·高二课时练习)已知物体做直线运动的方程为()s s t =,则()410s '=表示的意义是( )A .经过4s 后物体向前走了10mB .物体在前4秒内的平均速度为10m/sC .物体在第4秒内向前走了10mD .物体在第4秒末的瞬时速度为10m/s【例2】(2021·北京育才学校高三阶段练习)某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________.【例3】(2021·江苏·高二课时练习)已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【例4】(2021·全国·高二课时练习)已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值.【例5】(2021·全国·高二课时练习)一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2之间的平均速度.四、导数的几何意义【例1】(2022·江西·景德镇一中高二期末(理))若曲线f (x )=x 2的一条切线l 与直线430x y +-=平行,则l 的方程为( )A .4x -y -4=0B .x +4y -5=0C .x -4y +3=0D .4x +y +4=0【例2】(2022·浙江·温州中学高三期末)如图,函数()3f x x =的图象Γ上任取一点()3,,0A m m m ≠,过点A 作其切线1l ,交Γ于点B ,过点B 作其切线2l ,交Γ于点C ,过点C 作其切线3l ,交1l 于点D ,则AD AB的取值( )A .与m 有关,且存在最大值B .与m 有关,且存在最小值C .与m 有关,但无最值D .与m 无关,为定值【例3】(2022·内蒙古赤峰·高三期末(理))设函数()2ln f x x x=+,()0,6x ∈,()f x 的图像上的两点()11,A x y ,()22,B x y 处的切线分别为1l ,2l ,且12x x <,1l ,2l 在y 轴上的截距分别为1b ,2b ,若12l l ∥,则12b b -的取值范围是( )A .2ln 2,23⎛⎫- ⎪⎝⎭B .2ln 2,1ln 23⎛⎫-+ ⎪⎝⎭C .2ln 2,03⎛⎫- ⎪⎝⎭D .()1ln 2,2+【例4】(2022·上海·高三专题练习)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 【例5】(江西省抚州市2021-2022学年高二上学期期末数学(理)试题)已知曲线()1e ln 1e=-+x f x x x 在点()()00,x f x 处的切线的斜率为1e ,则00ln x x +=______.【例6】(2022·山西吕梁·高二期末)若直线y kx b =+是曲线2e x y -=的切线,也是曲线1e 1x y +=-的切线,则b =__________.【例7】(2022·山东滨州·高二期末)曲线cos x y x =在点π,02M ⎛⎫⎪⎝⎭处的切线方程为______.【例8】(2022·河南·新蔡县第一高级中学高二开学考试(文))设曲线212y x =在点11,2A ⎛⎫⎪⎝⎭处的切线与曲线ln y x x =在点P 处的切线互相平行,则点P 的坐标为___________. 【例9】(2022·辽宁·东北育才学校高三期末)若函数()()320,0f x mx nx px q m n =+++≠≠上相异的点()()(),1,2,3,4,5,6i i x f x i =,满足如下条件:①()()()1230f x f x f x ===;②函数()f x 关于点()()44,x f x 对称;③函数()f x 在点()()55,x f x 处的切线与其相交于点()()66,x f x ;则()12356412x xx x x x ++++=___________.【例10】(2022·山西·康杰中学高二期末)若实数a ,b ,c ,d 满足ln 11a c b d+==,则()()22a cb d -+-的最小值为______.【例11】.(2021·上海·高二专题练习)已知直线()()()11410a x a y a -++-+= (其中a 为实数)过定点P ,点Q 在函数1y x x=+的图像上,则PQ 连线的斜率的取值范围是___________.【例12】(2022·陕西·高三期末(理))若曲线ln y x =在点()e,1P 处的切线与曲线e ax y =相切,则=a ______.【例13】(2022·湖南·高二期末)已知函数()()21e ,e 1x xf xg x -+==-.(1)O 是坐标原点,()f x 的图象在2x =处的切线与,x y 轴分别交于,A B 两点,求OAB 的面积;(2)若直线y kx b =+是曲线()y f x =与()y g x =的公切线,求,k b 的值.【例14】(2022·全国·高三专题练习)已知函数2()(2)e (1)=-+-x f x x a x ,a R ∈. (1)求曲线()y f x =在点()()1,1P f 处的切线方程; (2)若0a ≥,求()f x 的零点个数;(3)若()f x 有两个零点1x ,2x ,证明:122x x +<.【例15】(2021·全国全国·模拟预测)已知函数()sin cos f x ax x b x =-,()ln 3g x x x =++.在下列三个条件中任选一个填在下面的横线上,解答下列问题.①0a b +=,②1a b -=,③1a b +=-.(1)(ⅰ)______,曲线()f x 在点()()π,πf 处的切线经过点()0,π1-,求实数a 的值; (ⅱ)求证:22y x =+是曲线()g x 的一条切线.(2)π0,2x ⎛⎤∈ ⎥⎝⎦,当2a =,0b =时,求证:()()πf x g x +>.一、单选题1.(2022·江苏徐州·高二期末)已知函数()f x 的定义域为R ,若()()11lim4x f x f x∆→+∆-=∆,则()1f '=( )A .1B .2C .3D .42.(2022·山西临汾·一模(文))已知函数22()2ln f x e x x =+,则曲线()y f x =在点()(),e f e 处的切线方程为()A .240ex y e -+=B .240ex y e --=C .240ex y e ++≡D .240ex y e +-=3.(2022·广东·模拟预测)如图是网络上流行的表情包,其利用了“可倒”和“可导”的谐音生动形象地说明了高等数学中“连续”和“可导”两个概念之间的关系.根据该表情包的说法,()f x 在0x x =处连续是()f x 在0x x =处可导的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(河南省驻马店市2021-2022学年高三上学期期末数学(理科)试题)已知函数()222e x f x x -=,则曲线()y f x =在x =1处的切线与坐标轴围成的面积为( )A .23B .98C .43D .945.(2022·江西赣州·高三期末(理))曲线222e -=+x y x 在1x =处的切线与坐标轴围成的面积为( ) A .13B .12C .23D .16.(2022·江苏镇江·高二期末)若点A 是函数4x y x e =-图象上的动点(其中e 的自然对数的底数),则A 到直线33y x =-的距离最小值为( )A B .4910C D .177.(2022·浙江·镇海中学高二期末)点A 是曲线23ln 2y x x =-上任意一点,则点A 到直线21y x =-的最小距离为( )A B C D 8.(2019·上海交大附中高一期末)函数422y x x =-++的图像大致为A .B .C .D .二、多选题9.(2022·全国·模拟预测)已知反双曲正切函数11()ln 21xf x x+=-,则( ) A .()f x 是奇函数 B .()f x 的定义域是[1,1]-C .曲线()y f x =在点(0,(0))f 处的切线方程为y x =D .函数()()sin g x f x x =-有且仅有3个零点三、填空题10.(2021·安徽·淮南第一中学高三阶段练习(理))曲线()e cos 1xf x x =+在点()()0,0f 处的切线方程为______.11.(2022·重庆南开中学高二期末)曲线()1e xf x +=在点()()0,0f 处的切线与坐标轴围成的三角形面积为__________.12.(2022·福建福清·高二期末)若()()0002lim1t f x t f x t→+-=,则()0f x '=___.13.(2022·江西鹰潭·高二期末(文))已知曲线()y f x =在点()()2,2M f 处的切线方程是25y x =+,则()()22f f '+的值为______.14.(2022·河南南乐·高三阶段练习(理))已知0a >,0b >,直线y x b =-与曲线()ln y x a =+相切,则125221b a b +++的最小值是______. 15.(2022·广东·执信中学高三阶段练习)已知()e 1x f x =-(e 为自然对数的底数),()ln 1g x x =+,则()f x 与()g x 的公切线条数为_______.16.(2015·上海·高三阶段练习)对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有0()()0()()f x h x mh x g x m <-<⎧⎨<-<⎩,则称直线:l y kx b =+为曲线()y f x =和()y g x =的“分渐近线”.给出定义域均为{|1}D x x =>的四组函数如下:①()2f x x =,()g x = ②()102xf x -=+,()23x g x x-=; ③21()x f x x+=,ln 1()ln x x g x x +=;④22()1x f x x =+,()()21xg x x e -=--其中,曲线()y f x =和()y g x =存在“分渐近线”的是________.四、解答题17.(2022·安徽·合肥市第七中学高二期末)设点P 是曲线()32f x x =-+上的任意一点,k 是该曲线在点P 处的切线的斜率. (1)求k 的取值范围;(2)求当k 取最大值时,该曲线在点P 处的切线方程.18.(2022·江苏·高二)设函数()2ln f x x a x =-,曲线()y f x =在2x =处的切线与直线2710x y ++=垂直.(1)求()f x 的解析式;(2)设曲线()y f x =在1x =处的切线为l ,求l 与两直线0x =和1y x =-+所围成的三角形的面积.19.(2022·河北衡水·高二期末)设()sin cos f x x x x =-,证明:曲线()f x 在点ππ,22P f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与坐标轴围成的图形的面积小于1.20.(2022·全国·高三专题练习)已知抛物线2:4C x y =,M 为直线:1l y =-上任意一点,过点M 作抛物线C 的两条切线MA ,MB ,切点分别为A ,B . (1)当M 的坐标为(0,1)-时,求过M ,A ,B 三点的圆的方程;(2)若0(P x ,0)y 是C 上的任意点,求证:P 点处的切线的斜率为012k x =; (3)证明:以AB 为直径的圆恒过点M .21.(2022·江西吉安·高二期末(理))(1)求与直线112y x =-+垂直,且与曲线ln y x =相切的直线方程;(2)求过原点,且与曲线x y e =相切的直线方程.22.(2022·全国·高三专题练习)已知222()()(ln 2)f x x a x a =-+-,其中0x >,R a ∈,存在0x 使04()5f x ≤,求a 的值.23.(江西省重点中学协作体2022届高三2月第一次联考数学(理)试题)已知函数2()e sin ,()31x f x x x g x ax x =++=++.(1)求()f x 在x =0处的切线方程;(2)当0x ≥时,()()f x g x ≥恒成立,求a 取值范围.24.(2021·江苏·高二专题练习)已知函数()ln f x x =,()bg x a x=+(1)若函数()f x 在e x =处的切线与函数()·y x g x =的图象平行,求a ,b 满足的条件; (2)若()10g =,且()()(1)f x g x x >>恒成立,求实数a 的取值范围; (3)当1b =-时,讨论方程()()af x g x =的根的个数.25.(2022·浙江嘉兴·高二期末)已知函数()()ln 2f x x x =+. (1)求函数()f x 在点()()0,0f 处的切线方程;(2)若12,x x 为方程()f x k =的两个不相等的实根,证明: (i )()1f x x --;(ii )12111ln2x x k ⎛⎫-≤++ ⎪⎝⎭.。

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解

江西省宜春市第二中2019-2020学年高二上学期期末考试数学(文)试卷含详解
C.若一个回归直线方程 ,则变量 每增加一个单位时, 平均增加3个单位
D.若一组数据2,4, ,8 平均数是5,则该组数据的方差也是5
2.甲、乙两名同学参加校园歌手比赛,7位评委老师给两名同学演唱比赛打分情况的茎叶图如图(单位:分),则甲同学得分的平均数与乙同学得分的中位数之差为
A.1B.2
C.3D.4
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()
A.先把高二年级的2000名学生编号:1到2000,再从编号为1到50的学生中随机抽取1名学生,其编号为 ,然后抽取编号为 , , ,…的学生,这种抽样方法是分层抽样法
B.线性回归直线 不一定过样本中心
3.设椭圆C: 的左、右焦点分别为 、 ,P是C上的点, ⊥ ,
∠ = ,则C的离心率为
A. B. C. D.
4.下课后教室里最后还剩下甲、乙、丙三位同学,如果没有2位同学一起走的情况,则第二位走的是甲同学的概率是()
A. B. C. D.
5.设两圆 、 都和两坐标轴相切,且都过点(4,1),则两圆心的距离 =
13.我国古代数学名著《九章算术》有一抽样问题:“今有北乡若干人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,而北乡需遣一百零八人,问北乡人数几何?”其意思为:“今有某地北面若干人,西面有7488人,南面有6912人,这三面要征调300人,而北面征调108人(用分层抽样的方法),则北面共有__________人.”
上高二中2021届高二上学期期末考试数学(文科)试题
一、选择题:本大题共12小题,每小题5分,共60分.
1.下列说法中正确的是()

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。

1.4 充分、必要条件(精炼)(解析版)

1.4 充分、必要条件(精炼)(解析版)

1.4 充分、必要条件(精炼)【题组一 命题及其判断】1.(2020·黑龙江道里。

哈尔滨三中高二期末(文))下列说法正确的是( ) A .命题“若x 2=1,则x =1”为真命题 B .命题“若x 2=1,则x =1”的逆命题为假命题C .命题“若x 2=1,则x =1”的逆否命题为“若x ≠1,则x 2≠1”D .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” 【答案】C【解析】若x 2=1,则1x =±,故A 选项不正确;“若x 2=1,则x =1”的逆命题为“若x =1,则x 2=1”且该命题是真命题,故B 选项不正确; 命题“若x 2=1,则x =1”的逆否命题为“若x ≠1,则x 2≠1”,故C 选项正确; 命题“若x 2=1,则x =1”的否命题为“若21x ≠,则x ≠1”,故D 选项不正确, 故选:C.2.(2019·黑龙江大庆实验中学高二期末)已知原命题:已知0ab >,若a b >,则11a b<,则其逆命题、否命题、逆否命题和原命题这四个命题中真命题的个数为( ) A .0 B .2C .3D .4【答案】D【解析】由题原命题:已知0ab >,若a b >,则11a b<,为真命题,所以逆否命题也是真命题;逆命题为:已知0ab >,若11a b<,则a b >,为真命题,所以否命题也是真命题。

故选D.3.(2019·阿城区第二中学高二期中(文))命题“若3x <,则29x ≤”的逆否命题是( ) A .若29x >,则3x ≥ B .若29x ≤,则3x < C .若3x ≥,则29x > D .若29x ≥,则3x >【答案】A【解析】由逆否命题的定义可得命题“若3x <,则29x ≤”的逆否命题是“若29x >,则3x ≥”故答案选A 4.对任意的实数,,a b c ,在下列命题中的真命题是( ) A .“ac bc >”是“a b >”的必要不充分条件B .“ac bc =”是“a b =”的必要不充分条件C .“ac bc >”是“a b >”的充分不必要条件D .“ac bc =”是“a b =”的充分不必要条件 【答案】B【解析】因为实数c 不确定,“ac bc >”与“a b >”既不充分也不必要,又“ac bc a b =⇐=” 得“ac bc =”是“a b =”的必要不充分条件,所以正确选项为B.【题组二 充分、必要条件】1.下列哪一项是“1a >”的必要条件( ) A . 2a < B . 2a >C . 0a <D .0a >【答案】D【解析】由题意,“选项”是“1a >”的必要条件,表示“1a >”推出“选项”,所以正确选项为D.2.(北师大版新教材2.1必要条件与充分条件)如果命题“p q ⇒”是真命题,那么①p 是q 的充分条件 ② p 是q 的必要条件 ③ q 是p 的充分条件 ④ q 是p 的必要条件 ,其中一定正确的是( )A .①③B .①④C .②③D .②④【答案】B【解析】根据必要条件和充分条件的含义,p q ⇒为真,则p 是q 的充分条件,q 是p 的必要条件,所以①④正确,所以正确选项为B.3.已知:p A φ=,:q A B φ⋂=,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由已知A A B φφ=⇒⋂=,反之不成立,得p 是q 的充分不必要条件,所以正确选项为A. 4.若p 是q 的充分不必要条件,则下列判断正确的是( ) A .p ⌝是q 的必要不充分条件 B .q ⌝是p 的必要不充分条件 C .p ⌝是q ⌝的必要不充分条件 D .q ⌝是p ⌝的必要不充分条件 【答案】C【解析】由p 是q 的充分不必要条件可知,p q q p ⇒⇒.由互为逆否命题的等价性,可知,q p p q ⌝⌝⌝⌝⇒⇒/.所以p ⌝是q ⌝的必要不充分条件.故选:C.5.(湖南省怀化市2020届高三下学期第二次模拟考试数学(文)试题)除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ). A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意可得,“获取胜利”是“收兵”的必要条件故选:B6.(2020届广东省广州普通高中毕业班综合测试(一)数学(理)试题)已知1223p x q x +><<:,:,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意:1212p x x +>⇔+>或121x x +<-⇔>或3x <-, 由“1x >或3x <-”不能推出“23x <<”; 由“23x <<”可推出“1x >或3x <-”; 故p 是q 的必要不充分条件.故选:B.【题组三 求参数】1.(上海市格致中学2019-2020学年高一上学期期末数学试题) 若“3x >”是“x a >“的充分不必要条件,则实数a 的取值范围是_____. 【答案】3a <【解析】因为“3x >”是“x a >”的充分不必要条件, ∴3a <. 故答案为:3a <.2.已知“()(),20,x ∈-∞-⋃+∞”是“[],1x k k ∈+”的必要不充分条件,则k 的取值范围是___________. 【答案】3k <-或0k >【解析】由已知“()(),20,x ∈-∞-⋃+∞”是“[],1x k k ∈+”的必要不充分条件,则,[]()(),1,20,k k +-∞-⋃+∞,所以12k +<-或0k >,得3k <-或0k >,所以答案为3k <-或0k >.3.已知{|12}A x x =≤≤,{|}B x x a =<,如果B 的充分条件是A ,则实数a 的取值范围是_________.【答案】2a >【解析】“B 的充分条件是A ”,即A 是B 的充分条件,得A B ⇒,即A B ⊆,得2a >,所以答案为“2a >”. 4.已知集合A ={x |a +1≤x ≤2a +3},B ={x |x 2﹣3x ﹣4≤0}.若x ∈A 是x ∈B 的充分条件,则实数a 的取值范围是_______ 【答案】1,2⎛⎤-∞ ⎥⎦⎝【解析】B ={x |x 2﹣3x ﹣4≤0}={x |﹣1≤x ≤4}, ∵若x ∈A 是x ∈B 的充分条件, ∴A ⊆B ,若A =∅,则2a +3<a +1,即a <﹣2时,满足题意;若A ≠∅,则满足223411a a a ≥-⎧⎪+≤⎨⎪+≥-⎩,即2122a a a ≥-⎧⎪⎪≤⎨⎪≥-⎪⎩,此时﹣2≤a ≤12.综上a ≤12. 故答案为1,2⎛⎤-∞ ⎥⎦⎝5..(河南省2019-2020学年高三核心模拟卷)已知:12p x -≤,()22:2100q x x a a -+-≥>,若p 是q⌝的必要不充分条件,则实数a 的取值范围是__________. 【答案】(0,2]【解析】∵12x -≤,∴13x -≤≤,即:13p x -≤≤; ∵222100x x a a -+-≥>(),∴1x a ≤-或1x a ≥+, ∴:11q a x a ⌝-<<+, ∵p 是q ⌝的必要不充分条件,∴01113a a a >⎧⎪-≥-⎨⎪+≤⎩,解得02a <≤, ∴所求实数a 的取值范围是(0,2]. 故答案为:(0,2]6.(2019版导学教程一轮复习数学(人教版))已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________. 【答案】()0,3【解析】令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴M ⫋N ,∴014a a >⎧⎨+<⎩,解得0<a <3.故填()0,37.(山东省青岛市第二中学2019-2020学年高一上学期期末数学试)已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围 .【答案】302a <<【解析】解出{}|23B x x x =≤-≥或,{}|20A x x a x a a =<>>或, 因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集.所以2323020a a a a >-⎧⎪<⇒<<⎨⎪>⎩故答案为:302a <<8.命题2:03x P x ->-;命题2:2210q x ax a b +++-> (1)若4b =时,22210x ax a b +++->在x R ∈上恒成立,求实数a 的取值范围; (2)若p 是q 的充分必要条件,求出实数a ,b 的值 【答案】(1)(1,3)-;(2)52a =-,12b =。

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

上海市第二中学2024-2025学年高一上学期期中考试数学试题(含解析)

2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题(第1-6题每題4分,第7-12题每题5分,满分54分)1.若,,则______.2.不等式的解集是______.3.已知,则______.4.不等式“”是“”______的条件.5.已知集合,集合,若集合M 满足,则这样的集合M 共有______个.6.已知,那么等于______.7.已知,,则用m ,n 表示______.8.若关于x 的不等式恰有两个整数解,则a 的取值范围是______.9.命题“任意,为真命题,则实数a 的取值范围是______.10.碳14是透过宇宙射线撞击空气中的氨14原子所产生.碳14原子经过衰变转变为氨原子.由于其半衰期达5730年,经常用于考古年代鉴定,半衰期(Half-life )是指放射性元素的原子核有半数发生衰变时所需要的时间,对北京人遗址中某块化石鉴定时,碳14含量约为原来的1%,则这块化石距今约为______万年.(四舍五入到0.1万年)11.已知,,,,,若且,,中各元素的和为256,则集合______.12.已知实数a ,b 满足,且,则的最小值为______.二、单选题(本大题共4题,满分20分)13.已知集合,,则( )A .B .C .D .14.关于x 的不等式的解集是,那么()A .1B .C .12D .{}|31A x x =-≥{}|15B x x =<<A B = 304x x -≤+12510a b ==11a b +=23x x ≤|2|1x -<{}2,3,5,8A ={}2,3,5,8,13,21B =A M B ⊂⊆()223350x x x -+=>1133x x -+9log 5m =3log 7n =35log 9=()22120x a x a -++<x ∈R ()()222240a x a x -+--<β14235{,,,,}A a a a a a =4222221235{,,,},B a a a a a =51234a a a a a <<<<i a ∈Z 1,2,3,4,5i ={}14,B a a A = 1410a a +=22a >A B A =11a b -<<<2a b +=1311a ab ++-4|,1P x y y x ⎧⎫=∈=∈⎨⎬+⎩⎭N N {}|14Q x x =-≤≤P Q = {}1,2,4{}0,1,3{}|03x x ≤≤{}|14x x -≤≤2x ax b ≤-{}4log a b =344315.若,,则下列不等式中一定成立的是()A .B .C .D .16.定义集合运算;将称为集合A 与集合B 的对称差,命题甲::命题乙:则下列说法正确的是( )A .甲乙都是真命题B .只有甲是真命题C .只有乙是真命题D ,甲乙都不是真命题三、解答题(本大题共有5题,满分76分)17.已知集合,,若,,则实数a 、b 、c 的值为.18.设关于x 的方程的两个实根分别是,.(1)求实数p 的取值范围;(2)求的取值范围.19.近几年来,“盲盒文化”广为流行,这种文化已经在中国落地生根,并发展处具有中国特色的盲盒经济,某盲盒生产及销售公司今年初用98万购进一批盲盒生产线,每年可有50万的总收入,已知生产此盲盒x 年(x 为正整数)所用的各种费用总计为万元(1)该公司第几年首次盈利(总收入超过总支出,今年为第一年)?(2)该公司第几年年平均利润最大,最大是多少?20.某天数学课上,你突然惊醒,发现黑板上有如下内容:(1)老师请你模仿例题,研究,上的最小值;(提示:,当且仅当时,等号成立);(2)研究,上的最小值;(3)当时,求,的最小值.21.已知有限集,如果A 中的元素满足,就称A 为“完美集”.x a m -<y a n -<2x y m -<2x y n -<x y n m-<-x y n m -<+{}|A B x x A x B -=∈∉且()()A B A B B A ∆=-- ()()()A B C A B A C ∆=∆ △()()()A B C A B A C ∆=∆ {}2|0A x x ax b =++={}2|150B x x cx =++={}3,5A B = {}3A B = 22lg lg 30x x p -+=αβlog log βαβα+2210x x +44x x -()0,x ∈+∞a b c d +++≥a b c d ===3139x x -()0,x ∈+∞0a >3x ax -()0,x ∈+∞{}()12,,2,,n A a a a n n ⋅⋅⋅=≥∈N ()1,2,,i a i n =⋅⋅⋅1212n n a a a a a a ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯(1)判断:集合是否是“完美集”并说明理由:(2)、是两个不同的正数,且是“完美集”,求证:、至少有一个大于2;(3)若为正整数,求:“完美集”A .2024~2025学年市二中学高一(上)期中考试数学试卷一、填空题1.【答案】【解析】由题意知,,所以.2.【答案】【解析】,解得或,所以不等式的解集为.3.【答案】【解析】若,可得,,.4.【答案】必要不充分【解析】,,由于是的真子集,所以“”是“”的必要不充分条件.5.【答案】3【解析】因为集合,所以集合M 中包含2,3,5,8且至少包含13,21中的一个元素,所以或或,所以满足条件的M 个数为3.6.【解析】由,因,故,即得,.7.【答案】【解析】由,,可得,,又由{11---+1a 2a {}12,a a 1a 2a i a ()1,4(),4A =-∞()1,4A B = ()[),43,-∞-+∞ ()()34030440x x x x x -+≤⎧-⎪≤⇔⎨++≠⎪⎩4x <-3x ≥()[),43,-∞-+∞ 1-12510b a ==2log 10a =-5log 10b =-()521111lg 5lg 2lg101log 10log 10a b ⎛⎫+=-+=-+=-=- ⎪⎝⎭{}{}23|0|3x x x x x ≤=≤≤{}{}3|21|1x x x x -<=<<{}|13x x <<{}3|0x x ≤≤23x x ≤21x -<A M B ⊂⊆{}2,3,5,8,13M ={}2,3,5,8,21{}2,3,5,8,13,212112233332527x x x x --⎛⎪+=++⎫⎝⎭+ ==0x >11330x x -+>1133x x -+=22m n+9log 5m =3log 7n =31log 52m =3log 7n =8.【答案】【解析】令,解得或.当,即时,不等式,解得,则不等式中的两个整数解为2和3,有,解得;当,即时,不等式无解,所以不符合题意;当,即时,不等式解得,则不等式中的两个整数解为0和,有,解得.综上,a 的取值范围是9.【答案】【解析】因为“任意,”为真命题,所以不等式在上恒成立,当时,,显然成立,当时,有,解得,综上所述,实数a 的取值范围是.10.【答案】3.8【解析】设第n 个半衰期结束时,碳14含为,由题意可得,第一个半衰期结束时,碳14含量为,第二个半衰期结束时,碳14含量为;以此类推,为以首项,公比为的等比数列,所以第n 个半衰期结束时,碳14含量为,335333log 922log 9log 35log 5log 72m n===++3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或()22120x a x a -++=1x =2x a =21a >12a >()22120x a x a -++<12x a <<324a <≤322a <≤21a =12a =()22120x a x a -++<12a =21a <12a <()22120x a x a -++<21a x <<1-221a -≤<-112a -≤<-3|21212a a a ⎭<≤⎧⎫-≤<-⎨⎬⎩或(]2,2-x ∈R ()()222240a x a x -+--<()()222240a x a x -+--<R 2a =40-<2a ≠()()220421620a a a -<⎧⎪⎨∆=-+-<⎪⎩22a -<<(]2,2-n a 112a =214a ={}n a 112a =12q =12n n a ⎛⎫= ⎪⎝⎭令,解得所以这块化石距今约为年,即约为3.8万年:11.【答案】【解析】由,且,得到只可能,即或0,当时,,而,故舍去,则,又,∴,且,∴或,①若时,,不合题意;②若时,此时,,因,从而,又,则,当时,无整数解,当时,,所以,综上,12.【解析】因为,所以,,因为,所以,由,所以所以,11%2n n a ⎛⎫== ⎪⎝⎭2212lg102log 10 6.6410.301lg 2n ---===≈-5730 6.6438047.2⨯={}1,3,5,9,11{}14,A B a a = 12345a a aa a <<<<211a a =1a =11a =0410a ={}14,A B a a = =Z 1a =11410a a +=49a =()24923i a a i ==≤≤23a =33a =33a =22a =23a ={}531,3,,9,A a a ={}22531,9,,81,B a a =22353513981256a a a a +++++++=2255331620a a a a +++-=234a a a <<339a <<3a =4,6,7,85a 35a =511a ={}1,3,5,9,11A ={}1,3,5,9,11A =1-11a b -<<<10a +>10b ->2a b +=()()112a b ++-=2a b +=()32131133111111b a a b a b a b -+=+=+-+-+-+-()()13113311311211a b a b a b ⎡⎤⎢-+-=+++--⎡⎤⎣⎦+-+⎥⎣⎦()31111133432312112a b a b ⎛+- =+++-≥⎝⎛⎫ ⎪⎝+-=+-=- +⎭-当且仅当,即,二、单选题13.【答案】B 【解析】若,则是4的正因数,而4的正因数有1,2,4,所以,因为,所以,故选:B .14.【答案】D【解析】即,因为解集为,则根据韦达定理知,即,则故选:D .15.【答案】D 【解析】运用绝对值三角不等式,由于,,运用不等式性质得到故,故选:D .16.【答案】B【解析】对于甲,,故命题甲正确;对于乙,如图所示:所以,,故命题乙不正确三、解答题17.【答案】,,()31111a b a b +-=+-2a =-+4b =-41y x =+y ∈N 1x +{}4|,0,1,31P x y y x ⎧⎫=∈=∈=⎨⎬+⎩⎭N N {}|14Q x x =-≤≤{}0,1,3P Q = 2x ax b ≤-20x ax b -+≤{}42424a b =⨯⎧⎨=⎩816a b =⎧⎨=⎩32844log log 16log 23a b ===x y x a a y x a a y -=--≤-++-x a m -<y a n -<x a a y m n-+-<+x y m n -<+()()()()A B C A B B C B C A B C A B C ∆=-=- ()()()()()()A B A C A B A C A B A C =-=∆ ()()()A B C A B A C ∆≠∆ ()A B C ∆ ()()A B A C ∆ 6a =-9b =8c =-【解析】因为,所以,所以,得,所以,所以,即有且只有一个实根,所以,,解得,,综上可得,,,.18.【答案】(1);(2)【解析】(1)因为,即,设,则关于t 的方程:的两根为和,所以,解得.(2)由韦达定理,得,所以因为且,所以或,所以或,所以的取值范围为19.【答案】(1)第3年:(2)第7年平均利润最大,为12万元【解析】(1)设利润为y ,则,由整理得,,解得,由于,所以,所以第3年首次盈利.(2)首先,由(1)得平均利润万元,{}3AB = 3B ∈93150c ++=8c =-{}{}28150|3,5B x x x =-+=={}3A =20x ax b ++=3x =33a +=-33b ⨯=6a =-9b =6a =-9b =8c =-1,3⎛⎤-∞ ⎥⎝⎦()[),22,-∞-+∞ 22lg lg 30x x p -+=2lg 2lg 30x x p -+=lg t x =2230t t p -+=lg αlg β()22120p ∆=-≥-13p ≤lg lg 2lg lg 3pαβαβ+=⎧⎨=⎩22lg lg lg lg log log lg lg lg lg αββαβαβααβαβ++=+=2(lg lg )2lg lg 4642lg lg 33p p pβααβαβ+--===-31p ≤30p ≠443p ≥403p<4223p -≥4223p-<-log log αββα+()[),22,-∞-+∞ ()()22*509821024098y x x x x x x =-++=-+-∈N 2240980x x -+->220490x x -+<1010x -<<x *∈N {}|317x x x *∈∈≤≤N {}|317x x x *∈∈≤≤N 4924024012y x x x ⎛⎫=-++≤-⨯+= ⎪⎝⎭当且仅当,万元时等号成立,综上,第7年,平均利润最大,为12万元20.【答案】(1):(2);(3)【解析】(1)因为,利用,于是,,当且仅当时,取得最小值.(2)因为,利用,得到,于是,,当且仅当时,取得最小值.(3)因为利用,得到,于是,,当且仅当时,取得最小值21.【解析】(1)由,,则集合是“完美集”.(2)若、是两个不同的正数,且是“完美集”,设,根据根和系数的关系知,和相当于的两根,由,解得或(舍去),所以,又,均为正数所以、至少有一个大于2.(3)不妨设A中,49x x=7x =3-6-0x >a b c d +++≥41114x x ++≥+444111434433x x x x x x -=+++--≥--=-1x =3-0x >a b c ++≥313339x x ++≥331133363363699x x x x x x -=++--≥--=-3x =6-0x >a b c ++≥3x ax +≥33x ax x ax -=-≥x =((112-+-+=-(112--=-{11--+1a 2a {}12,a a 12120a a a a t +=⋅=>1a 2a 20x tx t -+=240t t ∆=->4t >0t <124a a ⋅>1a 2a 1a 2a 312n a a a a <<<⋅⋅⋅<由,得,当时,即有,又为正整数,所以,于是,则无解,即不存在满足条件的“完美集”;当时,,故只能,,求得,于是“完美集”A 只有一个,为.当时,由,即有,而,又,因此,故矛盾,所以当时不存在完美集A ,综上知,“完美集”A 为1212n n n a a a a a n a a ⋅⋅⋅=++⋅⋅<⋅+121n n a a a -⋅⋅<⋅2n =12a <i a 11a =2211a a +=⨯2a 3n =123a a <11a =2a =23a =3{}1,2,34n ≥()1211231n a a a n n -⋅⋅⋅≥⨯⨯⨯⋅⋅⋅⨯-()1231n n n ≥⨯⨯⨯⋅⋅⋅⨯-()()()221242220n n n n n n ---=-+-=--+<()()()121231n n n n --≤⨯⨯⨯⋅⋅⋅⨯-()1231n n n <⨯⨯⨯⋅⋅⋅⨯-4n ≥{}1,2,3。

2019-2020学年高一数学上学期期末联考试题及答案(新人教A版第60套)

2019-2020学年高一数学上学期期末联考试题及答案(新人教A版第60套)

2019-2020 学年度第一学期期末联考高一数学试题第 I 卷(选择题)一、选择题(本大题共 10 小题,每题 5 分,共 50 分.每题只有一个正确答案)1.若 A={0,1,2 } , B = { x 1? x 2} , 则A?B(){ } { 0,1,2 }{}{1,2 }A . 1B .C . 0,1D .2. sin15 o cos15o 值为()A .1B .1C.3 D. 324243. 函数 f ( x)1lg(1 x) 的定义域是 ()1 xA .( - ,- 1)B .(1,+ )C .(-1,1)∪(1,+ )D .(- ,+ )4.已知点 P( x,3) 是角终边上一点,且 cos4),则 x 的值为(B . 55D . 4A . 5C . 45.已知 a0.7 0.8 ,blog 2 0.8, c1.10.8 ,则 a,b, c 的大小关系是()A . a b cB . b a cC . a c bD . b c a6.设函数 y = x 3 与 y( 1 )x 2 的图像的交点为 ( x 0,y 0) ,则 x 0 所在的区间是 ()2A .(0,1)B.(1 ,2) C .(2 , 3) D .(3 ,4)7.在自然界中,存在着大批的周期函数,比方声波,若两个声波随时间的变化规律分别为:y 1 3sin 100 t , y 2 3cos 100 t ,则这两个声波合成后即yy 1 y 2 的振幅为()A . 3B . 6C . 3 2 D. 6 28.以下函数中,不拥有奇偶性的函数是 ( )A . yexexB . y lg1 x1 xC . ycos2xD . y sin x cos x9.若 yAsin( x)( A0,0,| |) 的最小值为2,其图像相邻最高点与最低点横坐标之差为2 ,且图像过点(20, 1),则其分析式是()A . y 2sin( x )6B. y 2sin( x )3C . y2sin( x) 2 6xD . y 2sin( )2 310.如右图,点 P 在半径为 1的半圆上运动, AB 是直径, P当 P 沿半圆弧从 A 到 B 运动时,点 P 经过的行程 x 与 APBxB O A的面积 y 的函数y f ( x) 的图像是以下图中的()yy11 12OC π2πx OD第 II卷(非选择题)π2πx二、填空题(本大题共 5 小题,每题 5 分,共25 分.将答案填在题后横线上)11.(log29)(log 3 4).12.把函数y= 3sin2 x的图象向左平移个单位获得图像的函数分析是.13.已知tan 2 ,则 cos26.14.若函数f x 知足 f ( x 1) f ( x) ,且当x1,1 时, f x x ,则 f 2 f 3f4.15.函数f ( x)| cos x | cos x 具备的性质有.(将全部切合题意的序号都填上)( 1)f (x)是偶函数;( 2)f (x)是周期函数,且最小正周期为;( 3)f (x)在[, ] 上是增添的;2( 4)f (x)的最大值为2.三、解答题(本大题共 6 小题,共75 分.解答应写出文字说明、证明过程或演算步骤)16.已知会合M ={x 1 < x < 2},会合Nx 3x 4 .2( 1)求AèB;P ={}( 2)设会合x a < x < a + 2,若 P 腿(A B) ,务实数 a 的取值范围.117.(本小题满分12 分)已知tan2, tan,此中0,0.3( 1)求tan() 的值;( 2)求角的值.18.(本小题满分12 分)已知函数 f (x) sin( x)sin( x) .32( 1)求f (x)的最小正周期;3,求 g(x) 在区间[0,] 上的值域.( 2)若g (x) f ( x)4219.(此题满分12 分)辽宁号航母纪念章从2012 年10 月5 日起开始上市.经过市场检查,获得该纪念章每 1 枚的市场价y(单位 : 元) 与上市时间x(单位 : 天 ) 的数据以下:上市时间x 天41036市场价y 元905190(1) 依据上表数据联合散点图,从以下函数中选用一个适合的函数描绘辽宁号航母纪念章的市场价y与上市时间x 的变化关系并说明原因: ①y ax b ;②y ax 2bx c ;③y a log b x .(2)利用你选用的函数,求辽宁号航母纪念章市场价最低时的上市天数及最低的价钱.20. ( 本小题满分13 分)已知函数 f (x)cx1, 0 x c,知足 f (c)9 x.2 c 21, c ≤ x128(1)求常数 c 的值;(2)解对于 x 的不等式 f (x)21.821. ( 本小题满分14 分 ) 已知函数mf( )|x|1( x0).x x( 1)当m 2时,判断f (x)在(,0) 的单一性,并用定义证明.( 2)若对随意x R ,不等式 f (2x)0 恒建立,求 m 的取值范围;( 3)议论f (x)零点的个数.2019-2020 学年度第一学期期末 考高一数学参照答案参照答案: 一、1.A2.B 3 .C4.D5.B 6 .B 7 .C 8 .D 9 .C10.A 二、填空11. 4 12. 13 .3 14. 115.( 1)( 3)(4)56三、解答{ x 1 < x < 4}16.解:( 1) A? B⋯⋯⋯⋯⋯⋯⋯⋯ 6 分 ( 2)由(1) A ? B {x 1 < x < 4 }, ⋯⋯⋯⋯⋯⋯⋯⋯ 9 分ì?a 3 1?1#a2⋯⋯⋯⋯⋯⋯⋯⋯ 12 分í?2 ? 4?a +1tantan217.解:( 1) tan()37⋯⋯⋯⋯⋯⋯⋯⋯ 5 分1 tan tan1 ( 2) 131tantan2( 2) tan(31⋯⋯⋯⋯⋯⋯⋯⋯ 10 分)tan tan111( 2)1 3因 tan2 0,tan0 ,3因此, 022因此2,2故4⋯⋯⋯⋯⋯⋯⋯⋯ 12 分18.解:f (x)( 1 sin x3cos x)cos x⋯⋯⋯⋯⋯⋯⋯⋯ 2 分221 sin x cos x3cos 2 x221sin 2x3(1 cos 2x) ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分441sin(2 x3) 3 ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分24( 1)因此T 2.⋯⋯⋯⋯⋯⋯⋯⋯ 8 分21(2)g (x)) ,sin(2 x23因 0 ≤ x ≤2 ,因此3 ≤ 2x3 ≤ ,3因此3≤ sin(2 x)≤1,233≤ 1sin(2 x) ≤ 1,423 2因此 g(x) 在区 [0,] 上的 域 [3 ,1] .⋯⋯⋯⋯⋯⋯⋯⋯ 12 分24 219.解 :(1) ∵跟着 x 的增添, y 的 先减后增,而所 的三个函数中y ax b 和 ya logb x 然都是 函数,不 足 意,∴ yax 2 bx c .⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) 把点 (4 , 90) , (10 , 51) , (36 , 90) 代入 yax 2 bx c 中,16a 4b c90得 100a 10bc 51⋯⋯⋯⋯⋯⋯⋯⋯6 分1296a 36b c 90解得 a 110, c 126⋯⋯⋯⋯⋯⋯⋯⋯ 8 分, b1 4 1∴ yx 2 10x 126 (x 20)2 26 ,⋯⋯⋯⋯⋯⋯⋯⋯ 10 分44∴当 x 20 , y 有最小 y min 26 .⋯⋯⋯⋯⋯⋯ 11 分答: 宁号航母 念章市 价最低 的上市天数 20 天,最低的价钱 26 元.⋯⋯⋯⋯12 分20.解: (1)∵ f ( c)9 ,即 c c1 9 ,2 8 28解得 c1⋯⋯⋯⋯⋯⋯⋯⋯ 5 分.21 x 1, 0 x 1(2) 由 (1) 得 f ( x)21, 1≤ x2 ,2 4x12由 f ( x)2,适当 0x12 x1 ⋯⋯⋯⋯⋯⋯⋯⋯9 分1,解得4 ;822当1≤ x 1 ,解得 1≤ x5 . ⋯⋯⋯⋯⋯⋯⋯⋯ 12 分228∴不等式 f ( x)2 1的解集 { x | 2 x 5} .⋯⋯⋯⋯⋯⋯⋯⋯ 13 分8 4821.分析:( 1)当 m2 ,且 x0 , f ( x)x 2 1 是 减的.⋯⋯⋯⋯⋯⋯⋯1 分x明: x 1x 2 0 ,f (x 1)f (x 2 )x 12 1 ( x 22 1)x 1x 2(x 2 x 1 ) (2 2x 1)x 2( x 2 x 1 )2( x 2 x 1)x 1x 2( x 22 ⋯⋯⋯⋯⋯⋯3 分x 1 )(1 ) x 1 x 2又 x 1 x 2 0 ,因此 x 2 x 1 0 , x 1x 2 0 ,因此 ( x 2 x 1 )(1 2 0)x 1x 2 因此故当f ( x 1 ) f ( x 2 ) 0 ,即 f (x 1) f (x 2 ) ,m 2 , f ( x) x2在 ( ,0) 上 减的. ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分1 x( 2)由 f (2 x ) 0 得 | 2x | m x1 0 ,形 (2 x )22x22x(2 x ) 2m 0 ,即 m而 2x(2 x )2(2 x 1)21 ,12 41当 2x即 x1 (2 x (2 x )2 )max ,2 14因此 m⋯⋯⋯⋯⋯⋯⋯⋯ 9 分.4( 3)由 f (x)0 可得 x | x | xm 0( x 0) , m x | x | x(x 0)令 g( x)x x | x |x 2 x, xx 2x, x 0作 y g (x) 的 像及直y m ,由 像可得:当 m1 1f ( x) 有 1 个零点.或 m,4 4当 m10 或 m1或 m, f (x) 有 2 个零点;41 14当 0mm0 , f ( x) 有 3 个零点.⋯⋯⋯⋯⋯⋯⋯⋯ 14 分或44。

2018-2019学年上学期高二数学12月月考试题含解析(1690)

2018-2019学年上学期高二数学12月月考试题含解析(1690)

铁门关市第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1B .2C .3D .42. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+,则当14x y+取最小值时,CM CN ⋅=( )A .6B .5C .4D .33. 函数f (x )=ax 2+bx 与f (x )=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )A .B .C .D .4. 下列命题正确的是( )A .很小的实数可以构成集合.B .集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合.C .自然数集 N 中最小的数是.D .空集是任何集合的子集.5. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .26. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.7. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形8. 与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257°9. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( ) A .2017 B .﹣8 C .D .10.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .2011.某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱12.设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x ∈R 恒成立,则( ) A .f (2)>e 2f (0),f B .f (2)<e 2f (0),f C .f (2)>e 2f (0),fD .f (2)<e 2f (0),f二、填空题13.经过A (﹣3,1),且平行于y 轴的直线方程为 .14.-23311+log 6-log 42()= . 15.如图是正方体的平面展开图,则在这个正方体中①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60︒角;④DM 与BN 是异面直线.以上四个命题中,正确命题的序号是 (写出所有你认为正确的命题).16.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.18.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.三、解答题19.已知f (x )=|﹣x|﹣|+x|(Ⅰ)关于x 的不等式f (x )≥a 2﹣3a 恒成立,求实数a 的取值范围;(Ⅱ)若f (m )+f (n )=4,且m <n ,求m+n 的取值范围.20.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.21.设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=a f(x)﹣1(a>0且a≠1).(Ⅰ)求k的值;(Ⅱ)求g(x)在[﹣1,2]上的最大值;(Ⅲ)当时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.22.已知函数f(x)=.(1)求f(x)的定义域;(2)判断并证明f(x)的奇偶性;(3)求证:f()=﹣f(x).23.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.24.已知命题p:方程表示焦点在x轴上的双曲线.命题q:曲线y=x2+(2m﹣3)x+1与x轴交于不同的两点,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.铁门关市第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:设数列{a n }的公差为d ,则由a 1+a 5=10,a 4=7,可得2a 1+4d=10,a 1+3d=7,解得d=2, 故选B .2. 【答案】D 【解析】试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设BM k B A =,则,1x k y k =-=-,可得1x y +=,当14x y+取最小值时,()141445x yx y x y x y y x⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()1,CN 2CM xCA yCB CA CB =+=+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭.故本题答案选D.考点:1.向量的线性运算;2.基本不等式. 3. 【答案】 D【解析】解:A 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,A 不正确;B 、由图得f (x )=ax 2+bx 的对称轴x=﹣>0,则,不符合对数的底数范围,B 不正确;C 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f (x )=log x在定义域上是增函数,C 不正确;D 、由f (x )=ax 2+bx=0得:x=0或x=,由图得,则,所以f(x )=logx 在定义域上是减函数,D 正确.【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.4. 【答案】D 【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.5.【答案】B【解析】解:作出不等式组对应的平面区域如图:设z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点C时,直线y=﹣x+的截距最小,此时z最小,由,解得,即C(3,﹣3),此时z=2x+4y=2×3+4×(﹣3)=6﹣12=﹣6.故选:B【点评】本题主要考查线性规划的应用,利用目标函数的几何意义是解决本题的关键.6.【答案】B7.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.8.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.9.【答案】D【解析】解:∵f(x+2)=﹣f(x),∴f(x+4)=﹣f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4.∴a2017=f(2017)=f(504×4+1)=f(1),∵f(x)为偶函数,当﹣2≤x≤0时,f(x)=2x,∴f(1)=f(﹣1)=,∴a2017=f(1)=,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.10.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.11.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.12.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B二、填空题13.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.14.【答案】33 2【解析】试题分析:原式=233331334log log16log16log1622+=+=+=+=。

上海市普陀区曹杨第二中学2024届高三上学期期末数学试题含答案解析

上海市普陀区曹杨第二中学2024届高三上学期期末数学试题含答案解析

上海市曹杨二中2023学年度第一学期高三年级期末考试数学试卷班级________姓名________学号________一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知{}202,1x ∈-,则实数x =________.2.复数z 满足6i z z +=(i 为虚数单位),则z 的虚部为________.3.已知()1,2a =-,()3,4b =,则a 在b上的数量投影为________.4.设一组样本数据1x ,2x ,L ,n x 的方差为0.01,则数据110x ,210x ,L ,10n x 的方差为___________.5.不等式231≤-x 的解集是__________.6.已知()()2log 11a f x x =-+(0a >且1)a ≠,函数()y f x =的图象恒过定点P ,则点P 的坐标为________.7.在平面直角坐标系xOy 中,()01,0P ,把向量i OP uuu r顺时针旋转定角θ得到i OQ ,i Q 关于y 轴的对称点记为1i P +,0,1,,10i = ,则11P 的坐标为________8.已知()828012831x a a x a x a x -=++++ ,则1357a a a a +++=_______(用数字作答).9.某公司员工小明上班选择自驾、坐公交车、骑共享单车的概率分别为16、13、12,而他自驾、坐公交车、骑共享单车迟到的概率分别为14、15、16,结果今天他迟到了,在此条件下,他自驾去上班的概率为________.10.已知()22,,141,,x x a f x x x x x a ⎧<⎪=+⎨⎪-++≥⎩记函数()y f x =的最大值为()g a ,则()g a 的取值范围是________.11.已知双曲线2222:1(0,0)x y E a b a b -=>>的左,右焦点分别为1F ,2F ,过左焦点1F 作直线l 与双曲线交于A ,B 两点(B 在第一象限),若线段AB 的中垂线经过点2F ,且点2F 到直线l,则双曲线的离心率为______.12.已知各项均不为零的数列{}n a 的前n 项和为n S ,11a =-,348a ≤≤,20240a <,且21320n n n n a a a a ++++=,则2024S 的最大值为________.二、选择题(本大题共有4题,满分18分,第13、14题每题4分,第15、16题每题5分)13.已知x ∈R ,则“38x >”是“2x >”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件14.在ABC 中,AB AC BA BC CA CB λμ⋅=⋅=⋅,则下列说法一定正确的是()A.若0λμ>,则ABC 是锐角三角形B.若0λμ>,则ABC 是钝角三角形C.若0λμ<,则ABC 是锐角三角形D.若0λμ<,则ABC 是钝角三角形15.若干个能确定一个立体图形的体积的量称为该立体图形的“基本量”.已知长方体1111ABCD A B C D -,下列四组量中,不能作为该长方体的“基本量”的是()A.1,,AB AD AA 的长度B.11,,AB AC AD 的长度C.11,,AB BA BD 的长度D.11,,AB AC B C 的长度16.设集合{}1234,,,X a a a a *=⊆N ,定义:集合{}*,,,,i j i j Y a a a a X i j N i j =+∈∈≠,集合{},,S x y x y Y x y =⋅∈≠,集合,,x T x y Y x y y ⎧⎫=∈≠⎨⎬⎩⎭,分别用||S ,||T 表示集合S ,T 中元素的个数,则下列结论可能成立的是()A.||6S = B.||16S = C.||9T = D.||16T =三、解答题(本大题共有5题,满分78分)17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.18.垃圾分类可以提高垃圾的资源价值和经济价值.某学校在寒假期间安排了“垃圾分类知识普及实践活动”.为了解学生的学习成果,该校对高一、高二年级全体学生进行了相关知识测试,然后从高一、高二各随机抽取了20名学生成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了整理得相关信息:高一年级成绩分布表等级EDCBA成绩(分数)[)50,60[)60,70[)70,80[)80,90[)90,100人数123410(1)从高一和高二样本中各抽取一人,这两个人成绩都不低于90分的概率是多少?(2)分别从高一全体学生中抽取一人,从高二全体学生中抽取2人,这三人中成绩不低于90分的人数记为X ,用频率估计概率,求X 的分布列和期望.19.如图,斜三棱柱111ABC A B C -中,底面ABC 是边长为a 的正三角形,侧面11ABB A 为菱形,且160A AB ∠=︒.(1)求证:1AB A C ⊥;(2)若11cos 4A AC ∠=,三棱柱111ABC ABC -的体积为24,求直线1AC 与平面11CBB C 所成角的大小.20.已知椭圆22:184x y C +=,过点(0,4)P 作关于y 轴对称的两条直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与椭圆交于不同两点D ,C .(1)已知1l 经过椭圆的左焦点,求1l 的方程;(2)证明:直线AC 与直线BD 交于点(0,1)Q ;(3)求线段AC 长的取值范围.21.已知a 为实数,()()()ln 1f x x a x =++.对于给定的一组有序实数(),k m ,若对任意1x ,()21,x ∞∈-+,都有()()11220kx f x m kx f x m ⎡⎤⎡⎤-+-+≥⎣⎦⎣⎦,则称(),k m 为()f x 的“正向数组”.(1)若2a =-,判断()0,0是否为()f x 的“正向数组”,并说明理由;(2)证明:若(),k m 为()f x 的“正向数组”,则对任意1x >-,都有()0kx f x m -+≤;(3)已知对任意01x >-,()()()()0000,f x f x x f x -''都是()f x 的“正向数组”,求a 的取值范围.上海市曹杨二中2023学年度第一学期高三年级期末考试数学试卷班级________姓名________学号________一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知{}202,1x ∈-,则实数x =________.【答案】1±【解析】【分析】直接根据210x -=求解即可.【详解】{}202,1x ∈- ,210x ∴-=,解得1x =±.故答案为:1±.2.复数z 满足6i z z +=(i 为虚数单位),则z 的虚部为________.【答案】3-【解析】【分析】设()i ,z a b a b =+∈R ,根据复数相等可得答案.【详解】设()i ,z a b a b =+∈R ,因为6i z z +=,所以i 6i=i ++-a b a b ,可得6+=-b b ,解得3b =-,则z 的虚部3b =-.故答案为:3-.3.已知()1,2a =- ,()3,4b = ,则a 在b上的数量投影为________.【答案】1【解析】【分析】直接利用投影公式计算即可.【详解】()1,2a =- ,()3,4b =,则a 在b上的数量投影为1a b b ⨯-+⨯⋅==.故答案为:1.4.设一组样本数据1x ,2x ,L ,n x 的方差为0.01,则数据110x ,210x ,L ,10n x 的方差为___________.【答案】1【解析】【分析】根据方差的性质,若1x ,2x ,L ,n x 的方差为2s ,则1ax ,2ax L ,n ax 的方差为22a s ,计算即得答案.【详解】根据题意,一组样本数据1x ,2x ,L ,n x 的方差20.01s =,则数据110x ,210x ,L ,10n x 的方差为22101s ⨯=;故答案为:1.5.不等式231≤-x 的解集是__________.【答案】{|1x x <或53x ≥}【解析】【分析】分式不等式变式成3501x x -+≤-,等价于()()135010x x x ⎧--≥⎨-≠⎩,求解即可【详解】2353011-+-=≤--x x x ,所以()()135010x x x ⎧--≥⎨-≠⎩,解得1x <或53x ≥,所以不等式231≤-x 的解集是{|1x x <或53x ≥}.故答案为:{|1x x <或53x ≥}6.已知()()2log 11a f x x =-+(0a >且1)a ≠,函数()y f x =的图象恒过定点P ,则点P 的坐标为________.【答案】()2,1【解析】【分析】令11x -=即可求出定点.【详解】令11x -=得2x =,此时()21f =,所以函数()y f x =的图象恒过定点()2,1,即点()2,1P .故答案为:()2,1.7.在平面直角坐标系xOy 中,()01,0P ,把向量i OP uuu r顺时针旋转定角θ得到i OQ ,i Q 关于y 轴的对称点记为1i P +,0,1,,10i = ,则11P 的坐标为________【答案】()cos ,sin θθ--【解析】【分析】根据条件的变化,找出规律,根据规律可得答案.【详解】把向量0OP 顺时针旋转定角θ得到0OQ,得()()()0cos ,sin Q θθ--,0Q 关于y 轴的对称点记为1P ,则()()()1cos π,sin πP θθ--,即()1cos ,sin P θθ--把向量1OP顺时针旋转定角θ得到1OQ ,得()()()1cos π,sin πQ --,即()11,0Q -1Q 关于y 轴的对称点记为2P ,则()20,1P ,以此类推可得当i 为奇数时,()cos ,sin i P θθ--,当i 为偶数时,()0,1i P ,故11P 的坐标为()cos ,sin θθ--.故答案为:()cos ,sin θθ--8.已知()828012831x a a x a x a x -=++++ ,则1357a a a a +++=_______(用数字作答).【答案】32640-【解析】【分析】根据题意,利用赋值法分别将1x =和=1x -代入已知式子中,得到两个方程,由这两个方程化简整理,即可求出答案.【详解】由()828012831x a a x a x a x -=++++ ,令1x =得,80182a a a +++=L ,①令=1x -得,8012384a a a a a -+-++=L ,②①-②得,()881357224a a a a +++=-,88135724326402a a a a -∴+++==-.故答案为:32640-.9.某公司员工小明上班选择自驾、坐公交车、骑共享单车的概率分别为16、13、12,而他自驾、坐公交车、骑共享单车迟到的概率分别为14、15、16,结果今天他迟到了,在此条件下,他自驾去上班的概率为________.【答案】523【解析】【分析】设小明迟到为事件A ,小明自驾为事件B ,求出()P A ,()P AB ,利用条件概率公式计算即可求出结果.【详解】设小明迟到为事件A ,小明自驾为事件B ,则()11111123435612062P A =⨯+⨯+⨯=,()1116424P AB =⨯=,所以在小明迟到的条件下,他自驾去上班的概率为()()()3125|2231204P AB P B A P A ===.故答案为:523.10.已知()22,,141,,x x a f x x x x x a ⎧<⎪=+⎨⎪-++≥⎩记函数()y f x =的最大值为()g a ,则()g a 的取值范围是________.【答案】1,52⎡⎤⎢⎥⎣⎦【解析】【分析】同一坐标系中画出()21x t x x =+和()241h x x x =-++的图象,然后根据图象分2a ≤,43222a +<<,4322a +≥讨论求解即可.【详解】设()21x t x x =+,则()()21xt x t x x --==-+,即函数()t x 在R 上为奇函数,又当0x >时,()11t x x x=+,当且仅当1x =时等号成立,由对勾函数的单调性可得函数()t x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 112t x t ==设()241h x x x =-++,则()()225h x x =--+,令21412x x -++=,解得4322x ±=同一坐标系中画出()21x t x x =+和()241h x x x =-++的图象如下:由图可知,当2a ≤时,()5g a =,当43222a +<<时,()1,52g a ⎛⎫∈ ⎪⎝⎭,当4322a +≥时,()12g a =,综上()g a 的取值范围是1,52⎡⎤⎢⎥⎣⎦.故答案为:1,52⎡⎤⎢⎥⎣⎦.【点睛】方法点睛:对于分段函数,其中每一段对应的变量范围在没有确定的情况下,需要在一个坐标系中画出每一段的完整图象,对变量的取值变化情况分析,从而得到分类的标准进行讨论.11.已知双曲线2222:1(0,0)x y E a b a b-=>>的左,右焦点分别为1F ,2F ,过左焦点1F 作直线l 与双曲线交于A ,B 两点(B 在第一象限),若线段AB 的中垂线经过点2F ,且点2F 到直线l ,则双曲线的离心率为______.【答案】142【解析】【分析】根据题意,由双曲线的定义可得4AB a =,再由勾股定理列出方程即可得到,a c 关系,代入离心率计算公式,即可得到结果.【详解】设双曲线E 的半焦距为c ,0c >,22BF AF =,根据题意得122BF BF a -=,又21AF AF -212BF AF a =-=,114AB BF AF a ∴=-=,设AB 的中点为C ,在2ACF △中,2CF =,2AC a =,23AF a ∴==,则1AF a =,13CF a =,根据2221212CF CF F F +=,可知2(3)a +)22(2)c =,142c a e =∴=.故答案为:142.12.已知各项均不为零的数列{}n a 的前n 项和为n S ,11a =-,348a ≤≤,20240a <,且21320n n n n a a a a ++++=,则2024S 的最大值为________.【答案】506143-【解析】【分析】根据递推式先推出44n n a a +=,然后分组求和可得()50620242344113S a a a -=⨯++-,结合条件,通过基本不等式,二次函数的性质求2024S 的最大值.【详解】因为21320n n n n a a a a ++++=,所以1322n n n n a a a a +++=-,将1n +代入得24132n n n n a a a a ++++=-,所以2424n n n n a a a a +++=,又20n a +≠,所以44n n a a +=,所以()()()()2024152021262022372023482024S a a a a a a a a a a a a =+++++++++++++++ ()()()()50650650650623411414141414141414a a a -⨯-⨯-⨯-⨯-=+++----()5062344113a a a -=⨯++-又因为5052024440a a =⨯<,所以40a <,又由341220a a a a =+,11a =-,得2432a a a =,因为348a ≤≤,所以2240,a a a <+≤--,当且仅当24a a =时等号成立,所以()50650622024341411333S a --⎡⎤≤-=-⎢⎥⎣⎦2,⎡⎣,=2024S 最大,且最大为(50650624114333--⎡⎤--=⎢⎥⎣⎦故答案为:506143-.【点睛】关键点点睛:本题的关键是根据条件中的递推式求出数列中隐藏的等比数列,然后利用分组求和的方法进行求和.二、选择题(本大题共有4题,满分18分,第13、14题每题4分,第15、16题每题5分)13.已知x ∈R ,则“38x >”是“2x >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】分别求得38x >与2x >的等价条件,从而利用充分必要条件的定义即可得解.【详解】382x x >⇔>,22x x >⇔>或<2x -,所以前者可以推得后者,后者不能推得前者,则“38x >”是“2x >”的充分不必要条件.故选:A.14.在ABC 中,AB AC BA BC CA CB λμ⋅=⋅=⋅,则下列说法一定正确的是()A.若0λμ>,则ABC 是锐角三角形B.若0λμ>,则ABC 是钝角三角形C.若0λμ<,则ABC 是锐角三角形D.若0λμ<,则ABC 是钝角三角形【答案】D 【解析】【分析】根据题中条件利用向量的数量积运算可求得22cos cos cos AC AB ABC B Cλμ=,分情况考查λμ的正负情况,转化为cos cos B C 的正负情况,进一步分析即可.【详解】因为AB AC BA BC CA CB λμ⋅=⋅=⋅,即cos cos cos AB AC A BA BC B CA CB C λμ⋅=⋅=⋅,又0λμ≠时,三角形一定不是直角三角形,则有cos cos ,cos cos AC A AB ABC B CB Cλμ== ,22cos cos cos AC AB A BC B Cλμ=,若0λμ>,则cos cos 0B C >,,B C 为锐角,但是不能判断A 的大小,故A,B 错误;当0λμ<时,则cos cos 0B C <,,B C 中必有一个钝角,故此时ABC 是钝角三角形,C 错误,D 正确,故选:D.15.若干个能确定一个立体图形的体积的量称为该立体图形的“基本量”.已知长方体1111ABCD A B C D -,下列四组量中,不能作为该长方体的“基本量”的是()A.1,,AB AD AA 的长度B.11,,AB AC AD 的长度C.11,,AB BA BD 的长度D.11,,AB AC B C 的长度【答案】D 【解析】【分析】根据题设定义,结合长方体的体积公式、已知量判断长方体的体积是否可以确定即可.【详解】如下图,根据长方体体积公式,只需确定共顶点的三条棱长即可,已知1,,AB AD AA 的长度,则体积可定,A 满足;由2221122222222111AB BB AB AB BC AC AD DD BC BB AD ⎧+=⎪+=⎨⎪+=+=⎩,即可求出1,,AB BC BB ,则体积可定,B 满足;由勾股定理及1,AB BA 可求1AA ,由勾股定理及11,BA BD 可求11A D ,故体积可定,C 满足;已知11,,AB AC B C 无法求出1,BC BB ,体积不能确定,D 不满足.故选:D16.设集合{}1234,,,X a a a a *=⊆N ,定义:集合{}*,,,,i j i j Y a a a a X i j N i j =+∈∈≠,集合{},,S x y x y Y x y =⋅∈≠,集合,,x T x y Y x y y ⎧⎫=∈≠⎨⎬⎩⎭,分别用||S ,||T 表示集合S ,T 中元素的个数,则下列结论可能成立的是()A.||6S = B.||16S = C.||9T = D.||16T =【答案】D 【解析】【分析】对A 、B :不妨设12341a a a a ≤<<<,可得1213142434a a a a a a a a a a +<+<+<+<+,根据集合Y 的定义可得Y 中至少有以上5个元素,不妨设112213314424534,,,,x a a x a a x a a x a a x a a =+=+=+=+=+,则集合S 中至少有7个元素,排除选项A ,若1423a a a a +≠+,则集合Y 中至多有6个元素,所以2max 6||C 1516S ==<,排除选项B ;对C :对,i j i j x x ∀≠≠,则ij x x 与j ix x 一定成对出现,根据集合T 的定义可判断选项C ;对D :取{1,3,5,7}X =,则{4,6,8,10,12}Y =,根据集合T 的定义可判断选项D .【详解】解:不妨设12341a a a a ≤<<<,则i j a a +的值为121314232434,,,,,a a a a a a a a a a a a ++++++,显然,1213142434a a a a a a a a a a +<+<+<+<+,所以集合Y 中至少有以上5个元素,不妨设112213314424534,,,,x a a x a a x a a x a a x a a =+=+=+=+=+,则显然12131415253545x x x x x x x x x x x x x x <<<<<<,则集合S 中至少有7个元素,所以||6S =不可能,故排除A 选项;其次,若1423a a a a +≠+,则集合Y 中至多有6个元素,则2max 6||C 1516S ==<,故排除B 项;对于集合T ,取{1,3,5,7}X =,则{4,6,8,10,12}Y =,此时12123344555563,,,,,,,,2,,,,,,,335235453643252T ⎧⎫=⎨⎬⎩⎭,||16T =,故D 项正确;对于C 选项而言,,i j i j x x ∀≠≠,则i j x x 与j ix x 一定成对出现,110j i j ix x x x ⎛⎫⎛⎫--< ⎪ ⎪ ⎪⎝⎭⎝⎭,所以||T 一定是偶数,故C 项错误.故选:D.三、解答题(本大题共有5题,满分78分)17.已知在ABC 中,()3,2sin sin A B C A C B +=-=.(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】(1)31010(2)6【解析】【分析】(1)根据角的关系及两角和差正弦公式,化简即可得解;(2)利用同角之间的三角函数基本关系及两角和的正弦公式求sin B ,再由正弦定理求出b ,根据等面积法求解即可.【小问1详解】3A B C += ,π3C C ∴-=,即π4C =,又2sin()sin sin()A C B A C -==+,2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+,sin cos 3cos sin A C A C ∴=,sin 3cos A A ∴=,即tan 3A =,所以π02A <<,310sin 10A ∴==.【小问2详解】由(1)知,cos 10A ==,由sin sin()B A C =+23101025sin cos cos sin (210105A C A C =+=+=,由正弦定理,sin sin c bC B=,可得255522b ⨯==,11sin 22AB h AB AC A ∴⋅=⋅⋅,310sin 610h b A ∴=⋅==.18.垃圾分类可以提高垃圾的资源价值和经济价值.某学校在寒假期间安排了“垃圾分类知识普及实践活动”.为了解学生的学习成果,该校对高一、高二年级全体学生进行了相关知识测试,然后从高一、高二各随机抽取了20名学生成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了整理得相关信息:高一年级成绩分布表等级EDCBA成绩(分数)[)50,60[)60,70[)70,80[)80,90[)90,100人数123410(1)从高一和高二样本中各抽取一人,这两个人成绩都不低于90分的概率是多少?(2)分别从高一全体学生中抽取一人,从高二全体学生中抽取2人,这三人中成绩不低于90分的人数记为X ,用频率估计概率,求X 的分布列和期望.【答案】(1)18(2)分布列见解析,()1E X =【解析】【分析】(1)先分别求出高一,高二中抽取一人,成绩不低于90分的概率,然后利用概率的乘法公式求解即可;(2)X 可取的值为0,1,2,3,分别求出其概率即可得分布列,然后根据期望公式求期望即可.【小问1详解】由已知得从高一的学生中抽取一人,成绩不低于90分的概率是101202=,从高二的学生中抽取一人,成绩不低于90分的概率是10.025104⨯=,则从高一和高二样本中各抽取一人,这两个人成绩都不低于90分的概率是111248⨯=;【小问2详解】X 可取的值为0,1,2,3,则()213902432P X ⎛⎫==⨯= ⎪⎝⎭,()21213113151C ×2424432P X ⎛⎫==⨯+⨯⨯= ⎪⎝⎭,()2121131172C ×2442432P X ⎛⎫==⨯⨯+⨯= ⎪⎝⎭,()211132432P X ⎛⎫==⨯=⎪⎝⎭,则X 的分布列为X123P9321532732132所以()915710123132323232E X =⨯+⨯+⨯+⨯=19.如图,斜三棱柱111ABC A B C -中,底面ABC 是边长为a 的正三角形,侧面11ABB A 为菱形,且160A AB ∠=︒.(1)求证:1AB A C ⊥;(2)若11cos 4A AC ∠=,三棱柱111ABC ABC -的体积为24,求直线1AC 与平面11CBB C 所成角的大小.【答案】(1)证明见解析(2)105【解析】【分析】(1)根据菱形的性质,结合线面垂直的判定定理和性质进行证明即可;(2)建立空间直角坐标系,利用棱柱的体积公式,空间向量的夹角公式进行求解.【小问1详解】取AB 的中点O ,连接1,A O CO ,由题知1A AB △为正三角形,而ABC 也是正三角形,1,A O AB CO AB ∴⊥⊥,又1,A O CO ⊂面1A CO ,且1A O CO O ⋂=,AB ∴⊥面1A CO ,又1AC ⊂面1A CO ,1AB AC ∴⊥;【小问2详解】111,cos 4A A AB AC a A AC ===∠=,2222111132cos 2AC AA AC AA AC A AC a ∴=+-⋅⋅∠=,12AC a ∴=,又12AO CO a ==,22211A C A O CO ∴=+,即1A O OC ⊥,又,AB CO ⊂面ABC ,且AB CO O = ,1A O AB ⊥,1A O ∴⊥面ABC ,1,,AO CO AB ∴两两垂直,如图建立空间直角坐标系,三棱柱111ABC A B C -的体积为21332442ABC V S A O =⋅=⨯= ,4a ∴=,()()()(10,2,0,0,2,0,,0,0,A B C A ∴--,((()111,0,2,,2,0A C CC AA CB ∴=--===,设平面11CBB C 的法向量为(),,n x y z =,则12020n CC y n CB y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =得()1,n = ,设直线1AC 与平面11CBB C 所成角为θ,则1110sin 5n A C n A Cθ⋅===⋅.20.已知椭圆22:184x y C +=,过点(0,4)P 作关于y 轴对称的两条直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与椭圆交于不同两点D ,C .(1)已知1l 经过椭圆的左焦点,求1l 的方程;(2)证明:直线AC 与直线BD 交于点(0,1)Q ;(3)求线段AC 长的取值范围.【答案】(1)240x y -+=;(2)证明见解析(3)46AC <<【解析】【分析】(1)根据直线的截距式方程即可求得答案.(2)设直线()()11122:4,,,,l y kx A x y B x y =+,则()()1122,,,D x y C x y --,联立直线和椭圆方程,可得根与系数关系式,化简BQ DQ k k -,可证明直线BD 经过点(0,1)Q ,同理可证直线AC 经过点(0,1)Q ,即可证明结论.(3)表示出线段AC 的长,结合根与系数的关系式化简并采用换元法,可得29161168AC t t ⎛⎫ ⎪=+ ⎪ ⎪++⎝⎭,利用函数的单调性,可求得答案.【小问1详解】22:184x y C +=的左焦点为(2,0)-,当1l 过左焦点时,1l 的方程为124x y +=-,即240x y -+=.【小问2详解】由题意知1l 斜率存在,设直线()()11122:4,,,,l y kx A x y B x y =+,则()()1122,,,D x y C x y --,联立221844x y y kx ⎧+=⎪⎨⎪=+⎩,消y 得()221216240k x kx +++=,需满足2225696(12)0k k ∆=-+>,即2230k ->,1212221624,1212k x x x x k k-∴+=⋅=++,又212111,BQ DQ y y k k x x --==-,212121211133BQ DQ y y kx kx k k x x x x --++∴-=-=+-,()21212248312222202412kx x k k k k k x x k -++=+=+=-=+,BQ DQ k k ∴=,故点B ,D ,Q 三点共线,即直线BD 经过点(0,1)Q ,同理可证AQ CQ k k =,即点A ,C ,Q 三点共线,即直线AC 经过点(0,1)Q ,故直线AC 与直线BD 交于点(0,1)Q ;【小问3详解】由(2)可知()()()()22222212121212AC x x y y x x k x x =++-=++-()()2221212124x x k x x x x ⎡⎤=+++-⋅⎣⎦()()22222222221616244121212k k k k k k ⎡⎤⋅⋅⎢⎥=+-⨯⎢⎥+++⎣⎦42242424106116161441441k k k k k k k ⎡⎤⋅+-=⨯=⨯+⎢⎥++++⎣⎦令261t k =-,则216t k +=,又由()22216424120k k∆=-⨯⨯+>得232k>,所以8t >,2221699161611611681611844166t t AC t t t t t t ⎛⎫ ⎪⎛⎫∴=+=+=+ ⎪ ⎪++⎝⎭++⎛⎫ ⎪+++⨯+ ⎪⎝⎭⎝⎭,设216168,()()1h t h t t t t'==-++,(8,)t ∈+∞时,()0h t '>恒成立,168t t ∴++在(8,)t ∈+∞上单调递增,16818t t∴++>,9101628t t∴<<++,93111628t t∴<+<++,21624AC ∴<<,4AC ∴<<.【点睛】方法点睛:(1)证明直线AC 与直线BD 交于点(0,1)Q 时,采用证明0BQ DQ k k =-的方法,从而证明点B ,D ,Q 三点共线,即直线BD 经过点(0,1)Q ,同理可证直线AC 经过点(0,1)Q ,即可证明结论;(2)求解线段AC 长的取值范围时,利用两点间距离公式可表示其长,解答时要结合换元法以及函数的单调性进行解答.21.已知a 为实数,()()()ln 1f x x a x =++.对于给定的一组有序实数(),k m ,若对任意1x ,()21,x ∞∈-+,都有()()11220kx f x m kx f x m ⎡⎤⎡⎤-+-+≥⎣⎦⎣⎦,则称(),k m 为()f x 的“正向数组”.(1)若2a =-,判断()0,0是否为()f x 的“正向数组”,并说明理由;(2)证明:若(),k m 为()f x 的“正向数组”,则对任意1x >-,都有()0kx f x m -+≤;(3)已知对任意01x >-,()()()()0000,f x f x x f x -''都是()f x 的“正向数组”,求a 的取值范围.【答案】21.()0,0不是()f x 的“正向数组”;22.证明见解析;23.a 的取值范围是(],1∞-.【解析】【分析】(1)代入有()()()2ln 1f x x x =-+,根据函数性质得到()f x 的正负时不同取值情况即可;(2)假设存在01x >-,使得()0kx f x m -+>,通过正向数组定义转化得对任意()1,0x kx f x m >--+≥恒成立,设()()()ln 1F x x a x kx m =++--,再利用函数的性质即可证明假设不成立;(3)代入有()()()()00000f x x f x f x x f x ''-+-≥恒成立或()()()()00000f x x f x f x x f x ''-+-≤恒成立,设()()()0g x f x f x x =-',求出()0g x 是()g x 的最大值或最小值时a 的取值范围即可.【小问1详解】若2a =-,()()()2ln 1f x x x =-+,对(),k m ()0,0=,即()()()()112212kx f x m kx f x m f x f x ⎡⎤⎡⎤-+-+=⋅⎣⎦⎣⎦,而当()10,2x ∈,()22,x ∞∈+时,()()()1112ln 10f x x x =-+<,()()()2222ln 10f x x x =-+>,即()()120f x f x ⋅<,不满足题意.所以()0,0不是()f x 的“正向数组”.【小问2详解】反证法:假设存在01x >-,使得()0kx f x m -+>,(),k m 为()f x 的“正向数组”,∴对任意01x '>-,都有()()00000kx f x m kx f x m '⎡⎤⎡⎤-+⋅-+⎣⎣'≥⎦⎦.∴对任意()1,0x kx f x m >--+≥恒成立.令()()()ln 1F x x a x kx m =++--,则()0F x ≤在()1,∞-+上恒成立,()()()()1ln 1ln 1111x a a F x x k x k x x +-=++-=+++-++',设()()()()1ln 111a G x F x x k x -==+++'+-,()()()22112111a x a G x x x x -+-=-=+++',则当1a >时,()G x '在()1,2a --上为负,在()2,a ∞-+上为正,所以()()G x F x ='在()1,2a --上单调递减,在()2,a ∞-+上单调递增;若()20F a '-<,当1x →-,()F x ∞'→+,当x →+∞,()F x ∞'→+,即存在()()120F x F x ''==,使()F x '在()11,x -上为正,在()12,x x 上为负,在()2,x ∞+上为正,所以()F x 在()11,x -上单调递增,在()12,x x 上单调递减,在()2,x ∞+上单调递增,又当1x →-,()F x ∞→-,当x →+∞,()F x ∞→+,则()F x 的值域为R ;若()20F a '-≥,()()20F x F a '-'≥≥,()F x 在()1,∞-+上单调递增,又当1x →-,()F x ∞→-,当x →+∞,()F x ∞→+,则()F x 的值域为R .当1a ≤时,()()2201x aG x x +-+'=≥,()()G x F x ='在()1,∞-+上单调递增,又当1x →-,()F x ∞'→-,当x →+∞,()F x ∞'→+,必存在()10F x '=,使()F x '在()11,x -上为负,在()1,x ∞+上为正,所以()F x 在()11,x -上单调递减,在()1,x ∞+上单调递增,又当1x →-,()F x ∞→+,当x →+∞,()F x ∞→+,则()F x 的值域为())1,F x ∞⎡+⎣.由值域可看出,与()0F x ≤在()1,∞-+上恒成立矛盾.对任意1x >-,都有()0kx f x m -+≤.【小问3详解】()()()()0000,f x f x x f x -''都是()f x 的“正向数组”,对任意1x ,()21,x ∞∈-+,都有()()()()()()()()0110000220000f x x f x f x x f x f x x f x f x x f x ''⎡⎤'⎡⎤-+--+-≥⎣⎦⎣⎦',则()()()()00000f x x f x f x x f x ''-+-≥恒成立或()()()()00000f x x f x f x x f x ''-+-≤恒成立,即()()()()0000f x f x x f x f x x -'≤'-恒成立或()()()()0000f x f x x f x f x x -'≥'-恒成立,设()()()()()()00ln 1g x f x f x x x a x f x x =-=+'+-',则()()()0000f x f x x g x '-=,即()0g x 是()g x 的最大值或最小值.()()()()()()()0001ln 1ln 1111x a a g x f x f x x f x x f x x x '''+-⎡⎤=-=++-=+++''-⎣⎦++,且()()()0000g x f x f x =-''='.当1a >时,由(2)可得,()()()()()0ln 1g x x a x f x x F x m =++-=+'的值域为R ,无最大值或最小值;当1a ≤时,()()()01=ln 111a g x x f x x -⎡⎤++'-+'+⎣⎦在()1,∞-+上单调递增,又()()()0000g x f x f x =-''=',则()g x '在()01,x -上为负,在()0,x ∞+上为正,所以()()()0g x f x f x x =-'在()01,x -上单调递减,在()0,x ∞+上单调递增,则()0g x 是()g x 的最小值,满足()()()()()0000g x f x f x x f x f x x =-≥'-',此时对任意1x ,()21,x ∞∈-+,都有()()()()()()()()0110000220000f x x f x f x x f x f x x f x f x x f x ''⎡⎤'⎡⎤-+--+-≥⎣⎦⎣⎦'.∴a 的取值范围是(],1∞-.【点睛】关键点睛:本题第2问的关键是运用反证法,通过函数的图象与性质推理出与假设矛盾的结论,最后即得到证明;本题第3问的关键是理解“正向数组”的变形推理得到()()()()0000f x f x x f x f x x -'≤'-恒成立或()()()()0000f x f x x f x f x x -'≥'-恒成立,并构造函数()()()0g x f x f x x =-',得到()0g x 是()g x 的最大值或最小值,最后结合前面的证明得到结果.。

2019-2020学年上海市浦东新区陆行中学高二数学文上学期期末试卷含解析

2019-2020学年上海市浦东新区陆行中学高二数学文上学期期末试卷含解析

2019-2020学年上海市浦东新区陆行中学高二数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知数列2,5,11,20,x,47,…合情推出x的值为()A.29 B.31 C.32 D.33参考答案:C2. 已知不等式组表示平面区域Ω,过区域Ω中的任意一个点P,作圆x2+y2=1的两条切线且切点分别为A、B,当∠APB最大时,?的值为( )A.2 B.C.D.3参考答案:B【考点】平面向量数量积的运算;简单线性规划.【专题】计算题;平面向量及应用.【分析】作出不等式组对应的平面区域,根据数形结合求确定当α最小时,P的位置,利用向量的数量积公式,即可得到结论.【解答】解:作出不等式组对应的平面区域如图,要使∠APB最大,则P到圆心的距离最小即可,由图象可知当OP垂直直线x+y﹣2=0,此时|OP|==2,|OA|=1,设∠APB=α,则sin=,=此时cosα=,?==.故选:B【点评】本题主要考查线性规划的应用,考查学生分析解决问题的能力,利用数形结合是解决本题的关键.3. 在中,分别为内角的对边,且则等于A.30°B.45°C.60°D.120°参考答案:D结合余弦定理,得,可求出。

解:由得:,,则=120°。

故选D。

考点:余弦定理.点评:本题主要考查了余弦定理的应用,属于基础试题4. 设抛物线y2=4x的焦点为F,过点M(﹣1,0)的直线在第一象限交抛物线于A、B,使,则直线AB的斜率k=()A.B.C.D.参考答案:B【考点】直线与圆锥曲线的关系.【分析】由题意可得直线AB的方程 y﹣0=k (x+1),k>0,代入抛物线y2=4x化简求得x1+x2和x1?x2,进而得到y1+y2和y1?y2,由,解方程求得k的值.【解答】解:抛物线y2=4x的焦点F(1,0),直线AB的方程 y﹣0=k (x+1),k>0.代入抛物线y2=4x化简可得 k2x2+(2k2﹣4)x+k2=0,∴x1+x2=,x1?x2=1.∴y1+y2=k(x1+1)+k(x2+1)=+2k=,y1?y2=k2(x1+x2+x1?x2+1)=4.又=(x1﹣1,y1)?(x2﹣1,y2)=x1?x2﹣(x1+x2)+1+y1?y2=8﹣,∴k=,故选:B.5. 已知数列的前项积为,且满足,若,则为()A. B. C. D.参考答案:B【分析】根据题意,求出前5项,确定数列是以4为周期的数列,求出前4项的乘积,即可求出结果.【详解】因为,,所以,所以,所以,所以,所以数列以为周期,又,所以.故选B【点睛】本题主要考查周期数列的应用,会根据递推公式推出数列的周期即可,属于常考题型.6. “”是“” 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B7. 已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0﹣2)(x0+1)2,则函数f(x)的极值点的个数()A.0个B.1个C.两个D.三个参考答案:B【考点】利用导数研究函数的极值.【分析】由题意可知函数的导函数为(x0﹣2)(x0+1)2 ,求出函数的单调区间,求出函数的极值点的个数即可.【解答】解:由题意可知函数的导函数为f′(x)=(x0﹣2)(x0+1)2,令f′(x)>0,解得:x>2,∴f(x)在(﹣∞,2)递减,在(2,+∞)递增,∴f(x)在极小值是f(2),故函数f(x)的极值点的个数是1个,故选:B.【点评】此题主要考查函数导函数的性质及函数的单调性,考查函数的极值点,是一道基础题.8. 设实数x,y满足,则的取值范围为( ) A.B.C.D.参考答案:D【考点】简单线性规划.【专题】计算题;数形结合.【分析】画出可行域,将目标函数变形,赋予几何意义,是可行域中的点与点(0,0)连线的斜率,由图求出取值范围,从而求出所求即可.【解答】解:画出可行域:设k=表示可行域中的点与点(0,0)连线的斜率,由图知k∈[,2]∴∈[,2]∴=k﹣取值范围为故选:D【点评】本题考查画出可行域、关键将目标函数通过分离参数变形,赋予其几何意义、考查数形结合的数学思想方法,属于基础题.9. 设S n是等差数列{a n}的前n项和,若=()A.1 B.﹣1 C.2 D.参考答案:A【考点】等差数列的性质.【分析】充分利用等差数列前n项和与某些特殊项之间的关系解题.【解答】解:设等差数列{a n}的首项为a1,由等差数列的性质可得a1+a9=2a5,a1+a5=2a3,∴====1,故选A.10. 设等边△ABC的边长为a,P是△ABC内的任意一点,且P到三边AB、BC、CA 的距离分别为d1、d2、d3,则有d1+d2+d3为定值a;由以上平面图形的特性类比空间图形:设正四面体ABCD的棱长为a,P是正四面体ABCD内的任意一点,且P到四个面ABC、ABD、ACD、BCD的距离分别为d1、d2、d3、d4,则有d1+d2+d3+d4为定值 ( ).A. B. C.D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有种(用数字作答);参考答案:14012. 一物体沿着直线以v = 2 t + 3 ( t的单位:s, v的单位:m/s)的速度运动,那么该物体在3~5s间行进的路程是米。

上海市曹杨第二中学2022-2023学年高二上学期12月月考数学试题(含答案解析)

上海市曹杨第二中学2022-2023学年高二上学期12月月考数学试题(含答案解析)

上海市曹杨第二中学2022-2023学年高二上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、填空题1.两条相交直线的夹角的取值范围是________2.直线2310x y +-=的一个法向量为__________.3.向量()1,0,1a =r ,(),1,2b x = ,且3a b ⋅= ,则向量b 在a 上的投影向量的坐标为______.4.已知直线过点()1,5P ,且在两坐标轴上的截距相等,则此直线的方程为_____________.5.设αβ、是两个不同的平面,直线m α⊂,则“m β ”是“αβ∥”的__________条件.6.若空间中三点()1,5,2A 、()2,4,1B 、(),3,C m n 共线,则m n +=__________.7.若直线1:(1)10l a x y -+-=和直线2:620l x ay ++=平行,则=a ___________.8.已知一个圆锥的母线长为2,底面圆的周长为,则过圆锥顶点的截面面积的最大值为_____.9.正三棱柱1111,2,ABC A B C AB AA D -==为ABC 内(包括边界)的动点,则11A DB △的面积的取值范围是__________.10.下列四个正方体图形中,,A B 为正方体的两个顶点,,,M N P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是________.11.如图,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD △是平面α内边长为R 的正三角形,线段AC ,AD 分别与球面交于点M 、N ,则三棱锥A BMN -的体积是__________.12.已知函数()()131f x a x b =+++,若关于x 的方程()0f x =在[]6,12上有解,则22a b +的取值范围是__________.二、单选题13.在空间直角坐标系中,点()6,6,6A -关于xOz 平面对称点的坐标是()A .()6,6,6-B .()6,6,6C .()6,6,6-D .()6,6,6--14.已知定点.()1,0P .和直线l :()()133620x y λλλ++--+=,则点P 到直线l 的距离d 的最大值为()ABC D .15.在棱长为1的正方体1111ABCD A B C D -中,八个顶点按红蓝间隔染色,使得每条棱上的两个顶点各不同色,则由红色顶点连成的四面体与蓝色顶点连成的四面体的公共部分的体积为()A .12B .14C .16D .1816.若点N 为点M 在平面α上的正投影,则记()N f M α=.如图,在棱长为1的正方体1111ABCD A B C D -中,记平面11AB C D 为β,平面ABCD 为γ,点P 是棱1CC 上一动点(与C 、1C 不重合)()1Q f f P γβ⎡⎤=⎣⎦,()2Q f f P βγ⎡⎤=⎣⎦.给出下列三个结论:①线段2PQ 长度的取值范围是122⎡⎫⎪⎢⎪⎣⎭;②存在点P 使得1//PQ 平面β;③存在点P 使得12PQ PQ ^.其中,所有正确结论的序号是A .①②③B .②③C .①③D .①②三、解答题17.若直线l 经过()()21,4,2,3A x B x +两点,斜率为k ,倾斜角为α.(1)用x 分别表示直线l 的斜率k 和倾斜角α;(2)求α的取值范围.18.如图,直三棱柱111ABC A B C -中,120ABC ∠=︒,12AB BC CC ===.(1)求异面直线AC 和1BC 所成角的大小;(2)求点1B 到平面11A BC 的距离.19.已知ABC 的顶点()4,2A ,AB 边上的中线CM 所在直线方程为30x y --=,AC 边上的高BH 所在直线方程为220x y +-=.求(1)顶点C 的坐标;(2)求点B 到直线AC 的距离.20.如图,在三棱锥A BCD -中,平面ABD ⊥平面,BCD O 是BD 的中点,AB AD =.OCD 是边长为1的等边三角形,E 在射线DA 上.(1)证明:OA CD ⊥;(2)若2DE EA =,且二面角E BC D --的大小为45︒,求二面角A BC D --的大小;(3)若1AO =,求直线CE 与平面BCD 所成角的正弦的最大值.21.过点()2,1P 的直线l 分别交()0y x x =≥与()0y x x =-≥于A B 、两点.(1)若直线l 的倾斜角为π4,求直线l 的一般式方程.(2)当PA PB ⋅最小时,求直线l 的方程;(3)已知O 为坐标原点,设AOB 的面积为S ,讨论这样的直线l 的条数.参考答案:1.π0,2⎛⎤ ⎥⎝⎦【分析】根据两条相交直线的夹角的概念即得.【详解】两条相交直线的夹角的取值范围是π0,2⎛⎤ ⎥⎝⎦.故答案为:π0,2⎛⎤ ⎥⎝⎦.2.()2,3(答案不唯一)【分析】根据直线的法向量的求法写出一个即可.【详解】解:由题知直线2310x y +-=的一个方向向量为()3,2-,故该直线的一个法向量可为:()2,3.故答案为:()2,3(答案不唯一)3.33,0,22⎛⎫ ⎪⎝⎭【分析】向量b 在a 上的投影向量为||||a b a a a ⋅ ,利用公式求解.【详解】因为向量()1,0,1a =r ,(),1,2b x = ,且3a b ⋅= ,所以()()1,0,1,1,220x x ⋅=+=,解得2x =-,所以()2,1,2b =- ,所以333(1,0,1)()222||||a b a a a ⋅== ,则向量b 在a 上的投影向量的坐标为33,0,22⎛⎫ ⎪⎝⎭.故答案为:33,0,22⎛⎫ ⎪⎝⎭.4.60x y +-=或50x y -=【分析】分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为x y a +=,把已知点坐标代入即可求出a 的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为y kx =,把已知点的坐标代入即可求出k 的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【详解】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为x y a +=,把(1,5)代入所设的方程得:6a =,则所求直线的方程为6x y +=即60x y +-=;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为y kx =,把(1,5)代入所求的方程得:5k =,则所求直线的方程为5y x =即50x y -=.综上,所求直线的方程为:60x y +-=或50x y -=.故答案为:60x y +-=或50x y -=【点睛】此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,属于基础题.5.必要非充分【分析】当m α⊂,m β 时,得到αβ∥或,αβ相交;当m α⊂,αβ∥时,得到m β ,得到答案.【详解】当m α⊂,m β 时,得到αβ∥或,αβ相交;当m α⊂,αβ∥时,得到m β .故“m β ”是“αβ∥”的必要非充分条件.故答案为:必要非充分6.3【分析】A 、B 、C 三点共线,则AB AC ∥ ,求出AB 与AC 的坐标,用空间向量共线的坐标表示进行运算即可.【详解】∵()1,5,2A 、()2,4,1B 、(),3,C m n 三点共线,∴AB AC ∥ ,即AC AB λ= ,()1,1,1AB =-- ,()1,2,2AC m n =--- ∴()()()1,2,21,1,1,,m n λλλλ---=--=--∴122m n λλλ-=⎧⎪-=-⎨⎪-=-⎩,解得230m n λ=⎧⎪=⎨⎪=⎩,∴3m n +=.故答案为:3.7.3【分析】根据两条直线平行的充要条件即可求解.【详解】解:因为直线1:(1)10l a x y -+-=和直线2:620l x ay ++=平行,所以()()()1611261a a a ⎧-⨯=⨯⎪⎨-⨯≠⨯-⎪⎩,解得3a =,故答案为:3.8.2【分析】先求底面圆的半径,判断出母线夹角的范围,利用截面三角形面积公式求最值即可.【详解】底面圆的周长为23π,圆锥的母线长为2,过圆锥顶点的截面面积1S 222sin α=⨯⨯⨯,所以,当截面中的两圆锥母线夹角为2π时,截面面积最大为2【点睛】本题是易错题,先求出面积的函数表达式进而判断最大值,学生容易误认为垂直截面为面积的最大值.9.⎡⎣.【分析】D 在平面111A B C 的投影为1D ,连接1DD ,过1D 作111D H A B ⊥于H ,连接HD ,证明11A B HD ⊥,11A DB S =△,计算得到范围.【详解】如图所示:D 在平面111A B C 的投影为1D ,连接1DD ,过1D 作111D H A B ⊥于H ,连接HD ,1DD ⊥平面111A B C ,11A B ⊂平面111A B C ,故111DD A B ⊥,111D H A B ⊥,111D H DD D = ,11,D H DD ⊂平面1DD H ,故11A B ⊥平面1DD H ,HD ⊂平面1DD H ,故11A B HD ⊥,111112A DB S A B HD =⨯=△当D 在AB 上时,10HD =,11A DB △的面积最小,为2;当D 和C 重合时,1HD =11A DB △;所以11A DB △的面积的取值范围为⎡⎣.故答案为:⎡⎣10.①④【分析】证明AB 所在的平面与平面MNP 平行可判断①;若下底面中心为O ,连接NO ,可得//NO AB 可判断②;由AB ⋂面PMN B =可判断③;证明//AB NP 可判断④,进而可得正确答案.【详解】在①中:如图:因为,,M N P 分别为其所在棱的中点,所以//MN AC ,//NP BC ,因为MN ⊄面ABC ,AC ⊂面ABC ,所以//MN 面ABC ,同理可得//PN 面ABC ,因为MN NP N ⋂=,所以面//ABC 面MNP ,因为AB ⊂面ABC ,所以//AB 平面MNP ,故①成立;在②中,若下底面中心为O ,连接NO ,可得//NO AB ,NO ⋂面MNP N =,所以AB 与平面MNP 不平行,故②不成立;在③中:如图:平面PMN 即为平面PNBC ,因为AB ⋂面PNBC B =,所以AB 与面MNP 不平行,故③不成立;在④中:如图://AC BD 且AC BD =,所以四边形ACDB 是平行四边形,可得//AB CD ,因为//NP CD ,所以//AB NP ,因为AB ⊄面MNP ,NP ⊂面MNP ,所以所以//AB 平面MNP ,故④成立.故答案为:①④.113【分析】2AB R =,BC R =,AC =,BCD ∆是平面α内边长为R 的正三角形,ABC AMB ∆∽,45AM AC =,类似有45AN AD =,24(5A BMN AMN A BCD ABCV S V S -∆-∆==,由此能求出三棱锥A BMN -的体积.【详解】2AB R = ,BC R =,AC =,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD ∆是平面α内边长为R 的正三角形,线段AC ,AD 分别与球面交于点M 、N ,BAM BAC ∴∠=∠,90AMB ABC ∠=∠=︒,ABC AMB ∴∆∆∽,∴AB AC AM AB =,AM R ∴,∴45AM AC =,类似有45AN AD =,∴2416()525A BMN AMN A BCD ABC V S V S -∆-∆===,∴三棱锥A BMN -的体积:231612253A BMN V R R -=⨯⨯⨯=.3R.【点睛】本题考查三棱锥的体积的求法,考查球、三棱锥的结构特征等基础知识,考查运算求解能力,是中档题.12.49,45⎡⎫+∞⎪⎢⎣⎭【分析】根据()0f x =得到310xa b x +++=,故222a b +≥,根据函数的单调性计算最值得到答案.【详解】()()131310f x a x b xa b x =+++=+++=,转化为关于,a b 的直线方程,其中[]6,12x ∈,22a b +表示直线上一点到原点距离的平方,所以()2222222421199x x x a b x x -+++≥==+++,设4x t -=,[]6,12x ∈,则[]2,8t ∈,()()222422111259498x t y x t t t -=+=+++++++,函数()25g t t t=+在[]2,5t ∈上单调递减,在(]5,8上单调递增,故()()(){}max 298929max 2,8max ,282g t g g ⎧⎫===⎨⎬⎩⎭,249125458y t t=+≥++,所以22a b +的取值范围为49,45⎡⎫+∞⎪⎢⎣⎭.故答案为:49,45⎡⎫+∞⎪⎢⎣⎭13.B【分析】根据点的对称直接求解.【详解】在空间直角坐标系中,点()6,6,6A -关于xOz 平面对称点的坐标是()6,6,6.故选:B 14.C【分析】确定直线过定点()0,2A ,故点()1,0P 到直线l 的距离的最大值为d PA =,计算得到答案.【详解】直线()():133620l x y λλλ++--+=,整理得()()32360x y x y λ-+++-=,由320360x y x y -+=⎧⎨+-=⎩,解得02x y =⎧⎨=⎩,故直线过定点()0,2A故点()1,0P 到直线l 的距离的最大值为d PA ==故选:C 15.C【分析】画出几何体,找到多面体,根据棱锥体积计算公式,即可求得结果.【详解】根据题意,作图如下:多面体EFGHMN 即为四面体11D ACB -与四面体11A DBC -的公共部分,其中,,,,,E F G H M N 均为各个面的中心,且平面FGHM //面ABCD ,EN ⊥面FGHM ,故2EFGHMN E FGHM V V -=,又四边形FGHM 的面积与其投影在底面ABCD 所得四边形1111F G H M 的面积相等,如下所示:故四边形FGHM 的面积111122S =⨯⨯=,又点E 到平面FGHM 的距离为12,故1111223226EFGHMN E FGHM V V -==⨯⨯⨯=.故选:C.16.D【解析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,设点P 的坐标为()()0,1,01a a <<,求出点1Q 、2Q 的坐标,然后利用向量法来判断出命题①②③的正误.【详解】取1C D 的中点2Q ,过点P 在平面11AB C D 内作1PE C D ⊥,再过点E 在平面11CC D D 内作1EQ CD ⊥,垂足为点1Q .在正方体1111ABCD A B C D -中,AD ⊥平面11CC D D ,PE ⊂平面11CC D D ,PE AD ⊥∴,又1PE C D ⊥ ,1AD C D D = ,PE ∴⊥平面11AB C D ,即PE β⊥,()f P E β∴=,同理可证1EQ γ⊥,CQ β⊥,则()()1f f P f E Q γβγ⎡⎤==⎣⎦,()()2f f P f C Q βγβ⎡⎤==⎣⎦.以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,设()01CP a a =<<,则()0,1,P a ,()0,1,0C ,110,,22a a E ++⎛⎫ ⎪⎝⎭,110,,02a Q +⎛⎫⎪⎝⎭,2110,,22Q ⎛⎫ ⎪⎝⎭.对于命题①,2PQ =,01a << ,则111222a -<-<,则211024a ⎛⎫≤-< ⎪⎝⎭,所以,212PQ ⎡=⎢⎣⎭,命题①正确;对于命题②,2CQ β⊥ ,则平面β的一个法向量为2110,,22CQ ⎛⎫=-⎝⎭ ,110,,2a PQ a -⎛⎫=- ⎪⎝⎭,令211130424a a a CQ PQ --⋅=-== ,解得()10,13a =∈,所以,存在点P 使得1//PQ 平面β,命题②正确;对于命题③,21120,,22a PQ -⎛⎫=- ⎝⎭ ,令()12211042a a a PQ PQ --⋅=+= ,整理得24310a a -+=,该方程无解,所以,不存在点P 使得12PQ PQ ^,命题③错误.故选:D.【点睛】本题考查立体几何中线面关系、线线关系的判断,同时也涉及了立体几何中的新定义,利用空间向量法来处理是解题的关键,考查推理能力,属于中等题.17.(1)243k x x =-+,()2arctan 43x x α=-+或()2πarctan 43x x α=--+-(2)π3π0,π24α⎡⎫⎡⎫∈⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】(1)计算243k x x =-+,根据0k ≥和0k <两种情况得到倾斜角.(2)2243(2)11k x x x =-+=--≥-,得到倾斜角范围.【详解】(1)22344321x x k x x +-==-+-,当1x ≤或3x ≥时,0k ≥,()2arctan 43x x α=-+;当13x <<时,0k <,()2πarctan 43x x α=--+-;(2)2243(2)11k x x x =-+=--≥-,所以π3π0,π24α⎡⎫⎡⎫∈⋃⎪⎪⎢⎢⎣⎭⎣⎭.18.(1)arccos 4【分析】(1)作辅助线找到异面直线AC 和1BC 所成角,利用余弦定理进行求解;(2)结合第一问的求解结果,利用等体积法求解点1B 到平面11A BC 的距离.【详解】(1)连接1BC ,1BA ,因为AC ∥11A C ,所以异面直线AC 和1BC 所成角即为11A C 与1BC 所成角,即11BC A ∠,因为120ABC ∠=︒,12AB BC CC ===,所以由余弦定理可得:222cos 1202AC AB BC AB BC =+-⋅∠︒=,所以11AC =,由勾股定理得:11BC A B ==所以11cosBC A ∠设异面直线AC 和1BC 所成角为θ,则θ=.(2)由(1)可知:111122sin1202A B C S =⨯⨯⨯︒= 故11111111122333B A BC A B C V S BB -=⋅=⨯= ,又11cos BC A ∠=11sin BC A ∠=111111111sin 22BC A S BC A C BC A =⨯⨯⨯∠=⨯ ,设点1B 到平面11A BC 的距离为h ,则11111111133BC A B BC A B A B C S h V V --⋅=== ,解得:5h =,点1B 到平面11A BC 的距离为.19.(1)()3,0C【分析】(1)首先设出C 点坐标,代入CM 的直线方程,再利用AC 边上的高BH ,建立斜率之积为-1的关系式,再解方程组,即可求得坐标.(2)先设B 点坐标,代入BH 所在直线方程,再利用AB 中点满足CM 所在直线方程,得到方程组,解出B 点坐标,再利用点线距离公式,即可求解.【详解】(1)解:设(),C m n ,AB 边上的中线CM 所在直线方程为30x y --=,AC 边上的高BH 所在直线方程为220x y +-=.∴3021142m n n m --=⎧⎪-⎨⎛⎫⨯-=- ⎪⎪-⎝⎭⎩,解得30m n =⎧⎨=⎩∴()3,0C (2)设(),B a b ,则220423022a b a b +-=⎧⎪⎨++--=⎪⎩,解得10323a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴102,33B ⎛⎫- ⎪⎝⎭2AC k =, ()4,2A ∴直线AC 的方程为260x y --=∴点B 到直线AC的距离15d ==20.(1)证明见解析(2)arctan 2【分析】(1)证明AO ⊥平面BCD 得到答案.(2)确定EGF ∠为二面角E BC D --的平面角,根据角度计算1AO =,再确定AMO ∠为二面角A BC D --的平面角,计算得到答案.(3)过点E 作EF BD ⊥于F ,连接FC ,确定ECF ∠为直线CE 与平面BCD 所成角,sin ECF ∠=.【详解】(1)AB AD =,O 为BD 的中点,所以AO BD ⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面ABD ,故AO ⊥平面BCD ,又CD ⊂平面BCD ,所以AO CD⊥(2)过E 作EF BD ⊥,交BD 于点F ,过F 作FG BC ⊥于点G ,连结EG,由题意得//EF AO ,又AO ⊥平面BCD ,故EF ⊥平面BCD ,又BC ⊂平面BCD ,所以EF BC ⊥,又,BC FG FG EF F ⊥⋂=,,FG EF Ì平面EFG ,故BC ⊥平面EFG ,又EG ⊂平面EFG ,所以BC EG ⊥,则EGF ∠为二面角E BC D --的平面角,即45EGF ∠=︒,又1====CD DO OB OC ,所以120BOC ∠=︒,则30OCB OBC ∠=∠=︒,故90BCD ∠=︒,所以//FG CD ,因为23===DE DF EF AD OD AO ,则312,,233AO EF OF DF ===,所以23BF GF BD CD ==,则23GF =,23==EF GF ,321==AO EF ,过点O 作OM BC ⊥与M ,连接AM ,AO ⊥平面BCD ,BC ⊂平面BCD ,故AO BC ⊥,又OM BC ⊥,OM AO O = ,,OM AO ⊂平面OMA ,故BC ⊥平面OMA ,AM ⊂平面OMA ,故BC AM ⊥,故AMO ∠为二面角A BC D --的平面角,1122MO CD ==,tan 2AOAMO OM∠==,故arctan 2AMO ∠=,即二面角A BC D --的大小为arctan 2(3)如图所示:过点E 作EF BD ⊥于F ,连接FC ,则//EF AO ,又AO ⊥平面BCD ,故EF ⊥平面BCD ,ECF ∠为直线CE 与平面BCD 所成角,设()0EF a a =≥,1AO OD ==,AOD △为等腰直角三角形,故DF a =,在CFD △中,22222cos 1FC DF DC DF DC FDC a a =+-⋅⋅∠=-+,所以222221EC FC EF a a =+=-+,则sin EFECF EC∠====当2a =时,sin ECF ∠最大为721.(1)10x y --=(2)2x =(3)答案见解析【分析】(1)直接根据点斜式得到答案.(2)考虑斜率存在和不存在两种情况,计算交点坐标得到2631PA PB k =+-,得到最值和直线方程.(3)考虑直线斜率存在和不存在两种情况,计算()22211k S k -=-,得到()24410S k k S --++=,()43S S ∆=-,讨论得到答案.【详解】(1)若直线l 的倾斜角为π4,则直线l 的方程为()112y x -=-,即10x y --=;(2)法一:当直线l 的斜率不存在时,3PA PB =;当直线l 的斜率存在时,设直线():12l y k x -=-,()(),11,k ∈-∞-+∞ ,()12y x y k x =⎧⎨-=-⎩得2121,11k k A k k --⎛⎫ ⎪--⎝⎭,()12y x y k x =-⎧⎨-=-⎩得2112,11k k B k k --⎛⎫⎪++⎝⎭,PA =PB =所以()222231163331111k k PA PB k k k k ++===+>+⋅---,综上所述:·PA PB 的最小值为3,此时直线l 的斜率不存在,直线方程为2x =.法二:前面部分同法一,注意到133,,,1111k k PA PB k k k k --⎛⎫⎛⎫== ⎪ ⎪--++⎝⎭⎝⎭ ,且,PA PB 反向,所以2223363311k PA PB PA PB k k +=⋅==+>-- ,综上所述:·PA PB 的最小值为3,此时直线l 的斜率不存在,直线方程为2x =.(3)当直线斜率不存在时,()2,2A ,()2,2B -,142S OA OB =⋅=;当直线斜率存在时,()(),11,k ∈-∞-+∞ ,2121,11k k A k k --⎛⎫ ⎪--⎝⎭,2112,11k k B k k --⎛⎫⎪++⎝⎭,()2221121S k OA OB k -=⋅==-,即()24410S k k S --++=,当4S =时,方程有1解,此时54k =;当4S ≠时,()()()1644143S S S S ∆=--+=-,当3S <时,Δ0<,方程无解;当3S =时,Δ0=,2k =,方程有1解;当43S >>时,0∆>,()()2441f k S k k S =--++,对称轴224S>-,且()110f =>,方程有两个大于1的解.当4S >时,0∆>,()()2441f k S k k S =--++开口向下,()110f =>,()190f -=>,方程有1个大于1的解,一个小于1-的解.综上所述:当3S <时,0条;当3S =时,1条;当3S >时,2条.。

2021届高二新题数学人教A版2019专题01空间向量与立体几何(选择题、填

2021届高二新题数学人教A版2019专题01空间向量与立体几何(选择题、填

2021届高二新题数学人教A版2019专题01,空间向量与立体几何(选择题、填空题)(9月解析版)题专题01空间向量与立体几何(选择题、填空题)一、单选题1.(江苏省南通市如东县2019-2020学年高一下学期期末数学试题)在长方体1111ABCDABCD中,2ABBC,11AA,则直线1BC与平面11BBDD所成角的正弦值为A.63B.102C.155D.105【答案】D【分析】由题意,由于图形中已经出现了两两垂直的三条直线,所以可以利用空间向量的方法求解直线与平面所成的夹角.【解析】以D点为坐标原点,以1,,DADCDD所在的直线为x轴、y轴、z轴,建立空间直角坐标系,则1(2,0,0),(2,2,0),(0,2,0),ABCC(0,2,1),1(2,0,1),(2,2,0),BCACA C为平面11BBDD的一个法向量.1410cos,558BCAC.直线1BC与平面11BBDD所成角的正弦值为105.故选D.【点睛】此题重点考查了利用空间向量,抓住直线与平面所成的角与该直线的方向向量与平面的法向量的夹角之间的关系,利用向量方法解决立体几何问题.2.(广东省广州市八区2019-2020学年高二下学期期末教学质量检测数学试题)如图,在平行六面体ABCDABCD中,AC 与BD的交点为O,点M在BC上,且2BMMC,则下列向量中与OM相等的向量是A.172263ABADAA B.151263ABADAA C.112263ABADAA D.111263ABADAA【答案】C【分析】在平行六面体ABCDABCD中,根据空间向量加法合成法则,对向量OM进行线性表示即可【解析】因为2BMMC,所以23BMBC,在平行六面体ABCDABCD中,OMOBBM"23OBBC"12()23DBADAA"12()()23ABADADAA 112263ABADAA,故选C【点睛】此题考查了空间向量的加法运算问题,解题时应结合图形进行解答,属于基础题.3.(河南省驻马店市2019-2020学年高二下学期期末考试数学(理)试题)若两条不重合直线1l和2l的方向向量分别为11,0,1-,22,0,2,则1l和2l的位置关系是A.平行B.相交C.垂直D.不确定【答案】A【分析】由212v,可知两直线的位置关系是平行的【解析】因为两条不重合直线1l和2l的方向向量分别为11,0,1-,22,0,2,所以212v,即2与1v共线,所以两条不重合直线1l和2l的位置关系是平行,故选A【点睛】此题考查了直线的方向向量,共线向量,两直线平行的判定,属于基础题.4.(河南省商丘市回民中学2019-2020学年高二期末考试数学(理)试题)已知向量1,1,01,0,2ab,且2kabab与互相垂直,则k的值是A.75B.2C.53D.1【答案】A【分析】由向量垂直,可得对应向量数量积为0,从而可求出结果.【解析】因为1,1,01,0,2ab,,所以1ab,25ab,,又2kabab与互相垂直,所以20kabab,即22220kakababb,即4250kk,所以75k;故选A【点睛】本题主要考查向量的数量积的坐标运算,属于基础题型.5.(江西省南昌市八一中学2019-2020学年高二下学期期末考试数学(理)试题),,abc为空间向量的一组基底,则下列各项中,能构成空间向量的基底的一组向量是A.,,aabab B.,,bababC.,,cabab D.,,2ababab【答案】C【分析】空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明A,B,D三个选项中的向量均为共面向量,利用反证法可证明C 选项中的向量不共面【解析】对于A,因为()()2ababa,所以,,aabab共面,不能构成基底,排除A,对于B,因为)()2ababb(,所以,,babab共面,不能构成基底,排除B,对于D,312()()22ababab,所以,,2ababab共面,不能构成基底,排除D,对于C,若,,cabab共面,则()()()()cababab,则,,abc共面,与,,abc为空间向量的一组基底相矛盾,故,,cabab可以构成空间向量的一组基底,故选C【点睛】此题考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决此题的关键,属于基础题.6.(江苏省泰州市2019-2020学年高一下学期期末(重考卷)数学试题)点P(1,2,3)关于xOy平面的对称点的坐标为A.(-1,2,3)B.(1,-2,-3)C.(-1,-2,-3)D.(1,2,-3)【答案】D【分析】关于xOy平面对称的点的,xy坐标不变,只有z坐标相反.【解析】点P(1,2,3)关于xOy平面的对称点的坐标为(1,2,)3.故选D.【点睛】本题考查空间直角坐标系,考查空间上点关于坐标平面对称或关于坐标轴对称问题,属于简单题.7.(河南省开封市第二十五中学2019-2020学年高一下学期期末考试数学试题)在空间直角坐标系Oxyz中,记点1,2,3A在xOz平面内的正投影为点B,则OB A.5B.10C.13D.14【答案】B【分析】求出B点坐标,然后计算OB.【解析】点1,2,3A在xOz平面内的正投影为点(1,0,3)B,则2210310OB.故选B.【点睛】本题考查空间点在坐标平面上的投影,考查空间两点间距离.属于基础题.8.(浙江省湖州市2019-2020学年高二上学期期中数学试题)在正方体1111ABCDABCD 中,异面直线AC与1BD所成的角为A.6B.4C.3D.2【答案】D【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AC与1BD所成的角.【解析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,则A(1,0,0),C(0,1,0),D(0,0,0),B1(1,1,1),AC=(﹣1,1,0),1BD=(﹣1,﹣1,﹣1),设异面直线AC与B1D所成的角为,则cos =11||||||ACBDACBD=0,=2.异面直线AC与B1D所成的角为2.故选D.【点睛】本题考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.9.(浙江省绍兴市鲁迅中学2019-2020学年高二上学期期中数学试题)如图,长方体1111ABCDABCD中,14AAAB,2AD,E、F、G分别是1DD、AB、1CC的中点,则异面直线1AE与GF所成角的余弦值是A.0B.105C.22D.155【答案】A【分析】建立空间直角坐标系,表示1,AEGF,然后利用空间向量的夹角公式计算即可.【解析】如图12,0,40,0,2,2,2,0,0,4,2AEFG,所以12,0,2,2,2,2AEGF所以异面直线1AE与GF所成角的余弦值110AEGFAEGF故选A【点睛】本题考查异面直线所成角的余弦值,利用向量的方法,便于计算,将几何问题代数化,属基础题.10.(吉林省长春市农安县实验中学2019-2020学年高一下学期期末考试数学试题)点A(3,-2,4)关于点(0,1,-3)的对称点的坐标是A.(-3,4,-10)B.(-3,2,-4)C.311(,,)222D.(6,-5,11)【答案】A【解析】A(3,-2,4)关于点(0,1,-3)的对称点的坐标是(023,122,324)(3,4,10),选A.11.(福建省莆田第七中学2019-2020学年高二上学期期末考试数学试题)若向量,ab的坐标满足2,1,2ab,4,3,2ab,则ab等于A.5B.5C.7D.1【答案】B【分析】直接利用向量的关系式,求出向量a、b的坐标,再根据向量数量积运算公式求解即可.【解析】因为2,1,2ab,4,3,2ab,两式相加得22,4,0a,解得1,2,0a,3,1,2b,所以1321025ab,故选B.【点睛】本题主要考查空间向量的基本运算,数量积的坐标运算,考查了计算能力,属于基础题.12.(上海市上海交通大学附属中学2019-2020学年高二下学期期末数学试题)在平行六面体1111ABCDABCD中,M为11AC与11BD的交点,若,ABaADb,1AAc,则与BM相等的向量是A.1122abc B.1122abc C.1122abc D.1122abc 【答案】D【分析】根据空间向量的线性运算,用,,abc作基底表示BM即可得解.【解析】根据空间向量的线性运算可知11BMBBBM11112AABD1111112AABAAD112AAAB AD因为,ABaADb,1AAc,则112AAABAD1122abc即1122BMabc,故选D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.13.(黑龙江省海林市朝鲜族中学2019-2020学年高一下学期期末考试数学试题)在空间直角坐标系中,点(1,3,5)P关于xOy面对称的点的坐标是()A.(1,3,5)B.(1,3,5)C.(1,3,5)D.(1,3,5)【答案】C 【解析】1,3,5P关于xOy面对称的点为1,3,514.(江西省南昌市八一中学2019-2020学年高二下学期期末考试数学(理)试题)如图,空间四边形OABC中,,,OAaOBbOCc,且2OMMA,BNNC,则MN A.221332abc B.111222abc C.211322abc D.12 1232abc【答案】C【分析】根据MNONOM,再由2OMMA,BNNC,得到2211,3322aOMOAONOBOCcb,求解.【解析】因为MNONOM,又因为2211,3322aOMOAONOBOCcb,所以211322MNabc.故选C【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.15.(江西省南昌市八一中学2019-2020学年高二下学期期末考试数学(理)试题)设,xyR,向量(,1,1),b(1,,1),c(2,4,2)axy,,cacb P,则||ab A.22B.10C.3D.4【答案】C【分析】根据,cacb P,结合向量的坐标运算可求得参数,xy的值,再结合向量的加法与模长运算即可求解【解析】,241,2,(1,2,1)bcyyb P,,ac214+ 20,acx1x,(1,1,1),(2,1,2)aab,222||2(1)23ab,故选C.【点睛】本题考查空间向量的坐标运算,属于基础题16.(河北省石家庄市第二中学2019-2020学年高一下学期期末数学试题)在正方体1111ABCDABCD中,MN,分别为AD,11CD的中点,O为侧面11BCCB的中心,则异面直线MN与1OD所成角的余弦值为()A.16B.14C.16D.14【答案】A【分析】以D为坐标原点,分别以1,,DADCDD所在直线为,,xyz轴建立空间直角坐标系,设正方体的棱长为2,求出1MNOD,的坐标,由数量积求夹角公式求解.【解析】如图,以D为坐标原点,分别以1,,DADCDD 所在直线为,,xyz轴建立空间直角坐标系.设正方体的棱长为2,则1100,012,121,002MNOD,,,,,,,,,11,1,2,1,2,1MNOD.则11111cos,666MNODMNODMNOD.异面直线MN与1OD所成角的余弦值为16,故选A.【点睛】本题考查利用空间向量求解异面直线所成角,关键是正确标出所用点的坐标,是中档题.17.(新疆实验中学2019-2020学年高二下学期期末考试数学试题)长方体1111ABCDABCD中12,1ABAAAD,E为1CC的中点,则异面直线1BC与AE所成角的余弦值为A.1010B.3010C.21510D.31010【答案】B【解析】建立坐标系如图所示.则A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2),1BC=(-1,0,2),AE=(-1,2,1).cos〈1BC,AE〉==3010.所以异面直线BC1与AE所成角的余弦值为3010.18.(湖北省黄石市第二中学2019-2020学年高二下学期5月月考数学(理)试题)已知空间中三点A(0,1,0),B(2,2,0),C (-1,3,1),则A.AB与AC是共线向量B.AB的单位向量是1,1,0C.AB与BC夹角的余弦值是5511D.平面ABC的一个法向量是1,2.5【答案】D【分析】分别根据两个向量的坐标运算,单位向量的定义和两向量的夹角公式,及法向量的求法,逐一判定,即可得到答案.【解析】由题意,对于A中,2,1,0,1,2,1ABAC,所以ABAC,则AB与AC不是共线向量,所以不正确;对于B中,因为2,1,0AB,所以AB的单位向量为255,,055或255,,055,所以是错误的;对于C中,向量2,1,0,3,1,1ABAC,所以55cos,11ABBCABBCABBC,所以是错误的;对于D中,设平面ABC的一个法向量是,,nxyz,因为2,1,0,1,2,1ABAC,所以200200xynABxyznAC,令1x,所以平面ABC的一个法向量为125n,,,所以是正确的,故选D.【点睛】本题主要考查了向量的坐标运算,两个向量的夹角公式以及共线向量的定义和平面法向量的求解,其中解答中熟记向量的基本概念和向量的运算公式是解答本题的关键,着重考查了推理与运算能力,属于基础题.19.(福建省莆田第七中学2019-2020学年高二上学期期末考试数学试题)如图,平行六面体中1111ABCDABCD中,各条棱长均为1,共顶点A的三条棱两两所成的角为60,则对角线1BD的长为A.1B.2C.3D.2【答案】B【分析】在平行六面体中1111ABCDABCD中,利用空间向量的加法运算得到11BDBABBBC,再根据模的求法,结合各条棱长均为1,共顶点A的三条棱两两所成的角为60,由2211BDBABBBC222111222BABBBCBABBBCBABBBC求解.【解析】在平行六面体中1111ABCDABCD中,因为各条棱长均为1,共顶点A的三条棱两两所成的角为60,所以111111cos120,11cos6022BABBBABCBCBB,所以11BDBABBBC,所以2211BDBABBBC,222111222BABBBCBABBBCBABBBC,113+22+2222,所以12BD,故选B【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题.20.(黑龙江省哈尔滨市第三中学校2020届高三第二次模拟考试数学(理)试题)已知四面体ABCD中,AB,BC,BD两两垂直,2BCBD,AB与平面ACD所成角的正切值为12,则点B到平面ACD 的距离为A.32B.233C.55D.255【答案】D【分析】首先以B为原点,BC,BD,BA分别为x,y,z轴建立空间直角坐标系,BAt=,根据AB与平面ACD所成角的正切值为12得到2t,再求B到平面ACD 的距离即可.【解析】以B为原点,BC,BD,BA分别为x,y,z轴建立空间直角坐标系,如图所示:设BAt=,0t,0,0,0B,2,0,0C,0,2,0D,()0,0,At.()0,0,ABt=-,()2,0,CAt=-,()2,2,0CD=-.设平面ACD的法向量,,nxyz,则20220nCAxtznCDxy,令1x,得1y,2zt,故21,1,nt.因为直线AB与平面ACD所成角的正切值为12,所以直线AB与平面ACD所成角的正弦值为55.即2255211ABnABntt,解得2t.所以平面ACD的法向量21,1,2n,故B到平面ACD 的距离为22551112ABndn.故选D【点睛】本题主要考查向量法求点到面的距离,同时考查线面成角问题,属于中档题.21.(山东省济南莱芜市第一中学2019-2020学年高二下学期第一次质量检测数学试题)在棱长为1的正方体1111ABCDABCD中,点M为棱1CC 的中点,则直线1BM与平面11ADM所成角的正弦值是A.215B.25C.35D.45【答案】B【分析】通过建立空间直角坐标系,求出平面的法向量,进而求出线面角的正弦值.【解析】建立如图所示的空间直角坐标系,则1111(1,0,1),(0,0,1),(0,1,),(1,1,1)2ADMB11(1,0,0)AD,11(0,1,)2DM,11(1,0,)2MB设平面11ADM的法向量为(,,)mxyz则1110=01002xADmyzDMm令1y可得2z,所以(0,1,2)m设直线1BM与平面11ADM所成角为,1112sin5552mMBmMB故选B【点睛】本题考查了空间中的角线面角的求法,考查了空间想象能力和数学运算技能,属于一般题目.22.(四川省叙州区第二中学2019-2020学年高二下学期期末模拟考试数学(文)试题)一个四面体的四个顶点在空间直角坐标系Oxyz中的坐标分别是0,0,0,1,2,0,0,2,2,3,0,1,则该四面体中以yOz平面为投影面的正视图的面积为A.3B.52C.2D.72【答案】A【解析】根据平行投影的知识可知:该四面体中以yOz平面为投影面的正视图为一个上底为1,下底为2,高为2的直角梯形,所以面积为3.23.(四川省内江市2020届高三高考数学(理科)三模试题)如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC=4,AB=AC,BAC=90,D为半圆弧的中点,若异面直线BD和AB1所成角的余弦值为23,则该几何体的体积为A.16+8B.32+16C.32+8D.16+16【答案】A【分析】建立空间直角坐标系,利用异面直线BD和1AB所成的角的余弦值计算出该几何体的高,由此计算出该几何体的体积.【解析】设D在底面半圆上的射影为1D,连接1AD交BC于O,设1111ADBCO.依题意半圆柱体底面直径4,,90BCABACBAC,D为半圆弧的中点,所以1111,ADBCADBC且1,OO分别是下底面、上底面半圆的圆心.连接1OO,则1OO与上下底面垂直,所以11,,OOOBOOOAOAOB,以1,,OBOAOO为,,xyz轴建立空间直角坐标系,设几何体的高为0hh,则12,0,0,0,2,,0,2,0,2,0,BDhABh,所以12,2,,2,2,BDhABh,由于异面直线BD和1AB 所成的角的余弦值为23,所以212212388BDABhBDABhh,即2222,16,483hhhh.所以几何体的体积为2112442416822.故选A【点睛】本小题主要考查根据线线角求其它量,考查几何体体积的求法,属于中档题.24.(吉林省长春市2020届高考数学二模试卷(文科))在正方体1111ABCDABCD中,点E,F,G分别为棱11AD,1DD,11AB的中点,给出下列命题:①1ACEG;②//GCED;③1BF平面1BGC;④EF和1BB成角为4.正确命题的个数是A.0B.1C.2D.3【答案】C【分析】建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【解析】设正方体边长为2,建立空间直角坐标系如下图所示,12,0,0,0,2,2,2,1,2ACG,10,2,0,1,0,2,0,0,0,2,2,2,0,0,1,2,2,0CEDBFB.①,112,2,2,1,1,0,2200ACEGACEG,所以1ACEG,故①正确.②,2,1,2,1,0,2GCED,不存在实数使GCED,故//GCED不成立,故②错误.③,112,2,1,0,1,2,2,0,2BFBGBC,1110,20BFBGBFBC,故1BF平面1BGC不成立,故③错误.④,11,0,1,0,0,2EFBB,设EF和1BB成角为,则1122cos222EFBBEFBB,由于0,2,所以4,故④正确.综上所述,正确的命题有2个.故选C【点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.25.(浙江省台州市书生中学2020届高三下学期高考模拟数学试题)如图,三棱锥VABC的侧棱长都相等,底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,E为线段AC的中点,F为直线AB上的动点,若平面VEF与平面VBC所成锐二面角的平面角为,则cos的最大值是A.33B.23C.53D.63【答案】D【分析】连接BE,以E为原点,EB 为x轴,EC为y轴,EV为z轴,建立空间直角坐标系,求出平面VBC的一个法向量m,平面VEF的一个法向量n,利用cosmnmn即可求解.【解析】底面ABC与侧面VAC都是以AC为斜边的等腰直角三角形,则RtABCRtVAC,所以VAVCBABC设2VAVCBABCVB,由E为线段AC的中点,则2VEBV,由222VEBEVB,所以VEEB,以E为原点,EB为x轴,EC为y 轴,EV为z轴,建立空间直角坐标系,如图所示:则0,2,0C,2,0,0B,0,0,2V,设,2,0Fxx,0,2,2VC,2,0,2VB,0,0,2EV,,2,2VFxx,设平面VBC的一个法向量111,,mxyz,则00mVCmVB,即1111220220yzxz,令11x,则11y,11z,所以1,1,1m.设平面VEF的一个法向量222,,nxyz,则00nEVnVF,即222220220zxxxyz,解得20z,令21y,则221xx,所以21,1,0nx,平面VEF与平面VBC所成锐二面角的平面角为,则22cos22232mnxmnxx,将分子、分母同除以1x,可得2222322226626xxxx令2226626632fxxxx,当22x时,min3fx,则cos的最大值为:2633.故选D【点睛】本题考查了空间向量法求二面角、考查了基本运算求解能力,解题的关键是建立恰当的空间直角坐标系,属于中档题.26.(陕西省渭南市大荔县2019-2020学年高一下学期期末数学试题)已知MN是正方体内切球的一条直径,点P在正方体表面上运动,正方体的棱长是2,则PMPN的取值范围为A.0,4B.0,2C.1,4D.1,2【答案】B【分析】利用向量的线性运算和数量积运算律可将所求数量积化为21PO,根据正方体的特点可确定PO的最大值和最小值,代入即可得到所求范围.【解析】设正方体内切球的球心为O,则1OMON,2PMPNPOOMPOONPOPOOMONOMON,MN为球O的直径,0OMON,1OMON,21PMPNPO,又P在正方体表面上移动,当P为正方体顶点时,PO最大,最大值为3;当P为内切球与正方体的切点时,PO最小,最小值为1,210,2PO,即PMPN的取值范围为0,2.故选B.【点睛】本题考查向量数量积的取值范围的求解问题,关键是能够通过向量的线性运算将问题转化为向量模长的取值范围的求解问题.27.(河南省新乡市2020届高三年级第三次模拟考试数学(理科)试题)连续掷三次骰子,先后得到的点数分别为x,y,z,那么点(,,)Pxyz到原点O的距离不超过3的概率为A.427B.7216C.1172D.16【答案】B【分析】根据空间中两点间的距离公式结合古典概型的概率公式,即可得出答案.【解析】点(,,)Pxyz到原点O的距离不超过3,则2223xyz,即2229xyz连续掷三次骰子,得到的点的坐标共有666216个其中(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,2,1),(2,1,2)满足条件则点(,,)Pxyz到原点O的距离不超过3的概率为7216P故选B 【点睛】本题主要考查了古典概型概率公式的应用,涉及了空间中两点间距离公式的应用,属于中档题.28.(浙江省2020届高三下学期强基联考数学试题)已知非负实数x,y,z满足01xyz,则有序实数对,,xyz围成几何体的体积为A.12B.13C.16D.以上都不对【答案】C【分析】由已知条件可知有序实数对围成几何体为三棱锥,由棱锥体积公式可得结果.【解析】若01x,01y,01z,则有序实数对,,xyz围成几何体是棱长为1的正方体1111ABCDABCD,若非负实数x,y,z满足01xyz,有序实数对,,xyz围成几何体为三棱锥111BDCD,则111111=111=326BDCDV,故选C【点睛】本题考查空间向量和锥体体积公式的应用,考查空间想象能力和分析推理能力,属于中档题.29.(浙江省舟山中学2020届高三下学期6月高考仿真模拟数学试题)在正四面体DABC(所有棱长均相等的三棱锥)中,点E 在棱AB上,满足2AEEB,点F为线段AC上的动点.设直线DE与平面DBF所成的角为,则A.存在某个位置,使得DEBF B.存在某个位置,使得4FDB C.存在某个位置,使得平面DEF平面DACD.存在某个位置,使得6【答案】C【分析】设正四面体DABC的底面中心为点O,连接DO,则DO平面ABC,以点O为坐标原点,OB、OD所在直线分别为x、z轴建立空间直角坐标系,设正四面体DABC的棱长为2,然后利用空间向量法逐一分析求解可得结果.【解析】如下图所示,设正四面体DABC的底面中心为点O,连接DO,则DO平面ABC,以点O为坐标原点,OB、OD所在直线分别为x、z轴建立空间直角坐标系,设正四面体DABC的棱长为2,则3,1,03A、23,0,03B、3,1,03C、260,0,3D、31,,033E,设3,,03F,其中11,对于A选项,若存在某个位置使得DEBF,3126,,333DE,3,,0BF,1103DEBF,解得3,不合乎题意,A选项错误;对于B选项,若存在某个位置使得4FDB,326,,33DF,2326,0,33DB,22212cos,2323DFDBDFDBDFDB,该方程无解,B选项错误;对于C选项,设平面DAC的一个法向量为111,,mxyz,326,1,33DA,326,1,33DC,由111111326033326033mDAxyzmDCxyz,取11z,得22,0,1m,设平面DEF的一个法向量为222,,nxyz,3126,,333DE,326,,33DF,由22222231260333326033nDExyznDFxyz,取46y,则2262,46,31n,若存在某个位置,使得平面DEF平面DAC,则2190mn,解得31,17,合乎题意,C选项正确;对于D选项,设平面DBF的一个法向量为333,,uxyz,2326,0,33DB,326,,33DF,由333332326033326033uDBxzuDFxyz,令z,则2,6,u,若存在某个位置,使得6,即22612131sincos,6227272363uDEuDEuDE,整理得254120,162400,该方程无解,D选项错误.故选C.【点评】本题考查利用空间向量法求解空间角以及利用空间向量法处理动点问题,计算量大,属于难题.30.(浙江省杭州市2019-2020学年高二下学期期末教学质量检测数学试题)如图,直三棱柱111ABCABC的底面是边长为6的等边三角形,侧棱长为2,E是棱BC上的动点,F是棱11BC 上靠近1C点的三分点,M是棱1CC上的动点,则二面角AFME的正切值不可..能.是A.3155B.2155C.6D.5【答案】B【分析】建立空间直角坐标系,求得二面角AFME的余弦值,进而求得二面角AFME的正切值,求得正切值的最小值,由此判断出正确选项.【解析】取BC 的中点O,连接OA,根据等边三角形的性质可知OABC,根据直三棱柱的性质,以O为原点建立如图所示的空间直角坐标系.则0,33,0,1,0,2AF,设3,0,02Mtt.则1,33,2,2,0,2AFFMt.设平面AMF的一个法向量为,,mxyz,则3320220mAFxyzmFMxtz,令1y,得633363,1,66tmtt.平面FME的一个法向量是0,1,0n,所以22216cos,28120252633363166mntmnmnttttt,所以2sin,1cos,mnmn222710821628120252tttt,所以二面角AFME的正切值为22sin,271082166cos,mnttfttmn211540216 2766tt.因为02t,所以111466t,216125405结合二次函数的性质可知当1165t时,ft有最小值为11315540216272555;当1166t时,ft有最大值为11540216276366,所以315,65ft,所以二面角AFME的正切值不可能是2155.故选B.【点睛】本小题主要考查二面角的求法,考查数形结合的数学思想方法,属于难题.二、多选题31.(辽宁省葫芦岛市2019-2020学年高二上学期期末数学试题)若1,,2a,2,1,1b,a与b的夹角为120,则的值为(A.17B.-17C.-1D.1【答案】AC【分析】求出ab,以及,ab,代入夹角公式cos,ababab即可求出.【解析】由已知224ab,22145,4116ab,241cos120256abab,解得17或1,故选AC.【点睛】本题考查向量夹角公式的应用,是基础题.32.(江苏省南京市秦淮中学2019-2020学年高二(美术班)上学期期末数学试题)对于任意非零向量111,,axyz,222,,bxyz,以下说法错误的有()A.若ab,则1212120xxyyzz B.若//abrr,则111222xyzxyz C.121212222222111222cos,xxyyzzxyzazbxyD.若1111xyz,则a为单位向量【答案】BD【分析】利用空间向量数量积的坐标运算可判断A、C选项的正误;利用空间共线向量的坐标表示可判断B选项的正误;利用空间向量模的坐标公式可判断D选项的正误.综合可得出结论.【解析】对于A选项,因为ab,则1212120abxxyyzz,A选项正确;对于B选项,若20x,且20y,20z,若//abrr,但分式12xx无意义,B选项错误;对于C选项,由空间向量数量积的坐标运算可知121212222222111222cos,xxyyzzxyzazbxy,C 选项正确;对于D选项,若1111xyz,则2221113a,此时,a不是单位向量,D选项错误.故选BD.【点睛】本题考查空间向量的坐标运算,涉及空间共线向量的坐标表示和数量积的坐标运算,考查计算能力,属于基础题.33.(江苏省苏州市2019-2020学年高二上学期期末数学试题)已知向量abbcac,3,0,1b,1,5,3c,下列等式中正确的是A.abcbc B.abcabc C.2222abc abc D.abcabc【答案】BCD【分析】根据坐标求出3030abacbc,根据向量的运算法则即可判定.【解析】由题3030bc,所以0abbcac0,0abcbc不相等,所以A选项错误;0abcabcabbcabac,所以abcabc,所以B选项正确;2222222222abcabcabbcacabc,所以C选项正确;2222222222abcabcabbcacabc,即22abcabc,abcabc,所以D选项正确.故选BCD【点睛】此题考查空间向量的运算,根据运算法则进行运算化简即可.34.(江苏省连云港市2019-2020学年高二上学期期末数学试题)已知点P是△A BC所在的平面外一点,若AB=(﹣2,1,4),AP=(1,﹣2,1),AC=(4,2,0),则A.APABB.APBPC.BC=53D.AP//BC【答案】AC【分析】根据向量的定义,平行,垂直和模长的定义可以对每个选项逐个判断,进而得出答案。

上海市第二中学2023-2024学年高二下学期期中数学试题

上海市第二中学2023-2024学年高二下学期期中数学试题

上海市第二中学2023-2024学年高二下学期期中数学试题一、填空题1.抛物线224y x =-的准线方程是.2.已知直线l 的一个法向量是()2,1-,则它的斜率为.3.设a ∈R ,若直线230x y +-=与直线20x y a ++=a 的值为. 4.若方程220x y x y m +-++=表示圆,则实数m 的取值范围是.5.如果双曲线关于原点对称,它的焦点在y 轴上,实轴的长为8,焦距为10.则双曲线的标准方程为.6.设椭圆22221(0)x y a b a b+=>>的焦距为2c ,若2b ac =,则椭圆的离心率为.7.设圆C 与双曲线221916x y -=的渐近线相切,且圆心在双曲线的右焦点,则圆C 的标准方程为.8.圆228x y +=内有一点0(1,2)P -,AB 为过点0P 的弦.当弦AB 被点0P 平分时,则直线AB 的方程为.9.已知直线1y ax =-与曲线22y x =只有一个公共点,则实数a 的值为.10.如图,点C 是以AB 为直径的半圆O 上异于A 、B 的动点,点D 与点A 在直线BC 的两侧,且π2BCD ∠=,CD CB =u u u r u u u r ,若2AB =u u u r ,则OC OD ⋅u u u r u u u r 的最大值为.11.过焦点在x 轴上的椭圆2221(0)xy a a+=>的顶点()0,1B -引一条弦BP ,弦BP 的最大长=a .12.若恰有三组不全为0的实数对(a ,)b 满足关系式|1||431|a b a b ++=-+=数t 的所有可能的值为.二、单选题13.“1m >”是“方程11522y x m m -=--表示焦点在y 轴上的双曲线”的( )条件A .充分非必要B .必要非充分条件C .充要D .既非充分也非必要14.设P 是椭圆2211612x y +=上一点,P 到两焦点12F F ,的距离之差为2,则12PF F V 是A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形15.直线0x =绕原点按顺时针方向旋转30︒后所得的直线l 与圆()2223x y -+=的位置关系是( )A .直线l 过圆心B .直线l 与圆相交,但不过圆心C .直线l 与圆相切D .直线l 与圆无公共点16.数学中有许多形状优美、寓意美好的曲线,曲线22:1C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过4个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3; 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③三、解答题17.已知点()1,0A ,()1,2B -.(1)设m ∈R ,若直线AB 与直线10x my -+=垂直,求m 的值;(2)求过点B 且与直线210x y -+=的直线方程. 18.已知圆22:460C x y x y +--=. (1)求直线2y x =被圆截得弦长;(2)已知圆M 过点()4,0-且与圆22:460C x y x y +--=相切于原点,求圆M 的方程.19.设()2,M t t 为抛物线2:C y x =上的动点.(1)若点M M 与抛物线C 的焦点之间的距离;(2)过点()2,M t t 分别作两条直线交抛物线C 于()1,1P 、()1,1Q -两点,交直线=1x -于(,),(,)A A B B A x y B x y 两点,求A B y y ×的值.20.已知A 、B 、C 是我方三个炮兵阵地,A 地在B 地的正东方向,相距6km ;C 地在B 地的北偏西30︒,相距4km .P 为敌方炮兵阵地.某时刻A 地发现P 地产生的某种信号,12s 后B 地也发现该信号(该信号传播速度为13km/s ).以BA 方向为x 轴正方向,AB 中点为坐标原点,与AB 垂直的方向为y 轴建立平面直角坐标系.(1)判断敌方炮兵阵地P 可能分布在什么样的轨迹上,并求该轨迹的方程; (2)若C 地与B 地同时发现该信号,求从A 地应以什么方向炮击P 地?21.太曲线Γ由曲线22122:1(0,0)x y C a b y a b +=>>≤和曲线22222:1(0)x y C y a b-=>组成,其中点1F 、2F 为曲线1C 所在圆锥曲线的焦点,点3F 、4F 为曲线2C 所在圆锥曲线的焦点.(1)若)2F ,()3F ,求曲线的方程;(2)作曲线2C 第一象限中渐近线的平行线l ,若与曲线1C 有两个公共点A 、B ,求证:弦AB 的中点M 必在曲线2C 的另一条渐近线上;(3)设a =4b =,若直线1l 过点4F 交曲线1C 于点,C D ,求1CDF V 的面积S 的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市第二中学2019-2020学年高二上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.i是虚数单位, 的虚部是_______________.
2.复数 ( 为虚数单位)的共轭复数是________.
3.双曲线 的渐近线方程________.
【详解】
(1)由题意,将点 代入双曲线方程得, ,又 ,所以 ;
(2)由(1)知, ,设点 ,则 ,且 或 ,
则 ,
所以当 时, 取得最小值为 ,所以 的最小值为 .
20.(1) ( 且 );(2)当 时,曲线 是焦点在 轴上的椭圆,两焦点分别为 , ;当 时,曲线 是焦点在 轴上的椭圆,两焦点坐标分别为 , .
故答案为5.
【点睛】
本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.
7.
【分析】
先求解出双曲线的右焦点坐标,然后设抛物线方程 ,根据抛物线的焦点列式求解 .
【详解】
由双曲线的方程可得,双曲线的右焦点坐标为 ,因为抛物线以双曲线C的右焦点为焦点,所以设抛物线方程为 ,由 ,得 ,所以抛物线方程为 .
联立方程组 ,解得 ,
即点 的坐标为 .
故答案为: .
【点睛】
方法点睛:本题解答的关键在于找出直线所过的顶点,以及垂直条件,求得点 的轨迹方程,以及结合题设条件联立方程组进行求解.
13.C
【分析】
根据复数的实部和虚部的符号可确定复数z在复平面上对应的点的特征,从而可得正确的选项.
【详解】
因为 , ,
4.设 是椭圆 上的动点,则 到该椭圆的两个焦点的距离之和为_________.
5.抛物线 的准线方程为_______.
6.已知复数 满足 ( 是虚数单位),则 .
7.已知双曲线 ,则以双曲线C的中心为顶点,以双曲线C的右焦点为焦点的抛物线方程为_______________.
8.已知直线l过点 且垂直于x轴,若 被抛物线 截得线段长为4,则抛物线的焦点坐标为_______________.
由①、②,可得 , , ,
所以 .
所以三角形的面积为: .
故答案为: .
【点睛】
关键点点睛:本题的关键是利用好椭圆与双曲线的定义,然后把问题转化为解三角形问题.
11.
【详解】
试题分析:由新定义可知,直线 与曲线 相离,
圆 的圆心到直线 的距离为 ,此时直线 与圆 相离,
根据新定义可知,曲线 到直线 的距离为 ,
故ABD均错误,C正确.
故选:C.
14.A
【分析】
根据曲线与方程的定义和关系进行判断即可.
【详解】
满足方程是 的解对应点都在曲线 上,曲线 上的点的坐标都满足方程,则曲线是方程的曲线,方程是曲线的方程,则不在曲线 上的点的坐标不可能满足方程 ,故A错误.
故选:A.
15.B
【分析】
化为圆的标准方程,结合直线与圆的位置关系,即可求解.
【详解】
由题意,复数 ,
可得复数 的虚部是 .
故答案为: .
2.
【详解】
复数 ,其共轭复数为 ,故填 .
3.
【分析】
先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.
【详解】
∵双曲线 的a=2,b=1,焦点在x轴上
而双曲线 的渐近线方程为y=±
∴双曲线 的渐近线方程为y=±
17. .
【分析】
先设复数 ,根据实系数一元二次方程有虚根的情况及系数关系判断 ,得到 ,再计算 即可
【详解】
设复数 ,因为z是关于x的方程 的一个虚根,所以其共轭复数 也是该方程的根,根据两根之积 ,可知 ,故 .
18.(1) , ;(2) .
【分析】
(1)由抛物线的焦点坐标可求得 的值,可得出抛物线 的方程,进而可求得抛物线 的准线 的方程;
故答案为y=±
【点睛】
本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想
4.
【分析】
由椭圆方程求出 ,再根据椭圆的定义可求得结果.
【详解】
由 得 ,所以 ,
由椭圆的定义可得 到该椭圆的两个焦点的距离之和为 .
故答案为:
5.
【分析】
由抛物线方程求出 ,判断焦点位置,从而可得答案.
9.如果双曲线 右支上一点 到双曲线右焦点的距离是 ,那么点 到 轴的距离是_______________.
10.设椭圆 和双曲线 的公共焦点为 、 ,P是两曲线的一个公共点,则 _______________.
11.定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离.已知曲线C1:y=x2+a到直线l:y=x的距离等于C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=______________.
所以 ②,
将①代入②可得曲线 的方程为 ( 且 );
(2)因为 且 ,
所以当 时,曲线 是焦点在 轴上的椭圆,
两焦点分别为 , ;
当 时,曲线 是焦点在 轴上的椭圆,
两焦点坐标分别为 , .
【点睛】
关于动点轨迹方程的求解,一般比较常用的方法是定义法、代入法以及相关点法,关于定义法需要掌握几种曲线的定义表示并判断题干条件符合哪个曲线的定义;代入法则直接代入计算,但需要注意定义域;相关点法的应用则需要寻找不同动点之间的关系列式,然后写出轨迹方程.
21.(1)见解析;(2) ;(3)存在,
【分析】
(1)根据直角三角形中,斜边上的中线等于斜边一半得到答案.
(2)过 三点的圆,半径为 ,圆心 ,圆心到直线 的距离为: ,再根据垂径定理得到答案.
(3)设直线为: ,联立方程,根据韦达定理得到: ,直线 : ,取 化简得到答案.
【详解】
(1)在 中, , 是 中点,故
【详解】
由题意,圆 ,消去参数,可得 ,
则圆心坐标为 ,半径为 ,
又由圆心到直线 的距离为 ,可得 ,
又由圆心不适合直线 方程,
所以直线与圆相交但不过圆心.
故选:B.
16.A
【详解】
由题意,可设切线的斜率为 ( 必存在),圆 的半径为 ,则切线的方程为 ,且 , ,则点 的坐标分别为 , ,且 即 ,所以
【分析】
(1)首先设出点 和点 的坐标,利用 ,确定点 和点 坐标之间的关系,再利用点 在单位圆 上运动,即可求得曲线 的方程;
(2)根据(1)中曲线 的方程,分别分析 和 两种情况下曲线 为何种圆锥曲线,再根据和点 满足 ( 且 ),
所以 ①,又因为点 在单位圆 上,
故答案为: .
8.
【分析】
根据截得线段长可求 ,从而可求焦点坐标.
【详解】
在抛物线 的方程中令 ,则 ,故 ,
故 ,所以抛物线的方程为: ,故其焦点坐标为: .
故答案为: .
9.
【分析】
由题意可知点 为双曲线的右顶点,由此可求得点 到 轴的距离.
【详解】
在双曲线 中, , , ,
所以,双曲线 的右焦点为 ,
(2)过 三点的圆,半径为 ,圆心
圆心到直线 的距离为:
根据垂径定理得到: 解得:
根据(1)知:
的方程为:
(3)存在定点,
, ,设直线为:
得到: , 在椭圆内,一定有两个交点.

直线 :
取 得到
故存在定点
【点睛】
本题考查了椭圆方程,直线与椭圆的位置关系,定点问题,综合性大,技巧性强,意在考查学生的计算能力和综合应用能力.
12.若 ,直线 与 交于点P,点P的轨迹C与x、y轴分别相交于A、B两点,O为坐标原点(A、B异于原点O),则满足 的位于第一象限内的点P坐标为_______________.
二、单选题
13.设 ,其中 ,则下列命题中正确的是()
A.复数z可能为纯虚数
B.复数z可能是实数
C.复数z在复平面上对应的点在第一象限
(2)利用斜率公式求出点 的坐标,由 以及点 在抛物线 上可求得点 的坐标,利用抛物线的定义可求得线段 的长.
【详解】
(1)由于抛物线 的焦点为 ,则 ,可得 ,
所以,抛物线 的方程为 ,该抛物线的准线 的方程为 ;
(2)设点 ,则 ,可得 ,即点 ,
设点 , ,则 , ,即点 ,
因此, .
【点睛】
C.相切D.相离
16.如图,圆 分别与 轴正半轴, 轴正半轴相切于点 ,过劣弧 上一点 作圆 的切线,分别交 轴正半轴, 轴正半轴于点 ,若点 是切线上一点,则 周长的最小值为------------------------------------------------------------------( )
【详解】
由题意,将直线 变形为 ,
由 ,解得 ,即直线 过定点 ,
同理可得直线 过定点 ,且 ,
设点 的坐标为 ,则 ,
由 ,
可得 ,
整理得 ,
令 ,可得 ,令 ,可得 ,即 ,
所以 时点 的轨迹圆的一条直径,则 ,
由勾股定理,可得 ,
联立方程组 ,解得 ,
由于点 在第一象限,则 ,
由两点间的距离公式,可得 ,
关键点点睛:本题考查利用抛物线的定义求焦半径,解题的关键就是求出点 的坐标,注意到 ,可以通过点 与点 之间的关系来求解.
19.(1) ;(2) .
【分析】
(1)把点 代入双曲线的方程,直接求出 的值;(2)设点 ,由两点的距离公式表示出 ,然后化简得关于 的二次函数,利用二次函数的性质求解最小值.
A.10B.8C. D.12
相关文档
最新文档