立体几何中的折叠问题

合集下载

高中数学立体几何动点和折叠问题-含答案

高中数学立体几何动点和折叠问题-含答案

高中数学立体几何动点和折叠问题-含答案1.在正方体ABCD-A1B1C1D1中,BC的中点为M,点P在正方体的表面DCC1D1上移动,且满足∠APD=∠MPC。

求三棱锥P-BCD的体积的最大值。

2.△ABC是边长为23的等边三角形,E、F分别为AB、AC的中点,沿EF把四面体OAEF折起,使点A翻折到点P的位置,连接PB、PC。

当四棱锥P-BCFE的外接球的表面积最小时,求四棱锥P-BCFE的体积。

3.△ABC是边长为23的等边三角形,E、F分别在线段AB、AC上滑动,且EF//BC,沿EF把△AEF折起,使点A翻折到点P的位置,连接PB、PC。

求四棱锥P-BCFE的体积的最大值。

4.已知三棱锥P-ABC满足PA⊥底面ABC,在△ABC中,AB=6,AC=8,且AB⊥AC,D是线段AC上一点,且AD=3DC,球O为三棱锥P-ABC的外接球,过点D作球O的截面。

若所得截面圆的面积的最小值与最大值之和为44π,则求球O的表面积。

5.已知A、B、C、D四点均在半径为R(R为常数)的球O的球面上运动,且AB=AC,AB⊥AC,AD⊥BC。

若四面体ABCD的体积的最大值为V,求V的值。

6.已知A、B、C是球O的球面上的三点,AB=2,AC=23,∠ABC=60°,且三棱锥O-ABC的体积为V。

求V的值。

7.已知三棱柱ABC-A1B1C1内接于一个半径为3的球,四边形A1ACC1与B1BCC1为两个全等的矩形,M是A1B1的中点,且C1M=√3.求三棱锥C1-ABC的体积。

8.在四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是菱形,∠ADC=120°,连接AC,BD交于点O,A1O⊥平面ABCD,AO=BD=4,点C'与点C关于平面BC1D对称。

求三棱锥C'-ABD的体积。

1.删除该题,因为这明显是一道数学计算题,没有文章可言。

2.球O的表面积为4π,则球O的体积为(4/3)π。

立体几何中的折叠问题

立体几何中的折叠问题

链接高考:
(09 浙江)17.如图,在长方形 ABCD 中,AB 2 ,BC 1,E 为 DC 的
中点, F 为线段 EC (端点除外)上一动点.现将AFD 沿 AF 折起,
使平面 ABD 平面 ABC .在平面 ABD 内过点 D 作 DK AB , K 为垂
足.设 AK t ,则 t 的取值范围是
(3)AD与面BDM所成的角固定吗?(M为AC中点)
(4)二面角A-DB-C固定吗?
你能不用求解看出它的范围吗?
考向二:通过翻折得到一个不确定的几何体, 研究其点线面的位置关系
策略:明确不变量、紧抓关键量
C B
课本中翻折:
如图:边长为2的正方形ABCD中, (1)点E、F分别是边BC和CD的中点,将△ABE, △AFD分别沿AE,AF折起,使两点重合于P点,
归结为一个条件与结论明朗化的立几问题。 (3)将不变的条件集中到几何体图形中,将问题归结为一个条件与结论明朗化的立几问题。
研究其点线面的位置关系 求解翻折问题的基本方法: (4)二面角A-DB-C固定吗? 问题2、AD与BC会垂直吗? 温一模(16题) 图形的翻折问题在历年高考中时常出现,浙江省近几年就出现了四次,因为它是一个由直观到抽象的过程,所以每次的出现的题号都 偏后,同学们的答题情况也不太理想。
(1)AD与BC所成的角固定吗? 如图:边长为2的正方形ABCD中,
【总结规律】 你能不用求解看出它的范围吗?
问题6、二面角D-AC-B固定吗?范围为? 研究其点线面的位置关系。 如图:边长为2的正方形ABCD中,将△ACD沿对角线AC折起,连接BD,得到一个新的三棱锥D-ABC 问题5、AD与面BDM所成的角固定吗?(M为AC中点)
(2)求AD与面DBC所成角的正弦值 如图:边长为2的正方形ABCD中,将△ACD沿对角线AC折起,连接BD,得到一个新的三棱锥D-ABC (1)根据题中条件画出立体图形

立体几何折叠问题解析

立体几何折叠问题解析

立体几何折叠问题1.如图,矩形 中, , 为 的中点,现将 与 折起,使得平面 及平面 都与平面 垂直. (1)求证: 平面 ; (2)求二面角 的余弦值.2.如图,在直角梯形 中, ,且 分别为线段的中点,沿 把 折起,使 ,得到如下的立体图形.(1)证明:平面 平面 ;(2)若 ,求二面角 的余弦值.3.如图(1),在平行四边形11ABB A 中, 11160,4,2,,ABB AB AA C C ∠===, 分别为11,AB A B 的中点.现把平行四边形11AAC C 沿1CC 折起,如图(2)所示,连结1111,,B C B A B A .(1)求证: 11AB CC ⊥;(2,求二面角11C AB A --的余弦值.4.如图1所示,在等腰梯形ABCD 中, 把ABE ∆沿BE 折起,使得,得到四棱锥A BCDE -.如图2所示.(1)求证:面ACE ⊥面ABD ;(2)求平面ABE 与平面ACD 所成锐二面角的余弦值.5.如图,菱形 的边长为 , , 与 交于 点.将菱形 沿对角线 折起,得到三棱锥 ,点 是棱 的中点, . (I )求证:平面 ⊥平面 ; (II )求二面角 的余弦值.6.如图1,已知在菱形ABCD 中, 120B ∠=, E 为AB 的中点,现将四边形EBCD 沿DC 折起至EBHD ,如图2. (1)求证: DE ⊥面ABE ; (2)若二面角A DE H --的大小为求平面ABH 与平面ADE 所成锐二面角的余弦值.7.如图1,四边形ABCD 中, AC BD ⊥, 2222CE AE BE DE ====,将四边形ABCD 沿着BD 折叠,得到图2所示的三棱锥A BCD -,其中AB CD ⊥. (1)证明:平面ACD ⊥平面BAD ;(2)若F 为CD 中点,求二面角C AB F --的余弦值.8.如图1,在直角梯形ABCD 中, AD BC , AB BC ⊥, BD DC ⊥,点E 是BC 边的中点,将ABD 沿BD 折起,使平面ABD ⊥平面BCD ,连接AE , AC , DE ,得到如图2所示的几何体.(Ⅰ)求证: AB ⊥平面ADC .(Ⅱ)若1AD =, AC 与其在平面ABD 求点B 到平面ADE 的距离.9.如图所示,在平行四边形 中,点 是 边的中点,将 沿 折起, 使点 到达点 的位置,且 (1)求证; 平面 平面 ;(2)若平面 和平面 的交线为 ,求二面角 的余弦值.10.已知长方形 中, , ,现将长方形沿对角线 折起,使 ,得到一个四面体 ,如图所示.(1)试问:在折叠的过程中,异面直线 与 能否垂直?若能垂直,求出相应的 的值;若不垂直,请说明理由;(2)当四面体 体积最大时,求二面角 的余弦值.11.如图,在长方形ABCD 中, 、 为线段AB 的三等分点,G 、H 为线段DC 的三等分点.将长方形ABCD 卷成以AD 为母线的圆柱W 的半个侧面,AB 、CD 分别为圆柱W 上、下底面的直径. (1)证明:平面 平面BCHF ; (2)求二面角 的余弦值.12.在菱形 中, 且 ,点分别是棱的中点,将四边形沿着转动,使得与重合,形成如图所示多面体,分别取的中点.(Ⅰ)求证:平面;(Ⅱ)若平面平面,求与平面所成的正弦值.13.已知等腰直角分别为的中点,将沿折到的位置,,取线段的中点为.(I)求证://平面;(Ⅱ)求二面角的余弦值本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

立体几何中“折叠问题”解题策略(含详细解析)

立体几何中“折叠问题”解题策略(含详细解析)

立体几何中“折叠问题”的解题策略[例题]如图1,在直角梯形ABCD中,AD∥BC,AB∥BC,BD∥DC,点E是BC边的中点,将∥ABD沿BD折起,使平面ABD∥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB∥平面ADC;(2)若AD=1,二面角C­AB­D的平面角的正切值为6,求二面角B­AD­E的余弦值.[解](1)证明:因为平面ABD∥平面BCD,平面ABD∩平面BCD=BD,BD∥DC,DC∥平面BCD,所以DC∥平面ABD.因为AB∥平面ABD,所以DC∥AB.又因为折叠前后均有AD∥AB,DC∩AD=D,所以AB∥平面ADC.(2)由(1)知AB∥平面ADC,所以二面角C­AB­D的平面角为∥CAD.又DC∥平面ABD,AD∥平面ABD,所以DC∥AD.依题意tan∥CAD =CDAD = 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意∥ABD ∥∥DCB ,所以AB AD =CDBD , 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.以D 为坐标原点,射线DB ,DC 分别为x 轴,y 轴的正半轴,建立如图所示的空间直角坐标系D ­xyz ,则D (0,0,0), B (3,0,0), C (0,6,0), E (23,26,0), A (33,0,36), 所以DE ―→=(23,26,0),DA ―→=(33,0,36).由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎨⎧m·DE ―→=0,m·DA ―→=0,得⎩⎨⎧32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量. 所以cos<n ,m>=n ·m |n |·|m |=-12.由图可知二面角B ­AD ­E 的平面角为锐角, 所以二面角B ­AD ­E 的余弦值为12. 解题策略:1.确定翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.2.确定翻折后关键点的位置所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算.变式练习:1.如图1,在四边形ABCD 中,AD ∥BC ,∥BAD =90°, AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD , P 为BE 的中点,将∥ABE 沿BE 折起到∥A 1BE 的位置, 使得A 1C =4,如图2.(1)求证:平面A1CP∥平面A1BE;(2)求二面角B­A1P­D的余弦值.解:(1)证明:如图3,连接AP,PC.∥在四边形ABCD中,AD∥BC,∥BAD=90°,AB=23,BC=4,AD=6,E是AD上的点,AE=13AD,P为BE的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=23,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面A1BE.∥PC∥平面A1CP,∥平面A1CP∥平面A1BE.(2)如图4,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0), ∥P A 1―→=(-1,0,3), PD ―→=(-4,23,0), 设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m·P A 1―→=0,m·PD ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0,取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22. 由图可知二面角B ­A 1P ­D 是钝角, ∥二面角B ­A 1P ­D 的余弦值为-22.2.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ∥CD ,BF ∥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE ­BCF ,如图2.(1)若AF ∥BD ,证明:DE ∥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由.解:(1)证明:由已知得四边形ABFE 是正方形,且边长为2, ∥AF ∥BE .∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面BDE . 又DE ∥平面BDE ,∥AF ∥DE .∥AE ∥DE ,AE ∩AF =A ,∥DE ∥平面ABFE . 又BE ∥平面ABFE ,∥DE ∥BE .(2)当P 为AB 的中点时满足条件.理由如下: ∥AE ∥DE ,AE ∥EF ,DE ∩EF =E ,∥AE ∥平面DEFC . 如图,过E 作EG ∥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D (0,21-,23), AC ―→=(-2,1,3),AD ―→=(-2,21-,23).设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎨⎧-2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P (2,λλ+12,0),λ∥(0,+∞),可得CP ―→=(2,λλ+-11,-3).设CP 与平面ACD 所成的角为θ,则sin θ=|cos<CP ,n>|=52)11(7111⨯+-++---λλλλ=3535,解得λ=1或λ=-25(舍去),∥P 为AB 的中点时,满足条件.。

向量法求立体几何中的折叠探索及最值问题 高三数学一轮复习

向量法求立体几何中的折叠探索及最值问题 高三数学一轮复习

巩固训练2 [2024·河南郑州模拟]在底面ABCD为梯形的多面体中.AB∥CD,
BC⊥CD,AB=2CD=2 2,∠CBD=45°,BC=AE=DE,且四边 形BDEN为矩形.
(1)求证:BD⊥AE; (2)线段EN上是否存在点Q,使得直线BE与平面QAD所成的角为60°? 若不存在,请说明理由.若存在,确定点Q的位置并加以证明.
(1)求证:OP⊥平面ABED;
(2)求二面角B-PE-F的正弦值.
题型二 探索性问题
例2 [2024·河北石家庄模拟]如图,四棱锥S-ABCD中,底面ABCD为
矩形且垂直于侧面SAB,O为AB的中点,SA=SB=AB=2,AD= 2.
(1)证明:BD⊥平面SOC;
(2)侧棱SD上是否存在点E,使得平面ABE与平面SCD夹角的余弦值
为1,若存在,求SE的值;若不存在,说明理由.
5
SD

题后师说
(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当 作条件,据此列方程或方程组,把“是否存在”转化为“点的坐标的 方程是否有解,是否有规定范围内的解”等.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知条件 和结论列出等式,解出参数.
高考大题研究课七 向量法求立体几何中的折叠、探索及最值问题
会用向量法解决立体几何中的折叠、角的存在条件及最值问题,提 高学生空间想象能力、数学运算能力.
关键能力·题型剖析 题型一 折叠问题 例1 [2024·江西景德镇模拟]如图,等腰梯形ABCD中,AD∥BC,AB=BC =CD=12AD=2,现以AC为折痕把△ABC折起,使点B到达点P的位置,且 PA⊥CD.
题型三 最值问题
例3 [2020·新高考Ⅰ卷]如图,四棱锥P-ABCD的底面为正方形, PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.

抓不变,巧构造,悟本质--例谈立体几何中的折叠问题

抓不变,巧构造,悟本质--例谈立体几何中的折叠问题

2021年第2期中学数学教学参考(上旬)抓不变,巧构造,悟本质—例谈立体几何中的折叠问题徐敏亚(江苏省梅村高级中学)摘要:折叠问题是立体几何的一个重要问题,是空间几何与平面几何问题互相转化的集中体现,处理这 类问题的关键就是抓住折叠前后图形的特征关系,弄清折叠前后哪些量和位置关系发生了变化,哪些量和 位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。

关键词:立体几何;折叠问题;不变量文章编号:1002-2171 (2021)2-0037-03《普通高中数学课程标准(2017年版2020年修订)》在“课程性质与基本理念”一节中提道:把握数学 本质,启发思考,改进教学。

江苏省作为第二批实施新高考的省份,对立体几 何的考查提高了要求,其中就提高了对空间几何体的 图形变换的考查。

折叠(旋转)和展开是两种常见的 图形变换形式。

折叠问题是立体几何的一个重要内容,是空间几 何问题与平面几何问题相互转化的集中体现,处理这 类问题的关键就是抓住折叠前后图形的特征关系。

折叠问题是立体几何中考查学生的实践能力、创新能 力和空间想象能力的较好素材。

解答折叠问题的关 键在于画好折叠前后的平面图形和立体图形,并弄清 折叠前后哪些量和位置关系发生了变化,哪些量和位 置关系没有发生变化,这些未发生变化的已知条件就 是我们分析问题和解决问题的依据。

例1如图1是正四面体的平面展开图,G,H,分别是D£,B£,£F的中点,在这个正四面体中有以下结论:①B D与£F垂直;②B E与M N为异 面直线;③G H与A F所成角为60°;④M N//平面A D F。

其中正确的结论序号为________。

解:先把对应的正四面体画出来,如图2,对照选项就可知答案为①③④。

A(B,C)说明:根据平面图形的特征,想象平面图形折叠 后的图形进行判断,也可以利用手中的纸片画出相应 的图形进行实际操作。

2.立体几何中的折叠与最值问题(无解析)

2.立体几何中的折叠与最值问题(无解析)

立体几何中的折叠与最值问题-:折&申的垂直与距S?问题【例1】如图.△AC£>和ΔMBC都是直角三角形,ΛB=BC,ACAD30\把三角形八8C沿AC边折起,使AASC所在的平面与aACO所在的平面垂直.若A8=#⑴求证:平面八8。

_1.平面Ba);<2>求C点到平面A8。

的距离【拓1】设Af、N是直角梯形ABCD两腰的中点,DEJ.八8于E(如图).现将△八。

£沿DE折起,使二面角Λ-DE-B≠)45∖此时点Λ在平面8。

E内的射影恰为点B,求W、N的连线与八E所成角的值.【拓2】如图,在4A8C中.AD1BC.£0=24£,过£作FG//BC.且将AAfG沿FG折起,使ZA,ED=CM o,求证:4'£1平面A,BC a{拓3]如图.在平行四边形八8C。

中.八8=AC=I,ZΛCD9(Γ,将它沿对角线AC折起,使八8与CO成6(尸角,求8,。

之间的距离。

二:折叠中的角度问即【例2]:在长方形AA38中,Λβ=2∕M,=4.C.G 分别是A8,八四的中点(如图1).将此长方形沿CC 对折,使二面角A-CG-8为直二面角,。

.£分别是A4,CG的中点(如图2).⑴**求证:G 。

〃平面ABE ;(2:△求直线8G 与平面八声£所成角的正弦值【拓1】如图.巳知A8C/)是上.下底边长分别为2和6.轴"Q 折成直二面角⑴证明:ΛC±BO 1; (2)求二面角O-AC-Q 的正弦值【拓2】在正ZUSC 中,E 、F 、户分别是AB 、AG8C 边上的点.涧足A£:E8=CF:8=CT:P8=I:2.将AAEF 沿EF 折起到尸的位置,使二面角A-EF-H 成直二面角,连结八昆A 1P.(1)求证:A £,平面8£P;(2)求直线AE 与平面AB 尸所成向的大小;(3)求二面角B-AP-F 的余弦值大小,三:立体几何中的体积最值问题高为&的等禊梯形.将它沿对称 OO.C【例3】设四梭锥〃-A8C/)中,底面A8C/)是边长为1的正方形,且PAI面A8C?)⑴•♦求证PCkBD;⑵A过8。

立体几何中的折叠问题含解析

立体几何中的折叠问题含解析

高考热点问题:立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,96ABC S ∆=,V(x)= (036x <<)(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;636x <<时'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值126.【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .ACDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则81281427. 所以直线AP 与平面PEF 所成角的正弦值为81281427. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得4861在Rt APH ∆中,所以直线AP 与平面PEF 所成角的正弦值为81281427. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFHxy z 解法一图A BC D PEF(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为22.【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C 【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为22B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为222MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】500327π3cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得5R 3=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BCDA -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、()D 3,1,2',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠MNE=233,cos ∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。

立体几何折叠问题

立体几何折叠问题

立体几何折叠问题
嘿,朋友们!今天咱们就来讲讲立体几何折叠问题那些事儿。

什么是立体几何折叠问题呢?比如说,咱们有张纸,把它折起来变成个立体形状,这中间就有好多有趣的问题啦!
那会有哪些问题呢?就像是纸折成了个三棱锥,那原来纸上的线折起来后长度变不变呀?这就好像你把一根橡皮筋拉长再缩短,它还是原来的长度吗?还有哦,折起来后角度会怎么变化呢?这就好比你搭积木,不同的角度搭起来样子可不一样呢!
再想想,折叠后这个立体图形的体积又会怎么变呢?哎呀呀,这就如同你吹气球,气吹进去多了体积就大了嘛。

而且啊,不同的折叠方法会得到不一样的立体图形,这多神奇呀!这不就跟变魔术一样,一张纸能变出好多花样来。

立体几何折叠问题真的很奇妙,大家可别小瞧它哟,自己也去好好琢磨琢磨吧!。

高考数学复习考点题型专题讲解16 立体几何中的折叠、探究问题

高考数学复习考点题型专题讲解16 立体几何中的折叠、探究问题

高考数学复习考点题型专题讲解专题16 立体几何中的折叠、探究问题高考定位 1.立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等;2.以空间向量为工具,探究空间几何体中线面关系或空间角存在的条件,计算量较大,一般以解答题的形式考查,难度中等偏上.1.(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的平面BCG与平面CGA夹角的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC⊂平面BCGE,所以AB⊥平面BCGE.又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0), 设平面BCG 与平面CGA 夹角的大小为θ, 所以cos θ=|cos 〈n ,m 〉|=|n ·m ||n ||m |=32.因此平面BCG 与平面CGA 夹角的大小为30°.2.(2021·全国甲卷)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?(1)证明因为E,F分别是AC和CC1的中点,且AB=BC=2,侧面AA1B1B为正方形,所以CF=1,BF= 5.如图,连接AF,由BF⊥A1B1,AB∥A1B1,得BF⊥AB,于是AF=BF2+AB2=3,所以AC =AF2-CF2=2 2.由AB2+BC2=AC2,得BA⊥BC.∵三棱柱ABC-A1B1C1为直三棱柱,∴BB1⊥AB且BB1⊥BC,则BA,BC,BB1两两互相垂直,故以B为坐标原点,以BA,BC,BB1所在直线分别为x,y,z轴建立空间直角坐标系B -xyz,则B(0,0,0),E(1,1,0),F(0,2,1),BF→=(0,2,1).设B1D=m(0≤m≤2),则D(m,0,2),于是DE→=(1-m,1,-2).所以BF →·DE →=0,所以BF ⊥DE .(2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0). 设平面DFE 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧DE →·n 2=0,EF →·n 2=0,又由(1)得DE →=(1-m ,1,-2),EF →=(-1,1,1), 所以⎩⎨⎧(1-m )x +y -2z =0,-x +y +z =0,令x =3,得y =m +1,z =2-m ,于是,平面DFE 的一个法向量为n 2=(3,m +1,2-m ), 所以cos 〈n 1,n 2〉=32⎝⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 所成的二面角为θ, 则sin θ=1-cos 2〈n 1,n 2〉=1-92⎝ ⎛⎭⎪⎫m -122+272,故当m =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.热点一 折叠问题解答折叠问题的关键是分清翻折前后图形的位置和数量关系的变与不变,一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.考向1 折叠后的位置关系及空间角例1(2022·青岛模拟)在直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2CD =4,E ,F 分别为AD ,BC 的中点,沿EF 将四边形EFCD 折起,使得DE ⊥BF (如图2).(1)求证:平面ABFE ⊥平面EFCD ;(2)若直线AC 与平面ABFE 所成角的正切值为63,求平面CEB 与平面EBF 夹角的余弦值.(1)证明 由题设条件,得EF ∥AB ∥CD ,AB ⊥AD , 则DE ⊥EF ,又DE ⊥BF 且BF ∩EF =F ,BF ,EF ⊂平面ABFE , 则DE ⊥平面ABFE , 又DE ⊂平面EFCD , 故平面ABFE ⊥平面EFCD .(2)解 如图过点C 作CG ⊥EF ,交EF 于点G ,连接AG ,因为平面ABFE ⊥平面 EFCD ,且平面ABFE ∩平面EFCD =EF , 所以CG ⊥平面ABFE ,故直线AC 与平面ABFE 所成的角为∠CAG , 设DE =h ,则在Rt△CAG 中 ,CG =DE =h ,AG =EG 2+EA 2=h 2+4,所以tan∠CAG =CG AG =h h 2+4=63,解得h =22,如图,建立空间直角坐标系E -xyz ,则E (0,0,0),B (22,4,0),C (0,2,22), 所以EC →=(0,2,22),EB →=(22,4,0), 则平面EBF 的法向量为m =(0,0,1), 设平面CEB 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·EC →=2y +22z =0,n ·EB →=22x +4y =0,令y =-2,则n =(2,-2,1),则平面CEB 与平面EBF 夹角的余弦值为 |cos 〈m·n 〉|=|m·n ||m |·|n |=77.所以平面CEB 与平面EBF 夹角的余弦值为77. 易错提醒 注意图形翻折前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置与数量关系.考向2 展开后的数字特征例2 (1)(2022·青岛质检)如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,则CP+PA1的最小值是________.(2)如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________m.答案(1)5 2 (2)4 3解析(1)如图,以BC1为轴,把平面BCC1翻折到与平面A1BC1共面,则A1BCC1在同一个平面内,图中A1C就是所求最小值.通过计算可得∠A1C1B=90°,∠BC1C=45°,所以∠A1C1C=135°,由余弦定理可得A1C=5 2.(2)圆锥顶点记为O,把圆锥侧面沿母线OP展开成如图所示的扇形,由题意OP=4,PP′=43,则cos∠POP′=42+42-(43)22×4×4=-12,又∠POP′为△POP′一内角,所以∠POP′=2π3.设底面圆的半径为r,则2πr=2π3×4,所以r=4 3 .易错提醒几何体表面上的最短距离要注意棱柱的侧面展开图可能有多种,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.训练1 如图1,在直角梯形ABCD中,AB∥DC,∠D=90°,AB=2,DC=3,AD=3,CE=2ED.沿BE将△BCE折起,使点C到达点C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)求直线BC1与平面AC1D所成角的正弦值.(1)证明在图①中,连接AE,由已知得AE=2.图①∵CE∥AB,CE=AB=AE=2,∴四边形ABCE为菱形.连接AC交BE于点F,则CF⊥BE.在Rt△ACD中,AC=32+(3)2=23,所以AF=CF= 3.图②如图②中,由翻折,可知C1F=3,C1F⊥BE.∵AC1=6,AF=C1F=3,∴AF2+C1F2=AC21,∴C1F⊥AF,又BE∩AF=F,BE⊂平面ABED,AF⊂平面ABED,∴C1F⊥平面ABED.又C1F⊂平面BC1E,所以平面BC1E⊥平面ABED.(2)解如图②,建立空间直角坐标系,则D(0,0,0),A(3,0,0),B(3,2,0),C 1⎝⎛⎭⎪⎫32,32,3, 所以BC 1→=⎝ ⎛⎭⎪⎫-32,-12,3,DA →=(3,0,0),DC 1→=⎝ ⎛⎭⎪⎫32,32,3,设平面AC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DA →·n =0,DC 1→·n =0,即⎩⎨⎧3x =0,32x +32y +3z =0, 令z =3,则x =0,y =-2,所以n =(0,-2,3)为平面AC 1D 的一个法向量. 设直线BC 1与平面AC 1D 所成的角为θ,则sin θ=|cos 〈BC 1→,n 〉|=|BC 1→·n ||BC 1→||n |=42×7=277.所以直线BC 1与平面AC 1D 所成角的正弦值为277. 热点二 探究问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或平面与平面的夹角满足特定要求时的存在性问题.解题思路:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断. 考向1 探究线面位置关系例3(2022·济南质检)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,E ,F 分别为棱AA 1,CC 1的中点,G 为棱DD 1上的动点.(1)求证:B,E,D1,F四点共面;(2)是否存在点G,使得平面GEF⊥平面BEF?若存在,求出DG的长;若不存在,说明理由.(1)证明如图,连接D1E,D1F,取BB1的中点为M,连接MC1,ME,因为E为AA1的中点,所以EM∥A1B1∥C1D1,且EM=A1B1=C1D1,所以四边形EMC1D1为平行四边形,所以D1E∥MC1,又F为CC1的中点,所以BM∥C1F,且BM=C1F,所以四边形BMC1F为平行四边形,所以BF∥MC1.所以BF∥D1E,所以B,E,D1,F四点共面.(2)解以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,假设存在满足题意的点G (0,0,t ), 由已知B (1,1,0),E (1,0,1),F (0,1,1),则EF →=(-1,1,0),EB →=(0,1,-1),EG →=(-1,0,t -1), 设平面BEF 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·EF →=0,n 1·EB →=0,即⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取x 1=1,则y 1=1,z 1=1,n 1=(1,1,1).设平面GEF 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·EG →=0,即⎩⎨⎧-x 2+y 2=0,-x 2+(t -1)z 2=0, 取x 2=t -1,则y2=t-1,z2=1,n2=(t-1,t-1,1). 因为平面GEF⊥平面BEF,所以n1·n2=0所以t-1+t-1+1=0,所以t=1 2,所以存在满足题意的点G,使得平面GEF⊥平面BEF,且DG的长为1 2 .考向2 与空间角有关的探究性问题例4 如图,四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,BC=CD=1,AB=2.△PBC 是等边三角形,平面PBC⊥平面ABCD,点M在棱PC上.(1)当M为棱PC的中点时,求证:AP⊥BM;(2)是否存在点M,使得平面DMB与平面MBC夹角的余弦值为34?若存在,求CM的长;若不存在,请说明理由.(1)证明连接AC,由底面ABCD是等腰梯形且AB=2,BC=CD=1,得∠ABC=π3,在△ABC中,由余弦定理得AC=3,∴AC2+BC2=AB2,∴∠ACB=π2,∴AC⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AC⊂平面ABCD,∴AC ⊥平面PBC , ∵BM ⊂平面PBC ,∴AC ⊥BM ,又M 为棱PC 的中点,且△PBC 是等边三角形, ∴BM ⊥PC ,又∵PC ∩AC =C ,PC ⊂平面APC ,AC ⊂平面APC , ∴BM ⊥平面APC , ∵AP ⊂平面APC , ∴AP ⊥BM .(2)解 假设存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34.过点P 作PO ⊥BC 交BC 于点O ,∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,取AB 的中点E ,连接OE ,则OE ∥CA ,由(1)知OE ⊥平面PBC ,因此以O 为原点,以OC ,OE ,OP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O -xyz .∴O (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫12,0,0,B ⎝ ⎛⎭⎪⎫-12,0,0,D ⎝ ⎛⎭⎪⎫1,32,0,则DB →=⎝ ⎛⎭⎪⎫-32,-32,0,CP →=⎝ ⎛⎭⎪⎫-12,0,32.设CM →=tCP→(0<t ≤1),则M ⎝⎛⎭⎪⎫1-t 2,0,32t .则DM →=⎝ ⎛⎭⎪⎫-t -12,-32,32t ,设平面DMB 的法向量为a =(x ,y ,z ), 则⎩⎪⎨⎪⎧a ·DM →=-1+t 2x -32y +32tz =0,a ·DB →=-32x -32y =0,令x =3,则y =-3,z =t -2t,∴a =⎝⎛⎭⎪⎫3,-3,t -2t 为平面DMB 的一个法向量, 易知平面MBC 的一个法向量为b =(0,1,0), 则|cos 〈a ,b 〉|=|a·b||a||b|=33+9+⎝⎛⎭⎪⎫t -2t 2=312+⎝⎛⎭⎪⎫t -2t 2=34, 则⎝ ⎛⎭⎪⎫t -2t 2=4,即t -2t =-2,解得t =23,故CM =|CM →|=23|CP →|=23.所以存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34,且CM 的长为23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明,否则假设不成立.(2)探索线段上是否存在满足条件的点时,一定注意三点共线的应用.训练2(2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由,若存在, 求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D ,因为三棱柱ABC -A 1B 1C 1的所有棱长都为2, 所以AB ⊥CD ,CD =3,BD =1. 又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt△B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6,所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设存在,以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3), 因此BB 1→=(0,1,3),AC →=(3,-1,0),AA 1→=BB 1→=(0,1,3), CB →=(-3,-1,0). 因为点P 在棱BB 1上, 设BP →=λBB 1→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1→=0,得⎩⎪⎨⎪⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1). 因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=⎪⎪⎪⎪⎪⎪-235×3+(λ-1)2+3λ2=45, 化简得16λ2-8λ+1=0,解得λ=14,所以|BP →|=14|BB 1→|=12, 故BP 的长为12.一、基本技能练1.(2022·丽水质检)如图1,矩形ABCD 中,点E ,F 分别是线段AB ,CD 的中点,AB =4,AD =2,将矩形ABCD 沿EF 翻折.(1)若所成二面角的大小为π2(如图2),求证:直线CE ⊥平面DBF ; (2)若所成二面角的大小为π3(如图3),点M 在线段AD 上,当直线BE 与平面EMC 所成角为π4时,求平面DEM 和平面EMC 夹角的余弦值. (1)证明 由题设易知:四边形BEFC 是边长为2的正方形,BF ,EC 是其对角线, 所以BF ⊥EC ,又平面BEFC ⊥平面AEFD ,平面BEFC ∩平面AEFD =EF ,DF ⊥EF ,DF ⊂平面AEFD , 所以DF ⊥平面BEFC , 又EC ⊂平面BEFC ,则DF ⊥EC ,又DF ∩BF =F ,BF ,DF ⊂平面BDF ,则EC ⊥平面BDF .(2)解 过E 作Ez ⊥平面AEFD ,而AE ,EF ⊂平面AEFD ,则Ez ⊥AE ,Ez ⊥EF ,而AE ⊥EF , 可建立如图所示的空间直角坐标系,由题设知:∠BEA =∠CFD =π3,所以E (0,0,0),B (1,0,3),C (1,2,3),M (2,m ,0)且0≤m ≤2, 则EB →=(1,0,3),EC →=(1,2,3),EM →=(2,m ,0),若n =(x ,y ,z )是平面EMC 的法向量,则⎩⎪⎨⎪⎧EC →·n =x +2y +3z =0,EM →·n =2x +my =0,令x =m ,则n =(m ,-2,4-m3), |cos 〈EB →,n 〉|=|EB →·n ||EB →||n |=1m 2-2m +73=12,可得m=1,则n =(1,-2,3),又l =(0,0,1)是平面EMD 的一个法向量, 所以|cos 〈l ,n 〉|=|l ·n ||l ||n |=322=64,所以平面DEM 和平面EMC 夹角的余弦值为64.2.如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求平面PAC 与平面ACS 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于点O ,连接SO ,由题意知SO ⊥AC . 在正方形ABCD 中,AC ⊥BD .因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD ,又SD ⊂平面SBD ,所以AC ⊥SD .(2)解 由题设知,SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,如图.设底面边长为a ,则高SO =62a , 则B ⎝ ⎛⎭⎪⎫22a ,0,0,S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0, 又SD ⊥平面PAC ,则平面PAC 的一个法向量为DS →=⎝ ⎛⎭⎪⎫22a ,0,62a , 平面SAC 的一个法向量为OD →=⎝ ⎛⎭⎪⎫-22a ,0,0, 设平面PAC 与平面ACS 夹角的大小为θ.则cos θ=|cos 〈DS →,OD →〉|=|DS →·OD →||DS →||OD →|=12, 所以平面PAC 与平面ACS 夹角的大小为π3. (3)解 在棱SC 上存在一点E 使BE ∥平面PAC .理由如下:由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS→,t ∈[0,1], 则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .因为BE ∥平面PAC ,所以BE →·DS →=0,所以-12a 2+32a 2t =0,解得t =13. 故侧棱SC 上存在一点E ,使得BE ∥平面PAC ,此时SC ∶SE =3∶2.3.(2022·全国名校大联考)如图1,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,E 为AD 边上的点,且AD =2AE =2AB =2BC =2.将△ABE 沿BE 向上折起,使得异面直线AB 与ED 所成的角为60°,F 为线段AD 上一点,如图2.(1)若DE ⊥CF ,求AF FD的值; (2)求平面ABC 与平面AED 所成锐二面角的余弦值.解 (1)如图①中,连接CE .图①由题意可知,△ABE ,△CED ,△BCE 均为等腰直角三角形,因为BC ∥ED ,所以∠ABC 即为异面直线AB 与ED 所成的角,所以∠ABC =60°,所以AC =1.取BE 的中点O ,连接OC ,OA ,OD ,则OA ⊥BE ,OC ⊥BE ,且OA =OC =22,因为OA 2+OC 2=AC 2,所以OA ⊥OC ,因为BE ∩OC =O ,BE ,OC ⊂平面BCDE .所以OA ⊥平面BCDE .连接EF ,因为DE ⊥EC ,DE ⊥CF ,CE ∩CF =C ,CE ,CF ⊂平面ECF ,所以DE ⊥平面ECF , 又DE ⊂平面BCDE ,所以平面ECF ⊥平面BCDE ,故OA ∥平面ECF .连接OD 交CE 于点G ,连接FG ,因为平面AOD ∩平面ECF =FG ,所以OA ∥GF ,故AF FD =OG GD =OE CD =12.图②(2)如图②,以O 为坐标原点,OB ,OC ,OA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系O -xyz .则A ⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,B ⎝ ⎛⎭⎪⎫22,0,0, E ⎝ ⎛⎭⎪⎫-22,0,0,D ⎝ ⎛⎭⎪⎫-2,22,0. 所以AB →=⎝ ⎛⎭⎪⎫22,0,-22, BC →=⎝ ⎛⎭⎪⎫-22,22,0,AE →=⎝ ⎛⎭⎪⎫-22,0,-22,ED →=⎝ ⎛⎭⎪⎫-22,22,0. 设平面ABC 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧22x 1-22z 1=0,-22x 1+22y 1=0, 令x 1=2,则y 1=2,z 1=2,所以平面ABC 的一个法向量为n 1=(2,2,2),设平面AED 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·AE →=0,n 2·ED →=0,即⎩⎪⎨⎪⎧-22x 2-22z 2=0,-22x 2+22y 2=0, 令x 2=2,则y 2=2,z 2=-2,所以平面AED 的一个法向量为n 2=(2,2,-2),所以|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=|2×2+2×2-2×2|22+22+22·22+22+(-2)2=13, 故平面ABC 与平面AED 所成锐二面角的余弦值为13. 二、创新拓展练4.如图1,四边形ABCD 为梯形,AD ∥BC ,BM ⊥AD 于点M ,CN ⊥AD 于点N ,∠A =45°,AD =4BC =4,AB =2,现沿CN 将△CDN 折起,使△ADN 为正三角形,且平面ADN ⊥平面ABCN ,过BM 的平面与线段DN ,DC 分别交于点E ,F ,如图2.(1)求证:EF⊥DA;(2)在棱DN上(不含端点)是否存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,若存在,请确定E点的位置;若不存在,说明理由.(1)证明因为BM⊥AD,CN⊥AD,所以BM∥CN.在四棱锥D-ABCN中,CN⊂平面CDN,BM⊄平面CDN,所以BM∥平面CDN.又平面BMEF∩平面CDN=EF,所以BM∥EF.因为平面ADN⊥平面ABCN且交于AN,BM⊥AN,所以BM⊥平面ADN,即EF⊥平面ADN.又DA⊂平面ADN,所以EF⊥DA.(2)解存在,E为棱DN上靠近N点的四等分点.因为∠A=45°,AD=4BC=4,AB=2,所以AM=MN=BM=CN=1,DN=2,因为DA=DN,连接DM ,所以DM ⊥AN .又平面ADN ⊥平面ABCN 且交于AN ,故DM ⊥平面ABCN .如图,以M 为坐标原点,分别以MA ,MB ,MD 所在直线为x ,y ,z 轴建立空间直角坐标系,则D (0,0,3),B (0,1,0),M (0,0,0),N (-1,0,0),DB →=(0,1,-3),BM →=(0,-1,0),ND →=(1,0,3). 设NE →=λND →(0<λ<1),则E (λ-1,0,3λ),ME →=(λ-1,0,3λ).设平面BMEF 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧BM →·n =0,ME →·n =0,即⎩⎨⎧-y =0,(λ-1)x +3λz =0,不妨令x =3λ,则z =1-λ,n =(3λ,0,1-λ).设直线DB与平面BMEF所成的角为α,则有sin α=|cos〈n,DB→〉|=|n·DB→||n||DB→|=|3(λ-1)|23λ2+(1-λ)2=34.解得λ=14或λ=-12(舍去),所以NE→=14ND→,即在棱DN上存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,此时E为棱DN上靠近N点的四等分点.。

2023年高考数学----立体几何折叠问题规律方法与典型例题讲解

2023年高考数学----立体几何折叠问题规律方法与典型例题讲解

2023年高考数学----立体几何折叠问题规律方法与典型例题讲解【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例1.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF . (1)当2x =时①求证:BD EG ⊥;②求二面角D BF C −−的余弦值;(2)三棱锥D FBC −的体积是否可能等于几何体ABE FDC −体积的一半?并说明理由. 【解析】(1)证明:过D 点作EF 的垂线交EF 于H ,连接BH .如图.2AE AD == 且//AE DH ,//AD EF ,π2EAD ∠=. ∴四边形ADHE 是正方形.2EH =,∴四边形EHGB 是正方形.所以BH EG ⊥(正方形对角线互相垂直).因为平面AEFD ⊥平面EBCF ,平面AEFD ⋂平面EBCF EF =,,AE EF AE ⊥⊂平面AEFD , 所以⊥AE 平面EBCF , 所以DH ⊥平面EBCF , 又因为EG ⊂平面EBCF ,所以EG DH ⊥. 又,,BHDH H BH DH =⊂平面BDH ,所以EG ⊥平面BDH ,又BD ⊂平面BDH , 所以EG BD ⊥.②以E 为原点,EB 为x 轴,EF 为y 轴,EA 为z 轴,建立空间直角坐标系,(2B ,0,0),(0F ,3,0),(0D ,2,2),(2C ,4,0),(2BF =−,3,0),(2BD =−,2,2),设平面BDF 的法向量(n x =,y ,)z ,则·2220·230n BD x y z n BF x y ⎧=−++=⎪⎨=−+=⎪⎩,取3x =,得(3n =,2,1),又平面BCF 的法向量(0m =,0,1),1cos ,||||14m n m n m n <>==∴钝二面角D BF C −−的余弦值为.(2)AE EF ⊥Q ,平面AEFD ⊥平面EBCF , 平面AEFD ⋂平面EBCF EF =,AE ⊂平面AEFD . AE ∴⊥平面EBCF .结合DH ⊥平面EBCF ,得//AE DH ,∴四边形AEHD 是矩形,得DH AE =,故以F 、B 、C 、D 为顶点的三棱锥D BCF −的高DH AE x ==, 又114(4)8222BCFSBC BE x x ==⨯⨯−=−. ∴三棱锥D BCF −的体积为()2=11822(82)433333BFCV SDH x x x x x x ==−=−−,ABE FDC ABE DGH D HGCF V V V −−−=+13ABEHGCF SAD S DH =+111111(4)2(2)(4)=(4)1+(2)232262x x x x x x x x ⎡⎤=−⨯+⨯+−−+⎢⎥⎣⎦, 令()112(4)1+(2)=24623x x x x x ⎡⎤−+⨯−⎢⎥⎣⎦,解得0x =或4x =,不合题意;∴棱锥D FBC −的体积不可能等于几何体ABE FDC −体积的一半.例2.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值. 【解析】(1)如图取CE 的中点F ,连接PF ,DF ,由题易知△PCE ,△DCE 都是等边三角形, ⸫DF ⊥CE ,PF ⊥CE , ⸫DFPF F =,DF ⊂平面DPF ,PF ⊂平面DPF⸫CE ⊥平面DPF . ⸫DP ⊂平面DPF ⸫DP ⊥CE . (2)解法一:由题易知四边形AECD 是平行四边形, 所以AD ∥CE ,又AD ⊂平面P AD ,所以CE ⊂平面P AD , 所以点E 与点F 到平面P AD 的距离相等. 由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 又AD ⊂平面P AD , 所以平面P AD ⊥平面DPF .过F 作FH ⊥PD 交PD 于H ,则FH ⊥平面P AD .DF PF ==2DP =,故点F 到平面P AD 的距离FH =设直线DE 与平面P AD 所成的角为θ,则sin FH DE θ==, 所以直线DE 与平面P AD 所成角的正弦值为4. 解法二:由题易知四边形AECD 是平行四边形,所以AD ∥CE ,由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 如图,以D 为坐标原点,DA ,DF 所在直线分别为x ,y 轴,过D 且垂直于平面AECD 的直线为z 轴建立空间直角坐标系, 则()0,0,0D ,()4,0,0A ,()E , 设()0,,P a b ,0a >,0b >. 易知DF PF ==2DP =,故(2222124a b a b ⎧−+=⎪⎨⎪+=⎩,P ⎛ ⎝⎭, 所以()4,0,0DA =,DP ⎛= ⎝⎭,()DE =,设平面P AD 的法向量为(),,n x y z =, 则00n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩,得00x y =⎧⎪⎨+=⎪⎩,令y =1z =−,所以()0,11,1n =−.设直线DE 与平面P AD 所成的角为θ,则11sin |cos ,|4DE nDE n DE nθ⋅=〈〉==, 故直线DE 与平面P AD 例3.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面PAD 夹角的余弦值. 【解析】(1)设O 是AD 的中点,连接,OP OC , 三角形PAD 是等边三角形,所以OP AD ⊥,OP =四边形ABCD 是直角梯形,//,OA BC OA BC =,所以四边形ABCO 是平行四边形,也即是矩形,所以OC AD ⊥,2==OC AB .折叠后,PC =222OP OC PC +=,所以OP OC ⊥, 由于,,AD OC O AD OC ⋂=⊂平面ABCD , 所以OP ⊥平面ABCD ,则,,OC OD OP 两两相互垂直,由此建立如图所示的空间直角坐标系, ()2,0,0,AB OC ==()1,1,0F −,设)()0,1,01E t t t −<<,()2,0,0C,所以)11,,22t t M ⎛⎫− ⎪ ⎪⎝⎭,则)120,,22t t FM ⎛⎫−+= ⎪ ⎪⎝⎭,所以0AB FM ⋅=, 所以AB FM ⊥.(2)由于OP ⊥平面ABCD ,AB ⊂平面ABCD ,所以OP AB ⊥, 由于,,,AB AD AD OP O AD OP ⊥⋂=⊂平面PAD ,所以AB ⊥平面PAD ,由于AE ⊂平面PAD ,所以AB AE ⊥, 所以FEA ∠是直线EF 与平面PAD 所成角, 在直角三角形AEF 中,tan AFFEA AE∠=, 由于1AF =,所以当AE 最小时,tan FEA ∠最大,也即FEA ∠最大,由于三角形PAD 是等边三角形,所以当E 为PD 的中点时,AE PD ⊥,AE 取得最小值.由于(P ,()0,1,0D,故此时10,2E ⎛ ⎝⎭,平面PAD 的法向量为()1,0,0m =,()()()30,1,0,2,0,0,2,1,0,0,2A C AC AE ⎛−== ⎝⎭,设平面ACE 的法向量为(),,n x y z =,则20302n ACx y n AE y ⎧⋅=+=⎪⎨⋅==⎪⎩,故可设(1,n =−, 设平面ACE 与平面PAD 的夹角为θ, 则1cos 17m n m nθ⋅===⋅例4.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C −−的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由.(2)求直线PC 与平面PBE 所成角的正弦值.【解析】(1)满足条件的点H 存在,且为PC 上靠近P 的三等分点.在PC 上取靠近P 的三等分点H ,连接AP ,FH ,如图,则AP 是平面P AB 与平面P AC 的交线,依题意,12PH AF HC FC ==,则有//FH AP ,又AP ⊂平面PBE ,FH ⊄平面PBE ,因此直线//FH平面PBE ,所以在PC 上是存在点H ,为PC 上靠近P 的三等分点,使得直线//FH 平面PBE . (2)取BC 中点G ,连接AG ,交EF 于点D ,连接PD ,因//EF BC ,依题意,EF DG ⊥,EF PD ⊥,则PDG ∠为二面角P EF C −−的平面角,即120PDG ∠=︒,且EF ⊥平面PAD , 而EF ⊂平面BCFE ,则平面PAD ⊥平面BCFE ,在平面PAD 内过P 作PO AD ⊥于O , 又平面PAD ⋂平面BCFE AD =,因此PO ⊥平面BCFE ,在平面BCFE 内过O 作Ox AD ⊥, 显然Ox ,AD ,OP 两两垂直,分别以向量Ox ,OD ,OP 的方向为x ,y ,z 轴正方向,建立空间直角坐标系O xyz −,如图,则B ⎛⎫ ⎪ ⎪⎝⎭,C ⎛⎫− ⎪ ⎪⎝⎭,E ⎛⎫ ⎪ ⎪⎝⎭,30,0,2P ⎛⎫ ⎪⎝⎭,所以,32PC ⎛⎫=−− ⎪ ⎪⎝⎭,()EB =,31,2EP ⎛⎫=− ⎪ ⎪⎝⎭, 设平面PBE 的一个法向量为(),,n x y z =r,由20302n EB x n EP x y z ⎧⋅=+=⎪⎨⋅=−+=⎪⎩,令y =()3,3,1n =−,设直线PC 与平面PBE 所成角为α,则||18sin |cos ,|||||30PC n PC n PC n α⋅=〈〉===⋅所以直线PC 与平面PBE .。

高中数学立体几何中的折叠问题

高中数学立体几何中的折叠问题

高中数学立体几何中的折叠问题在高中数学的立体几何领域,折叠问题是一个相当重要且具有一定难度的知识点。

它不仅考验我们对空间想象力的运用,还要求我们具备扎实的几何基础知识和逻辑推理能力。

首先,我们来了解一下什么是折叠问题。

简单来说,折叠问题就是将一个平面图形按照某种规则折叠成一个立体图形,然后让我们去研究这个立体图形中的各种几何关系,比如线线关系、线面关系、面面关系以及相关的角度、长度、面积、体积等的计算。

折叠问题的关键在于理解折叠前后图形的不变量和变化量。

不变量通常包括线段的长度、角度的大小等。

比如,在一个矩形沿着某条边折叠的过程中,矩形相邻两边的长度是不变的。

而变化量则包括位置关系、角度关系等。

例如,原本在平面上相互平行的两条线,在折叠后可能不再平行。

那么,解决折叠问题有哪些常见的思路和方法呢?第一步,我们要仔细观察题目中给出的折叠过程和条件,明确折叠前后的图形特征。

这就像是在拼图游戏中,先看清每一块拼图的样子。

第二步,根据不变量和变化量,找出折叠前后图形中的关键元素和关系。

比如,找到折叠后形成的直角、等腰三角形等特殊图形,这些往往是解题的突破口。

第三步,运用我们所学的立体几何知识,如线面垂直的判定定理、面面垂直的判定定理、勾股定理等,进行推理和计算。

接下来,通过一些具体的例子来感受一下折叠问题的魅力。

例 1:有一个边长为 2 的正方形 ABCD,将其沿着对角线 AC 折叠成一个三棱锥,求三棱锥的体积。

在这个例子中,我们先分析折叠前后的不变量。

正方形的边长不变,对角线 AC 的长度也不变。

折叠后,三角形 ABC 和三角形 ADC 都是等腰直角三角形,且 AC 是三棱锥的高。

然后,我们可以根据三棱锥体积的公式 V = 1/3×底面积×高,计算出体积。

例 2:一个直角梯形 ABCD,其中 AD 平行 BC,AD 垂直 AB,AB = BC = 2AD = 2。

将直角梯形沿着 AB 边折叠成一个直二面角,求异面直线 CD 与 AB 所成角的余弦值。

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题魏文 张亮 徐婷 江涛 张忠强 马吉 戴尚超一、折叠与展开中的垂直问题例1. 将矩形ABCD 沿对角线BD 折起来,使点C 的新位置C '在面ABC 上的射影E 恰在AB 上.求证:C B C A '⊥'分析:欲证C B C A '⊥',只须证C B '与C A '所在平面D C A '垂直;而要证C B '⊥平面D C A ',只须证C B '⊥D C '且C B '⊥AD .因此,如何利用三垂线定理证明线线垂直就成为关键步骤了.证明:由题意,C B '⊥D C ',又斜线C B '在平面ABCD 上的射影是BA , ∵ BA ⊥AD ,由三垂线定理,得AD B C ⊥',D DA D C =' .∴ C B '⊥平面AD C ',而A C '⊂平面AD C '∴ C B '⊥C A '例2.如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC解析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。

解: ∵FG ∥BC ,AD ⊥BC∴A 'E ⊥FG∴A 'E ⊥BC设A 'E=a ,则ED=2a由余弦定理得:A 'D 2=A 'E 2+ED 2-2•A 'E •EDcos60°=3a2 A B C D F E G A'∴ED 2=A 'D 2+A 'E2∴A 'D ⊥A 'E ∴A 'E ⊥平面A 'BC例3. 如图:D 、E 是是等腰直角三角形ABC 中斜边BC 的两个三等分点,沿AD 和AE 将△ABD 和△ACE 折起,使AB 和AC 重合,求证:平面ABD ⊥平面ABE.解析:过D 作DF ⊥AB 交AB 于F ,连结EF ,计算DF 、EF 的长,又DE 为已知,三边长满足勾股定理,∴∠DFE =090;二、折叠与展开中的空间角问题例4. 矩形ABCD ,AB=3,BC=4,沿对角线BD 把△ABD 折起,使点A 在平面BCD 上的射影A′落在BC 上,求二面角A —BC-—C 的大小。

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题知识点梳理:1.解决折叠问题最重要的就是对比折叠前后的图形,找到哪些线、面的位置关系和数学量没有发生变化,哪些发生了变化,在证明和求解的过程中恰当地加以利用.解决此类问题的步骤:考向导航2.展开问题是折叠问题的逆向思维、逆过程,是将空间问题转化为平面问题来处理.一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.目录类型一折叠问题 (1)类型二展开问题 (3)类型一折叠问题【例1】如图甲,在四边形ABCD中,23AD=2∆是边长为4的正三角形,CD=,ABC把ABC∆的位置,使得平面PAC⊥平面ACD;如图乙所示,点O、M、∆沿AC折起到PACN分别为棱AC、PA、AD的中点.(1)求证:平面PAD⊥平面PON;(2)求三棱锥M ANO-的体积.【例2】如图,在平面图形PABCD 中,ABCD 为菱形,60DAB ∠=︒,2PA PD ==,M 为CD 的中点,将PAD ∆沿直线AD 向上折起,使BD PM ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若直线PM 与平面ABCD 所成的角为30︒,求四棱锥P ABCD -的体积.【变式1-1】如图甲的平面五边形PABCD 中,PD PA =,5AC CD BD ===,1AB =,2AD =,PD PA ⊥,现将图甲中的三角形PAD 沿AD 边折起,使平面PAD ⊥平面ABCD 得图乙的四棱锥P ABCD -.在图乙中(1)求证:PD ⊥平面PAB ;(2)求二面角A PB C --的大小;(3)在棱PA 上是否存在点M 使得BM 与平面PCB 所成的角的正弦值为13?并说明理由.类型二展开问题【例1】如图,已知正三棱柱111ABC A B C -的底面边长为2cm ,高为5cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点1A 的最短路线的长为()A .5cm B .12cm C .13cm D .25cm【例2】如图,正三棱锥S ABC -中,40BSC ∠=︒,2SB =,一质点自点B 出发,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为()A .2B .3C .3D .33【变式2-1】如图,在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点.(1)求此直三棱柱111ABC A B C -的表面积;(2)当1AD DC +最小时,三棱锥1D ABC -的体积.巩固训练1.把如图的平面图形分别沿AB 、BC 、AC 翻折,已知1D 、2D 、3D 三点始终可以重合于点D 得到三棱锥D ABC -,那么当该三棱锥体积最大时,其外接球的表面积为.2、如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,(Ⅰ)若D 为线段AC 的中点,求证:AC ⊥平面PDO ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.3.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①()0BA PA PD ⋅+= ;②7PC =;③点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD ∆是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD ∆沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且____.(1)求证://FM 平面PAD ;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面ABCD 所成的锐二面角的余弦值.4.如图,在矩形ABCD 中,2,23AB AD ==,ABPCDFEE ,F 分别为AD ,BC 的中点,以DF 为折痕把CDF ∆折起,点C 到达点P 的位置,使1PE =.(1)证明:平面PEF ⊥平面ABFD ;(2)求二面角P DF E --的正弦值.参考答案类型一折叠问题【例1】【分析】(1)证明PO ⊥平面ACD 可得PO AD ⊥,根据中位线定理和勾股定理可证AD ON ⊥,故而AD ⊥平面PON ,于是平面PAD ⊥平面PON ;(2)分别计算AON ∆的面积和M 到平面ACD 的距离,代入体积公式计算.【解答】(1)证明:PA PC = ,O 是AC 的中点,PO AC ∴⊥,又平面PAC ⊥平面ACD ,平面PAC ⋂平面ACD AC =,PO ∴⊥平面ACD ,又AD ⊂平面ACD ,PO AD ∴⊥,23AD = ,2CD =,4AC =,222AD CD AC ∴+=,AD CD ∴⊥,ON 是ACD ∆的中位线,//ON CD ∴,AD ON ∴⊥,又ON PO O = ,AD ∴⊥平面PON ,又AD ⊂平面PAD ,∴平面PAD ⊥平面PON .(2)PAC ∆ 是边长为4的等边三角形,3PO ∴=M ∴到平面ACD 的距离132d PO ==,ON 是ACD ∆的中位线,1113324422AON ACD S S ∆∆∴==⨯=,11131332322M ANO AON V S PO -∆∴==⨯⨯ .【点评】本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.【例2】【分析】(1)取AD 中点E ,连接PE ,EM ,AC ,可得PE AD ⊥,然后证明BD PE ⊥,可得PE ⊥平面ABCD ,进一步得到平面PAD ⊥平面ABCD ;(2)由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,求解三角形可得1PE =,再求出四边形ABCD 的面积,代入棱锥体积公式求解.【解答】(1)证明:取AD 中点E ,连接PE ,EM ,AC ,PA PD = ,得PE AD ⊥,由底面ABCD 为菱形,得BD AC ⊥,E ,M 分别为AD ,CD 的中点,//EM AC ∴,则BD EM ⊥,又BD PM ⊥,BD ∴⊥平面PEM ,则BD PE ⊥,PE ∴⊥平面ABCD ,而PE ⊂平面PAD ,∴平面PAD ⊥平面ABCD ;(2)解:由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,设AB a =,则224a PE =-,322AC EM ==,故tan tan 30PE PME EM ∠=︒=,即2234332a a -=,解得2a =.故1PE =,3ABCD S =四边形.故23133P ABCD ABCD V S PE -=⋅⋅=四边形.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.【变式1-1】【分析】(1)推导出AB AD ⊥,AB ⊥平面PAD ,AB PD ⊥,PD PA ⊥,由此能证明PD ⊥平面PAB .(2)取AD 的中点O ,连结OP ,OC ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系,利用向量法能求出二面角A PB C --的大小.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,利用向量法能求出在棱PA 上满足题意的点M 存在.【解答】证明:(1)1AB = ,2AD =,5BD =222AB AD BD ∴+=,AB AD ∴⊥,平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,AB ∴⊥平面PAD ,又PD ⊂ 平面PAD ,AB PD ∴⊥,又PD PA ⊥ ,PA AB A= PD ∴⊥平面PAB .解:(2)取AD 的中点O ,连结OP ,OC ,由平面PAD ⊥平面ABCD 知PO ⊥平面ABCD ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系如图示,则(2C ,0,0),(0P ,0,1),(0D ,1-,0),(0A ,1,0),(1B ,1,0)∴(1,1,1)PB =- ,(2,0,1)PC =- ,(0,1,1)PD =-- ,设平面PBC 的法向量为(,,)m a b c = ,由00m PB m PC ⎧⋅=⎪⎨⋅=⎪⎩ ,得020a b c a c +-=⎧⎨-=⎩,令1a =得1b =,2c =,∴(1,1,2)m = ,PD ⊥ 平面PAB ,∴(0DP = ,1,1)是平面PAB 的法向量,设二面角A PB C --大小为θ,则123cos 2||||62m DP m DP θ⋅==⋅⋅ ,0θπ ,∴二面角A PB C --的大小6πθ=.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,即(x ,1y -,)(0z λ=,1-,1),(0M ,1λ-,)λ,则(1,,)BM λλ=-- ,从而211sin ||3||||612m BM m BM αλ⋅==⋅⋅+ ,[0λ∈ ,1],103λ∴=-,∴在棱PA 上满足题意的点M 存在.【点评】本题考查线面垂直的证明,考查二面角的求法,考查满足线面角的正弦值点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.类型二展开问题【例1】【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱111ABC A B C -沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6212⨯=,宽等于5,由勾股定理2212513d =+=.故选:C .【点评】本题考查棱柱的结构特征,考查空间想象能力和思维能力,考查数学转化思想方法,是中档题.【例2】【分析】画出解答几何体的部分侧面展开图,利用三角形的边的关系容易解得边长的值,从而得出其中的最小值.【解答】解:将三棱锥S ABC -沿侧棱SB 展开,其侧面展开图如图所示,由图中红色路线可得结论.根据余弦定理得,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为:14422232++⨯⨯⨯=故选:C .【点评】本题考查多面体和旋转体表面上的最短距离问题,空间想象能力,几何体的展开与折叠,是基础题.【变式2-1】【分析】(1)直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形.(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABD V V --=,由此能求出结果.【解答】解:(1) 在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,∴此直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形121213231432=⨯⨯⨯+⨯+⨯++1135=+(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,1AB = ,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点,∴当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABDV V --=1113ABD S B C ∆=⨯111132AB BD B C =⨯⨯⨯⨯1111232=⨯⨯⨯⨯13=.∴当1AD DC +最小时,三棱锥1D ABC -的体积为13.【点评】本题考查几何体的表面积、体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.巩固练习1.【分析】在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,然后根据三棱锥的性质求出外接球的半径,进而可以求解.【解答】解:在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,此时,设外接球的半径为R ,球心为O ,球心O 到平面ABC 的投影点为F ,则有2222R OA OF AF ==+,又1522OF AD ==,1522AF AC ==,所以2225525()()222R =+=,所以球的表面积为22544502S R πππ==⨯=,故答案为:50π.【点评】本题考查了三棱锥的外接球的表面积问题,考查了学生的空间想象能力以及运算能力,属于中档题.2、【分析】(Ⅰ)由题意可证AC DO ⊥,又PO AC ⊥,即可证明AC ⊥平面PDO .(Ⅱ)当CO AB ⊥时,C 到AB 的距离最大且最大值为1,又2AB =,即可求ABC ∆面积的最大值,又三棱锥P ABC -的高1PO =,即可求得三棱锥P ABC -体积的最大值.(Ⅲ)可求22112PB PC +==,即有PB PC BC ==,由OP OB =,C P C B '=',可证E 为PB 中点,从而可求2626OC OE EC +'=+'=,从而得解.【解答】解:(Ⅰ)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC DO ⊥,又PO 垂直于圆O 所在的平面,所以PO AC ⊥,因为DO PO O = ,所以AC ⊥平面PDO .(Ⅱ)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1,又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=,又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为:111133⨯⨯=.(Ⅲ)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值,又因为OP OB =,C P C B '=',所以OC '垂直平分PB ,即E 为PB 中点.从而2626222OC OE EC '=+'=+=.亦即CE OE +的最小值为:262.【点评】本题主要考查了直线与直线、直线与平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归与转化思想,属于中档题.3.【分析】(1)取CD 中点为G ,连接MG ,FG ,//GM PD ,//FG AD ,进而可证平面//MFG 平面PAD ,可证//FM 平面PAD ;(2)根据条件选择①:由已知可证BA ⊥平面PAD ,PO ⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,利用向量法平面ACE 与平面PAD 所成的锐二面角的余弦值.同理选择②,③可求平面ACE 与平面ABCD 所成的锐二面角的余弦值.【解答】(1)证明:取CD 中点为G ,连接MG ,FG ,则MG ,FG 分别为三角形CDE ,梯形ABCD 的中位线,//GM PD ∴,//FG AD ,MG FG G = ,∴平面//MFG 平面PAD ,FM ⊂ 平面MGF ,//FM ∴平面PAD ,(2)解:取AD 为O ,连接PO ,FG ,EG .选择①:因为()0BA PA PD ⋅+= ,2PA PD PO += ,所以0BA PO ⋅= ,即BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,则(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z =,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||17m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD 所成的锐二面角的余弦值为25117.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得2ER =,RK =,则EK =所以251cos 17RK EKR EK ∠==,所以平面ACE 与平面PAD.选择②:连接OC ,则2OC AB ==,OP =,因为PC =,222PC OP OC =+,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,选择③:因为点P 在平面ABCD 的射影在直线AD 上,所以平面PAD ⊥平面ABCD .因为平面PAD ⋂平面ABCD CD =,OP ⊂平面PAD ,AD PO ⊥,所以OP ⊥平面ABCD ,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ⊥,∴平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则1111330,2220y z x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD所成的锐二面角的余弦值为17.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,【点评】本题考查线面平行的证明,以及面面角的求法,属中档题.4.【分析】(1)推导出//EF AB 且3DE =,AD EF ⊥,DE PE ⊥,AD PE ⊥,由此能证明AD ⊥平面PEF ,从而平面PEF ⊥平面ABFD .(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,从而POH ∠为二面角P DF E --的平面角,由此能求出二面角P DF E --的正弦值.【解答】证明:(1)E 、F 分别为AD ,BC 的中点,//EF AB ∴且3DE =,在矩形ABCD 中,AD AB ⊥,AD EF ∴⊥,由翻折的不变性,2,3PD PF CF DE ===,7DF =又1PE =,有222PD PE DE =+,DE PE ∴⊥,即AD PE ⊥,又PE EF E = ,PE ,EF ⊂平面PEF ,AD ∴⊥平面PEF ,AD ⊂ 平面ABFD ,∴平面PEF ⊥平面ABFD .解:(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,POH ∴∠为二面角P DF E --的平面角.222PE PF EF += ,90EPF ∴∠=︒,由等面积法求得322127PH PO ==.在直角POH ∆中,7sin 4PH POH PO ∠==,即二面角P DF E --的正弦值为74.【点评】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查运算求解能力,考查函数与方程思想,考查化归与转化思想,是中档题.。

高中 立体几何中折叠问题的求解策略

高中 立体几何中折叠问题的求解策略

立体几何中折叠问题的求解策略折叠问题,是立体几何中的热点、同时也是难点问题.该类问题难的根源在于所研究的是“动态”空间图形,折叠后的图形中点、线、面的位置关系难以确定,需要联系折叠前后图形之间的关系,因此对空间想象、识图及分析能力都提出了较高要求.在考试中此类问题得分率普遍不高,分析其原因,首先是空间想象力不足,其次是对这类问题没有形成解题的模型和方法.解决折叠问题的关键在于抓住折叠前后图形的特征关系,弄清折叠前后哪些量发生了变化、哪些量没有发生变化,以及确定动点在底面上的投影位置,这是分析和解决问题的依据,也是求解此类问题的钥匙.首先要弄清楚空间中折叠的本质含义是什么?教材中并没有明确给出空间中折叠的定义,但是不难看出空间中的折叠是平面中的翻折的推广,所以不妨从平面翻折的定义来揣测空间中折叠的含义.翻折的定义:将一个图形沿着某一条直线翻折180︒,直线两旁的部分能够相互重合.其中这条直线就是它的对称轴,翻折前图形中的任意一点与翻折后的对应点关于对称轴对称.于是可以类似的给空间中折叠下一个定义:将一个平面图形沿着一条直线翻折某个角度θ(其中0180θ︒<<︒),直线两侧的部分能够相互重合.其中这条直线就是它的折线,过翻折前图形中的任意一点及翻折后的对应点分别向折线做垂线,所构成的图形就是翻折前后所成二面角的平面角,即为θ.由上述对空间中折叠的定义,可以得到以下几个结论.如图1,将ADE ∆沿AE 折起.结论1折起的面上任意一点在底面的投影在过该点折起前的对应点垂直于折线的射线上.例如,点'D 在底面ABCE 上的投影O 一定在射线DF 上;结论2折叠前后折线同侧的量不变.如'D A DA =,'D E DE =.对于折叠问题的求解难度在于确定折起后图形中动点的位置,该类问题在具体出题时并不会直接给出动点的位置,而往往是借助动点在底面的投影大概位置、线段长度、相应的角度等来刻画.这就需要通过给出的关系来确定动点在底面中投影的具体位置来确定动点的位置,然后再进一步求解.1已知动点在底面的投影在某线段上例1如图2,四边形ABCD 是矩形,沿对角线AC 将ACD ∆折起,使得点D 在平面ABC 内的投影恰好落在边AB 上.(1)求证:平面ACD ⊥平面BCD ;(2)当2AB AD =时,求二面角D AC B --的余弦值.ABCDEFH 图1ABCD'D H OF EABCDA BCD分析第一问由结论2,折线同侧的量不变,则AD DC ⊥,BC AB ⊥.又D 与它在底面的投影的连线垂直底面,则垂直BC ,从而BC ⊥平面ABD ,得BC AD ⊥,所以AD ⊥平面BCD ,于是得证.第二问关键是确定D 在底面的投影的位置,由结论1,可知D 在底面的投影为过D 垂直于折线AC 的垂线与AB 的交点,于是利用平面几何知识求解即可.解(1)略;(2)如图3,过点D 作AC 的垂线交AB 于H ,由结论1知H 即是折起后D 在底面的投影.设1AD =,由DAH CDA ∆∆ ,所以12AH =,折叠后32DH =.方法一:如图4,以B 为原点建立空间直角坐标系.那么(0,2,0)A ,(1,0,0)C,3(0,,22D,则1(0,,)22AD =- ,(1,2,0)AC =- .设平面ACD 的法向量为(,,)n x y z =,则00n AD n AC ⎧=⎪⎨=⎪⎩ ,即1302220y z x y ⎧-+=⎪⎨⎪-=⎩,令1z =,则y =,x =n =.易得平面ABC 的一个法向量为(0,0,1)m =.1cos ,4n m n m n m <>==,所以二面角D AC B --的余弦值为14.方法二:如图3,记DH 与AC 的交点为E ,有AHE CDE ∆∆ ,则14EH AH ED CD ==.由折叠的定义知,沿对角线AC 将ACD ∆折起之后,DEH ∠为二面角D AC B --的图2ABCD HE 图3ABC Dxy z图4平面角.在Rt DHE ∆中,1cos 4EH DEH ED ∠==,即二面角D AC B --的余弦值为14.评注已知动点在底面的投影在某条线段上,由结论1可得该动点在底面的投影就是折叠前过此点垂直于折线的射线与这条线段的交点,只需在平面图形中利用平面几何知识即可确定动点在底面投影的位置.例2如图5,设正方形ABCD 的边长为3,点E ,F 分别在AB ,CD 上,且满足2AE EB =,2CF FD =.将直角梯形AFED 沿EF 折起,使得点A 在平面BEFC 的投影G 恰好在BC 上,H 为EA 的中点.(1)证明:平面ABE ∥平面CDF ;(2)求二面角H BF C --的正弦值.图5ABCD E FA BC DEFGH分析由结论1,可知A 在底面的投影在过点A 垂直于折线EF 的垂线上.又由题意,点A 在平面BEFC 的投影G 恰好在BC 上,所以A 在底面的投影是过点A 垂直于折线EF 的垂线与BC 的交点,于是利用平面几何知识求解就可以确定G 在BC 上的位置,然后建系求解即可.解(1)略.(2)由题意将直角梯形AFED 沿EF 折起,使得点A 在平面BEFC 的投影G 恰好在BC 上,如图6,过A 作EF 的垂线,与BC 的交点即为G .作MF ∥BC ,且交AB 与M ,由平面几何知识易得ABG FME ∆≅∆,所以113BG AB ==,则AG ==.如图7,以G 为原点建立空间直角坐标系,则A ,(1,1,0)E -,则11(,,)222H -,(1,0,0)B -,(2,2,0)F ,所以(3,2,0)BF = ,112(,,)222BH = .设平面BFH 的法向量为(,,)n x y z =,A BCD E FGM 图6AB CD EFGH xyz 图7由由00n BF n BH ⎧=⎪⎨=⎪⎩,即320110222x y x y z +=⎧⎪⎨++=⎪⎩,令2x =,则3y =-,22z =,所以2(2,3,)2n =- ,易得平面BCF 的一个法向量为(0,0,1)m =,所以3cos ,9n m n m n m<>==,所以二面角H BF C --的余弦值39.例3如图8,在矩形ABCD 中,已知2AB =,4AD =,点E ,F 分别在AD ,BC上,且1AE =,3BF =,将四边形AEFB 沿EF 折起,使点B 在平面CDEF 上的射影H 在直线DE 上.(1)求证:CD ⊥BE ;(2)求直线AF 与平面EFCD 所成角的正弦值.分析由结论1,可知B 在底面的投影在过点B 垂直于折线EF 的垂线上.又由题意,点B 在平面CDEF 的投影H 恰好在DE 上,所以B 在底面的投影是过点B 垂直于折线EF 的垂线与DE 的交点,于是利用平面几何知识求解就可以确定H 在DE 上的位置,然后建系求解即可.解(1)略.(2)如图9,作BC 的中点M ,AD 的中点'H ,则四边形'ABMH 为正方形,所以'BH AM ⊥.又AM ∥EF ,则'BH EF ⊥,由题意有BH EF ⊥,所以H 与'H 为同一点,故1EH =,则2BH ==.如图10,以H 为原点建立空间直角坐标系,则(0,1,0)E -,(2,1,0)F ,(0,0,2)B ,所以(2,1,2)BF =-,由13AE BF =,得252(,,)333A --,则872(,,)333AF =- .ABCDEFA BCDEFH图8A BCDE F M'H 图9A BCDEFHxyz图10易得平面EFCD 的一个法向量为(0,0,1)n =,设直线AF 与平面EFCD 所成的角为θ,则sin cos ,39AF n AF n AF nθ=<>==.2已知线段长度例4如图11,平面多边形PABCD 中,PA PD =,224AD DC BC ===,AD ∥BC ,AP ⊥PD ,AD ⊥DC ,E 为PD 的中点,现将APD ∆沿AD 折起,使得PC =(1)证明:CE ∥平面ABP ;(2)求直线AE 与平面ABP 所成角的正弦值.ABCDPEABCDEP分析此题是通过线段PC 的长度来刻画APD ∆沿AD 折起的程度的,也就是折起后折面的位置,该题求解的突破口是如何利用线段PC 的长度来确定P 在底面投影的位置.由结论1知P 在底面投影在过P 垂直于折线AD 的射线PB 上,于是有两个思路来确定投影的位置:一是利用已知条件和线段PC 的长度确定PBO ∆的边长,利用解三角形确定投影位置;二是注意到PC PD =,于是P 在底面投影一定在平面ABCD 内CD 的中垂线上,那么就是OB 与CD 中垂线的交点.解(1)略;(2)方法一:如图12,作AD 的中点O ,连接BO 、PO ,易知2BO PO ==,由结论1,P 在底面ABCD 的投影在射线OB 上.设该投影为H ,连接PH ,则PH ⊥平面ABCD ,从而PH BC ⊥,又BC BO ⊥,所以BC ⊥平面PBO ,则BC PB ⊥.所以,2PB ===,故PBO ∆是等边三角形,则H 为BO的中点.以H 为坐标原点建立空间直角坐标系.那么,(1,2,0)A --,(1,0,0)B,P ,图11ABCD EPx yz HO图12(1,2,0)D -,则13(,1,)22E -,13(,3,)22AE = ,(2,2,0)AB =,(1,AP = .设平面ABP 的法向量为(,,)n x y z = ,则0n AB n AP ⎧=⎪⎨=⎪⎩,即22020x y x y +=⎧⎪⎨++=⎪⎩,令1x =,则1y =-,33z =,则3(1,1,)3n =- .设AE 与平面ABP 所成角为θ,则210sin cos ,35n AE n AE n AEθ=<>==.方法二:注意到PC PD =,于是P 在底面投影一定在平面ABCD 内CD 的中垂线上,那么P 在底面投影就是OB 与CD 中垂线的交点,即为BO 的中点,下同方法一.评注通过线段长度刻画折起后折面的位置的题型,可以通过将该线段长度转化到要确定动点和动点在底面投影所在线段构成的三角形,利用解三角形工具确定投影的位置;也可以利用线段相等,通过中垂线与动点在底面投影所在射线的交点来确定投影的位置.3已知相应角度例4(2018全国1理)如图13,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.分析:此题是利用PF BF ⊥刻画折起面的位置,可以考虑利用PF BF ⊥找到过P 且垂直于底面ABFD 的平面,则点P 在底面的投影就在这两个平面的交线上,然后再借助结论1即可确定点P 在底面投影的位置.解(1)因为PF BF ⊥,又BF EF ⊥,且PF EF F = ,,PF EF ⊂平面PEF ,所以BF ⊥平面PEF ,又因为BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)由(1)知平面PEF ⊥平面ABFD ,且平面PEF 平面ABFD EF =,则点P 在底面ABFD 的投影在直线EF 上.如图14,过C 作折线DF 的垂线交EF 于点H ,由结论1知,点H 即为点P 在底面ABFD 的投影.由CFH DCF ∆∆ ,则ABC D E F P图13ABCD E F H图1412HF CF CF CD ==,设AB a =,则12HF a =.那么32PH a ==.因为PH ⊥底面ABFD ,如图15,连接DH ,则PDH ∠为DP 与平面ABFD 所成角,所以32sin 24a PH PDH PD a ∠===.评注已知相应角度刻画折起面的位置,需将这个角度条件进行适当转化,最好是能够找到过动点且与底面垂直的平面,然后结合结论1,即可确定P 在底面投影的位置.对刻画折起面位置的角度条件的转化是解题的突破口.总结立体几何折叠问题的难点突破关键在于利用好结论1和结论2,搞清楚在折叠过程中哪些量是不变的以及动点在底面的投影在那条射线上运动,再结合已知条件,更多的时候需要对已知条件进行适当的转化,便可以确定动点在底面中的投影的位置,顺藤摸瓜就能确定动点在空间中的位置,从而使得问题迎刃而解.参考文献【1】周建平.变化中的不变量——谈立体几何中的折叠问题【J 】.中学教研(数学),2018.7.ABC D EFPH图15。

立体几何中折叠问题-高考数学大题精做之解答题题型全覆盖高端精品

立体几何中折叠问题-高考数学大题精做之解答题题型全覆盖高端精品

高考数学大题精做之解答题题型全覆盖高端精品第三篇立体几何专题06立体几何中折叠问题类型对应典例折叠问题中的点线面位置关系典例1折叠问题中的体积典例2折叠问题中的线面角典例3折叠问题中的二面角典例4【典例1】如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.(1)求证:DG ⊥平面ABCE ;(2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由.【典例2】如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.若将,AED CFD ∆∆分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.图1图2(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值.【典例3】如图1,已知菱形AECD 的对角线,AC DE 交于点F ,点E 为线段AB 的中点,2AB =,60BAD ∠=︒,将三角形ADE 沿线段DE 折起到PDE 的位置,2PC =,如图2所示.(Ⅰ)证明:平面PBC ⊥平面PCF ;(Ⅱ)求三棱锥E PBC -的体积.【典例4】如图,ABC 中,4AB BC ==, 90ABC ∠=︒,,E F 分别为 AB ,AC 边的中点,以EF 为折痕把AEF 折起,使点 A 到达点 P 的位置,且 PB BE =.(1)证明: BC ⊥平面 PBE ;(2)求平面 PBE 与平面 PCF 所成锐二面角的余弦值.1.在Rt ABC △中,90ABC ∠=︒,1tan 2ACB ∠=.已知E ,F 分别是BC ,AC 的中点.将CEF △沿EF 折起,使C 到'C 的位置且二面角'C EF B --的大小是60︒.连接C'B ,'C A ,如图:(Ⅰ)求证:平面'FA C ⊥平面'ABC ;(Ⅱ)求平面'AFC 与平面'BEC 所成二面角的大小.2.已知长方形ABCD 中,1AB =,AD =BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD 能否垂直?若能垂直,求出相应的a 的值;若不垂直,请说明理由;(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.3.如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.4.如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1—ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.5.如图,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的中点,AC EF O ⋂=.沿EF 将△CEF 翻折到△PEF ,连接,,PA PB PD ,得到如图的五棱锥P ABFED -,且PB =.(1)求证:BD ⊥平面POA ;(2)求四棱锥P BFED -的体积.6.已知三棱锥P ABC -(如图一)的平面展开图(如图二)中,四边形ABCD的正方形,ABE ∆和BCF ∆均为正三角形,在三棱锥P ABC -中:(I )证明:平面PAC ⊥平面ABC ;(Ⅱ)若点M 在棱PA 上运动,当直线BM 与平面PAC 所成的角最大时,求二面角P BC M --的余弦值.图一图二参考答案【典例1】【思路引导】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ;(2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证平面//CFP 平面ADE ,故//CP 平面ADE ,根据//FP AD 计算BPBD的值.【详解】(1)证明:因为G 为AE 中点,2AD DE ==,所以DG AE ⊥.因为平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .(2)在直角三角形ADE 中,易求AE =则AD DEDG AE⋅==.所以四棱锥D ABCE -的体积为1(14)232D ABCE V -+⨯=⨯=.(3)过点C 作//CF AE 交AB 于点F ,则:1:3AF FB =.过点F 作//FP AD 交DB 于点P ,连接PC ,则:1:3DP PB =.又因为CF //A E ,AE ⊂平面,ADE CF ⊄平面ADE ,所以CF //平面ADE .同理//FP 平面ADE .又因为CF PF F ⋂=,所以平面CFP //平面ADE .因为CP ⊂平面CFP ,所以//CP 平面ADE .所以在BD 上存在点P ,使得//CP 平面ADE ,且34BP BD =.【典例2】【思路引导】(1)设正方形ABCD 的边长为4,由222DE EF DF +=,可得EF ED ⊥,结合MD EF ⊥,利用线面垂直的判定定理,即可得到EF ⊥平面MED .(2)建立空间直角坐标系,过点M 作MN ED ⊥,垂足为N ,求出向量EM和平面MFD 的一个法向量,利用向量的夹角公式,即可求解.【详解】(1)证明:设正方形的边长为4,由图1知,,,,,,即由题意知,在图2中,,,平面,平面,且,平面,平面,.又平面,平面,且,平面(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为,在中,,,从而,,,,,.设平面的一个法向量为,则,令,则,,.设直线与平面所成角为,则,.直线与平面所成角的正弦值为.【典例3】【思路引导】(Ⅰ)折叠前,AC ⊥DE ;,从而折叠后,DE ⊥PF ,DE ⊥CF ,由此能证明DE ⊥平面PCF .再由DC ∥AE ,DC =AE 能得到DC ∥EB ,DC =EB .说明四边形DEBC 为平行四边形.可得CB ∥DE .由此能证明平面PBC ⊥平面PCF .(Ⅱ)由题意根据勾股定理运算得到PF CF ⊥,又由(Ⅰ)的结论得到BC ⊥PF ,可得PF ⊥平面BCDE ,再利用等体积转化有13E PBC P BCE BCE V V S PF --∆==⨯⨯,计算结果.【详解】(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC DE ⊥;所以折叠后,DE PF ⊥,DE CF ⊥,又PF CF F ⋂=,,PF CF ⊂平面PCF ,所以DE ⊥平面PCF因为四边形AECD 为菱形,所以//,AE DC AE DC =.又点E 为线段AB 的中点,所以//,EB DC EB DC =.所以四边形DEBC 为平行四边形.所以//CB DE .又DE ⊥平面PCF ,所以BC ⊥平面PCF .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PCF .(Ⅱ)图1中,由已知得32AF CF ==,1BC BE ==,60CBE ∠=︒所以图2中,2PF CF ==,又2PC =所以222PF CF PC +=,所以PF CF ⊥又BC ⊥平面PCF ,所以BC ⊥PF 又BC CF C ⋂=,,BC CF ⊂平面BCDE ,所以PF ⊥平面BCDE ,所以1113111sin6033228E PBC P BCE BCE V V S PF --∆==⨯⨯=⨯⨯⨯⨯⨯= .所以三棱锥E PBC -的体积为18.【典例4】【思路引导】(1)由E ,F 分别为AB ,AC 边的中点,可得EF BC ,由已知结合线面垂直的判定可得EF ⊥平面PBE ,从而得到BC ⊥平面PBE ;(2)取BE 的中点O ,连接PO ,由已知证明PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为x ,y ,z 轴建立空间直角坐标系,分别求出平面PCF 与平面PBE 的一个法向量,由两法向量所成角的余弦值可得平面PBE 与平面PCF 所成锐二面角的余弦值.【详解】(1)因为,E F 分别为AB ,AC 边的中点,所以EF BC ,因为90ABC ∠=︒,所以EF BE ⊥,EF PE ⊥,又因为BE PE E ⋂=,所以EF ⊥平面PBE ,所以BC ⊥平面PBE .(2)取BE 的中点O ,连接PO ,由(1)知BC ⊥平面PBE ,BC ⊂平面BCFE ,所以平面PBE ⊥平面BCFE ,因为PB BE PE ==,所以PO BE ⊥,又因为PO ⊂平面PBE ,平面PBE ⋂平面BCFE BE =,所以PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为,,x y z轴建立空间直角坐标系,则(P ,()1,4,0C ,()1,2,0F -.(1,4,PC =,(1,2,PF =-,设平面PCF 的法向量为(),,m x y z=,则0,0,PC m PF m ⎧⋅=⎨⋅=⎩即40,20,x y x y ⎧+=⎪⎨-+-=⎪⎩则(m =-,易知()0,1,0n=为平面PBE的一个法向量,cos<,5m n >=== ,所以平面PBE 与平面PCF所成锐二面角的余弦值55.1.【思路引导】(Ⅰ)法一:由'AF C F =.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .而'BEC ∠即为二面角'C EF B --的平面角.'60BEC ∠=︒,推导出'EH BC ⊥.由'EF C E ⊥,EF BE ⊥,从而EF ⊥平面'BEC .由//EF AB ,得AB ⊥平面'BEC ∠,从而AB EH ⊥,即EH AB ⊥.进而EH ⊥平面'ABC .推导出四边形EHGF 为平行四边形.从而//FG EH ,FG ⊥平面'ABC ,由此能证明平面'AFC ⊥平面'ABC .法二:以B 为原点,在平面'BEC 中过B 作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能证明平面'AFC ⊥平面'ABC .(Ⅱ)以B 为原点,在平面'BEC 中过B .作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能求出平面'AFC 与平面'BEC 所成二面角大小.【详解】(Ⅰ)证法一:F 是AC 的中点,'AF C F ∴=.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .由题意得'C E EF ⊥,BE EF ⊥,'BEC ∴即为二面角'C EF B --的平面角.'60BEC ∴=︒,E 为BC 的中点.'BE EC ∴=,'BEC ∴∆为等边三角形,'EH BC ∴⊥.'EF C E ⊥ ,EF BE ⊥,'C E BE E ⋂=,EF ∴⊥平面'BEC .//EF AB ,AB ∴⊥平面'BEC ,AB EH ∴⊥,即EH AB ⊥.'BC AB B ⋂= ,EH ∴⊥平面'ABC .G ,H 分别为'AC ,'BC 的中点.////GH AB FE ∴,12GH AB FE∴==四边形EHGF 为平行四边形.//FG EH ∴,FG ⊥平面'ABC ,又FG ⊂平面'AFC .∴平面'AFC ⊥平面'ABC.法二:如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E,()'C .设平面'ABC 的法向量为(),,a x y z = ,()0,0,2BA =,()'BC =,20'0a BA z a BC x ⎧⋅==⎪∴⎨⋅=+=⎪⎩,令1y =,则()a = ,设平面'AFC 的法向量为(),,b x y z = ,()2,0,1AF =-,()'2AC =-,20'20b AF x z b AC x z ⎧⋅=-=⎪∴⎨⋅=+-=⎪⎩,取1x =,得()2b =.0a b ⋅= ,∴平面'AFC ⊥平面'ABC .解:(Ⅱ)如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E ,()'3,0C .平面'BEC 的法向量()0,0,1m = 设平面'AFC 的法向量为(),,n x y z = ,()'3,2AC =- ,()2,0,1AF =- ,'32020n AC x y z n AF x z ⎧⋅=+-=⎪∴⎨⋅=-=⎪⎩ ,取1x =,得()3,2n = .设平面'AFC 与平面'BEC 所成的二面角的平面角为θ,2cos 2m n m nθ⋅∴==⋅ 由图形观察可知,平面'AFC 与平面'BEC 所成的二面角的平面角为锐角.∴平面'AFC 与平面'BEC 所成二面角大小为45 .2.【思路引导】(1)若AB ⊥CD ,得AB ⊥面ACD ,由于AB ⊥AC .,所以AB 2+a 2=BC,解得a 2=1,成立;(2)四面体A ﹣BCD 体积最大时面ABD ⊥面BCD ,以A 为原点,在平面ACD 中过O 作BD 的垂线为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A ﹣CD ﹣B 的余弦值.【详解】(1)若AB ⊥CD ,因为AB ⊥AD ,AD ∩CD =D ,所以AB ⊥面ACD ⇒AB ⊥AC .由于AB=1,2,AC=a ,由于AB ⊥AC .,所以AB 2+a 2=BC,所以12+a 2=(2)2⇒a =1,所以在折叠的过程中,异面直线AB 与CD 可以垂直,此时a 的值为1(2)要使四面体A -BCD 体积最大,因为△BCD 面积为定值22,所以只需三棱锥A -BCD 的高最大即可,此时面ABD ⊥面BCD .过A 作AO ⊥BD 于O ,则AO ⊥面BCD ,以O 为原点建立空间直角坐标系o xyz -(如图),则易知,显然,面BCD 的法向量为,设面ACD 的法向量为n=(x ,y ,z ),因为所以,令y =2,得n=(1,2,2),故二面角A -CD -B 的余弦值即为|cos n OA ,.3.【思路引导】(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A = ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP =作QE ⊥AC ,垂足为E ,则QE =13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP -的体积为111131332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒= .4.【思路引导】(1)先计算得BE ⊥AE ,再根据面面垂直性质定理得结果,(2)先分析确定点M 位置,再取D 1E 的中点L ,根据平几知识得AMFL 为平行四边形,最后根据线面平行判定定理得结果.【详解】(1)证明连接BE ,∵ABCD 为矩形且AD =DE =EC =BC =2,∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE ,BE ⊂平面ABCE ,∴BE ⊥平面D 1AE .(2)解AM =14AB ,取D 1E 的中点L ,连接AL ,FL ,∵FL ∥EC ,EC ∥AB ,∴FL ∥AB 且FL =14AB ,∴FL ∥AM ,FL =AM∴AMFL 为平行四边形,∴MF ∥AL ,因为MF 不在平面AD 1E 上,AL ⊂平面AD 1E ,所以MF ∥平面AD 1E .故线段AB 上存在满足题意的点M ,且AM AB =14.5.【思路引导】(1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥.∴EF AC ⊥.∴EF AO ⊥,EF PO ⊥.分∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O = ,∴EF ⊥平面POA .∴BD ⊥平面POA .(2)解:设,连接BO ,∵60DAB ︒∠=,∴△ABD 为等边三角形.∴4BD =,2BH =,23HA =3HO PO ==.在R t △BHO 中,227BO BH HO =+=在△PBO 中,22210BO PO PB +==,∴PO BO ⊥.∵PO EF ⊥,EF BO O ⋂=,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED .梯形BFED 的面积为()1332S EF BD HO =+⋅=∴四棱锥P BFED -的体积11333333V S PO =⋅=⨯=.6.【思路引导】(1)设AC 的中点为O,证明PO 垂直AC,OB,结合平面与平面垂直判定,即可.(2)建立直角坐标系,分别计算两相交平面的法向量,结合向量的数量积公式,计算夹角,即可.【详解】(Ⅰ)设AC 的中点为O ,连接BO ,PO .由题意,得2PA PB PC ===,1PO =,1AO BO CO ===.因为在PAC ∆中,PA PC =,O 为AC 的中点,所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,PB =222PO OB PB +=,所以PO OB ⊥.因为AC OB O ⋂=,,AC OB ⊂平面ABC ,所以PO ⊥平面ABC ,因为PO ⊂平面PAC ,所以平面PAC ⊥平面ABC.(Ⅱ)由(Ⅰ)知,BO PO ⊥,BO AC ⊥,BO ⊥平面PAC ,所以BMO ∠是直线BM 与平面PAC 所成的角,且1tan BOBMO OM OM ∠==,所以当OM 最短时,即M 是PA 的中点时,BMO ∠最大.由PO ⊥平面ABC ,OB AC ⊥,所以PO OB ⊥,PO OC ⊥,于是以OC ,OB ,OD 所在直线分别为x 轴,y 轴,z 轴建立如图示空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P ,11,0,22M ⎛⎫- ⎪⎝⎭,()1,1,0BC =- ,()1,0,1PC =- ,31,0,22MC ⎛⎫=- ⎪⎝⎭ .设平面MBC 的法向量为()111,,m x y z = ,则由00m BC m MC⎧⋅=⎨⋅=⎩得:1111030x y x z -=⎧⎨-=⎩.令11x =,得11y =,13z =,即()1,1,3m =.设平面PBC 的法向量为()222,,n x y z = ,由00n BC n PC ⎧⋅=⎨⋅=⎩ 得:222200x y x z -=⎧⎨-=⎩,令1x =,得1y =,1z =,即()1,1,1n =.cos ,33m n n m m n ⋅===⋅ .由图可知,二面角P BC M --的余弦值为33.。

第15讲 解答题立体几何折叠问题(解析版)

第15讲 解答题立体几何折叠问题(解析版)

第15讲 立体几何折叠问题1.如图,矩形ABCD 中,24AD AB ==,E 为BC 的中点,现将BAE ∆与DCE ∆折起,使得平面BAE 及平面DEC 都与平面ADE 垂直.(1)求证://BC 平面ADE ; (2)求二面角A BE C --的余弦值.【解答】解:(1)证明:分别取AE ,DE 的中点M ,N ,连结BM ,CN ,MN , 则BM AE ⊥,CN DE ⊥,平面BAE 与平面DEC 都与平面ADE 垂直, BM ∴⊥平面ADE ,CN ⊥平面ADE ,由线面垂直的性质定理得//BM CN ,BM CN =,∴四边形BCNM 是平行四边形,//BC MN ∴, BC ⊂/平面ADE ,//BC ∴平面ADE .(2)解:如图,以E 为原点,ED ,EA 为x ,y 正半轴,过E 作平面ADE 的垂线为z 轴,建立空间直角坐标系,则B ,C ,平面ABE 的法向量(1n =,0,0), 设平面CBE 的法向量(m x =,y ,)z ,则2020EB m y EC m x ⎧=+=⎪⎨==⎪⎩,取1x =,得(1m =,1,1)-, 设二面角A BE C --的平面角为θ,由图知θ为钝角,||1cos ||||3m n m n θ∴=-=-=∴二面角A BE C --的余弦值为.2.如图,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,且24BC AD ==,E ,F 分别为线段AB ,DC 的中点,沿EF 把AEFD 折起,使AE CF ⊥,得到如下的立体图形. (1)证明:平面AEFD ⊥平面EBCF ;(2)若BD EC ⊥,求二面角F BD C --的余弦值.【解答】(1)证明:在直角梯形ABCD 中,//AD BC ,AB BC ⊥, E ,F 分别为线段AB ,DC 的中点, //EF AD ∴,AE EF ∴⊥,又AE CF ⊥,且EF CF F =,AE ∴⊥平面EBCF , AE ⊂平面AEFD ,∴平面AEFD ⊥平面EBCF .(2)解:由(1)可得EA ,EB ,EF 两两垂直, 故以E 为原点建立空间直角坐标系,(如图)设AE m =,则(0E ,0,0),(0A ,0,)m ,(B m ,0,0), (0F ,3,0),(C m ,4,0),(0D ,2,)m ,∴(BD m =-,2,)m ,(,4,0)EC m =,DB EC ⊥,280m ∴-+=,22m ∴=∴(22BD =-,2,2),(22,3,0)FB =-,(0,4,0)CB =-,设面DBF 的法向量为(,,)m x y z =,则00m BD m FB ⎧⋅=⎪⎨⋅=⎪⎩,即2222202230x y z x y ⎧-++=⎪⎨-=⎪⎩,令4y =可得:(32m =,42), 同理可得平面CDB 的法向量为(1,0,1)n =, 422cos ,||||362m n m n m n ⋅∴<>===⨯.由图形可知二面角F BD C --为锐角,∴二面角F BD C --的余弦值为23.3.如图1,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平行四边形111ABB A 沿1CC 折起如图2所示,连接1B C 、1B A 、11B A . (1)求证:11AB CC ⊥;(2)若16AB =11C AB A --的正弦值.【解答】证明:(1)取1CC 的中点O ,连接OA ,1OB ,1AC ,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点, 1ACC ∴∆,1BCC ∆为正三角形,则1AO CC ⊥,11OB CC ⊥,又1AOOB O =,1CC ∴⊥平面1OAB ,1AB ⊂平面1OAB 11AB CC ∴⊥;4⋯分(2)160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,2AC ∴=,13OA OB ==16AB =22211OA OB AB +=,则三角形1AOB 为直角三角形,则1AO OB ⊥,6⋯分以O 为原点,以OC ,1OB ,OA 为x ,y ,z 轴建立空间直角坐标系, 则(1C ,0,0),1(0B ,30),1(1C -,0,0),(0A ,0,3),则1(2,0,0)CC =- 则11(2,0,0)AA CC ==-,1(0AB =33)-,(1AC =,0,3)-, 设平面1AB C 的法向量为(,,)n x y z =,则133030n AB y z n AC x z ⎧==⎪⎨==⎪⎩,令1z =,则1y =,3x =(3,1,1)n =, 设平面11A B A 的法向量为(,,)m x y z =,则1120330m AA x m AB y z ⎧=-=⎪⎨==⎪⎩,令1z =,则0x =,1y =,即(0,1,1)m =,8⋯分则10cos ,105m n <>=分 ∴二面角11C AB A --15.12⋯分.4.如图1所示,在等腰梯形ABCD 中,,3,15,33BE AD BC AD BE ⊥===把ABE ∆沿BE 折起,使得62AC =得到四棱锥A BCDE -.如图2所示. (1)求证:面ACE ⊥面ABD ;(2)求平面ABE 与平面ACD 所成锐二面角的余弦值. 【解答】证明:(1)在等腰梯形ABCD 中3BC =,15AD =,BE AD ⊥,可知6AE =,9DE =.因为3,33,BC BE BE AD ==⊥,可得6CE =.又因为6,62AE AC ==,即222AC CE AE =+,则AE EC ⊥.又BE AE ⊥,BEEC E =,可得AE ⊥面BCDE ,故AE BD ⊥.又因为tan 333DE DBE BE ∠===, 则60DBE ∠=︒,3tan 33BC BEC BE ∠===,则30BEC ∠=︒, 所以CE BD ⊥,又AE EC E =,所以BD ⊥面ACE ,又BD ⊂面ABD ,所以面ABD ⊥面ACE ;解:(2)设ECBD O =,过点O 作//OF AE 交AC 于点F ,以点O 为原点,以OB ,OC ,OF 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系O BCF -. 在BCE ∆中,30BEO ∠=︒,BO EO ⊥,∴9333,,22EO CO BO ===2339((0,,0),(0,,0)22B C E -,1//,,62FO AE FO AE AE ==,3FO ∴=,则9(0,0,3),(0,,6)2F A -,//DE BC ,9DE =,∴3ED BC =,∴93(D ,∴339933(,,0),(0,0,6),(0,6,6),(,0)2222BE AE CA CD ===-=--,设平面ABE 的法向量为1111(,,)n x y z =,由1111160339022n AE z n BE y ⎧==⎪⎨=+=⎪⎩,取13x =ABE 的法向量为1(3,1,0)n =-, 设平面ACD 的一个法向量为2222(,,)n x y z =,由222222660933022n CA y z n CD y ⎧=-+=⎪⎨=--=⎪⎩, 取21x =,可得平面ABE 的一个法向量为2(1n =,33-,33)-.设平面ABE 与平面ACD所成锐二面角为θ,则1212||432165cos ||||255n n n n θ===,所以平面ABE 与平面ACD 所成锐二面角的余弦值为21655.如图1,菱形ABCD 的边长为12,60BAD ∠=︒,AC 与BD 交于O 点.将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC 的中点,62DM = (Ⅰ)求证:平面ODM ⊥平面ABC ; (Ⅱ)求二面角M AD C --的余弦值.【解答】(本小题满分12分) 证明:(Ⅰ)ABCD 是菱形, AD DC ∴=,OD AC ⊥,ADC ∆中,12AD DC ==,120ADC ∠=︒, 6OD ∴=,又M 是BC 中点,∴16,622OM AB MD === 222OD OM MD +=,DO OM ∴⊥,OM ,AC ⊂面ABC ,OM AC O =,OD ∴⊥面ABC ,又OD ⊂平面ODM ,∴平面ODM ⊥平面ABC .⋯(6分) 解:(Ⅱ)由题意,OD OC ⊥,OB OC ⊥,又由(Ⅰ)知OB OD ⊥,建立如图所示空间直角坐标系,由条件知:(6,0,0),(0,63,0),(0,33,3)D A M - 故(0,93,3),(6,63,0)AM AD ==, 设平面MAD 的法向量(,,)m x y z =,则00m AM m AD ⎧=⎪⎨=⎪⎩,即93306630y z x ⎧+=⎪⎨+=⎪⎩,令3y =-3x =,9z = ∴(3,3,9)m =-由条件知OB ⊥平面ACD ,故取平面ACD 的法向量为(0,0,1)n = 所以,393cos ,||||31m n m n m n 〈〉==由图知二面角M AD C --为锐二面角, 故二面角M AD C --393(12分)6.如图1,已知在菱形ABCD 中,120B ∠=︒,E 为AB 的中点,现将四边形EBCD 沿DE 折起至EBHD ,如图2.(1)求证:DE ⊥面ABE ;(2)若二面角A DE H --的大小为23π,求平面ABH 与平面ADE 所成锐二面角的余弦值. 【解答】(1)证明:四边形ABCD 为菱形,且120B ∠=︒, ABD ∴∆为正三角形, E 为AB 的中点,DE AE ∴⊥,DE BE ⊥, DE ∴⊥面ABE ;(2)解:以点E 为坐标原点,分别以线段ED ,EA 所在直线为x ,y 轴,再以过点E 且垂直于平面ADE 且向上的直线为z 轴,建立空间直角坐标系如图所示.DE ⊥面ABE ,AEB ∴∠为二面角A DE H --的一个平面角,则23AEB π∠=, 设1AE =,则(0E ,0,0),(0A ,1,0),(0B ,12-3),(3D 0,0),由2DH EB =,得(3,3)H -,∴33(0,2AB =-,(3,3)AH =-, 设平面ABH 的法向量为(,,)n x y z =,则33023230n AB y n AH x y z ⎧=-+=⎪⎨⎪=-=⎩,令3y =,得(1,3,3)n =-.而平面ADE 的一个法向量为(0,0,1)m =,设平面ABH 与平面ADE 所成锐二面角的大小为θ,则313313cos |||||||13n m n m θ===. ∴平面ABH 与平面ADE 313.7.如图1,四边形ABCD 中AC BD ⊥,2222CE AE BE DE ====,将四边形ABCD 沿着BD 折叠,得到图2所示的三棱锥A BCD -,其中AB CD ⊥. (Ⅰ)证明:平面ACD ⊥平面BAD ;(Ⅱ)若F 为CD 中点,求二面角C AB F --的余弦值.【解答】证明:(Ⅰ)AE BD ⊥,且BE DE =,ABD ∴∆是等腰直角三角形,AB AD ∴⊥,又AB CD ⊥,且AD ,CD ⊂平面ACD ,ADCD D =,AB ∴⊥平面ACD ,又AB ⊂平面BAD ,∴平面ACD ⊥平面BAD . 解:(Ⅱ)以E 为原点,EC 为x 轴,ED 为y 轴,过E 作平面BDC 的垂直为z 轴,建立空间直角坐标系,过A 作平面BCD 的垂线,垂足为G ,根据对称性,G 点在x 轴上,设AG h =,由题设知: (0E ,0,0),(2C ,0,0),(0B ,1-,0),(0D ,1,0), 2(1A h -0,)h ,(1F ,12,0),2(1BA h =-1,)h ,(2DC =,1-,0),AB CD ⊥,∴22110BA DC h =-=,解得3h =,13(2A ∴. 13(2BA =,(1BF =,32,0),设平面ABF 的法向量(a μ=,b ,)c ,则1302302BA a b BF a b μμ⎧=+=⎪⎪⎨⎪=+=⎪⎩, 令9a =,得(9μ=,6-,3),AD AB ⊥,AD AC ⊥,2(1DA ∴=,2-3)是平面ABC 的一个法向量,cos μ∴<,(2)91231525|||2|1208DA DA DA μμ++>===,二面角C AB F --是锐角,∴二面角C AB F --的余弦15.8.如图1,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,BD DC ⊥,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体. (Ⅰ)求证:AB ⊥平面ADC ;(Ⅱ)若1AD =,二面角C AB D --6,求二面角B AD E --的余弦值.【解答】解:(Ⅰ)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,又BD DC ⊥,所以DC ⊥平面ABD .⋯(1分)因为AB ⊂平面ABD ,所以DC AB ⊥.⋯(2分) 又因为折叠前后均有AD AB ⊥,DCAD D =,⋯(3分)所以AB ⊥平面ADC .⋯(4分)(Ⅱ)由(Ⅰ)知AB ⊥平面ADC ,所以二面角C AB D --的平面角为CAD ∠.⋯(5分) 又DC ⊥平面ABD ,AD ⊂平面ABD ,所以DC AD ⊥.依题意tan 6CDCAD AD∠==.⋯(6分) 因为1AD =,所以6CD =(0)AB x x =>,则21BD x =+ 依题意~ABD BDC ∆∆,所以AB CDAD BD=,即2611x x =+⋯(7分)解得2x ,故222,3,3AB BD BC BD CD ===+.⋯(8分)如图所示,建立空间直角坐标系D xyz -,则(0D ,0,0),(3,0,0)B ,6,0)C ,36(E ,36(A ,所以36(2DE =,36(3DA =.由(Ⅰ)知平面BAD 的法向量(0,1,0)n =.⋯(9分)设平面ADE 的法向量(,,)m x y z =由0,0m DE m DA ⋅=⋅=得360360.y == 令6x =,得3,3y z =-=,所以(6,3,3)m =-.⋯(10分)所以1cos ,||||2n m n m n m ⋅<>==-⋅.⋯(11分)由图可知二面角B AD E --的平面角为锐角,所以二面角B AD E --的余弦值为12.⋯(12分) 9.如图所示,在平行四边形ABCD 中,4AB =,BC =45ABC ∠=︒,点E 是CD 边的中点,将DAE ∆沿AEE 折起,使点D 到达点P 的位置,且PB =(1)求证:平面PAE ⊥平面ABCE ;(2)若平面PAE 和平面PBC 的交线为l ,求二面角B lE --的余弦值.【解答】(1)证明:连接BE ,在平行四边形ABCD 中,2DE =,AD =45ADC ∠=︒,2AE∴=AE DE ∴⊥,即AE PE ⊥,且AE BA ⊥.在Rt BEA ∆中,得BE ==.又2PE =,PB =222PE BE PB ∴+=,即PE BE ⊥.又AE ⊂平面ABCE ,BE ⊂平面ABCE ,且AE BE E =,PE ∴⊥平面ABCE .又PE ⊂平面PAE ,∴平面PAE ⊥平面ABCE ; (2)解:由(1)得PE ,AE ,CE 两两垂直,故以E 为原点,EC ,EA ,EP 所在直线分别为x ,y ,z 轴建立空间直角坐标系. 则(0A ,2-,0),(2C ,0,0),(0P ,0,2),(4B ,2-,0).∴(2,0,2)PC =-,(2,2,0)BC =-可知1(1,0,0)n =是平面PAE 的一个法向量,设平面PBC 的一个法向量为2(,,)n x y z =.由22220220n PC x z n BC x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取1z =,得2(1,1,1)n =.1212123cos,3||||n n n n n n ⋅∴<>==⋅.10.已知长方形ABCD 中,1AB =,2AD ,现将长方形沿对角线BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD ,AD 与BC 能否垂直?若能垂直,求出相应的a 值;若不垂直,请说明理由.(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.【解答】解:(1)若AB CD ⊥,由AB AD ⊥,ADCD D =,得AB ⊥面ACD ,AB AC ∴⊥,222AB a BC ∴+=,即212a +=,解得1a =, 若AD BC ⊥,由AB AD ⊥,ABBC B =,得AD ⊥平面ABC ,AD AC ∴⊥,222AD a CD ∴+=,即221a +=,解得21a =-,不成立,AD BC ∴⊥不成立.(2)四面体A BCD -体积最大,BCD ∆2,∴只需三棱锥A BCD -的高最大即可,此时面ABD ⊥面BCD ,以A 为原点,在平面ACD 中过O 作BD 的垂线为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,则(0A ,06),63(,C ,0),(0D 23,0), 面BCD 的法向量为(0OA =,06, 面ACD 的法向量(n x =,y ,)z ,63(3CD =-,236(0,)DA =,则630323603n CD x y n DA y ⎧=-=⎪⎪⎨⎪=-+=⎪⎩,取2y =,得(1,2,2)n =, 设二面角A CD B --的平面角为θ,则26||273cos |cos ,|||||673n OA n OA n OA θ=<>===, ∴二面角A CD B --2711.如图,在长方形ABCD 中,AB π=,2AD =,E 、F 为线段AB 的三等分点,G 、H 为线段DC 的三等分点.将长方形ABCD 卷成以AD 为母线的圆柱W 的半个侧面,AB 、CD 分别为圆柱W 上、下底面的直径.(1)证明:平面ADHF ⊥平面BCHF ;(2)求二面角A BH D --的余弦值.【解答】(本小题满分12分)证明:(1)因为H 在下底面圆周上,且CD 为下底面半圆的直径, 所以DH HC ⊥,又因为DH FH ⊥,且CH FH H =,所以DH ⊥平面BCHF , 又因为DH ⊂平面ADHF ,所以平面ADHF ⊥平面BCHF . 解:(2)以H 为坐标原点,分别以HD 、HC 、HF 为x ,y ,z 轴建立空间直角坐标系O xyz -, 设下底面半径为r ,由题r ππ=,所以1r =,2CD =因为G 、H 为DC 的三等分点所以30HDC ∠=︒, 所以在Rt DHC ∆中,3,1HD HC ==所以(3,0,2)A ,(0B ,1,2),(3,0,0)D , 设平面ABH 的法向量(,,)n x y z=,因为(,,)(3,0,2)0n HA x y z ==, (,,)(0,1,2)0n HB x y z ==,所以2020z y z +=+=⎪⎩,所以平面ABH 的法向量(2,n =--, 设平面BHD 的法向量(,,)m x y z =, 因为(,,)(3,0,0)0m HD x y z ==,(,,)(0,1,2)0m HB x y z ==所以020x y z =⎧⎨+=⎩,所以平面BHD 的法向量(0,2,1)m =-. 所以二面角A BH D --的余弦值为285cos ||||||19m n m n θ==. 12.在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.【解答】解:(1)证明:取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, //PR EF ∴,//QR BD ,又//EF AC ,//PR ∴平面ABCD ,//QR 平面ABCD ,又PRQR R =, ∴平面//PQR 平面ABCD ,又PQ ⊂平面PQR , //PQ ∴平面ABCD .(2)解:连接AC ,设AC ,BD 交于点O ,BD AC ∴⊥,又平面AFEC ⊥平面ABCD ,平面AFEC ⋂平面ABCD AC =, BD ∴⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -,菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,BD =12AC EF ==, 设梯形EFAC 的面积为133()244EFAC BD S EF AC =+=, ∴多面体ABCDFE 的体积为1332ABCDFE EFAC V S BD ==.13.已知等腰直角△S AB ',4S A AB '==,S A AB '⊥,C ,D 分别为S B ',S A '的中点,将△S CD '沿CD 折到SCD ∆的位置,22SA =,取线段SB 的中点为E .()I 求证://CE 平面SAD ; (Ⅱ)求二面角A EC B --的余弦值.【解答】(Ⅰ)证明:取SA 中点F ,连接DF ,EF ,SE EB =,SF FA =,//EF AB ∴,12EF AB =, 又//CD AB ,12CD AB =, CD EF ∴=,//CD EF ,∴四边形CDEF 为平行四边形,则//CE FD .CE ⊂/平面SAD ,FD ⊂平面SAD ,//CE ∴平面SAD ;(Ⅱ)解:面SCD ⊥面ABCD ,面SCD ⋂面ABCD CD =,SD CD ⊥,SD ⊂面SCD ,SD ∴⊥面ABCD , AD ,CD ⊂面ABCD ,SD AD ∴⊥,SD CD ⊥.又AD DC ⊥,DA ∴,DC ,DS 两两互相垂直,如图所示,分别以DA ,DC ,DS 为x ,y ,z 轴建立空间直角坐标系D xyz -. 则(2A ,0,0),(0C ,2,0),(0S ,0,2),(2B ,4,0),(1E ,2,1), (1,0,1)CE =,(2,2,0)CA =-,(2,2,0)CB =, 设平面ECA ,平面ECB 的法向量分别为111(,,)m x y z =,222(,,)n x y z =, 则11110220m CE x z m CA x y ⎧=+=⎪⎨=-=⎪⎩,取11y =,可得(1,1,1)m =-; 22220220n CE x y n CB x y ⎧=+=⎪⎨=+=⎪⎩,取21y =-,得(1,1,1)n =--. 111cos ,||||33m n m n m n -+∴<>===⨯. ∴二面角A EC B --的平面角的余弦值为13-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何中的折叠问题
考纲目标:
1.掌握展开问题与折叠问题中有关线面的位置关系的证明方法,会用平面展开图解决立体几何中有关最值问题。

2.通过折叠问题训练使学生提高对立体图形的分析能力,进一步理解“转化”的数学思想,并在设疑的同时培养学生的发散思维。

考点一几何体展开问题
反思归纳:求几何体表面上两点间的最短距离的常用方法是选择恰当的母线或棱将几何体展开,转化为求平面上两点间的最短距离.
考点二.平面图形的折叠问题
答题模板:第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量.
第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面.
第三步:利用判定定理或性质定理进行证明.
第四步:利用所给数据求边长和面积等,进而求表面积、体积.
(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;
(3)证明:直线DF⊥平面BEG.
2.(2015洛阳三模)等边三角形ABC的边长为2,CD是AB边上的高, E,F分别是AC和BC的中点(如图(1)).现将△ABC沿CD翻成直二面角A-CD-B.
(1)求证:AB∥平面DEF;
(2)求多面体D-ABFE的体积。

3.如图所示,在边长为4的菱形ABCD中,∠DAB=60°.点E,F分别在边CD,CB上,点E与点C,D不重合,EF⊥AC于点O.沿EF将△CEF 翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(1)求证:BD⊥平面POA;
(2)当PB取得最小值时,求四棱锥P-BFED的体积.
【要点总结】折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现。

处理这类题
型的关键是抓住两图的特征关系。

解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化。

这些未变化的已知条件都是我们分析问题和解决问题的依据。

而展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试。

作业:
1、(2005浙江理科)12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如下图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_____.
2、(2009浙江)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .。

相关文档
最新文档