数学物理方法答案 梁昆淼编 (第四版)

合集下载

数学物理方法第一章

数学物理方法第一章
存在,并且与 z 0 的方式无关,则称函数 w=f(z) 在 z 点可导(或单演),此(有限的)极限称为函数 f(z) 在 z 的导数
(或微商),以 f '(z) 或 df/dz 表示
讨论:
1、从形式上看,复变函数导数的定义与实变函数的定义相同,
因而实变函数论中关于导数的规则和公式往往可以适用于实变 函数。

x cos y sin

z (cos i sin )
z e
i

指数式
讨论:i)复数的辐角不能唯一地确定。如果 0 是其中一个辐角, 则
0 2k (k 0,1,2,) 也是其辐角,把属于 [0,2 ) 的辐角称为主值辐角,记为arg z .
存在,且连续,并
且满足柯西-黎曼条件。 证明:由于这些偏导数连续,二元函数 u 和 v 的增量可分别写为
各 个
,于是有
根据柯西-黎曼条件,上式即
这一极限是与 z 0 无关的有限值。证毕。
讨论:复变函数与实变函数的导数有本质上的差别,复变函数 可微,不但要求复变函数的实部与虚部可微,而且还要求其实 部与虚部满足柯西-黎曼条件。
单连通区域:在区域 B 做任何简单的闭曲线,曲线包围 的点全属于 B。否则为多连通区域。
三、复变函数例
多项式
a0 a1 z a2 z an z
2
n
n 为正整数
有理分式
a0 a1 z a2 z 2 an z n b0 b1 z b2 z 2 bm z m
ii)当 1时,z cos i sin ei 称为单位复数。
iii)复数 z 的共轭复数
z x iy (cos isin ) e

数学物理方法(梁昆淼)chapt7

数学物理方法(梁昆淼)chapt7
ut t 0 ( x)
x0
x0
( x)
1 1 x at u ( x, t ) [ ( x at ) ( x at )] ( )d 2 2a x at
x (t ) a
1 1 x at 1 at x u ( x, t ) [ ( x at ) (at x)] ( )d ( )d 2 2a 0 2a 0
n
xl
f (t )
u f (t ) (Ys ) x x l
ux
k
x l
ux
二齐
x l
f (t ) Ys
若为自由振动 f (t ) 0 例2 细杆导热问题
f (t )
xl
0
流出 流入
u f (t ) x x l u k f (t ) x x l
端点绝热 f (t ) 0
utt a2uxx 0在x0无意义
u1x ( x0 ) u2 x ( x0 )
例 均匀细杆长为 l , x 0 固定,
(1)另一端受着沿杆方向的力 Q ,如果开始的一瞬间 t 0 突然停止力的作用,求杆纵振动的定解条件。
振动方向
t0
x0 xl
t 0 时, Q 沿杆长方向加于杆的另一 (2)处于静止状态中, 端,写出定解条件 力从 t 0 开始作用在 x l
x (t ) a
4
utt a uxx 0
2
(0 x , t 0)
半无界区间内的一维自由振动
u x0 f (t )
u t 0 ( x)
ut t 0 ( x)
非奇非 偶延拓
一非齐
(0 x )

精选数学物理方法第四版梁昆淼期末总结讲义

精选数学物理方法第四版梁昆淼期末总结讲义
一、留数定理:——P52
设函数 f(z)在回路 l 所围区域 B上除有限个孤
立奇点b1,b2,…,bn外解析,在闭区域 B 上除b1,
b2,…,bn外连续,则f(z)沿l正向积分 l f (z)dz 之值
等于f(z)在l所围区域内各奇点的留数和的2 i倍.
n
l
f
( z )dz
2 i
Re sf
j 1
1 cos 2 2
u v 1 sin sin
2 2
22
第14页,共84页。
u 1 cos 2 2
u sin 2 2
将上面第二式对 积分, 视作参数,有
u
u
d
R(
)
sin d R()
22
2
sin
2
d
R(
)
2 cos R()
2
其中 R() 为 的任意函数。 将上式两边对 求导,
0 arg z 2 ,
辐角:Argz arg z 2k (k 0,1,2,)
共轭复数: z x iy z* x iy
第2页,共84页。
2、复数的运算: 加、减、乘、除、乘方、开方 (1)、加法和减法
z1 x1 iy1 z2 x2 iy2
z1 z2 (x1 x2 ) i( y1 y2 ) (2)、乘法和除法
2kπ n
i sin
2kπ n
i 2k
n e n
( k 0, 1, 2, , n 1 )
复数的乘、除、乘方和开方运算,采用三角式
或指数式往往比代数式来得方便。
第5页,共84页。
二、六种初等复变函数:
1. 幂函数 w z n
2 .指数函数 w e z

梁昆淼 数学物理方法第1和2章

梁昆淼 数学物理方法第1和2章

1 2 1 2 2 ( x ) y ( ) 圆上各点 4 4
例:计算 W
解: 令
a ib
z a 2 b2
1/ 2
z a ib z (cos i sin )
W a ib [ z (cos i sin )]
z
1/ 2
sin cos
所定义的函数分别叫做反正弦函数及反余弦函数记为22柯西定理23不定积分24柯西公式21复变函数积分21复变函数积分idydxzdzreixdyxdxzdzre由此可见对于有些被积函数而言积分与路径有关ixdyxdxzdzreixdyxdxixdyxdxzdzreixdyxdxxydydxbaxyxydydx由此可见对于有些被积函数而言积分与路径无关一单连通区域qdypdx22柯西定理cddz为区域内境界线积分沿境界线正向进行内外境界线逆时针积分相等23不定积分单连通区域中解析函数reid
(二)、区域概念 (1)、邻域 由
z z0 确定的平面点集,称为定点z0的—邻域
(2)、内点 定点z0的—邻域全含于点集E内,称z0为点集E的内点 (3)、外点 定点z0及其—邻域不含于点集E内,称z0为点集E的外点 (4)、边界点
定点z0的—邻域既有含 于E内,又有不含于E内的 点,称z0为点集E的边界 点。
y1 y2 y1 y2
y
z1 z2 x1
z1 z2
x
x2 x1 x2
z1 z2 ( x1 x2 ) 2 ( y1 y2 ) 2
arg z arctg[( y1 y2 ) /( x1 x2 )]
有三角 关系:
z1 z2 z1 z2
z1 z2 z1 z2

王成优_“数学物理方法”(第4版)勘误表

王成优_“数学物理方法”(第4版)勘误表

1 d d 1 dx d d (sin ) ( sin 2 ) sin d d sin d dx dx d d (1 x 2 ) dx dx
d m2 2 d (1 x ) [ l ( l 1) ] 0 dx d 1 x2

[ei x f ( x)] f ( 0 )
0
f (t ) f ( ) (t )d
r
[ei x f ( x)] F ( 0 )
0
f (t ) f ( ) (t )d


( x a) ( x a)
2a

( x a) ( x a)
2x

( x a) ( x a)
2a
删去
,下式符号 δ 函数 1 lim π 2 x 2
,下式符合 δ 函数 1 lim 0 π 2 x 2
2 x lim arctan 0 π 0
G ( )
(1 2rx r 2 ) lr l 1Pl ( x)
l 0
(1 2rx r 2 ) lr l 1Pl ( x)
王成优©山东大学(威海) 数学物理方法
2
WangChengyou © Shandong University, Weihai
梁昆淼 编, 刘法 缪国庆 修订. 数学物理方法(第 4 版)[M]. 高等教育出版社, 2010.01.
F ( )
1

2
[ xJ1 ( x) x] 0
F ( )
1

2
[ xJ1 ( x)] 0
渐进
渐近
a k cos a, b k sin a eikp cos( a )

数学物理方法梁昆淼答案

数学物理方法梁昆淼答案

数学物理方法梁昆淼答案【篇一:第五章傅里叶变换数学物理方法梁昆淼】>?t1.函数 f(t)???0?12. 函数 f(t)???03.设(|t|?1)(|t|?1)的傅里叶变换为2(?cos??sin?/?)/(??)(|t|?1)(|t|?1)的傅里叶变换为f(?)?2sin?/??。

的傅立叶变换像函数,的傅立叶变换像函数为 _______________________ 。

4.?2012?2011excosx??(x??) dx?[sinx??(x??e??。

5. ?12009?6 ?2008) ]dx? 6.?xsinx?(x? ?1?3) dx?。

7. ?xsinx?(x?) dx? ?128.?[(x2?1)tan(sinx)??(x?)] dx? 。

?201038?911??9.?x3 ?(x?3) dx?-27 。

?tf(t)?10.函数 ??0(|t|?1)(|t|?1)的傅里叶变换为2(?cos??sin?/?)/(??)。

(0?t?1)?1?(?1?t?0)的傅里叶变换为。

11. f(t)???1?0(|t|?1)?12. 在(??,?)这个周期上,f(x)?x。

其傅里叶级数展开为?k?1?2sinkx k13.当0?x?2时,f(x)??1;当?2?x?0时,f(x)?1;当|x|?2时,f(x)?0。

则函数的f(x)傅里叶变换为b(?)?2??(1?cos2?)1?14已知函数f(x)的傅里叶变换为f(?),试证明f(ax)的傅里叶变换为f()。

af[f(ax)]?1?2????f(ax)e?i?xdx【令x?y/a】?1?2????f(y)e?i?aydya【令y?x】?1?f(x) ?i?ax2????aedx?1?af(a)a---(2分) ---(2分) ---(2分) ---(2分) 证明:【篇二:8000份课程课后习题答案与大家分享~~】> 还有很多,可以去课后答案网(/bbs)查找。

第四章 留数定理 习题梁昆淼数学物理方法

第四章 留数定理    习题梁昆淼数学物理方法

第四章 留数定理1. 函数z ze z f /1)(=在0=z 的奇点类型为 本性奇点 ,其留数为 1/2 。

2. 设n m ,为整数,则=⋅⎰-dx nx mx )cos (sin ππ0 。

3.函数23)(22+++=z z z z z f 有____1___个极点,为_____1____阶极点,在极点处的留数为____________-2____________。

4.为的单极点,则为__________________。

5.函数sin /()z z f z e =在0=z 的奇点类型为 可去奇点 ,其留为 06.函数43)(22-+-=z z zz z f 有________个极点,为__________阶极点;在极点处的留数 为________________________。

7.为的 。

A) 单极点 B) 二阶极点C) 三阶极点 D) 四阶极点8.已知函数,试判断是的几阶极点,然后计算、和在的留数,再利用所得结果给出在的邻域上洛朗展开级数的前三项。

(注意:此题亦可用的泰勒展开直接求出的洛朗展开的前几项,然后利用所得结果求出留数。

)9.求函数的奇点所在的位置,然后计算积分。

10.用留数定理计算复积分⎰=-+=2/3||22)2)(1(z z z dzI 。

解: 回路内有两个一阶极点.,21i z i z -== (2分)其留数为分)(350/)34(])2(2/[1])2)(/[(1lim )]()[(lim )(Re 22221i i i z i z z f i z z sf iz iz -=-=-+=-=→→分)(350/)34(])2(2/[1])2)(/[(1lim )]()[(lim )(Re 22222i i i z i z z f i z z sf iz iz +=---=--=+=→-→25/8))(Re )((Re 221i z sf z sf i I ππ=+= (2分)。

梁昆淼-数学物理方法

梁昆淼-数学物理方法

xat
2d
2
2a xat
cos x cos at 2t
( x)
u0
x1
x2
x1 x2
2
u(x,t) t0 (x)
例:求定解问题
utt a2uxx 0
ut (x,t) t0 0
2u0
x x1 x2 x1
x1

x

x1
2
x2
2u0
x2 x x2 x1
x1
x2 2

x

x2
0
x x1, x x2
u(x,t) 1 [(x at) (x at)]
2
u(x,t) 1 [(x at) (x at)]
2
u0
x1
x2
t 0
t t1 t t2
(二)、端点反射
utt a2uxx 0
u(x,t) t0 (x) ut (x,t) t0 (x)
Hu0
0 2
例2:一根导热杆由两段构成,两段热传导系数、比热、密
度分别为kI, cI, I, kII, cII, II, 初始温度为u0, 然后保持两端
温度为零,写出热传导问题的定解方程。
解:
第一段
ut I
kI
cI I
uxx I
0
x1
x
x2
x3
uI t0 u0

at)

1 2
(x

at)

1 2a
xat

(
)d

C
x0
2
u 1 [(x at) (x at)] 1

数学物理方法第1章复变函数-2016解答

数学物理方法第1章复变函数-2016解答

【解】 设方根为 w k ,根据上面公式有
wk

1 e n
i 2kπ n
k 0,1,2,…,n 1
当 n=2 时,其根为 1. 对应于单位圆与实轴
的两交点.
22
当 n 3 时,各根分别位于单位圆 z 1的内接正多边
形的顶点处,其中一个顶点对应着主根: w0 1 , (k 0 ) .
面上的一个矢量, 为矢量长度,
为幅角 。记
z ei
z=x+iy=2k 幅角主值:0 Arg z 2 , Arg z ,
(z 0, ; k 0,1,2,...)
注:arg :argument (幅角、宗量,自变量)
数学物理方程(方法)
共60学时,3学分.
(以课堂讲授为主,加强课前和课后练习)
考试时间:暂定11月30日下午 考核方式:30%作业+70%期末考试
主要参考书目:
1. 梁昆淼 《数学物理方法》(第四版)高等教育出版社. 2. 吴崇试,《数学物理方法》,北京大学出版社 3. 冉扬强,《数学物理方法》, 科学出版社。 4. 王友年等《数学物理方法》,大连理工大学出版社
等式,对于 x 0 ,其辐角不满足要求.
24
1.2 复变函数 (一) 复变函数的定义
在复平面上一点集 E 中每一点z ,都有一个或几个 复数w与之对应,称w为 z 的函数,E 为定义域,记 w =f(z),z E 。z有时称为宗量(argument) 或自变量。 实函数: y=f(x)= ± x^(1/2), x>=0 多值
17
N
A’
A
S
球的南极与复数平面的原 点相切,平面上任意点 A 与球的北极由一条直线相 连,直线与球相交于 A’ 。 由此,每一有限的复数 投 影到球上一点 。这个投影 叫测地投影,这个球叫复 数球。

数学物理方法第一章总结 梁昆淼

数学物理方法第一章总结 梁昆淼

4

5.复变函数特性

复数函数sinz、 cosz、lnz与是实函数的不同之处


复数域内,会有|sinz|≥1,|cosz| ≥ 1 当z为负实数时,复变函数lnz仍有意义, 即lnz=ln(|z|e iπ+i2πn)=ln|z|+i(2n+1)π
5
6.函数f(z)可导的充分必要条件:
必要条件:C-R方程(条件)
i (1 2 )
z1 r1 r1 i (1 2 ) [cos(1 2 ) i sin(1 2 )] e z2 r2 r2 z r (cosn i sin n ) r e
n n n n n in i
2k 2k n z r (cos i sin ) re n n (k 0,1,2 n 1)
7
2、若f(z)=u+iv在B上解析,则u,v均为B上的
调和函数。
调和函数是指,如果某函数H(x,y)在B上有 二阶连续偏导数,且满足拉普拉斯方程, 则称H(x,y)为B上的调和函数。
性质2的应用:
利用给定的二元调和函 数求解析函数: 将已知函数看作某个解 析函数的实部(或虚部 ) 利用C - R条件可以求出相应的虚 部(或实部) 也就确定了这个解析函 数。
8
函数解析
函数可导
C-R方程
第一章 结束
9
第一章总结
1.复数的三种表示形式
(1) 解析(代数)形式 (2) 三角形式
z=x+iy
z r cos ir sin
(3) 指数形式
z re
i
1
2.复数的计算
z1 z 2 ( x1 x2 ) i( y1 y2 )

数学物理方法第一章

数学物理方法第一章

1.1 复数与复数运算
(一)复数的基本概念
复数定义:复数——形如 z=x+iy 的数 (x,y 为实数,i2 =−1,i:虚数单位,一种记号约定)
将有争议的虚数合法化: 一维实数 二维实数
复数的本质:有序实数对 (大x家, 好y)
11
复数 :i2 = −1,为什么?
简单概念的引入可 解决世界性的难题 高斯:正十七边形作图
定义了虚数单位 i=(0, 1)
i 2=-1
复数 z 可记为 zxiy xRe z
特殊的复数:0
y I mz
(x, y) +(0, 0) = (x, y) 大家(好x, y) (0, 0) = (0, 0)
13
复数的共轭: z* x iy 与 z x iy 互为共轭 (xiy)(xiy)x2y2
f (x)
n0
f (n)(0) xn n!

f
(x)
e1/
x2
0
(满足泰勒展开条件)
x 0 在x0各阶导数均存在, x 0 在x=0各阶导数均存在,其值为0
f(x)
f(n)(0)xn 0
n0 n!
大家好
f (x)
4
复变函数论(theory of complex functions): 研究自变量是复数的函数的基本理论及应用的数学分支,
生了一些信心。在18世纪,尽管一些数学家已较为广泛地使用复
数,但无论欧拉还是别的数学家大对家这好 些数都还不甚清楚。
8
Euler 认为复数仅在想象中存在, 1777年,Euler采用 i 代表 1
4 复数真正被接受主要归功于德国数学家高斯 (C.F.Gauss,1777-1855), 1799年,他把复数的 思想融入到对代数学基本定理的证明中。

数理方法题解 梁昆淼

数理方法题解 梁昆淼

∂u ∂ρ
=
1 ρ
∂v ∂ϕ
1
ρ
∂u ∂ϕ
=

∂v ∂ρ
第18页 2 .已知解析函数f (z)的实部u(x, y)或虚部v(x, y), 求该解析函数 以下题目可以有多种解法 这里只列其中之一
(1) u(x, y) = e x sin y
解 已知实部或虚部 一般意味它们已经是调和函数 可以验证
=
x2
x +
y2
=2

x2
+
y2

x 2
=
0

x −
1 4
2
+
y2
=
1 16
=
1 4
2
以上即为园方程 圆心在 1/4, 0 半径 1/4.
o1
2

x
>
1 2
的半平面
Y Z
O
1
X
2
第5页 2 . 把下列复数用代数式 三角式和指数式几种形式表示出来
(4) 1 − cosα + i sinα (α 是实常数)
其中
ρ = x2 + y2
ϕ
=
arctg
y x
(6) e1−i
解 e1+i = e × ei = e(cos1 + i sin1)
第9页 2 .计算下列数值 a和b为实常数 x为实变数
(3) ln(−1)
[ ] 解 ln(−1) = ln 1ei(π +2nπ ) = ln1 + i(2n + 1)π = i(2n + 1)π
解 1 − cosα + i sinα = ρ(cosϕ + i sinϕ ) = ρeiϕ

梁昆淼数学物理方法

梁昆淼数学物理方法

Copyright 2004-2011 Aspose Pty Ltd.
u(x) tt0
2h
(l x) [l / 2,l]
l
速度满足 ut (x, y, z,t) tt0 0
二、边界条件
第一类边 界条件
u(x, y, z,t) x0 y0 z0 f (x0,Байду номын сангаасy0, z0,t)
第二类边
(Yu
Copyright
x xa )S
2004-2011
f (t)
AsposuexPxtyaLtdf.Y(St
)
如杆端自由 f(t)=0
ux xa 0
B)、热传导
如细杆热传导端
点有热量流出 0
x a
eaqtexdxwaithCAosppkyorusigen.hSxtl2Eiad0ve0as4luf-o2akrt0i.1oN1nuExAoTnsxpl3yo..a5seCPlitfeyn(Lt)tPdr.ofile 5.2.0
( a )( a )u 0 t x t x
令: x a( )
t
eated with Aspose.tSlEitdveaslufxoarti.oxNnEoTntl3y..5aClxient Profile 5.2.0
( x )
Client Profile 5.2.0
Copyriguht 2f010(x4-2a0t1)1Afs2p(oxseaPtt)y Ltd.
求导有 ut af1'(x at) af2'(x at)
f1(x) f2(x) (x)
af1'(x) af2 '(x) (x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档