圆柱的体积公式推导ppt课件

合集下载

圆柱体积PPT课件xiod

圆柱体积PPT课件xiod
积越大。
(× )
4分米 10分米
0.8米
求各圆柱的 体积。
0.5分米
圆柱形水桶内所盛水的体积,就 叫做这个圆柱形容器的容积。
做一做
(1)一根圆柱形木料,底面积为75平方 厘米,长90厘米,它的体积是多少?
75×90=6750(立方厘米)
答:它的体积是6750立方厘米。
一、复习旧知
请你说一说如何计算 能不能将圆柱转化成我 圆柱的体积怎样计 你会计算上面这些图形的 长方体、正方体的体 算呢? 们学过的立体图形,计 体积吗? 积? 算出它的体积呢?

图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

图1 :
h=h

讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
谢 谢
做一做
(2)、一个圆柱行罐头盒的 内底面半径是5厘米,高15厘 米。它的容积是多少? 3.14×5×15
2
判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( ×) (2)圆柱体的高越长,它的体积越大。( ×) (3)圆柱体的体积与长方体的体积相等。(× )
真 棒!

长 宽 棱长
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
v =a b h

v 正 =a
V=s底 h
3
圆柱体积的大小与哪些条件有关?

圆柱体课件

圆柱体课件

圆柱体基本属性
高度
圆柱体的高度是底面和顶面之 间的距离。
半径
圆柱体的底面和顶面的半径是 圆的半径。
侧面积
圆柱体的侧面积是侧面展开后 的面积,计算公式为 $2\pi rh$ ,其中 $r$ 是底面半径,$h$ 是高度。
体积
圆柱体的体积是底面积乘以高 度,计算公式为 $\pi r^2 h$, 其中 $r$ 是底面半径,$h$ 是
圆柱体的表面积
• 表面积:圆柱体的表面积包括两个底面圆和一个侧面,计算公 式为 $S = 2\pi r^2 + 2\pi rh$。
03
CATALOGUE
圆柱体的体积
体积的计算公式
圆柱体体积公式
V = πr²h,其中r是底面半径,h是高。
公式推导
通过将圆柱体分割成无数个小的长方体,再求和得到圆柱体的体积。
车床
使用车床对圆柱体进行车削加 工。
铣床
使用铣床对圆柱体进行铣削加 工。
钻床
使用钻床对圆柱体进行钻孔加 工。
其他加工方法
3D打印
使用3D打印技术制作圆柱体。
铸造
通过铸造工艺制作圆柱体。
锻造
通过锻造工艺制作圆柱体。
06
CATALOGUE
圆柱体在日常生活中的应用案例
建筑领域中的应用案例
桥梁结构
圆柱体在桥梁建设中被广泛应用 ,作为桥墩或支撑结构,提供稳
不同形状的圆柱体体积比较
不同形状的圆柱体
例如,底面为圆形的圆柱体、底面为正方形的圆柱体等。
体积比较
不同形状的圆柱体,其体积计算公式不同,但可以通过比较 底面积和高来比较它们的体积大小。
圆柱体体积的应用
计算物体体积
机械制造

圆柱体积公式推导课件(动画演示)

圆柱体积公式推导课件(动画演示)
利用率。
圆柱体的局限性
由于圆柱体的形状限制,它可能 不适合所有应用场景。例如,在 需要更复杂形状或特定功能的场
合,其他形状可能更适合。
02
圆柱体积公式推导
圆柱体积公式推导的背景
圆柱体是三维空间中常见的几何形状之一,其体积计算在数学、物理、工程等领域 具有广泛的应用。
圆柱体积公式推导的目的是为了解决实际问题,如计算圆柱形物体的容积、液体或 气体的体积等。
圆柱体积公式的推导过程。
圆柱体积公式的应用
圆柱体积公式可以应用于计算 圆柱形物体的容积,如水桶、 油罐等。
圆柱体积公式也可以用于计算 液体或气体的体积,如在化学 实验、流体动力学等领域的应 用。
圆柱体积公式还可以用于计算 圆柱形物体的质量、密度等物 理量,如在物理学、工程学等 领域的应用。
03
动画演示
未来圆柱体积公式推导的应用前景
随着数学教育的不断深入和普及,圆柱体积公式的推导将会被广泛应用于各个领 域。同时,随着虚拟现实技术的不断发展,未来的圆柱体积公式推导将会更加真 实、生动和有趣。
THANKS
感谢观看
圆柱体与球体的关系
球体的体积是圆柱体的2/3,但它们的 表面积相等。
05
总结与展望
总结圆柱体积公式推导的过程
圆柱体积公式推导过程
通过动画演示,将圆柱体切割成无数个小的长方体,然后 分别求出这些小长方体的体积,最后将这些体积相加,得 到圆柱体的总体积。
动画演示的优点
通过动画演示,可以直观地展示圆柱体被切割和重组的过 程,帮助学生更好地理解圆柱体积公式的推导过程。
圆柱体积公式推导课件(动画演示)
目 录
• 圆柱体介绍 • 圆柱体积公式推导 • 动画演示 • 圆柱体积公式的实际应用 • 总结与展望

圆柱的体积公式推导

圆柱的体积公式推导
长方体的体积=圆柱体的体积
12×12×50=7200(立方厘米) 7200 ÷90=80(厘米)
答:这根钢材长80厘米。
1.5米=150厘米 50×150=7500(立方厘米)
答:它的体积是7500立方厘米。
3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
直柱体的体积 = 底面积×高
V =s h
2、 一根方钢长50厘米,底面是边长 12厘米的正方形。如果把它锻造成底 面面积是90平方厘米的圆柱形钢材, 这根钢材长多少厘米?
把圆柱的底面平均分的份数越多, 切拼成的立体图形越接近长方体。
1、拼成的长方体的体积与原来的 圆柱体体积是否相等?
2、它的底面积变了吗? 3、它的高变了吗?
底面积 = 底面积
高=

因为 长方体的体积=底面积×高
所以 圆柱体的体积=底面积×高
V = 圆柱 s h V = 圆柱 π r ×2 h
圆柱体的大小与底面积有关! 高相等时底面积越大的体积越大。
将一个圆柱截成不相等的两段,哪个圆柱体积大?
下 上
当底面积相等时,高越长的体积越大。
圆柱的体积与什么有关呢?
圆柱的底面积和高
圆面积计算公式的推导过程( 转换) Nhomakorabea圆
长方形
运用了什么数学思想?
?
怎样求圆柱体的体积呢? 能不能也把它转换成我们学过 的图形进行思考呢?
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积×高
圆柱体积的大小与哪些条件有关?
h=h


讨论: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?

《圆柱的体积(1)》(课件)-六年级下册数学人教版

《圆柱的体积(1)》(课件)-六年级下册数学人教版

(3) 把一个棱长为10分米的正方体木块削成一个最大的圆柱,
这个圆柱的体积是( B )立方分米。
A.100
B.785
C.78.5
D.314
(4) 圆柱的底面半径和高都扩大到原来的2倍,它的体积扩大
到原来的( C )倍。
A.2
B.4
C.8
D.6
2 挖一口圆柱形水井,地面以下的井深为10m,底面直径 为1m。挖出的土有多少立方米?(教材P24第2题)
V=75×90=6750(cm3) 答:它的体积是6750cm3。
3 一个圆柱形的水池,从里面量底面半径是5m,深是3.2m。 这个水池能蓄水多少吨?(1m3的水重1t。) (教材P25第2题)
V=3.14×52×3.2=251.2(m3)=251.2(t)
答:这个水池能蓄水251.2t。
当堂练习 及时反馈
2 下图中的圆柱与长方体的体积相等。这个圆柱的高是多 少?(单位:dm)
15.7
12
3
V=15.7×6×3=282.6(dm3) h=282.6÷[3.14×(12÷2)2]=2.5(dm) 答:这个圆柱的高是2.5dm。
3 如图,一根长6m的圆木,如果把它截成三段,表面积就 增加942cm2。原来这根原木的体积是多少立方米?
7 cm 6 cm
一个圆柱所占空间的大小, 叫作这个圆柱的体积。
怎样计算圆柱的体积呢?
合作交流 探索新知
探究圆柱的体积计算公式
想一想:圆的面积公 式是怎样推导的呢?
34 56
2
7
1
8
16
9
15

10
1413 12 11
12345678 9 10 11 12 13 14 15 16

圆柱体积公式ppt课件

圆柱体积公式ppt课件

02
圆柱体积公式
V=πr2hpi r^2 hπr2h(其中 r 是圆柱的底面半径,h 是圆柱的高)。
03
比较
球体体积公式和圆柱体积公式在形式上有所不同,但它们都涉及到半径
的平方和高的乘积。在某些情况下,可以通过调整球体和圆柱的半径和
高,使它们的体积相等。
圆柱体积公式与长方体体积公式的比较
长方体体积公式
V=lwhtext{V} = l w hV=lwh(其中 l 是长方体的长度,w 是宽度,h 是高度)。
圆柱体积公式
V=πr2hpi r^2 hπr2h(其中 r 是圆柱的底面半径,h 是圆柱的高)。
比较
长方体体积公式和圆柱体积公式在形式上有所不同,但它们都涉及到三个维度的乘积。长 方体的三个维度可以看作是圆柱底面半径、高和任意一个垂直于底面的直径。
圆柱体与球体的组合
圆柱体与平面体的组合
在机械工程中,经常将圆柱体和球体 组合使用,如轴承、滚珠丝杠等。
在电子、通信等领域中,经常将圆柱 体和平面体组合使用,如微波传输线 、天线等。
圆柱体与圆锥体的组合
在建筑工程中,经常将圆柱体和圆锥 体组合使用,如混凝土桩基、隧道设 计等。
THANKS
感谢观看
圆柱体的基本属性
总结词
圆柱体的基本属性包括底面半径、高 、底面周长和表面积等。
详细描述
圆柱体的底面半径是底面圆的半径, 高是旋转轴到圆柱体底面的距离。底 面周长是圆的周长,表面积是圆柱体 侧面积和两个底面积的总和。
圆柱体的应用
总结词
圆柱体的应用广泛,包括建筑、机械、化工等领域。
Байду номын сангаас
详细描述
在建筑领域,圆柱体常用于支撑结构,如桥梁和高层建筑的立柱。在机械领域, 圆柱体用于各种旋转机械的主体结构,如电机转子、泵和涡轮机等。在化工领域 ,圆柱形容器常用于存储液体和气体,如储罐和反应釜。

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)

苏教版六年级下册数学《圆柱的体积》圆柱和圆锥PPT(第2课时)
(打结处大约用彩带15厘米) (1)S=2πrh+2πr²=2×3.14×15×20+2×3.14×15²=3297(cm²)
(2)l=4h+4d+15=4(20+30)+15=215cm
教学新知
练一练:一个用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个半径 2米的半圆形。
(1)搭建这个大棚大约要用多少 平方米的塑料薄膜?
(1)V=sh=4²π×3.5=175.84(m³) 175.84m³=175.84t (2)S=2πrh+πr²=2×3.14×4×3.5+3.14×4²=138.16(m²)
教学新知
试一试:一个圆柱形蛋糕盒,底面半径是15厘米,高是20厘米。 (1)做这个蛋糕盒大约要用硬纸板多少平方厘米? (2)用彩带捆扎这个蛋糕盒(如下图),至少需要彩带多少厘米?
18.84dm
2m
282.6cm² 157cm³
244.92dm² 282.6dm³
37.68m² 15.7m³
教学新知
算一算:一个圆柱形油桶,从里面量,底面直径是40厘米,高是50厘米。 (1)它的容积是多少升? (2)如果1升柴油重0.85千克,这个油桶可装柴油多少千克? (3)做这样一个油桶,至少需要铁皮多少平方分米?(得数保留一位
教学新知
思考: (1)把圆钢竖着拉出水面8厘米,水面下降了 4厘米,你
能想到一些什么? (2)全部浸入,水面上升9厘米,你又能想到什么?怎样
计算出这个圆钢的体积? (3)这题还可以怎样思考?
教学新知
例一:一个圆柱形水桶的容积是80立方分米,里面装了2/5的水。 已知它的底面积是10平方分米,里面水的深度是多少?
教学新知

《圆柱的认识》PPT课件

《圆柱的认识》PPT课件

《圆柱的认识》PPT课件•圆柱基本概念与性质•圆柱表面积计算方法•圆柱体积计算公式及应用目录•典型例题解析与讨论•学生自主操作实践环节•课堂小结与课后作业布置圆柱基本概念与性质圆柱定义及特点圆柱定义圆柱特点底面侧面高030201底面、侧面和高等元素圆柱与长方体关系形状差异01面积与体积计算02应用场景03圆柱表面积计算方法侧面积计算公式推导公式推导圆柱侧面积定义设圆柱底面半径为面展开后矩形的长为底面周长2πr,宽为h。

因此,侧面积注意事项底面积计算方法回顾圆的面积公式圆柱底面积计算注意事项总表面积计算实例演示实例1解法实例2解法圆柱体积计算公式及应用体积计算公式推导过程圆柱体积公式为公式推导实际应用举例分析圆柱形水桶计算水桶能装多少水,需要用到圆柱体积公式。

已知水桶的底面半径和高,即可求出其容积。

圆柱形油罐计算油罐内油的容量,同样需要用到圆柱体积公式。

通过测量油罐的底面半径和高,可以计算出油的容量。

圆柱形零件在机械工程中,经常需要计算圆柱形零件的体积。

已知零件的底面半径和高,即可利用公式求出其体积。

与其他几何体积关系探讨与长方体体积关系与球体体积关系与圆锥体积关系典型例题解析与讨论求表面积或体积类问题01020304例题1解析例题2解析涉及比例关系类问题例题1解析例题2解析例题1解析例题2解析创新题型展示与思路拓展学生自主操作实践环节测量步骤首先使用卷尺或游标卡尺测量圆柱的高度;接着使用直尺或游标卡尺测量圆柱的底面直径。

准备工具卷尺、游标卡尺、直尺等测量工具。

数据记录将测量得到的高度和底面直径数据记录在表格中,以便后续计算使用。

利用工具测量圆柱尺寸计算给定条件下圆柱表面积和体积公式回顾回顾圆柱表面积和体积的计算公式,即表面积=2πrh+2πr²,体积=πr²h。

数据代入将测量得到的圆柱高度和底面直径数据代入公式中进行计算。

结果呈现将计算得到的圆柱表面积和体积结果呈现在表格中,以便后续分析使用。

《圆柱的认识》ppt课件

《圆柱的认识》ppt课件
圆柱的两个底面是相等的圆,侧面 是一个曲面,展开后是一个长方形 或正方形。
底面、侧面和高等元素
01
02
03
底面
圆柱的两个底面是相等的 圆,它们平行且在同一平 面内。
侧面
圆柱的侧面是一个曲面, 它连接着两个底面。

圆柱的高是两个底面之间 的距离,它表示圆柱的竖 直高度。
圆柱与长方体关系
形状差异
圆柱与长方体在形状上有明显差异, 圆柱具有弯曲的侧面和圆形的底面, 而长方体则由六个矩形面组成。
应用场景
圆柱和长方体在实际生活中都有广泛 的应用。例如,圆柱形的容器、管道 和柱子等,长方体的箱子、建筑物和 家具等。
体积计算
虽然形状不同,但圆柱和长方体都可
以通过相应的公式来计算体积。圆柱
的体积公式为V=πr²h,长方体的体积
公式为V=lwh。
02
圆柱表面积计算方法
侧面积计算公式
01
圆柱侧面积 = 底面周长 × 高
《圆柱的认识》ppt课件
目录
• 圆柱基本概念与性质 • 圆柱表面积计算方法 • 圆柱体积计算方法 • 圆柱在日常生活中的应用 • 圆柱相关数学问题探讨 • 总结回顾与拓展延伸
01
圆柱基本概念与性质
圆柱定义及特点
圆柱定义
圆柱是由两个平行且相等的圆面以 及连接这两个圆面的曲面所围成的 几何体。
圆柱特点
已知圆柱底面直径和高, 需先将直径转换为半径 后代入公式求解。
已知圆柱底面积和高, 可直接使用底面积乘以 高求解。
04
已知圆柱侧面积和高, 需通过侧面积公式反推 出底面半径后代入体积 公式求解。
与其他几何体体积比较
与立方体比较
当圆柱的高等于直径时,其体积 最大,超过同等尺寸的立方体。

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

圆柱的体积(圆柱体积公式的推导及计算)_同步课件_小学数学北师大版六年级下册(2022年)

统一公式:V=( Sh )
新知讲解
根据长方体、正方体的体 积计算公式以及左图叠硬 币过程,你能大胆猜想一 下圆柱体的体积应该怎样 求吗?
从叠硬币来看,用“底积 ×高”能计算出圆柱的体积。
新知讲解
你还记我们是如何推导出圆的面积计算公式的吗?
转化的思想
C r
2
新知讲解
a.你准备把圆柱体转化成什 么立体图形?
新知讲解

笑笑了解到一根柱子 从水杯里面量,水
的底面半径为0.4m,高 杯的底面直径是6cm,
为5m。你能算出它的 高是16cm,这个水
体积吗?
杯能装多少毫升水?
柱子的体积: 3.14×0.42×5
=0.5024×5 =2.512(m3)
杯子的容积:
3.14×(6÷2)2×16
=28.26×16 =452.16(cm3) 452.16 cm3=452.16 mL
04
会计算只给底面半径或直径和高的圆柱体的体积。
长方体体积=长×宽×高 正方体体积=边长³ 长(正)方体的体积=底面积×高
新知讲解
回忆了老朋友, 我们再来认识一 位新朋友。
老朋友
新朋友 (圆柱体)
新知讲解
他们在讨论什么问题呢?
一个圆柱体所占空间的大小叫做圆柱的体积。
新知讲解
你能根据已有知 识补充完整并用 语言来叙述吗?
V=( abh)
V=( a3 )
新知讲解
1. 想一想,填一填。 (1)7.8立方米=( 7800 )立方分米
3升56毫升=( 3056 )毫升=( 3056 )立方厘米 (2)一个圆柱形水杯(水杯厚度忽略不计),它的底面积是10 cm2, 高是12 cm,则这个水杯可以装水 ( 0.12 )升。 (3)一个圆柱的体积是62.8立方厘米,底面半径是2厘米,则高是 ( 5 )厘米。

圆柱的认识ppt

圆柱的认识ppt

圆柱的认识1. 简介圆柱是一种具有柱形结构的几何体,由两个平行的圆面和一个连接两个圆面的侧面组成。

圆柱是常见的几何体之一,广泛应用于工程、建筑、数学等领域。

2. 基本属性圆柱具有以下基本属性: - 高度(Height):圆柱的两个平行圆面之间的距离称为高度。

- 半径(Radius):圆柱的平行圆面的半径相等,称为圆柱的半径。

- 直径(Diameter):圆柱的平行圆面的直径相等,是半径的两倍。

3. 圆柱的公式根据圆柱的基本属性,可以得到以下公式:3.1 圆柱的体积圆柱的体积(Volume)可以通过以下公式计算:V = π * r^2 * h其中,V表示圆柱的体积,π是圆周率(约等于3.14159),r表示圆柱的半径,h表示圆柱的高度。

3.2 圆柱的表面积圆柱的表面积(Surface Area)可以通过以下公式计算:A = 2πr^2 + 2πrh其中,A表示圆柱的表面积,π是圆周率,r表示圆柱的半径,h表示圆柱的高度。

4. 应用领域圆柱在各个领域都有广泛的应用,以下是一些典型的应用案例:4.1 工程建筑圆柱可以用于建筑物的结构设计,如水塔、烟囱等。

圆柱的稳定结构使其成为承载大量重量的理想选择。

4.2 数学几何圆柱是数学几何学中的一个重要概念,通过研究圆柱的特性和性质,可以推导出许多几何学定理和公式,对数学学科的发展起到促进作用。

4.3 食品加工食品加工行业中常使用圆柱形的容器如罐子、桶子等进行存储和包装,圆柱形状可以最大限度地节省空间,提高存储效率。

5. 总结圆柱是一种常见的几何体,具有独特的形状和特性。

通过了解圆柱的基本属性和公式,可以更好地理解和应用圆柱在各个领域中的作用。

无论在工程、建筑、数学还是食品等领域,对圆柱的认识都是至关重要的。

希望通过本文档的介绍,对圆柱的认识有所加深,能够在实际应用中更好地运用圆柱的知识。

圆柱的体积公式推导

圆柱的体积公式推导

课堂总结
谢谢观看
第四十三页,共43页。
课堂探究
第三十三页,共43页。
课堂探究
第三十四页,共43页。
课堂探究
第三十五页,共43页。
课堂探究
第三十六页,共43页。
课堂探究
第三十七页,共43页。
课堂探究
长方体的体积=底面积×高
第三十八页,共43页。

课堂探究
长方体的体积=底面积×高 底面积
第三十九页,共43页。
课堂探究
第四页,共43页。
课堂探究
第五页,共43页。
课堂探究
第六页,共43页。
课堂探究
第七页,共43页。
课堂探究
第八页,共43页。
课堂探究
第九页,共43页。
课堂探究
第十页,共43页。
课堂探究
第十一页,共43页。
课堂探究
第十二页,共43页。
课堂探究
第十三页,共43页。
课堂探究
〔 〔
体〕积〕,那,么“,S 圆〞柱表体示体〔积底用面字积母〕表,示“为h〞表示
〔 v高=sh〕。
第四十一页,共43页。
课堂练习
试 一试
一根圆柱形钢材,底面 积是2,高是15cm。它的
体积是多少?
圆柱体积=底面积×高 28.6×15=429〔cm2〕
答:它的体积是429cm2 。
第四十二页,共43页。
长方体的体积=底面积×高
圆柱体的体积v==s底h 面积 ×高
第四十页,共43页。
课堂练习——填一填
把圆柱体切割拼成近似〔 长方体〕,它们的 〔 体积〕相等。长方体的高就是圆柱〔 〕高,长
方体的底面积就是圆柱体(
的体积=(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级下册第二单元
圆柱的体积 公式推导
•1
课堂引入
怎么计算圆柱的体积?
•2
课堂引入

宽 长
长方体的体积=长×宽×高
棱长
正方体的体积=棱长×棱长×棱长
v长=a b h
v正 =a3
v=s 底h
•3
课堂探索
圆柱体积的大小与哪些条件有关?
底面积 高
怎样计算圆柱体的体积呢?
•4
课堂探索
•5
课堂探索
长方体的体积=底面积×高 底面积
•39
课堂探索
长方体的体积=底面积×高 圆柱体的体积=底面积×高
•40
课堂练习——填一填
把圆柱体切割拼成近似(
),它们的
( )相等。长方体的高就是圆柱( ),
长方体的底面积就是圆柱体(
),因为长
方体的体积=( 底面积×高 ),所以圆柱体的体
积=( 底面积×高 )。用字母“V ”表示
( ),“S ”表示(
),“h”表
示( ),那么,圆柱体体积用字母表示为
( )。
•41
课堂练习
试 一试
一根圆柱形钢材,底面 积是28.6cm2,高是15cm。 它的体积是多少?
圆柱体积=底面积×高
28.6×15=429(cm2)
答:它的体积是429cm2 。
•42
课堂总结
谢谢观看
•43
•6
课堂探索
•7
课堂探索
•8
课堂探索
•9
课堂探索
•10
课堂探索
•11
课堂探索
•12
课堂探索
•13
课堂探索
•14
课堂探索
•15
课堂探索
•16
课堂探索
•17
课堂探索
•18
课堂探索
•19
课堂探索
•20
课堂探索
•21
课堂探索
•22
课堂探索
•23
课堂探索
•24
课堂探索
•25
课堂探索
•26
课堂探索•27课堂来自索•28课堂探索
•29
课堂探索
•30
课堂探索
•31
课堂探索
•32
课堂探索
•33
课堂探索
•34
课堂探索
•35
课堂探索
•36
课堂探索
•37
课堂探索
长方体的体积=底面积×高 高
•38
课堂探索
相关文档
最新文档