《不等式》单元测试卷(含详解答案)

合集下载

成都七中(高新校区)必修五第三章《不等式》检测卷(包含答案解析)

成都七中(高新校区)必修五第三章《不等式》检测卷(包含答案解析)

一、选择题1.已知实数满足约束条件020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2z x y =-的最小值为( )A .4-B .3-C .2-D .1-2.不等式20ax bx c -+>的解集为{}|21x x -<<,则函数2y ax bx c =++的图像大致为( )A .B .C .D .3.已知0x >,0y >,21x y +=,若不等式2212m m x y +>+恒成立,则实数m 的取值范围是( )A .4m ≥或2m ≤-B .2m ≥或4m ≤-C .24m -<<D .42m -<<4.设x ,y 满足约束条件4100,20,0,0,x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩则23z x y =-的最大值为( )A .10B .8C .5D .6- 5.不等式112x x ->+的解集是( ). A .{}|2x x <-B .{}|21x x -<<C .{}|1x x <D .{}|x x ∈R 6.若正数x ,y 满足35x y xy += ,则43x y + 的最小值为( )A .275B .245 C .5 D .6 7.函数()21f x nx x =+- (0,)bx a b a R +>∈的图像在点()(),b f b 处的切线斜率的最小值是( )A .2B 3C .1D .28.若实数,x y 满足约束条件22x x y y x ≤⎧⎪+≥⎨⎪≤⎩,则z x y =+的最大值为( )A .5B .4C .3D .29.已知直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,则124123a b +++的最小值为( ) ABCD10.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧ B .()()p q ⌝∧⌝ C .()p q ⌝∧ D .()p q ∧⌝11.设实数,x y 满足2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则112z x y =+的取值范围是( ) A .514z ≤≤ B .1524z ≤≤ C .112z ≤≤ D .312z ≤≤ 12.已知实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则2x y +的最大值为( )A .2B .8C .11D .13二、填空题13.123,,x x x 为实数,只要满足条件1230x x x >>>,就有不等式121233log 20202log 2020log 2020x x x x x x k +≥恒成立,则k 的最大值是__________.14.若,x y 满足约束条件5,5,25,x y x y x y +⎧⎪-≥-⎨⎪-≤⎩则25x y +=的整数解的个数为___________.15.已知x ,y 满足约束条件21034032120x y x y x y ++⎧⎪-+⎨⎪-+⎩,则3z x y =+的最大值为___________.16.已知变量x ,y 满足430401x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),x y 对应的区域的222x y xy +的最大值为______.17.设ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且3cos 2cos a C c A b ⋅=⋅+,则()tan A C -的最大值为__________.18.若x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则z =__________.19.已知实数x ,y 满足约束条件2020220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,则2z x y =+的最小值为________.20.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 三、解答题21.已知函数()2f x x ax b =--. (1)若关于x 的不等式()0f x <的解集为{}2|5x x -<<,求关于x 的方程()13218x x x a b --=的解;(2)若()()11f x f x +=-,且()f x 在()0,3上有两个零点,求实数b 的取值范围. 22.已知函数2()31f x ax x =+-;(1)若()0f x <的解集为(1,)b -,求()f x 的零点,(2)若()f x 在(1,1)-内恰有1个零点,求a 的取值范围.23.已知函数2()12a f x x x =-+ (1)若()0f x ≥,在R 上恒成立,求实数a 的取值范围;(2)若[]1,2,()2x f x ∃∈≥成立,求实数a 的取值范围.24.已知关于x 的一元二次不等式2(3)30x m x m -++<.(Ⅰ)若不等式的解集为(2,3)-,求实数m 的值;(Ⅱ)若不等式的解集中恰有两个整数,求实数m 的取值范围. 25.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.26.如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式;(2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】 根据约束条件作出可行域,将目标函数变形为122z y x =-,通过平移直线法可求出2z -的最大值,从而可得z 的最小值.【详解】作出已知不等式组所表示的平面区域,如图所示:将目标函数2z x y =-变形为122z y x =-,由图可知当直线经过点(0,2)A 时,截距2z -最大,所以,2z x y =-的最小值为4-.故选:A【点睛】方法点睛:解决线性规划问题的关键是正确地作出可行域,准确地理解z 的几何意义,求最优解时采用“平移直线法”. 利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.2.C解析:C【分析】根据一元二次不等式的解集与一元二次方程的解求出,,a b c 的关系,然后再判断二次函数的图象.【详解】∵不等式20ax bx c ++>的解集为{}|21x x -<<, ∴21210b a c a a ⎧-+=⎪⎪⎪-⨯=⎨⎪<⎪⎪⎩,∴20b a c a a =-⎧⎪=-⎨⎪<⎩, 2222(2)y ax bx c ax ax a a x x =++=--=--,图象开口向下,两个零点为2,1-.故选:C .【点睛】 关键点点睛:本题考查一元二次不等式的解集,二次函数的图象,解题关键是掌握一元二次不等式的解集与一元二次方程的解、二次函数的图象之间的关系.3.D解析:D【分析】 先根据已知结合基本不等式得218x y +≥,再解不等式228m m +<即可得答案. 【详解】解:由于0x >,0y >,21x y +=, 所以()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即122x y ==时等号成立,由于不等式2212m m x y+>+成立, 故228m m +<,解得:42m -<<.故实数m 的取值范围是:42m -<<.故选:D.【点睛】本题考查利用基本不等式求最值,一元二次不等式的解法,考查运算能力,是中档题. 4.C解析:C【分析】作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可.【详解】画出约束条件所表示的平面区域,如图所示,由23z x y =-得到233z y x =-, 平移直线233z y x =-,当过A 时直线截距最小,z 最大, 由04100y x y =⎧⎨--=⎩ 得到5(,0)2A , 所以23z x y =-的最大值为max 523052z =⨯-⨯=, 故选C .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.5.A解析:A分析:首先对原式进行移项、通分得到302x ->+,之后根据不等式的性质可得20x +<,从而求得不等式的解集. 详解:将原不等式化为1202x x x --->+,即302x ->+, 即302x <+,则有20x +<,解得2x <-, 所以不等式102x x ->+的解集为{}|2x x <-,故选A. 点睛:该题是一道关于求不等式解集的题目,解答该题的关键是熟练掌握分式不等式的解法,属于简单题目.6.A解析:A【解析】正数x ,y 满足35x y xy +=,则13155y x+=,()13492743433355555x y x y x y y x y x ⎛⎫+=++=++≥+= ⎪⎝⎭故答案为A.点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中.7.D解析:D【分析】先求导数,根据导数几何意义得切线斜率,再根据基本不等式求最值.【详解】11()2()2f x x b k f b b x b ''=+-∴==+≥= ,当且仅当1b =时取等号,因此切线斜率的最小值是2,选D.【点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化. 在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.B【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求目标函数的最大值.【详解】解:作出不等式组对应的平面区域如图:由z x y =+得y x z =-+,平移直线y x z =-+,由图象可知当直线y x z =-+经过点B 时,直线y x z =-+的截距最大,此时z 最大.由2x y x=⎧⎨=⎩解得(2,2)B . 代入目标函数z x y =+得224z =+=.即目标函数z x y =+的最大值为4.故选:B .【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键,属于中档题.9.C解析:C【分析】由题意可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5),将所求式子化为b 的关系式,由基本不等式可得所求最小值.【详解】直线l 的方程为2x +3y =5,点P (a ,b )在l 上位于第一象限内的点,可得2a +3b =5,a ,b >0,可得4a =10﹣6b ,(3b <5), 则1216412311696a b b b+=+++-+ 120=[(11﹣6b )+(9+6b )](1611696b b +-+)120=(7()61169611696b b b b -+++-+)72620+≥, 当且仅当()61169611696b b b b -+=-+时,即b 1546-=,a 465-=,上式取得最小值726+, 故选:C .【点评】本题考查基本不等式的运用:求最值,考查变形能力和化简运算能力,属于中档题. 10.A解析:A【分析】由约束条件作出可行域,由y z x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案.【详解】 解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式y z x =表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题;故选:A【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.11.B解析:B【分析】画出不等式组对应的平面区域,由,x y 都取最大值得出z 的最小值,当z 取最大值时,点(),x y 落在直线250x y +-=上,再结合基本不等式得出z 的最大值.【详解】该不等式组对应的平面区域如下图所示由可行域易知,当4,2x y ==时,112z x y =+取得最小值111442+= 当点(),x y 落在直线250x y +-=上时,112z x y =+取得最大值 此时25x y +=,2225224x y xy +⎛⎫≤= ⎪⎝⎭ 112542225x y z x y xy xy +∴=+==≥ 当且仅当2x y =,即55,24x y ==时取等号,显然55,24⎛⎫ ⎪⎝⎭在可行域内 即1524z ≤≤ 故选:B【点睛】 关键点睛:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.12.C解析:C【分析】根据条件作出可行域,根据图形可得出答案. 【详解】由实数x ,y 满足2402401x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,作出可行域,如图.设2z x y =+,则化为2y x z =-+ 所以z 表示直线2y x z =-+在y 轴上的截距.2401x y y -+=⎧⎨=-⎩可得()6,1A --,2401x y y +-=⎧⎨=-⎩可得()61B -, 根据图形可得,当直线2y x z =-+过点()61B -,时截距最大, 所以2z x y =+的最大值为11. 故选:C【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.二、填空题13.【分析】根据对数的运算性质可得设原不等式可化为由可得令小于等于的最小值即可【详解】由题意设则又所以原不等式可化为由可得则原不等式可化为又当且仅当时等号成立所以即的最大值为故答案为:【点睛】关键点点睛 解析:322+【分析】根据对数的运算性质,可得1212lg 2020log 2020lg lg x x x x =-,23232lg 20202log 2020lg lg x x x x =-,1313lg 2020log 2020lg lg x x k k x x =-,设12lg lg a x x =-,23lg lg b x x =-,原不等式可化为12k a b a b +≥+,由0,0a b >>,可得()12k a b a b ⎛⎫≤++ ⎪⎝⎭,令k 小于等于()12a b a b ⎛⎫++ ⎪⎝⎭的最小值即可. 【详解】 由题意,121122lg 2020lg 2020log 2020lg lg lg x x x x x x ==-,2322332lg 20202lg 20202log 2020lg lg lg x x x x x x ==-,131133lg 2020lg 2020log 2020lg lg lg x x k k k x x x x ==-, 设12lg lg a x x =-,23lg lg b x x =-,则13lg lg x x a b -=+, 又lg 20200>,所以原不等式可化为12ka b a b+≥+, 由1230x x x >>>,可得0,0a b >>,则原不等式可化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭, 又()1221233b a a b a b a b ⎛⎫++=+++≥+=+⎪⎝⎭2b a a b =时,等号成立,所以3k ≤+k的最大值为3+故答案为:3+ 【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为()12k a b a b ⎛⎫≤++ ⎪⎝⎭.本题中利用对数的运算性质,将三个对数转化为以10为底的对数,进而设12lg lg a x x =-,23lg lg b x x =-,可将原不等式化为12k a b a b+≥+,进而结合,a b 的范围可得到()12k a b a b ⎛⎫≤++ ⎪⎝⎭.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.4【分析】先画出约束条件所表示的平面可行域然后根据画出所表示的直线确定边界再求解满足上整数点的个数【详解】作出不等式组表示的平面区域如图中阴影部分所示作出直线直线与可行域的边界交于两点由解得又且当时解析:4 【分析】先画出约束条件所表示的平面可行域,然后根据画出25x y +=所表示的直线确定边界,再求解满足25x y +=上整数点的个数.【详解】作出不等式组表示的平面区域如图中阴影部分所示,作出直线25x y +=,直线52y x =-与可行域的边界交于,B D 两点, 由25,25,x y x y +=⎧⎨-=⎩解得3,(3,1)1,x D y =⎧∴-⎨=-⎩, 又(0,5),[0,3],[1,5]B x y ∴∈∈-,且,x y Z ∈,当0x =时,5y =;当1x =时3y =; 当2x =时,1y =;当3x =时,1y =-, ∴整数解的个数为4. 故答案:4. 【点睛】关键点点睛:该题考查线性规划问题,考查最优解的整数点的个数问题,正确解题的关键是画出可行域.15.-2【分析】根据条件作出可行域由目标函数表示的几何意义可得答案【详解】由xy 满足约束条件作出可行域如图将化为表示直线在轴上的截距由图可知当直线过点时直线在轴上的截距最大此时最大由解得所以的最大值为故解析:-2 【分析】根据条件作出可行域,由目标函数表示的几何意义可得答案. 【详解】由x ,y 满足约束条件21034032120x y x y x y ++⎧⎪-+⎨⎪-+⎩,作出可行域,如图.将3z x y =+化为3y x z =-+,z 表示直线3y x z =-+在y 轴上的截距.由图可知,当直线3y x z =-+过点时,直线3y x z =-+在y 轴上的截距最大,此时z 最大.由210340x y x y ++=⎧⎨-+=⎩,解得()1,1C -所以z 的最大值为()3112⨯-+=- 故答案为:-2【点睛】方法点睛:解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.16.【分析】作出可行域令所以利用函数的单调性即可求最值【详解】由解得:所以由解得:所以表示可行域内的点与原点连线的斜率所以令所以在单调递减在单调递增当时当时所以的最大值为故答案为:【点睛】思路点睛:非线解析:53【分析】 作出可行域,令y t x =,OA OB y k k x ≤≤,所以7,313t ⎡⎤∈⎢⎥⎣⎦,22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,利用函数的单调性即可求最值.【详解】由43040x yx y-+=⎧⎨+-=⎩解得:13575xy⎧=⎪⎪⎨⎪=⎪⎩,所以137,55A⎛⎫⎪⎝⎭,由140xx y=⎧⎨+-=⎩解得:13xy=⎧⎨=⎩,所以()1,3B,yx表示可行域内的点与原点连线的斜率,所以OA OByk kx≤≤,707513135OAk-==-,30310OBk-==-,令7,313ytx⎡⎤=∈⎢⎥⎣⎦,所以22111222x y x ytxy y x t⎛⎫+⎛⎫=+=+⎪ ⎪⎝⎭⎝⎭,1y tt=+在7,113⎡⎤⎢⎥⎣⎦单调递减,在[]1,3单调递增,当3t=时,1713109213791y⎛⎫=+=⎪⎝⎭,当75t=时,1153233y⎛⎫=+=⎪⎝⎭,所以222x yxy+的最大值为53,故答案为:53.【点睛】 思路点睛:非线性目标函数的常见类型及解题思路:1.斜率型:()0by ay b a a z ac d cx d c x c++==⋅≠++表示的是可行域内的点(),x y 与点,d b c a ⎛⎫-- ⎪⎝⎭连线所在直线的斜率的ac倍;2.距离型:(1)()()22z x a y b =-+-表示的是可行域内的点(),x y 与(),a b 之间距离的平方;(2)z Ax By C =++=(),x y 到直线0Ax By C ++=倍.17.【分析】利用正弦定理将化为然后利用三角形内角和定理将用代换再利用两角和的正弦公式展开整理可得再由同角三角函数关系可得将其代入展开式消去结合基本不等式即可求出的最大值【详解】解:∵由正弦定理边角互化得解析:12【分析】利用正弦定理将3cos 2cos a C c A b ⋅=⋅+化为3sin cos 2sin cos sin A C C A B ⋅=⋅+,然后利用三角形内角和定理将B 用()A C π-+代换,再利用两角和的正弦公式展开整理可得2sin cos 3sin cos A C C A ⋅=⋅,再由同角三角函数关系可得3tan tan 2A C =,将其代入()tan A C -展开式消去tan A ,结合基本不等式即可求出()tan A C -的最大值. 【详解】解:∵ 3cos 2cos a C c A b ⋅=⋅+由正弦定理边角互化得3sin cos 2sin cos sin A C C A B ⋅=⋅+,又∵ ()()sin sin sin sin cos cos sin B A C A C A C A C π=-+=+=+⎡⎤⎣⎦, ∴ 3sin cos 2sin cos sin cos cos sin A C A C C A A C +⋅=⋅+, ∴ 2sin cos 3sin cos A C C A ⋅=⋅∵ 当cos 0C ≤或cos 0A ≤时,等式不成立, ∴ ,0,2A C π⎛⎫∈ ⎪⎝⎭,3tan tan 2A C =,∴ ()22tan tan tan tan tan tan 112tan ==32123132tan tan tan tan CA C C A C C C A C CC-==++++-,又∵ tan 0C >,∴2tan tan 3C C ≥=+当且仅当23tan tan C C ==,即tan 3C =等号成立, ∴()tan tan tan tan tan tan 1tan =21123A CA CC CA C -≤++-=.故答案为:12【点睛】本题主要考查正弦定理,两角差的正切公式及基本不等式的应用,需要注意的是在利用基本不等式时,要根据条件确定tan 0C >.18.【分析】画出满足条件的平面区域结合的几何意义以及点到直线的距离求出的最小值即可【详解】画出满足约束条件的平面区域如图所示:而的几何意义表示平面区域内的点到点的距离显然到直线的距离是最小值由得最小值是【分析】画出满足条件的平面区域,结合z =z 的最小值即可. 【详解】画出x ,y ,z 满足约束条件4802400x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,的平面区域,如图所示:而22(4)z x y =++的几何意义表示平面区域内的点到点()40-,的距离, 显然()40-,到直线240x y -+=的距离是最小值, 由8445541d -+==+,得最小值是455, 故答案为45. 【点睛】本题主要考查了简单的线性规划问题,考查数形结合思想,属于中档题.19.【解析】作可行域如图则直线z=x+2y 过点A (20)时z 取最小值2点睛:线性规划的实质是把代数问题几何化即数形结合的思想需要注意的是:一准确无误地作出可行域;二画目标函数所对应的直线时要注意与约束条解析:【解析】作可行域,如图,则直线z=x+2y 过点A (2,0)时z 取最小值2.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.20.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)s t s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立.2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.三、解答题21.(1)14x =;(2)10b -<<. 【分析】(1)利用韦达定理求出,a b ,代入()13218x x x a b --=中可得4151x -=,从而解得不等式.(2)由()()11f x f x +=-可得()f x 关于1x =对称,求出a 值.再利用根的分布知识结合二次函数图象求解b 的取值范围. 【详解】解:(1)因为不等式()0f x <的解集为{}25x x -<<, 所以2-和5是方程0f x 的两解,所以5210a b =-⎧⎨-=-⎩即310a b =⎧⎨=⎩所以1313335108,5252x x x x x x x --==, 因为320x >,所以13551x x -=,4151x -= 故14x =()2因为()()11f x f x +=-,所以()f x 的图像关于直线1x =对称,所以12a=,得2,a =故有()22f x x x b =-- 因为()f x 在()0,3有两个零点,所以()000f ∆>⎧⎨>⎩即4400b b +>⎧⎨->⎩解得10b -<<. 【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析. 22.(1)函数()f x 的零点为11,4-;(2)9[2,4]4a ⎧⎫∈-⋃-⎨⎬⎩⎭. 【分析】(1)由不等式解集与一元二次方程的根的关系得方程的根,由方程根的定义可求参数值,然后解方程可得零点.(2)可利用一元二次方程根的分布分类求解.注意分类0a =和0a ≠,在0a ≠时,()0f x =在(1,1)-上有一个解,还有1-是一个解,1是一个解分别求出另一解判断,另外0∆=时进行检验.从而可得结论.【详解】(1)依题意得方程2310ax x +-=的两根为-1,b , 将1x =-代入方程得4a =,于是方程2310ax x +-=可化为24310x x +-=,解得1x =-或14x =. 所以函数()f x 的零点为11,4-. (2)因为函数2()31f x ax x =+-在(1,1)-内恰有1个零点,所以该函数图象在(1,1)-内与x 轴只有一个公共点.(i )当0a =时,由()31=0f x x =-,得1=(1,1)3x ∈-,故0a =满足题意; (ii )当0a ≠时,①当函数()f x 的图象在x 轴两侧时,则由(1)(1)(4)(2)0f f a a -=-+<,解得24a -<<,此时24a -<<且0a ≠,满足题意当2a =-时,1(1,1)2x =∈-,满足题意; 当4a =时,1(1,1)4x =∈-,满足题意. ②当函数()f x 的图象在x 轴同侧时,则由23-4(1)0a ∆=⨯⨯-=, 解得94a =-. 由29()31=04f x x x =+--即2912+4=0x x -解得()21,13x =∈-, 故94a =-,满足题意. 综上所述,a 的取值范围是9[2,4]4⎧⎫-⋃-⎨⎬⎩⎭.【点睛】易错点睛:本题考查一元二次不等式的解集、一元二次方程的根、二次函数的图象之间的关系,掌握三个“二次”的关系是解题关键.利用二次函数图象可得一元二次方程根的分布的知识.要注意根的分布结论都是在开区间(,)a b 有解,而实际解题时还要分类讨论a 或者b 是方程根的情形,否则可能漏解. 23.(1)[]44-,;(2)(],3∞-. 【分析】(1)由二次不等式()0f x ≥恒成立可得0∆≤,于是可求得a 的取值范围;(2)分离参数得12a x x ≤-在区间[]1,2上有解,转化为求1y x x =-在区间[]1,2上的最大值求解即可.【详解】(1)由题意得()2102a f x x x =-+≥在R 上恒成立, ∴2404a ∆=-≤, 解得44a -≤≤,∴实数a 的取值范围为[]4,4-.(2)由题意得[]21,2,122a x x x ∃∈-+≥成立, ∴[]11,2,2a x x x ∃∈≤-成立. 令()[]1,?1,2g x x x x=-∈, 则()g x 在区间[]1,2上单调递增, ∴()()322max g x g ==, ∴322a ≤, 解得3a ≤,∴实数a 的取值范围为(],3∞-.【点睛】解题时注意以下结论的运用:(1)()a f x >恒成立等价于()max a f x >,()a f x >有解等价于()min a f x >; (2)若函数()f x 的最值不存在,则可利用函数值域的端点值来代替.24.(Ⅰ)2m =-;(Ⅱ)[0,1)(5,6]⋃.【分析】(1)根据不等式的解集为(2,3)-,得到关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3,代入方程求解即可.(2)将不等式2(3)30x m x m -++<,转化为()(3)0x m x --<,然后分3m <和3m >讨论求解.【详解】(1)由题意可知,关于x 的一元二次方程2(3)30x m x m -++=的两根分别为2-、3, 则2(2)2(3)30m m -+++=,整理得5100m +=,解得2m =-;(2)不等式2(3)30x m x m -++<,即为()(3)0x m x --<. ①当3m <时,原不等式的解集为(,3)m ,则解集中的两个整数分别为1、2,此时01m ≤<;②当3m >时,原不等式的解集为(3,)m ,则解集中的两个整数分别为4、5,此时56m <≤.综上所述,实数m 的取值范围是[0,1)(5,6]⋃.【点睛】本题主要考查一元二次不等式的解法以及应用,还考查了分类讨论求解问题的能力,属于中档题.25.(1)1;(2)9.【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值;(2)先求得141b a +=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值.【详解】(1)不等式2122x x mx -+>可化为21(2)02x m x +-<, 即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --,又不等式的解集为{|02}x x <<,所以2(2)2m --=,解得1m =;(2)由正实数a ,b 满足4a b mab +=,所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号,所以+a b 的最小值为9.【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 26.(1)1000(20)(8),(0)S x x x =++>;(2)休闲区1111D C B A 的长和宽应分别为50米,20米.【分析】(1)先表示休闲区的宽,再表示矩形ABCD 长与宽,最后根据矩形面积公式得函数解析式,注意求函数定义域;(2)根据基本不等式求S 最小值,再根据等号取法确定休闲区1111D C B A 的长和宽.【详解】(1)因为休闲区的长为x 米,休闲区1111D C B A 的面积为1000平方米,所以休闲区的宽为1000x 米;从而矩形ABCD 长与宽分别为20x +米1000,8x +米, 因此矩形ABCD 所占面积1000(20)(8),(0)S x x x =++>,(2)100020000(20)(8)1160811601960S x x x x =++=++≥+=当且仅当200008,50x x x ==时取等号,此时100020x= 因此要使公园所占面积最小,休闲区1111D C B A 的长和宽应分别为50米,20米.【点睛】本题考查函数应用、求函数解析式、利用基本不等式求最值,考查基本分析求解能力,属基础题.。

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元测试卷(基础)总分:100分一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个B .3个C .4个D .5个2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B . C .D .3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<-B .11a b +>+C .22a b <D .33a b->- 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥xB .1x ≤C .2x ≥D .2x ≤7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .8.(2021·全国七年级)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a >B .0a <C .3a >D .3a <10.(2021·广西北海市·八年级期末)若不等式组无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”).12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x⎧+>+⎪⎨--⎪⎩的最大整数解为__________.13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___.16.(2020·浙江绍兴市·八年级其他模拟)关于x 的不等式组314(1)x x x a->-⎧⎨<⎩的解是3x <,那么a 的取值范围是______.三、解答题一(每小题6分,共12分) 17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件. (1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?答案解析一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个 B .3个C .4个D .5个【答案】C 【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得. 【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式, 共4个, 故选:C . 【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .【答案】D 【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:.故选D考点:不等式的解集3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤【答案】D 【分析】利用不等式的定义即可得. 【详解】最高气温是9C ︒表示的是气温小于或等于9C ︒, 最低气温是零下2C ︒表示的是气温大于或等于2C -︒, 则当天我市气温变化范围是29t -≤≤, 故选:D . 【点睛】本题考查了列不等式,掌握列不等式的方法是解题关键.4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<- B .11a b +>+C .22a b <D .33a b->- 【答案】B 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误; B 、在不等式两边同时加1,不等号方向不变,故正确; C 、在不等式两边同时乘2,不等号方向不变,故错误; D 、在不等式两边同时除以-3,不等号方向改变,故错误; 故选:B . 【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断. 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-【答案】D根据不等式的性质解题:不等式的两边同时加(或减)同一个数(或式子),不等式的结果仍成立;不等式的两边同乘以(或除以)同一个不为零的正数,不等式的结果仍成立; 不等式的两边同乘以(或除以)同一个不为零的负数,不等式的方向要改变. 【详解】A. x y >则11x y +>+,正确,故A 不符合题意;B. 若a b ->-则a b <,正确,故B 不符合题意;C. 12x y ->则2x y <-,正确,故C 不符合题意; D. 若35x -<则53x >-,错误,故D 符合题意,故选:D . 【点睛】本题考查不等式的性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥x B .1x ≤C .2x ≥D .2x ≤【答案】D 【分析】不等式移项合并,把x 系数化为1,即可求出解集. 【详解】不等式213x -≤, 移项合并得:24x ≤, 解得:2x ≤, 故选:D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .【分析】首先解出不等式的解集,然后看四个答案中哪个符合,即可解答;【详解】解:不等式4x-8≥0,4x≥8,x≥2;D符合;故选:D.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(2021·全国七年级)不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式①,得2x,解不等式②,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a > B .0a <C .3a >D .3a <【答案】D 【分析】根据不等式的性质,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案. 【详解】(3)3a x a ->-的解集是1x <,∴30a -<,解得:3a <, 故答案选D . 【点睛】本题考查了解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键. 10.(2021·广西北海市·八年级期末)若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥【答案】D 【分析】不等式组整理后,根据不等式组无解确定出a 的范围即可. 【详解】解:不等式组整理得:4x a x,由不等式组无解,得到4a ≥. 故选:D . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”). 【答案】< 【分析】根据不等式的性质直接求解即可.【详解】∴22a b -<- ∴2525b a故答案是:<. 【点睛】本题考查了不等式的性质,熟悉相关性质是解题的关键.12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩的最大整数解为__________.【答案】3 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案. 【详解】解:()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩①②解不等式①可得:x >52-, 解不等式②可得:x <4, 则不等式组的解集为52-<x <4, ∴不等式组的最大整数解为3, 故答案为:3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.【答案】2或3 【分析】根据不等式的基本性质分别解两个不等式,然后取公共解集,最后找出整数解即可.解:321215x x ->⎧⎨-≤⎩①② 解①,得1x > 解②,得3x ≤∴该不等式组的解集为13x <≤ ∴该不等式组的整数解为2或3 故答案为2或3. 【点睛】此题考查的是求不等式组的整数解,掌握不等式组的解法是解决此题的关键.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.【答案】13x -<≤. 【分析】根据不等式组解集确定的口诀,结合数轴,确定解集即可. 【详解】根据数轴的意义,得 不等式的解集为13x -<≤; 故答案为13x -<≤. 【点睛】本题考查了不等式组解集,利用数形结合思想,熟练掌握解集的确定要领是解题的关键. 15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 【答案】5≤m <6 【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m的不等式组求得m的范围.【详解】解:0 721 x mx-≤⎧⎨-≤⎩①②解不等式①,得:x m≤解不等式②,得:3x≥∴不等式组的解集为:3x m≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2020·浙江绍兴市·八年级其他模拟)关于x的不等式组314(1)x xx a->-⎧⎨<⎩的解是3x<,那么a的取值范围是______.【答案】a≥3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【详解】解:314(1)x xx a->-⎧⎨<⎩①,解①得x<3,而不等式组的解集为x<3,所以a≥3.故答案为:a≥3.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题一(每小题6分,共12分)17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.【答案】57x <;数轴见解析 【分析】 根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集 【答案】24x -≤<,数轴见解析【分析】分别解出这两个不等式,即可得到不等式组的解集.【详解】 解:31211213x x x x +≥-⎧⎪⎨+>-⎪⎩①②,解不等式①得2x ≥-,解不等式②得4x <,∴不等式组的解集为24x -≤<,在数轴上表示不等式的解集为:【点睛】本题考查解不等式组,解题的关键是掌握解不等式组的方法.四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +【答案】1【分析】 由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩, 解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩, 得224228m n n m +=⎧⎨-=-⎩, 解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】 本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?【答案】(1)租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;(2)这次运送的费用最少需要9000元.【分析】(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,根据题意列一元一次不等式组,解一元一次不等式组,找到符合题意的解即可;(2)由(1)中结论,分别计算租车费用,再比较大小即可解题.【详解】解:(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:5x 6≤≤,所以符合条件的x 可以取5,6,租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;⨯+⨯=9000元;(2)方案一:租车的费用:1200510003⨯+⨯=9200元;方案二:租车的费用:1200610002所以这次运送的费用最少需要9000元.【点睛】本题考查一元一次不等式(组)的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.。

华中师大一附中七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

华中师大一附中七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( )A .6B .7C .8D .93.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( ) A .3a ≤- B .3a <- C .3a > D .3a ≥ 4.已知点()3,2P a a --关于原点对称的点在第四象限,则a 的取值范围在数轴上表示正确的是( ).A .B .C .D .5.不等式()31x -≤5x -的正整数解有( )A .1个B .2个C .3个D .4个6.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D .7.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( ) A .1162a -<- B .116a 2-<<- C .1162a -<- D .1162a -- 8.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 9.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A . B .C .D .10.不等式()2x 13x -≥的解集是( )A .x 2≥B .x 2≤C .x 2≥-D .x 2≤-11.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-12.若关于x 的不等式组327x x a-<⎧⎨<⎩的解集是x a <,则a 的取值范围是( ). A .3a B .3a > C .3a D .3a <二、填空题13.“鼠去牛来辞旧岁,龙飞凤舞庆明时.”在新年的钟声敲响之际,南开中学初2022级举行了元旦晚会.在晚会前,一、二、三班都组织购买了 A 、B 、C 三类糖果.已知一班分别购买 A 、B 、C 三类糖果各3千克、2千克、5千克,二班分别购买A 、B 、C 三类糖果各 2千克、1千克、4千克,且一班和二班购买糖果的总金额比值为3∶2.若三类糖果单价和为108元,且各单价是低于50元/千克的整数,A 与C 单价差大于25元.则三班分别购买A 、B 、C 三类糖果各2千克、3千克、4千克的总金额为______元.14.已知点()2,3P a a -在第四象限,那么a 的取值范围是________.15.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =;③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).16.已知关于x 的不等式24132m x mx +-≤的解集是34x ≥,那么m 的值是________. 17.已知关于x 的不等式组010x a x -≥⎧⎨->⎩的整数解共有3个,则a 的取值范围是________. 18.若关于x 、y 的二元一次方程组23242x y a x y a +=-⎧⎨+=+⎩的解满足1x y +<,则a 的取值范围为________.19.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.20.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.三、解答题21.解不等式(或组):(1)2934x x ++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩22.某水果店购买某种水果的进价为18元/千克,在销售过程中有10%的水果损耗,该水果店以a 元/千克的标价出售该种水果.(1)为避免亏本,求a 的最小值.(2)若该水果店以标价销售了70%的该种水果,在扣除10%损耗后,剩下的20%水果按10元/千克的价格售完.为确保销售该种水果所得的利润率不低于20%,求a 的最小值. 23.已知,点O 是数轴的原点,点A 、点B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.在上述条件下,解决问题:(1)如果点A 表示的数是4,点B 表示的数是6,那么点M 表示的数是 ;(2)如果点A 表示的数是-3,点M 表示的数是2,那么点B 表示的数是 ;(3)如果点A 表示的数是a ,点B 表示的数是b ,那么点M 表示的数是 ;(用含a ,b 的代数式表示) ,所以AM =BM .因此得到关于x 的方程:x -a =b -x .你能解出这个方程吗?(4)如果点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点,点M 表示的数为m ,则m 的取值范围是 ;(5)如果点E 表示的数是1,点F 表示的数是x ,点A 从点E 出发,以每分钟1个单位长度的速度向右运动,点B 从点F 出发,以每分钟3个单位长度的速度向右运动,设运动时间为t (t >0).①当x =5时,如果EM =6,那么t 的值是 ;②当t ≤3时,如果EM ≤9,求x 的取值范围.24.解不等式(组):(1)24123x x ---≤; (2)63(4)23253x x x x -≥-⎧⎪⎨++>⎪⎩①②. 25.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值.26.不等式组231,12(2)x x x -≥-⎧⎨-≥-+⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.B解析:B【分析】利润率不低于5%,即利润要大于或等于800×5%元,设打x 折,则售价是1200x 元.根据利润率不低于5%就可以列出不等式即可.【详解】设至多打x 折 则12008008005%10x ⨯-≥⨯, 解得7x ≥,即最多可打7折.故选:B .【点睛】本题考查了一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.3.D解析:D【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围.【详解】∵关于x 的不等式组21x x a <⎧⎨>-⎩无解, ∴a-1≥2,∴a≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到. 4.C解析:C【分析】根据点()3,2P a a --关于原点对称的点在第四象限,可得点P 在第二象限,因此就可列出不等式,解不等式可得a 的取值范围.【详解】解:∵点()3,2P a a --关于原点对称的点在第四象限,∴点()3,2P a a --在第二象限,∴3020a a -<⎧⎨->⎩,a .解得:2则a的取值范围在数轴上表示正确的是:.故选C.【点睛】本题主要考查不等式的解法,根据不等式的解集,在数轴上表示即可,关键在于点P的坐标所在的象限.5.B解析:B【分析】直接利用一元一次不等式的解法分析得出答案.【详解】解:3(x-1)≤5-x3x-3≤5-x,则4x≤8,解得:x≤2,故不等式3(x-1)≤5-x的正整数解有:1,2共2个.故选:B.【点睛】本题主要考查了一元一次不等式的整数解,正确解不等式是解题的关键.6.A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1–x)<4去括号得:2﹣2x<4移项得:2x>﹣2,系数化为1得:x>﹣1,故选A.“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7.A解析:A【分析】分别解两个不等式得到得x<20和x>3-2a,由于不等式组只有5个整数解,则不等式组的解集为3-2a<x<20,且整数解为15、16、17、18、19,得到14≤3-2a<15,然后再解关于a的不等式组即可.【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20解②得x >3-2a ,∵不等式组只有5个整数解,∴不等式组的解集为3-2a <x <20,∴14≤3-2a <15, 1162a ∴-<-故选A【点睛】 本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.8.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.A解析:A【分析】先解出不等式组的解集,然后再根据选项解答即可.【详解】解:由题意可得:不等式组的解集为:21x ,在数轴上表示为:故答案为A.【点睛】 本题主要考查了不等式组解集在数轴上的表示方法,在表示解集时“≥”或“≤”要用实心圆点表示,“<”,“>”要用空心圆点表示成为解答本题的关键.10.D解析:D【分析】去括号、移项、合并同类项,然后系数化成1即可求解.【详解】解:()2x 13x -≥,去括号,得2x 23x -≥,移项,得23x 2x -≥-,解得x 2≤-.故选:D .【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.A解析:A【分析】首先解关于x 和y 的方程组,利用m 表示出x+y ,代入x+y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m >-2.故选:A .【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x+y 的值,再得到关于m 的不等式.12.C解析:C【分析】分别求出每一个不等式的解集,根据口诀:同小取小并结合不等式组的解集可得a 的范围.【详解】解:327x x a -<⎧⎨<⎩①②, ①式化简得:39,3x x << 又∵该不等式的解集为x a <,∴3a .故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 二、填空题13.296【分析】可设A 单价x 元B 单价y 元由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2可得xy 的关系式再由A 与C 单价差大于25元可得一元一次不等式根据各单价是低于50元解析:296【分析】可设A 单价x 元,B 单价y 元,由三类糖果单价和为108元得C 单价;再由一班和二班购买糖果的总金额比值为3∶2,可得x 、y 的关系式,再由A 与C 单价差大于25元,可得一元一次不等式,根据各单价是低于50元/千克的整数求出符合题意的解即可【详解】解:设A 单价x 元,B 单价y 元三类糖果单价和为108元得C 单价为(108-x-y )元又一班和二班购买糖果的总金额比值为3∶2可得:325(108)324(108)2x y x y x y x y ++--=++-- 整理可得:2x+3y=216①又A 与C 单价差大于25元,即x-(108-x-y )>25整理可得:2x+y>133,将①中的2x 代入可得:y<41.5又A 、B 、C 三类糖果单价是低于50元/千克的整数,故:若y=41,代入①得x=46.5,不符合题意若y=40,代入①得x=48,符合题意若y=39,代入①得x=49.5,不符合题意若y=38,代入①得x=51,不符合题意y越小,x越大,故后面x的结果均大于50,不符合题意故x=48,y=40,108-x-y=20由上可知:A类糖果的单价是48元B类糖果的单价是40元C类糖果的单价是20元故分别购买A、B、C三类糖果各2千克、3千克、4千克的总金额为:48×2+40×3+20×4=296(元)故答案为:296【点睛】本题考查一元一次不等式的解法,利用条件建立一元一次不等式并结合题意准确得到A、B、C三类糖果的单价是解本题的关键14.【分析】点在第四象限的条件是:横坐标是正数纵坐标是负数根据题意列出不等式组即可求解【详解】解:∵点(2-a3a)在第四象限∴解得a<0故答案为:a<0【点睛】坐标平面被两条坐标轴分成了四个象限每个象解析:0a<【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数,根据题意列出不等式组即可求解.【详解】解:∵点(2-a,3a)在第四象限,∴20 30aa-⎧⎨⎩><,解得a<0,故答案为:a<0.【点睛】坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,列出不得式是解题的关键.15.②③⑤【分析】①根据a+b+c=0且a>b>c推出a>0c<0即可判断;②根据a+b+c=0求出a=-(b+c)又ax+b+c=0时ax=-(b+c)方程两边都除以a 即可判断;③根据a=-(b+c)解析:②③⑤【分析】①根据a+b+c=0,且a>b>c推出a>0,c<0,即可判断;②根据a+b+c=0求出a=-(b+c),又ax+b+c=0时ax=-(b+c),方程两边都除以a即可判断;③根据a=-(b+c)两边平方即可判断;④分为两种情况:当b>0,a>0,c<0时,去掉绝对值符号得出aa+bb+cc-+abcabc-,求出结果,当b<0,a>0,c<0时,去掉绝对值符号得出aa+bb-+cc-+abcabc,求出结果,即可判断;⑤求出AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,根据b<0利用不等式的性质即可判断.【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.16.【分析】先移项合并然后根据不等式的解集得形式可得出关于m 的方程解出即可得出答案【详解】解:由题意得:∵不等式的解为∴解得:故答案为:【点睛】本题考查解一元一次不等式的知识有一定的难度注意先表示出不等 解析:910. 【分析】 先移项合并,然后根据不等式的解集得形式可得出关于m 的方程,解出即可得出答案.【详解】 解:由题意得:112(2)323m x m -≥+, ∵不等式的解为34x ≥, ∴123231423m m +=-, 解得:910m =. 故答案为:910. 【点睛】本题考查解一元一次不等式的知识,有一定的难度,注意先表示出不等式的解得形式,然后运用方程思想解答. 17.【分析】表示出不等式组的解集由不等式组整数解有3个确定出a 的范围即可【详解】不等式组整理得:即由不等式组整数解有3个得到故答案为:【点睛】本题考查了一元一次不等式组的整数解熟练掌握运算法则是解本题的 解析:32a -<≤【分析】表示出不等式组的解集,由不等式组整数解有3个,确定出a 的范围即可.【详解】不等式组整理得:1x a x ≥⎧⎨<⎩,即1a x ≤<, 由不等式组整数解有3个,得到32a -<≤-,故答案为:32a -<≤-.【点睛】本题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键. 18.【分析】直接把两个方程相加得到然后结合即可求出a 的取值范围【详解】解:直接把两个方程相加得:∴∵∴∴故答案为:【点睛】本题考查了解二元一次方程组以及解一元一次不等式解题的关键是掌握运算法则正确得到 解析:4a.【分析】直接把两个方程相加,得到337x y a +=+,然后结合1x y +<,即可求出a 的取值范围.【详解】 解:23242x y a x y a +=-⎧⎨+=+⎩, 直接把两个方程相加,得:337x y a +=+, ∴73a x y ++=, ∵1x y +<, ∴713a +<, ∴4a .故答案为:4a.【点睛】 本题考查了解二元一次方程组,以及解一元一次不等式,解题的关键是掌握运算法则,正确得到73a x y ++=. 19.−5【分析】设被污染的数为a 表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a 不等式为1−3x <a 解得:x >由已知解集为x >2得到=2解得:a =−5故答案为:−5【点睛】此题解析:−5【分析】设被污染的数为a ,表示出不等式的解集,根据已知解集确定出a 的值即可.【详解】解:设被污染的数为a ,不等式为1−3x <a .解得:x >1-3a , 由已知解集为x >2,得到1-3a =2, 解得:a =−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.20.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】 首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.三、解答题21.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)a 的最小值为20;(2)28a ≥.【分析】(1)根据只能售出所进商品的110%-,且销售额大于等于进价即可列出不等式,求解即可;(2)根据70%按照标价a 元/千克出售,20%水果按10元/千克出售,且销售额应该大于等于(120%)18+⨯列出不等式求解即可.【详解】解:(1)由题意得:(110%)18a -≥,解得20a ≥,即a 的最小值为20;(2)由题意得:70%20%10(120%)18a ⋅+⨯≥+⨯,解得28a ≥.【点睛】本题考查一元一次不等式的应用.熟记商品销售时所用的常用公式是解题关键.注意本题与销售了多少千克无关.23.(1)5;(2)7;(3)2a b +,2a b x +=;(4)﹣1≤m ≤12;(5)①2;②1<x ≤7 【分析】(1)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(2)设点B 表示的数是b ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案;(3)设点M 表示的数是m ,分别表示出AM 和BM 的距离,再根据AM=BM 求解即可得出答案; x a b x -=-根据解一元一次方程的一般步骤即可得出答案;(4)设点B 表示的数是b ,根据点B 的位置在点O 和点C 之间建立不等式,再将点M 表示的数代入求解即可得出答案;(5)①分别表示出点M 表示的数、点A 表示的数及点B 表示的数,再根据2a b m +=代入求解即可得出答案; ②先表示出A 、B 、M 所表示的数,得出EM 的值,再根据给出的范围建立不等式求解即可得出答案.【详解】(1)设点M 表示的数是m ,则AM 之间的距离是4m -,BM 之间的距离是6m -,点M 是线段AB 的中点,∴AM=BM ,即46m m -=-,解得:5m =, 点M 表示的数是5;(2)设点B 表示的数是b点A 表示的数是-3,点M 表示的数是2,∴AM=5,BM=2b -点M 是线段AB 的中点,且点A 在点B 的左边,∴AM=BM ,5=2b ∴-解得:7b =∴点B 表示的数是7;(3)设点M 表示的数是m ,点A 表示的数是a ,点B 表示的数是b ,则AM 之间的距离是m a -,BM 之间的距离是b m -,点M 是线段AB 的中点,∴AM=BM ,即m a b m -=-,解得:2a b m +=, x a b x -=-移项,得x x b a +=+合并同类项,得2x a b将系数化为1,得2a b x +=(4)设点B 表示的数是b O 是原点,点A 表示的数是-2,点C 表示的数是3,点B 是线段OC 上的一点, 03b ∴≤≤22b m -+= 112m ∴-≤≤;(5)①点E 表示的数是1,EM=6,∴点M 表示的数是16=7+点F 表示的数是x ,且x=5 ∴点A 表示的数是1t +,点B 表示的数为53t +15372t t +++∴= 解得:2t =;②由题意得点A 表示的数是1t +,点B 表示的数为3x t +,∴点M 表示的数是132t x t +++ 点E 表示的数是1,∴1312t x t EM +++=-,1x > 即13192t x t +++-≤ 化简得194x t -≤3t ≤1934x -∴≥ 解得:7x ≤∴x 的取值范围为17x <≤.【点睛】本题考查了根据数轴表示两点间的距离、一元一次方程的应用、一元一次不等式的应用,解题的关键是结合数轴将点表示成具体的数.24.(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x ﹣2)﹣6≤2(4﹣x ),去括号,得:3x ﹣6﹣6≤8﹣2x ,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x >1,则不等式组的解集为1<x≤3.【点睛】此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.25.(1)-3;(2)x 6=.【分析】(1)根据新定义列式计算即可;(2)根据新定义分两种情况列方程求解即可.【详解】解:()121-<,∴()21213-⊗=--=-故答案为:3-()2①当3x 732x -≥-时,即x≥2()()3x 732x 2-⊗-=即3x 732x 2-+-=x 6=.②当3x 732x -<-时,即x<2()()3x 732x 2-⊗-=即()3x 732x 2---=125x =(不合题意,舍去) x 6.∴=【点睛】本题主要考察了新定义的计算,解一元一次方程以及有理数的混合运算,解题的关键是熟练掌握解一元一次方程的一般步骤和有理数的混合运算法则.26.11x -≤≤【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:231124x x x -≥-⎧⎨-≥--⎩①② ①式解得1x ≤,②式解得1x ≥-;故不等式组的解为11x -≤≤.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

 一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。

人教版七年级数学下册 《9.1.2 不等式的性质》单元测试试卷 含答案解析(1)

人教版七年级数学下册 《9.1.2 不等式的性质》单元测试试卷 含答案解析(1)

人教版七年级下册数学《9.1.2不等式的性质》课时练一、选择题1.下列4种说法:①x =是不等式4x -5>0的解;②x =是不等式4x -5>0的一个解;③x >是不等式4x -5>0的解集;④x >2中任何一个数都可以使不等式4x -5>0成立,所以x >2也是它的解集,其中正确的有()A .1个B .2个C .3个D .4个2.已知χ>y 且χy <0,a 为任意有理数,下列式子中正确的是﹙﹚A .-χ>-yB .a 2χ>a 2yC .-χ+a <-y +aD .χ>-y3.下列说法中正确的是﹙﹚A .χ=1是不等式-2χ<1的解集B .χ=1是不等式-2χ<1的解C .χ=是不等式-2χ<1的解D .不等式-2χ<1的解是χ=14.在下列各不等式中,错误..的是()A .若,则B .若,则C .若,则D .若,则5.如果关于x 的不等式的解集为,那么a 的取值范围是()A .B .C .D .6.已知b <a <0,下列不等式正确的是﹙﹚A .7-a >bB .>1C .>D .a 2>b 27.若a <b ,则下列结论不一定成立的是()A .a -1<b -1B .2a <2bC .-a 3>-b3D .a 2<b 28.有下列四个命题:①若a >b ,则a +1>b +1;②若a >b ,则a -1>b -1;③若a >b ,则-2a <-2b ;④若a >b ,则2a <2b .其中正确的有()A .1个B .2个C .3个D .4个9.若实数a ,b ,c 在数轴上的对应位置如图所示,则下列不等式成立的是()A .ab >bcB .ac >bcC .a +c >b +cD .a +b >c +b10.由x <y 得到ax >ay 的条件应是()A .a ≥0B .a ≤0C .a >0D .a <0二、填空题11.如果x >y ,且(a-1)x <(a-1)y ,那么a 的取值范围是______.12.若不等式(a-2)x <1,两边除以a-2后变成x <,则a 的取值范围是______.13.若>0,<0,则ac________0。

人教版七年级数学(下)第9章 不等式与不等式组单元测试 B卷(含解析)

人教版七年级数学(下)第9章 不等式与不等式组单元测试 B卷(含解析)

人教版七年级数学(下)第9章 不等式与不等式组单元测试 B 卷班级:________ 姓名:________ 得分:________一、选择题(每小题3分,共30分)1.“x 的2倍与3的差不大于8”列出的不等式是( )A .B .C .D .2x ‒3≤82x ‒3≥82x ‒3<82x ‒3>82.不等式组的整数解是( ){3x <503x +3>50 A .15 B .16 C .17 D .15,163.下列不等式中一定成立的是( )A .3a >2aB .a >-2aC .a +2<a +3D .<2a 3a 4.把不等式组的解集表示在数轴上正确的是( ){x +1≥0x ‒1<0A .B .C .D .5.若关于x ,y 的方程组的解满足,则m 的最小整数解为( ){2x +y =4x +2y =‒3m +2 x ‒y >‒32A .﹣3B .﹣2C .﹣1D .06.已知点M (1﹣a ,3a ﹣9)在第三象限,且它的坐标都是整数,则a 的值是( )A .0B .1C .2D .37.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,共有学生人数为( )A .6B .5C .6或5D .48.某射击运动员在一次比赛中前5次射击共中46环,如果他要打破92环(10次射击)的纪录,第6次射击起码要超过( )A .6环B .7环C .8环D .9环9.已知关于x 的不等式组有解,则m 的取值范围为( ){x +3>m 2x <m A .B .C .D .m >6m ≥6m <6m ≤610.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为283,则满足条件的x 不同值最多有( )A .6个B .5个C .4个D .3个二、选择题(每小题3分,共30分)11.写出含有解为x =1的一元一次不等式__ __(写出一个即可).12.不等式3(x ﹣1)≤5﹣x 的非负整数是_________.13.不等式组的解是__________.{3x ‒2>x 12x ≤3 14.若>0,<0,则ac ________0.a b c b 15.关于x 的不等式2x -a ≤-3的解集如图所示,则a 的值是__________.16.某种水果的进价为4.5元/千克,销售中估计有10%的正常损耗,商家为了避免亏本,售价至少应定为_________元/千克.17.某商场店庆活动中,商家准备对某种进价为600元、标价为1100元的商品进行打折销售,但要保证利润率不低于10%,则最多打_________折.18.若不等式(k -4)x >-1的解集为x ,则k 的取值范围是__________ .<‒1k ‒419.商店为了对某种商品促销,将定价为3元的商品以下列方式优惠销售:若购买不超过5件,则按原价付款;若一次性购买5件以上,则超过部分打八折.那么用27元钱最多可以购买该商品________件.20.小明家阳台的地面是一个矩形,工人师傅要给地面铺上地砖,已知阳台的长和宽都大于60cm ,且长是宽的2倍,小明要求工人师傅只能使用完整的60×60的方砖(即边长是60cm 的正方形),但无论怎么铺设,被覆盖的面积都不超过阳台总面积的40%,则小明家阳台的地面至少为_________平方米.三、解答题(共60分)21.(6分)解不等式- 0,并把它的解集表示在数轴上2x ‒435x +12≤22.(6分)解不等式组:,并把解集在数轴上表示出来.{x ‒42+3≥x1‒3(x ‒1)<6‒x23.(6分)定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a -b .例如:3☆(-4)=3+(-4)=-1,(-6)☆=-6-=-6.121212(1)填空:(-4)☆3=______;(2)如果(3x -4)☆(2x +8)=(3x -4)-(2x +8),求x 的取值范围;(3)如果(3x -7)☆(3-2x )=2,求x 的值.24.(6分)若关于x 、y 的二元一次方程组中,x 的值为负数,y 的值为正数,求{x ‒y =m ‒5x +y =3m +3 m 的取值范围.25.(8分)某公司有A ,B 两种客车,它们的载客量和租金如下表.星星中学根据实际情况,计划用A ,B 型车共5辆,同时送七年级师生到校基地参加社会实践活动.(1)若要保证租金费用不超过980元,请问该学校有哪几种租车方案?(2)在(1)的条件下,若七年级师生共有150人,请问哪种租车方案最省钱?26.(8分)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,求当m取值为多少时,费用最少.27.(10分)学校为举行社团活动,准备向某商家购买A、B两种文化衫.已知购买2件A种文化衫和3件B种文化衫需要170元;购买4件A种文化衫和1件B种文化衫需要190元.(1)求A、B两种文化衫的单价;(2)恰逢商家搞促销,现有两种优惠活动,如图所示,学校决定向该商家购买A、B两种文化衫共100件,其中A种文化衫a件(a<50).①若按活动一购买,共需付款 元;若按活动二购买,共需付款 元;(用a的代数式表示)②若按活动二购买比按活动一购买更优惠,求a的所有可能值.28.(10分)小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:类别购买A商品数量(件)购买B商品数量(件)消费金额(元)次数第一次45320第二次26300第三次57258解答下列问题:(1)第 次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案1.A【解析】x 的2倍即2x ,不大于8即≤8,据此列不等式.解:根据题意,得2x -3≤8.故选:A .2.B【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解:,{3x <50①3x +3>50② 由①得x <,503由②得x >,473所以不等式组的解集是<x <,473503则整数解是16.故选:B .3.C【解析】这题主要看变量的取值范围是否是任意的实数解:A 项,解得可知a >0,当a ≤0不满足题目意思,B 项,解得可知a >0,当a ≤0不满足题目意思,C 项是正确选项,解得可知0<1,这个不等式恒成立,D 项,解得可知a >0,当a <0不满足题目意思4.D【解析】先解不等式组,再把解集表示在数轴上.解:,{x +1≥0 ①x ‒1<0 ② 解得,,①x ≥‒1解得,,②x <1把解集表示在数轴上,不等式组的解集为.‒1≤x <1故选:D .5.B【解析】方程组中的两个方程相减得出x -y =3m +2,根据已知得出不等式,求出不等式的解集即可.解:,{2x +y =4①x +2y =‒3m +2② ①-②得:x -y =3m +2,∵关于x ,y 的方程组的解满足x -y >-,{2x +y =4x +2y =‒3m +2 32∴3m +2>-,32解得:m >,‒76∴m 的最小整数解为-1,故选:B .6.C【解析】在第三象限内,那么横坐标小于0,纵坐标小于0.而后求出整数解即可.解:∵点M 在第三象限,∴,解得:1<a <3,因为点M 的坐标为整数,所以a =2.{1‒a <03a ‒9<0 故选C .7.A【解析】设共有学生x 人,则书共(3x +8)本,再根据题意列出不等式,解出来即可.解:设共有学生x 人,0≤(3x +8)-5(x -1)<3,解得5<x ≤6.5,故共有学生6人,故选A.8.A【解析】由题中的信息,要打破92环,则最少需要93环,设第67次成绩为x 环,第7,8,9,10次的成绩都为10环,则可以列出不等式,从而得出答案.解:设他第6次射击的成绩为x 环,得:46+x +40≥92解得x ≥6由于x 是正整数且大于等于6,得:x ≥6答:运动员第6次射击不能少于6环.故答案为A .9.C【解析】根据不等式有解,可得关于m 的不等式,根据解不等式,可得答案.解:解不等式组,{x +3>m①2x <m② 解①得:x >m -3,解②得:x < ,m 2根据题意得:m -3<,解得:m <6m 2故选:C .10.B【解析】根据题意重复代入求值即可解题.解:令3x +1=283,解得x =94,令3x +1=94,解得x =31,令3x +1=31,解得x =10,令3x +1=10,解得x =3,令3x +1=3,解得x =,23综上一共有5个正数,故选B.11.x >0等【解析】根据一元一次不等式的定义写出的一元一次不等式的解集含有x =1即可.解:例如:x >0(答案不唯一).故答案为:x >0(答案不唯一).12.0、1、2.【解析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.解:3(x ﹣1)≤5﹣x ,去括号,得:3x ﹣3≤5﹣x ,移项,得:3x +x ≤5+3,合并同类项,得:4x ≤8,系数化为1,得:x ≤2,则不等式3(x ﹣1)≤5﹣x 的非负整数解是0、1、2.故答案为:0、1、2.13.1<x ≤6【解析】分别求出各不等式的解集,再求出其公共解集即可.解:{3x ‒2>x①12x ≤3② 解不等式①,得x >1,解不等式②,得x ≤6,所以不等式组的解集是1<x ≤6,故答案是:1<x ≤6.14.<【解析】根据有理数的除法判断出a 、b 同号,再根据有理数的除法判断出b 、c 异号,然后根据有理数的乘法运算法则判断即可.解:∵>0,a b ∴a 、b 同号,∵<0,c b ∴b 、c 异号,∴a 、c 异号,故答案为:<.15.1【解析】首先用a 表示出不等式的解集,然后解出a .解:∵2x -a ≤-3,∴x ≤,a ‒32∵x ≤-1,∴a =1.故答案为:1.16.5【解析】设商家把售价应该定为每千克x 元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x (1﹣5%),根据题意列出不等式即可.解:设商家把售价应该定为每千克x 元,根据题意得:x (1﹣10%)≥4.5,解得,x ≥5,故为避免亏本,商家把售价应该至少定为每千克5元.故答案为:5.17.6【解析】根据利润率的计算公式先列出不等式,再解不等式即可.解:设此商品打折出售,则x 1100×x 10≥600×(1+10%)解得x ≥6此商品最多打6折.∴故答案为:6.【解析】根据不等式的性质:不等式两边同除以一个负数,不等号方向改变,进而得出答案.解:∵不等式(k -4)x >-1的解集为x <-,1k ‒4∴k -4<0,解得:k <4.故答案为k <4.19.10【解析】易得27元可购买的商品一定超过了5件,关系式为:5×原价+超过5件的件数×打折后的价格≤27,把相关数值代入计算求得最大的正整数解即可.解:∵27>5×3,∴27元可购买的商品一定超过了5件,设购买了x 件该商品.5×3+(x -5)×3×0.8≤27,2.4x ≤24,x ≤10,∴最多可购买该商品10件.20.4.5【解析】设阳台宽a 厘米,则长是2a 厘米,用了n 块方砖,根据被覆盖的面积都不超过阳台总面积的40%,列不等式解决问题.解:设阳台宽a 厘米,则长是2a 厘米,用了n 块方砖(n 是正整数),根据题意得60×60n ≤a •2a •40%化简得a 2≥4500n∵n 是正整数∴4500n 是正整数阳台的面积等于2a 2平方厘米,要使面积最小,则a 的取值最小即可.而4500n 要是最小的完全平方数时,n 取5,最小值为22500∴a 的最小值是150,2a 2=45000平方厘米=4.5平方米∴阳台的面积至少是4.5平方米.【解析】根据解不等式的一般步骤解答即可.解:- 02x ‒435x +12≤4x ‒8‒15x ‒3≤0‒11x ≤11x ≥‒1不等式的解集在数轴上表示为:22.-1< x ≤2,数轴见解析【解析】分別求得两个不等式的解集,这两个不等式解集的公共部分即为不等式组的解集,在数轴上表示出来即可解:由题意知{x ‒42+3≥x①1‒3(x ‒1)<6‒x②解得①得,x ≤2解得②得,x >-1∴不等式的解集为:-1< x ≤2其在数轴上表示为:23.(1)-7;(2)x <12;(3)x =6.【解析】(1)根据新定义列式计算即可得;(2)由已知等式,根据新定义知3x -4<2x +8,解之可得;(3)分3x -7≥3-2x 和3x -7<3-2x 两种情况,依据新定义列出方程求解可得.解:(1)(-4)☆3=-4-3=-7,故答案为:-7;(2)由题意得3x -4<2x +8,解得:x <12,∴x 的取值范围是x <12;(3) 当3x -7≥3-2x ,即x ≥2时,由题意得:(3x -7)+(3-2x )=2,解得 x =6;当3x -7<3-2x ,即x <2时,由题意得:(3x -7)-(3-2x )=2,解得x =(舍).125∴x 的值为6.24.-4<m <.12【解析】先解方程组,用含m 的代数式表示x 、y ,再根据x 的值为负数,y 的值为正数,得到关于m 的不等式组,求解即可.解:,{x ‒y =m ‒5①x +y =3m +3② ①+②得2x =4m -2,解得x =2m -1,②-①得2y =2m +8,解得y =m +4,∵x 的值为负数,y 的值为正数,∴,{2m ‒1<0m +4>0 ∴-4<m <.1225.(1)该学校的租车方案有如下5种:租A 型车0辆、B 型车5辆;租A 型车1辆、B 型车4辆;租A 型车2辆、B 型车3辆;租A 型车3辆、B 型车2辆;租A 型车4辆、B 型车1辆.(2)当租A 型车3辆、B 型车2辆时,租车费用最低.【解析】(1)设租A 型车x 辆,则租B 型车(5-x )辆,根据总费用=单价×数量结合租金费用不超过980元,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,结合x 取正整数即可找出各租车方案;(2)设租A 型车x 辆,则租B 型车(5-x )辆,根据总人数=单量车的载客量×租车数量结合七年级师生共有150人,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,结合(1)结论即可确定x 的值,再根据总费用=单价×数量求出两种方案的总费用,比较后即可得出结论.解:(1)设租A 型车x 辆,则租B 型车(5-x )辆,根据题意得200x +150(5-x )≤980,解得x ≤.因为x235取非负整数,所以x =0,1,2,3,4,所以该学校的租车方案有如下5种:租A 型车0辆、B 型车5辆;租A 型车1辆、B 型车4辆;租A 型车2辆、B 型车3辆;租A 型车3辆、B 型车2辆;租A 型车4辆、B 型车1辆.(2)根据题意得40x +20(5-x )≥150,解得x ≥.因为x 取整数,且x ≤,所以x =3或4.当x =3时,租52235车费用为200×3+150×2=900(元);当x =4时,租车费用为200×4+150×1=950(元).因为900<950,所以当租A 型车3辆、B 型车2辆时,租车费用最低.26.(1)A 奖品的单价是10元,B 奖品的单价是15元;(2)应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元.【解析】(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,根据条件建立方程组求出其解即可;(2)设购买A 种奖品m 件,则购买B 种奖品(100-m )件,根据购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,可列出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再结合数量关系即可得出费用与m 之间的函数关系,即可以解决最值问题..解:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得,{3x +2y =605x +3y =95 解得:,{x =10y =15 答:A 奖品的单价是10元,B 奖品的单价是15元;(2)设购买A 种奖品m 件,则购买B 种奖品(100-m )件,则总费用为=-5m +1500,10m +15(100‒m)由已知得:,{10m +15(100‒m)≤1150m ≤3(100‒m) 解得:70≤m ≤75,当m=75时,总费用取最小值,最小值为1125,∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.27.(1)A、B两种型号的文化衫每件的价格分别为40元和30元;(2)①20a+1200,3000-20a;②a的所有可能值为46,47,48,49【解析】(1)设A种奖品的单价是x元,B种奖品的单价是y元,根据“钱数=A种奖品单价×数量+B种奖品单价×数量”可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)①根据活动方案列出代数式即可;②根据不等关系列出不等式,求解不等式即可.解:(1)A、B两种型号的文化衫每件的价格分别为x元和y元,则{2x+3y=1704x+y=190解得{x=40 y=30答:A、B两种型号的文化衫每件的价格分别为40元和30元.(2)若按活动一购买,共需付款(20a+1200) 元;若按活动二购买,共需付款 (3000-20a)元;由题意得:3000-20a<20a+1200解得a>45又∵a<50,且a为整数所以a的所有可能值为46,47,48,4928.(1)三(2)A:30元/件,B:40元/件(3)6 (4)7件【解析】(1)由第三次购买的A、B两种商品均比头两次多,总价反而少,可得出第三次购物有折扣;(2)设A商品的原价为x元/件,B商品的原价为y元/件,根据总价=单价×数量结合前两次购物的数量及总价,即可得出关于x、y的二元一次方程组,解之即可得出结论;(3)设折扣数为z,根据总价=单价×数量,即可得出关于z的一元一次方程,解之即可得出结论;(4)设购买A商品m件,则购买B商品(10﹣m)件,根据总价=单价×数量结合消费金额不超过200元,即可得出关于m的一元一次不等式,解之取其中的最小整数即可得出结论.解:(1)观察表格数据,可知:第三次购买的A、B两种商品均比头两次多,总价反而少,∴第三次购买有折扣.故答案为:三.(2)设A 商品的原价为x 元/件,B 商品的原价为y 元/件,根据题意得:{4x +5y =3202x +6y =300 解得:.{x =30y =40 答:A 商品的原价为30元/件,B 商品的原价为40元/件.(3)设折扣数为z ,根据题意得:5×307×40258×z 10+×z 10=解得:z =6.答:折扣数为6.(4)设购买A 商品m 件,则购买B 商品(10﹣m )件,根据题意得:30m +40(10﹣m )≤200×610×610解得:m .≥203∵m 为整数,∴m 的最小值为7.答:至少购买A 商品7件.。

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试题(包含答案解析)

最新人教版初中数学七年级数学下册第五单元《不等式与不等式组》测试题(包含答案解析)

一、选择题1.已知关于x 的不等式组15x ax b -≥⎧⎨+≤⎩的解集是3≤x ≤5,则+a b 的值为( )A .6B .8C .10D .122.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >03.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .4.下列变形中,不正确的是( ) A .若a>b ,则a+3>b+3 B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.5.不等式组64325x x x -<⎧⎨≥+⎩的解集是( )A .x ≥5B .x ≤5C .x >3D .无解6.已知01m <<,则m 、2m 、1m( ) A .21m m m >>B .21m m m >>C .21m m m >>D .21m m m>> 7.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( )A .B .C .D .8.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D .9.若|65|56x x -=-,则x 的取值范围是( ) A .56x >B .56x <C .56x ≥D .56x ≤10.若实数3是不等式2x a 20--<的一个解,则a 可取的最小整数为( ) A .2B .3C .4D .511.若不等式组11x x m->⎧⎨<⎩无解,那么m 的取值范围是( )A .2m >B .2m <C .2m ≥D .2m ≤12.已知关于x 的方程:24263a x xx --=-的解是非正整数,则符合条件的所有整数a的值有( )种. A .3 B .2 C .1 D .0二、填空题13.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+④||||||||a b c abca b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).14.若()a 1x a 1-<-的解集为x 1>,则a 的取值范围是________.15.不等式组2173112x x x -<⎧⎪⎨+-≥⎪⎩的解集是____.16.对任意四个整数a 、b 、c 、d 定义新运算:a b c dad bc =-,若1<2 4 1x x -<12,则x的取值范围是____.17.当前我国的新冠疫情虽然有所控制,但防控仍不可掉以轻心,为做好秋季防疫工作,王老师带现金6820元为年级采购了额温枪和消毒酒精两种防疫物品,额温枪每个125元,消毒酒精每瓶55元,购买后剩余100元、10元、1元的钞票若干张(10元钞票和1元钞票剩余数量均不超过9张,且采购额温枪的数量大于消毒酒精的数量).若把购买两种防疫物品的数量交换,剩余的100元和10元的钞票张数恰好相反,但1元钞票的张数不变,则购买消毒酒精的数量为__________________瓶.18.关于x的不等式132xa x-≤⎧⎨-<⎩有5个整数解,则a的取值范围是______.19.在实数范围内规定一种新的运算“☆”,其规则是:a☆b=3a+b,已知关于x的不等式:x☆m>1的解集在数轴上表示出来如图所示.则m的值是________ .20.关于x、y的二元一次方程组3234x y ax y a+=+⎧⎨+=-⎩的解满足x+y>2,则a的取值范围为__________.三、解答题21.解关于x的不等式组:231123xxx x<+⎧⎪⎨<+⎪⎩22.解不等式,并把解集在数轴上表示出来.(1)()4521x x+≤+(2)()1113125y y y+<--23.受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.24.解下列不等式组,并把它的解集表示在数轴上.(1)35318x x +≥⎧⎨-<⎩;(2)()1212235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩. 25.大润发超市用6800元购进A 、B 两种计算器共120只,这两种计算器的进价、标价如下表.(2)元旦活动期间,超市决定将A 型计算器按标价的9折出售,为保证这批计算器全部售出后盈利不低于1400元,则B 型计算器最多打几折出售?26.解下列一元一次不等式组:211132x x x x >-⎧⎪-⎨-<⎪⎩并把解集表示在数轴上.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先求出两个不等式的解集,再求其公共解,再根据不等式组的解集列出求出a 、b 的值,再代入代数式进行计算即可得解. 【详解】15x a x b -≥⎧⎨+≤⎩①②, 由①得,x≥a +1, 由②得,x≤b−5,∵不等式组的解集是3≤x≤5, ∴a +1=3,b−5=5, 解得a =2,b =10, 所以,a +b =2+10=12.故选:D.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2.A解析:A【分析】将x=0、y=1和x=1、y=0代入ax+b=y得到关于a、b的方程组,解之得出a、b的值,从而得到关于x的不等式,解之可得答案.【详解】解:根据题意,得:10 ba b=⎧⎨+=⎩,解得a=-1,b=1,则不等式-ax-b<0为x-1<0,解得x<1,故选:A.【点睛】本题考查了解一元一次不等式,解题的关键是根据题意列出关于x的不等式,并熟练掌握解一元一次不等式的步骤和依据.3.C解析:C【解析】分析:先求出各不等式的解集,再求出其公共解集即可.详解:解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.C解析:C【解析】分析:根据不等式的基本性质进行判断.详解:A.在不等式a>b的两边同时加3,不等式仍成立,即a+3>b+3.故A正确;B .在不等式a >b 的两边同时乘以13,不等式仍成立,即13a >13b .故B 正确;C .在不等式a <b 的两边同时乘以﹣1,不等号方向改变,即﹣a >﹣b .故C 错误;D .在不等式a <b 的两边同时乘以﹣2,不等式仍成立,即-2a >-2b .故D 正确; 由于该题选择错误的. 故选C .点睛:主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变5.A解析:A 【分析】先分别求出每个不等式的解集,然后再确定不等式组的解集即可. 【详解】 解:64325x x x -<⎧⎨≥+⎩,解不等式①得:x >34, 解不等式②得:x ≥5,所以不等式组的解集是x ≥5, 故答案为A . 【点睛】本题考查了解不等式组,正确求解每一个不等式和确定不等式组的解集是解答本题的关键.6.C解析:C 【分析】根据不等式的性质解答. 【详解】 解:∵01m <<,∴01m m m <⋅<⨯,即20m m <<(不等式的两边都乘以同一个正数,所得的不等式仍然成立)①10m m m <<,即101m<<(不等式的两边都除以同一个正数,所得的不等式仍然成立)②由①②知21m m m>>; 故选:C.【点睛】此题考查不等式的性质:不等式两边都乘以同一个正数,所得的不等式仍然成立,不等式的两边都除以同一个正数,所得的不等式仍然成立,解题的关键是正确掌握不等式的性质.7.D解析:D 【解析】 试题分析:10{360x x -≤-<①②,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.8.B解析:B 【分析】由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论. 【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩, ∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <, 在数轴上表示为:故选:B . 【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质9.D解析:D 【分析】先根据绝对值的性质判断出65x -的符号,再求出x 的取值范围即可. 【详解】∵6556x x -=-, ∴650x -≤,∴56x ≤. 故选:D . 【点睛】本题考查了绝对值的性质以及解一元一次不等式,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.10.D解析:D 【分析】将x 3=代入不等式得到关于a 的不等式,求解即可. 【详解】根据题意,x 3=是不等式的一个解, ∴将x 3=代入不等式,得:6a 20--<, 解得:4a >,则a 可取的最小整数为5, 故选:D. 【点睛】此题考查不等式的解的定义,解一元一次不等式,正确理解不等式的解的定义将x=3代入得到关于a 的不等式是解题的关键.11.D解析:D 【分析】先求出11x ->的解,再根据不等式组无解,可得关于m 的不等式,根据解不等式,可得答案. 【详解】解:解11x ->得2x >. ∵不等式组11x x m->⎧⎨<⎩无解,∴2m ≤, 故选:D . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.A解析:A 【分析】先用含a 的式子表示出原方程的解,再根据解为非正整数,即可求得符合条件的所有整数a .【详解】解:24263a x xx --=-()264212--=-x a x x 264+212-=-x a x x()24+8=-a x284+=-x a∵方程的解是非正整数,∴2804+-≤a ∴2804+≥a∴24+=1a 或2或4或8 ∴a=0或2或-2,共3个 故选:A 【点睛】本题考查了一元一次方程的解法及解不等式,根据方程的解为非正整数列出关于a 的不等式是解题的关键.二、填空题13.②③⑤【分析】①根据a+b+c=0且a >b >c 推出a >0c <0即可判断;②根据a+b+c=0求出a=-(b+c )又ax+b+c=0时ax=-(b+c )方程两边都除以a 即可判断;③根据a=-(b+c )解析:②③⑤ 【分析】①根据a +b +c =0,且a >b >c 推出a >0,c <0,即可判断;②根据a +b +c =0求出a =-(b +c ),又ax +b +c =0时ax =-(b +c ),方程两边都除以a 即可判断;③根据a =-(b +c )两边平方即可判断;④分为两种情况:当b >0,a >0,c <0时,去掉绝对值符号得出a a +b b +c c -+abc abc-,求出结果,当b <0,a >0,c <0时,去掉绝对值符号得出a a +b b -+c c -+abc abc,求出结果,即可判断;⑤求出AB =a -b =-b -c -b =-2b -c =-3b +b -c ,BC =b -c ,根据b <0利用不等式的性质即可判断. 【详解】解:(1)∵a+b+c=0,且a>b>c,∴a>0,c<0,∴①错误;∵a+b+c=0,a>b>c,∴a>0,a=-(b+c),∵ax+b+c=0,∴ax=-(b+c),∴x=1,∴②正确;∵a=-(b+c),∴两边平方得:a2=(b+c)2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.14.【分析】根据不等式的性质2可得答案【详解】解:∵不等式的解集是∴解得故答案为:【点睛】本题考查了不等式的性质:不等式的两边都乘以或除以同一个正数不等号的方向不变解析:a1<.【分析】根据不等式的性质2,可得答案.【详解】解:∵不等式()a 1x a 1-<-的解集是x 1>,∴a 10-<,解得a 1<.故答案为:a 1<.【点睛】本题考查了不等式的性质:不等式的两边都乘以或除以同一个正数,不等号的方向不变. 15.1≤x <4【分析】分别求出每一个不等式的解集再找到公共部分即可得【详解】解:解不等式①得x <4解不等式②得x≥1所以不等式组的解集为:1≤x <4故答案为:1≤x <4【点睛】此题主要考查了求一元一次不解析:1≤x <4.【分析】分别求出每一个不等式的解集,再找到公共部分即可得.【详解】 解:217? 311?2x x x -<⎧⎪⎨+-≥⎪⎩①② 解不等式①得,x <4,解不等式②得,x≥1,所以,不等式组的解集为:1≤x <4.故答案为:1≤x <4.【点睛】此题主要考查了求一元一次不等式组的解集,正确求出每一个不等式解集是解答此题的关键.16.【分析】根据新定义列不等式组并求解集即可【详解】解:由题意得:1<2x-(-4)x <12即1<6x <12解得故答案为【点睛】本题主要考查了新定义运用解不等式组等知识点正确理解新运算法则是解答本题的关键 解析:126x << 【分析】根据新定义列不等式组并求解集即可.【详解】解:由题意得:1<2x-(-4)x <12,即1<6x <12,解得126x << . 故答案为126x <<. 【点睛】本题主要考查了新定义运用、解不等式组等知识点,正确理解新运算法则是解答本题的关键.17.30【分析】设额温枪的数量为消毒酒精的数量为剩余100元钞票的数量为a10元为b 根据题意列出方程组然后分别代入可能的a 和b 即可求得【详解】解:∵题中所有的钱数(68201255510010)均是0或解析:30【分析】设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b ,根据题意列出方程组,然后分别代入可能的a 和b ,即可求得.【详解】解:∵题中所有的钱数(6820,125,55,100,10)均是0或5结尾,且1元钞票的数量不超过9张∴1元钞票的数量是5设额温枪的数量为x ,消毒酒精的数量为y ,剩余100元钞票的数量为a ,10元为b 根据题意得()()682012555100105682012555100105x y a b y x b a ⎧-+=++⎪⎨-+=++⎪⎩ 两式子相减可整理得:97x y b a -=- ∵9b ≤∴9x y -=,7b a -=∴b a -有三种情况①b=7,a=0②b=8,a=1③b=9,a=2将三种情况分别代入上述方程组计算得情况①和②算出x 和y 不是整数,不符合题意情况③情况符合题意:=39x 和=30y ,且39>30,符合题意故购买的消毒酒精的数量为30瓶故答案为:30【点睛】本题考查四元一次方程组与不等式的应用,找出题中数量关系,列出方程组,并整体得出两个未知数的方程是解题的关键,要注意钞票张数是整数. 18.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故 解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4. ∴120a ,即12a ≤<, 故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.-2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题 解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>, ∴13m x ->, 根据图示知,已知不等式的解集是1x >, ∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法. 20.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.16x -<<【分析】分别解两个不等式,取公共解集即可.【详解】解: 231123x x x x <+⎧⎪⎨<+⎪⎩①② 解不等式①,移项得:231x x -<,合并同类项得:1x -<,系数化为1得:1x >-,解不等式②得,去分母得:326x x <+,移项合并得:6x <,所以该不等式组的解集为:16x -<<【点睛】本题考查解不等式组.掌握取不等式解集的口诀“同大取大,同小取小,大小小大取中间,大大小小是无解”是解题关键.22.(1)32x ≤-,数轴见解析;(2)y >5,数轴见解析 【分析】先对不等式进行求解,求出解集,然后在数轴上表示出解集即可.【详解】解:(1)∵()4521x x +≤+,即4225x x -≤-,即32x ≤-, ∴不等式的解集为:32x ≤-;(2)()1113125y y y +<-- 即133522y y y +-<-, 即33102y -<-, 故5y >, 故不等式的解集为:5y >.【点睛】本题考查的是一元一次不等式的解法,解此类题目经常用到数轴,注意x 或y 是否取得到,若取得到则为实心否则为空心.23.(1)3月20日当天口罩的价格为每盒36元.(2)a 的最大值为25.【分析】(1)可设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,根据3月20日当天,王老师购买4盒口罩比年初多花了48元列出方程即可求解;(2)根据两种口罩销售的总金额比3月20日至少提高了1%10a ,列出不等式即可求解. 【详解】解:(1)设年初口罩的价格为每盒x 元,则3月20日当天口罩的价格为每盒1.5x 元,依题意有4 1.5448x x ⨯-=,解得24x = ,1.5 1.52436x =⨯=.∴3月20日当天口罩的价格为每盒36元.(2)1000×(1+20%)=1200(盒),5120010006⨯==1000(盒), 1200-1000=200(盒),依题意有()13620010003610.7%1000361%10a a ⎛⎫⨯+⨯-≥⨯+⎪⎝⎭, 解得a≤25.故a 的最大值为25.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)23x ≤<;(2)3x >【分析】(1)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可; (2)分别求出各不等式的解集,在数轴上表示出来即可.【详解】(1)解不等式35x +≥得2x ≥解不等式318x -<得3x <∴不等式的解集为23x ≤<,在数轴上表示如下:(2)解不等式()1212x x +<-得2x >, 解不等式235x x +>得3x >, ∴不等式的解集为3x >,在数轴上表示如下:【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集,解题的关键在熟练掌握不等式组的解法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 25.(1)A 型计算机进购40只,B 形计算机进购80只;(2)B 型计算器最多打八折出售【分析】(1)设A 型计算器进购x 只,B 形计算器进购y 只,列二元一次方程组求解;(2)设B 型计算器打m 折,先算出A 型计算器和B 形计算器的单个利润,然后列不等式求解.【详解】解:(1)设A 型计算器购进x 只,B 形计算器购进y 只,列式:12030706800x y x y +=⎧⎨+=⎩,解得4080x y =⎧⎨=⎩, 答:A 型计算器购进40只,B 形计算器购进80只;(2)设B 型计算器打m 折,A 型计算器的单个利润是500.93015⨯-=(元),B 型计算器的单个利润是()10070107010m m ⎛⎫⨯-=- ⎪⎝⎭元, 列式:()15408010701400m ⨯+-≥60080056001400m +-≥8006400m ≥8m ≥,答:B 型计算器最多打八折出售.【点睛】本题考查二元一次方程组的应用和不等式的应用,解题的关键是根据题意列出方程组或不等式进行求解.26.x>-1,数轴表示见解析.【分析】根据不等式的性质分别求出两个不等式的解集即可求出不等式组的解集,表示在数轴上即可.【详解】解:211132x x x x >-⎧⎪-⎨-<⎪⎩ 解21x x >-得:x>-1,解1132x x --<得: x>-3, ∴原不等式组的解集为x>-1,表示在数轴上如图:【点睛】此题考查一元一次不等式组的解及数轴表示,难度一般.。

新七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案解析)

新七年级数学下册第九章《不等式与不等式组》单元测试卷(含答案解析)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( ) A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( ) A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( ) A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( ) A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组 有解,则 的取值范围为( )A .a>-2B .a≥-2C .a<2D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个. 12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 .14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 . 15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 . 三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm. (1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案: 一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B 二、填空题: 11、3 12、≤a≤13、a≥2 14、515、40%×85+60%x≥90 三、解答题:16、(1)4×s0.8>100.(2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-ba =1.∴b=-a ,b >0.∴不等式by >a 的解集为y >ab =-1,即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2.(2)∵2m -mx 2>12x -1,∴2m-mx >x -2.∴-mx -x >-2-2m.∴(m+1)x <2(1+m). ∵该不等式有解,∴m+1≠0,即m≠-1. 当m >-1时,不等式的解集为x <2; 当x <-1时,不等式的解集为x >2. 19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算. 20、(1)解不等式①,得x <52人教版七年级下数学单元测试卷 第九章 不等式与不等式组 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、填空题:(每小题3分,共30分)1、若一个三角形两边的长分别为3cm 和5cm ,那么第三边的长x 的取值范围 是 。

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)

一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。

七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

七年级数学下册第五单元《不等式与不等式组》测试卷(含答案解析)

一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( ) A .a <3 B .a ≥3C .a >3D .a ≤3 2.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ 3.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 4.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- 5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 6.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <-9.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 10.不等式1322x x -+>的解在数轴上表示正确的是( )A .B .C .D . 11.下列不等式说法中,不正确的是( )A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<-- 12.若x (x +a )=x 2﹣x ,则不等式ax +3>0的解集是( )A .x >3B .x <3C .x >﹣3D .x <﹣3 二、填空题13.a b ≥,1a -+_____1b -+14.某次数学竞赛共有20道选择题,评分标准为对1题给5分,错1题扣3分,不答题不给分也不扣分,小华有3题未做,则他至少答对____道题,总分才不会低于65分.15.关于x 的不等式组3112x x a+⎧-<⎪⎨⎪<⎩有3个整数解,则a 的取值范围是_____. 16.定义一种法则“⊗”如下:()()a a b a b b a b >⎧⊗=⎨≤⎩,如:122⊗=,若(25)33m -⊗=,则m 的取值范围是_______.17.不等式组210360x x ->⎧⎨-<⎩的解集为_______. 18.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.19.若关于x 的不等式2310a x -->的最大整数解为2-,则实数a 的取值范围是_________.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.三、解答题21.解下列不等式(组):(1)2132x x -≤; (2)把它的解集表示在数轴上.3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩22.(1)解方程组:43220x y x y +=⎧⎨+=⎩(2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 23.解不等式组:365(2)543123x x x x +-⎧⎪--⎨-<⎪⎩,并求出最小整数解与最大整数解的和. 24.(1)解方程组:35427x y x y -=⎧⎨+=⎩; (2)解不等式组:()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩. 25.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 26.解下列不等式或不等式组:(1)22x > (2)452(1)x x +>+(3)32123x x x +>⎧⎪⎨≤⎪⎩ (4)211841x x x x ->+⎧⎨+<-⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先解不等式,然后根据不等式组无解确定a 的范围.【详解】解:5210x x a -≥-⎧⎨->⎩①② 解不等式①,得3x ≤;解不等式②,得x a >;∵不等式组无解,∴3a ≥;故选:B .本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.3.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.4.C解析:C根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.B解析:B【详解】设可打x 折,则有1200×10x -800≥800×5%,即最多打7折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.7.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.8.A解析:A【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>-2.故选:A.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.9.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.10.B解析:B【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:∵1322x x -+>, ∴3122x x >+, ∴3322x <, ∴1x <, 将不等式解集表示在数轴上如下:故选:B .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.B解析:B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵,2x y y >>∴2x >,∴选项A 不符合题意;∵x y >,∴22x y ->-,∴选项B 符合题意;∵x y >,∴22x y >,∴选项C 不符合题意;∵x y >,∴22x y -<-,∴2222x y --<--∴选项D 不符合题意.故选:B .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.12.B解析:B【分析】直接利用单项式乘多项式得出a 的值,进而解不等式得出答案.【详解】解:∵x (x +a )=x 2﹣x ,∴x 2+ax =x 2﹣x ,∴a =﹣1,则不等式ax +3>0即为﹣x +3>0的解集是:x <3.故选:B .【点睛】此题主要考查了单项式乘多项式以及解不等式,正确得出a 的值是解题关键.二、填空题13.≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.15【分析】设至少答对x道题总分才不会低于6根据对1题给5分错1题扣3分不答题不给分也不扣分小华有3题未做总分不低于65分可列不等式求解【详解】解:设至少答对x道题总分才不会低于6根据题意得5x-3解析:15【分析】设至少答对x道题,总分才不会低于6,根据对1题给5分,错1题扣3分,不答题不给分也不扣分.小华有3题未做,总分不低于65分,可列不等式求解.【详解】解:设至少答对x道题,总分才不会低于6,根据题意,得5x-3(20-x-3)≥65,解之得x≥14.5.答:至少答对15道题,总分才不会低于6.故答案是:15.【点睛】本题考查了一元一次不等式的应用,理解题意找到题目中的不等关系列不等式是解决本题的关键.15.2﹤a≤3【分析】先解出第一个不等式的解集进而得到不等式组的解集再根据不等式组有3个整数解确定a的取值范围即可【详解】解:解不等式得:x﹥﹣1∴原不等式组的解集为:﹣1﹤x﹤a∵不等式组有3个整数解解析:2﹤a≤3【分析】先解出第一个不等式的解集,进而得到不等式组的解集,再根据不等式组有3个整数解确定a的取值范围即可.【详解】解:解不等式3112x+-<得:x﹥﹣1,∴原不等式组的解集为:﹣1﹤x﹤a,∵不等式组有3个整数解,∴2﹤a≤3,故答案为:2﹤a≤3.【点睛】本题考查了不等式组的整数解,能根据已知不等式组的整数解确定参数a的取值范围是解答的关键,必要时可借助数轴更直观.16.【分析】根据题意可得2m﹣5≤3然后求解不等式即可【详解】根据题意可得∵(2m-5)⊕3=3∴2m﹣5≤3解得:m≤4故答案为【点睛】本题主要考查解一元一次不等式解此题的关键在于准确理解题中新定义法解析:4m ≤【分析】根据题意可得2m ﹣5≤3,然后求解不等式即可.【详解】根据题意可得,∵(2m -5)⊕3=3,∴2m ﹣5≤3,解得:m≤4故答案为4m ≤.【点睛】本题主要考查解一元一次不等式,解此题的关键在于准确理解题中新定义法则的运算规律,得到一元一次不等式.17.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 18.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌 解析:35m <- 【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】 25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.19.【分析】先求出不等式的解再根据不等式的最大整数解确定a 的取值范围即可【详解】解:解得∵不等式的最大整数解为∴解得:;故答案为:【点睛】本题考查的是不等式的解正确的解不等式是解题的关键 解析:512a -<≤- 【分析】先求出不等式的解,再根据不等式的最大整数解确定a 的取值范围即可.【详解】解:解2310a x -->, 得213<-a x , ∵不等式2310a x -->的最大整数解为2-, ∴21-2-13<-≤a , 解得:512a -<≤-; 故答案为:512a -<≤-. 【点睛】本题考查的是不等式的解,正确的解不等式是解题的关键.20.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得 2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.(1)2x ≤;(2)1≤x <4,数轴见详解.【分析】(1)通过去分母,移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,分别求出两个不等式的解,进而即可求解,然后再数轴上表示不等式组的解,即可.【详解】(1)2132x x -≤, 2(21)3x x -≤,423x x -≤,432x x -≤,2x ≤;(2)3(2)41213x x x x --≤⎧⎪⎨+>-⎪⎩①② 由①得:x≥1,由②得:x <4,∴不等式组的解为:1≤x <4,在数轴上表示如下:【点睛】本题主要考查解一元一次不等式(组),熟练掌握解一元一次不等式的基本步骤,是解题的关键.22.(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.23.38x -<,6【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出答案.【详解】解:()3652543123x x x x ⎧+-⎪⎨---<⎪⎩①②, 由①得:8x ,由②得:3x >-,∴不等式组的解集为38x -<, x 的最小整数为2-,最大整数为8, x 的最小整数解与最大整数解的和为6.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解,解题的关键是能根据不等式的解集求出不等式组的解集.24.(1)31x y =⎧⎨=⎩;(2)无. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)35427x y x y -=⎧⎨+=⎩①②, 由①5+⨯②得:310435x x +=+,解得3x =,将3x =代入②得:67y +=,解得1y =,则方程组的解为31x y =⎧⎨=⎩; (2)()3121318x x x x -⎧≥+⎪⎨⎪--<-⎩①②,解不等式①得:5x ≤-,解不等式②得:2x >-,则不等式组无解.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.25.71x -<≤【分析】首先分别解出两个不等式的解集,再根据:同大取大;同小取小;大小小大中间找;大大小小找不到,写出不等式组的解集即可.【详解】 解:3(2)4211 52x x x x --≥⎧⎪⎨-+<⎪⎩①② 由①得,x≤1由②得,x >-7∴不等式组的解集为:-7<x≤1.故答案为:-7<x≤1.【点睛】此题主要考查了不等式组的解法,关键是熟练掌握不等式解集的取法.26.(1)1x >;(2)32x >-;(3)16x -<≤;(4)3x >. 【分析】(1)两边同除以2即可得;(2)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可得; (3)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集; (4)先分别求出两个不等式的解,再找出它们的公共部分即可得不等式组的解集.【详解】(1)22x >,两边同除以2,得1x >;(2)452(1)x x +>+, 4522x x +>+,4225x x ->-,23x >-,32x >-; (3)32123x x x +>⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >-,解不等式②得:6x ≤,则不等式组的解集为16x -<≤;(4)211841x x x x ->+⎧⎨+<-⎩①②, 解不等式①得:2x >,解不等式②得:3x >,则不等式组的解集为3x >.【点睛】本题考查了解一元一次不等式、解一元一次不等式组,熟练掌握不等式和不等式组的解法是解题关键.。

人教B新版必修1《第2章 等式与不等式》单元测试卷.doc

人教B新版必修1《第2章 等式与不等式》单元测试卷.doc

C. (—1,0]D. (—1,0)B. 9xy — 6x 2y 2 = 3xy(3 — 2xy) |xy 2 + |%2y = - y)人教B 新版必修1《第2章 等式与不等式》单元测试卷一、选择题(本大题共12小题,共60.0分)1. 若a<0<b,则下列不等式恒成立的是()A. - >B. —a>bC. a 2 > b 2D. a 3 < b 3 a b 2, 已知a > 0, b < -1,则下列不等式成立的是()A 、 a 、 a a 、 寥B •彖〉一》>a3.不等式瘁_ * _ 2 > 0的解集是()A. (-j,l)C. (-00,-1) u (2,+oo) C. -三>&> aD. -三 >a>& b b z b b z B. (1,+8) D. (-00,-|) U (1,4-00)4. 已知集合M = {x| — 1 V x V 2}, N = (x\x(x + 3) < 0),则M nN =()A. [-3,2)B. (-3,2) 5, 下列各式的因式分解中正确的是()A. —a? + ab — CLC — —Q (Q + b — c)C. 3a 2x — 6bx + 3% = 3x(a 2 — 2b) *2 + X, X V 0inx ' n , g(x) = /(%) 一 ax,若g(x)有4个零点,则a 的取值范围为() ---------------------------------- ,X > U xA. (0,|)B. (0,土)C. (|,1)D. (土,1)7, 若不等式mx 2 + (m - l )x + m < 0的解集为空集,则实数m 的取值范围是()A. m < 一1 或m > -B. m > 1 1 1C. m > -D. —1 < m < - 8, 以方程x 2 + px + l = 0的两根为三角形两边之长,第三边长为2,则实数p 的取值范围是()A. —2\/2 < p < —2B. p < —2或p > 2C. -2V2 < p < 2V2D. p < -29, 某产品的总成本y (万元)与产量x (台)之间的函数关系式为y = 3000 + 20%- 0.1%2(0 < % < 240,x e N ),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低 产(量是()A.100 台B. 120 台C. 150 台D. 180 台10.设0 <a<b,则下列不等式中正确的是()A. a < b < Vab <B. a < Vab < - < b2 2C. a < y[ab < b <D. Vab < a < V b11.已知。

《等式与不等式》综合测试卷(解析版)

《等式与不等式》综合测试卷(解析版)

《等式与不等式》综合测试卷一、选择题1.方程(1)0-=x x 的根是() A .0x = B .1x = C .10x =,21x = D .10x =,21x =- 【答案】C 【解析】(1)0x x -=,10x ∴=,21x =,故选:C .2.下列说法中正确的是( ) A .二元一次方程只有一个解 B .二元一次方程组有无数个解C .二元一次方程组的解必是它所含的二元一次方程的解D .三元一次方程组一定由三个三元一次方程组成 【答案】C 【解析】A .二元一次方程中有无数个解,故本选项错误,B .当两个方程不同时,有一个解,当两个方程相同时,有无数个解,故本选项错误,C .二元一次方程组的解必是它所含的二元一次方程的公共解,故本选项正确,D .三元一次方程组可以由三个二元一次方程组成,故本选项错误, 故选C .3.已知关于x 的方程3x+m+4=0的解是x =﹣2,则m 的值为( ) A .2 B .3 C .4 D .5【答案】A 【解析】将x =﹣2代入方程3x+m+4=0,得-6+m+4=0,则m =2.故选择A 项.4.不等式24030x x -->⎧⎨-≤⎩的解集是( )A .2x<-B .2x>-C .23x -<D .23<x<- 【答案】A 【解析】由24030x x -->⎧⎨-≤⎩可得23x x <-⎧⎨≤⎩,则2x<-,故选择A 项.5.若(x+2)是多项式4x 2+5x+m 的一个因式,则m 等于( ) A .–6 B .6 C .–9 D .9 【答案】A 【解析】∵4x 2+5x +m =(x +2)(4x +n )=4x 2+(8+n )x+2n ∴8+n=5,m=2n ∴n=-3,m=-6 故选:A .6.下列多项式相乘,可以用平方差公式直接计算的是( ) A .(x +5y )(x -5y ) B .(-x +y )(y -x ) C .(x +3y )(2x -3y ) D .(3x -2y )(2y -3x ) 【答案】A 【解析】A .(x +5y )(x -5y )能用平方差公式进行计算,故本选项正确;B .(-x +y )(y -x )=-(x -y )(y -x )不能用平方差公式进行计算,故本选项错误;C .(x +3y )(2x -3y )不能用平方差公式进行计算,故本选项错误;D .(3x -2y )(2y -3x )不能用平方差公式进行计算,故本选项错误; 故选A .7.若0a b >>,0c d <<,则下列选项中正确的是( ) A .11ac bd< B .ad bc >C .a b c d > D .a b d c<【答案】D 【解析】由110,0,0,0,,a b a b c d c d a b d c d c d c<<->->->->>>∴><--∴.故选D . 8.若关于x 的一元二次方程mx 2﹣2x +1=0有两个实数根,则实数m 的取值范围是( ) A .m ≤1 B .m ≤﹣1 C .m ≤1且m ≠0 D .m ≥1且m ≠0 【答案】C 【解析】根据题意得m ≠0且△=(﹣2)2﹣4m ≥0,解得m ≤1且m ≠0.故选:C . 9.不等式12x -≤的非负整数解有( ) A .1个 B .2个 C .3个 D .4个 【答案】D【解析】12x -≤,解得:3x ≤,则不等式12x -≤的非负整数解有:0,1,2,3共4个. 故选:D .10.方程组3455792x y x y +=⎧⎪⎨-+=-⎪⎩的解是( )A .214x y =⎧⎪⎨=⎪⎩B .1524x y ⎧=⎪⎨⎪=⎩ C .112x y =⎧⎪⎨=⎪⎩D .112x y =-⎧⎪⎨=⎪⎩【答案】C【解析】3455792x y x y +=⎧⎪⎨-+=-⎪⎩①②,①×7得,21x+28y=35③,②×3得,-21x+27y=-152④, ③+④得,55y=552,则y=12,将y=12代入①得,3x+2=5,则x=1,∴方程组的解为:112x y =⎧⎪⎨=⎪⎩.故选:C .11.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥ B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠【答案】D 【解析】(k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)k k k k -≠⎧⎨∆=----⎩,解得:32k ≥且k≠2.故选D . 12.已知,0x y >,若4146x y x y ++=+,则41x y+的最小值是( ) A .6 B .7 C .8 D .9 【答案】C 【解析】 设,则,,即整理得:.当且仅当时取.解得或(舍去),即当时,取得最小值8.故选C .二、填空题13.用“十字相乘法”分解因式2x 2﹣3x ﹣2=_____. 【答案】(2x +1)(x ﹣2) 【解析】原式=(2x +1)(x ﹣2), 故答案为:(2x +1)(x ﹣2)14.不等式的解集是_______.【答案】【解析】,,即不等式的解集是:15.不等式组51342133x x x ->-⎧⎪⎨-≥-⎪⎩的所有整数解的和是____.【答案】0. 【解析】5134(1)21(2)33x x x ->-⎧⎪⎨--⎪⎩, 由(1)得:x >﹣32, 由(2)得:x ≤1, ∴不等式组的解集为﹣32<x ≤1, 则所有整数解为﹣1,0,1,之和为0, 故答案为:0.16.已知全集为R ,集合{}{}20,1,0A x x x B =-==-,则A B =___________.【答案】{}1,0,1- 【解析】由题得A={0,1},所以A ∪B={-1,0,1}.故答案为:{-1,0,1} 三、解答题17.解不等式236x x +-≥. 【答案】(,1][3,)-∞-+∞ 【解析】当0x <时,原不等式等价于336x -+≥,解得不等式的解集为1x ≤-, 当302x ≤≤时,原不等式等价于36x -+≥,解得不等式的解集为φ, 当32x >时,原不等式等价于336x -≥,解得不等式的解集为3x ≥, 所以不是的解集为(,1][3,)-∞-+∞.18.解下列不等式组,并把解集在数轴上表示出来:(1)2(3)1021x x x+>⎧⎨+>⎩(2)233311362x x x x +>⎧⎪+-⎨-≥⎪⎩【答案】(1)x ﹥2,见解析;(2)43x -≤<,见解析. 【解析】(1)2(3)1021x x x +>⎧⎨+>⎩,①,②,2x >解:解不等式①得1x >-解不等式②,得 2x ∴>不等式组的解集为(2)233311362x x x x ,①,②+>⎧⎪⎨+--≥⎪⎩,3x <解:解不等式①得4x ≥-解不等式②,得 43x ∴-≤<不等式组的解集为19.已知集合(),.(1)若,求;(2)若“”是“”的必要条件,求实数的取值范围. 【答案】(1);(2)必要条件.【解析】(1)当时,,,所以,.(2)(),,因为“”是“”的必要条件,所以,即,所以所以.所以,当时,“”是“”的必要条件.20.解不等式:(1)(2)(3)(4)【答案】(1)或(2)或(3)或(4)或【解析】(1)当时,不等式可化为,即当时,不等式可化为,即当时不等式不成立综上所述,不等式的解集为或(2)不等式可因式分解为根据一元二次不等式与二次函数关系则的解集为或(3)将分解后可得对应方程的根分别为根据穿根法可得基本形式为下图所示:所以不等式的解集为或(4)不等式可因式分解为根据穿根法可得基本形式为下图所示:所以不等式的解集为或21.已知x 1.x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,使得(3x 1-x 2)(x 1-3x 2)=-80成立,求其实数a 的可能值【答案】a=-335. 【解析】∵x 1.x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,a=1,b=(3a-1),c=2a 2-1,∴x 1+x 2=-b a =-(3a-1),x 1•x 2=c a=2a 2-1,∵(3x 1-x 2)(x 1-3x 2)=-80,∴3x 12-10x 1x 2+3x 22=-80,即3(x 1+x 2)2-16x 1x 2=-80, ∴3[-(3a-1)]2-16(2a 2-1)=-80, ∴5a 2+18a-99=0,∴a=3或-335,当a=3时,方程x 2+(3a-1)x+2a 2-1=0的△<0, ∴不合题意,舍去 ∴a=-33522.已知0a >,0b >,1a b +=.设1aa b+的最小值为m .(Ⅰ)求m 的值;(Ⅱ)解不等式13x x m +--<.【答案】(Ⅰ)3m =(Ⅱ)5|2x x ⎧⎫<⎨⎬⎩⎭.【解析】 (Ⅰ)由题意得11a a b a b aa b a b a b++=+=++, ∵0,0a b >>, ∴0,0b aa b>>,∴2b a a b +≥=,当且仅当1b a a b a b 且=+=,即12a b ==时等号成立,∴b aa b +最小值为2, ∴113a b aa b a b+=++≥, ∴3m =.(Ⅱ)由(Ⅰ)得不等式即为133x x +--<.当1x ≤-时,原不等式化为()()133x x -++-<,解得1x ≤-; 当13x -<≤时,原不等式化为133x x ++-<,解得512x -<<; 当3x >时,原不等式化为()133x x +--<,此时不等式无解.综上可得原不等式的解集为5|2x x ⎧⎫<⎨⎬⎩⎭.。

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。

(易错题)初中数学七年级数学下册第五单元《不等式与不等式组》检测卷(有答案解析)

(易错题)初中数学七年级数学下册第五单元《不等式与不等式组》检测卷(有答案解析)

一、选择题1.定义一种新运算“a ☆b ”的含义为:当a ≥b 时,a ☆b =a +b ;当a <b 时,a ☆b =a ﹣b .例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6222=--=-,则方程(3x ﹣7)☆(3﹣2x )=2的解为x=( ) A .1B .125C .6或125D .62.不等式32x x -≤的解集在数轴上表示正确的是( ) A .B .C .D .3.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥4.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( )A .21a -≤<-B .21a -≤≤-C .21a -<<-D .21a -<≤-5.不等式()31x -≤5x -的正整数解有( ) A .1个 B .2个C .3个D .4个6.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( )A .B .C .D .7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折D .9折8.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a --9.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( ) A .23a <B .23a >C .a 为任何实数D .a 为大于0的数10.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,第1天 第2天 第3天 第4天 第5天 第6天 第7天第1组 1x 1x1x第2组 2x2x2x第3组 3x3x3x第4组4x4x4xA .10首B .11首C .12首D .13首11.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤12.如果a >b ,那么下列不等式不成立...的是( ) A .0a b ->B .33a b ->-C .1133a b >D .33a b ->-二、填空题13.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.14.如果点P (3m +6,1+m )在第四象限,那么m 的取值范围是_____.15.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.16.已知不等式组11x x a >⎧⎨<-⎩无解,则a 的取值范围为__.17.不等式组的解集为23113x x -<⎧⎨-≤⎩的解集为______.18.己知不等式组1x x a ≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______.19.不等式组210360x x ->⎧⎨-<⎩的解集为_______.20.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______三、解答题21.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.(2)如果甲、乙两种汽车每辆车的租车费用分别为2500元和2000元,请你选择最省钱的一种方案.22.筹建中的迪荡中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组.每组每天可生产12张:生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务.光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.23.入汛以来,我国南方地区发生多轮降雨,造成的多地发生较重洪涝灾害.某爱心机构将为一受灾严重地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.(1)求打包成件的帐篷和食品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在第(2)问的条件下,如果甲种货车每辆需付运输费2000元,乙种货车每辆需付运输费1800元,应选择哪种方案可使运输费最少?最少运输费是多少元? 24.定义一种新运算“a b ⊗”的含义为:当a b ≥时,a b a b ⊗=+;当a b <时,a b a b ⊗=-.例如:32325⊗=+=,()()22224-⊗=--=-.(1)填空:()21-⊗=________;(2)如果()()3x 732x 2-⊗-=,求x 的值. 25.解下列不等式:(1)()()212531x x -+<-+(2)解不等式组 ()32421152x x x x ⎧--≥⎪⎨-+<⎪⎩26.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分3x-7≥3-2x 和3x-7<3-2x 两种情况,依据新定义列出方程求解可得. 【详解】解:当3x ﹣7≥3﹣2x ,即x ≥2时, 由题意得:(3x ﹣7)+(3﹣2x )=2, 解得:x =6;当3x ﹣7<3﹣2x ,即x <2时, 由题意得:(3x ﹣7)﹣(3﹣2x )=2, 解得:x =125(不符合前提条件,舍去),∴x 的值为6. 故选:D . 【点睛】本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x 的不等式及解一元一次不等式、一元一次方程的能力.2.B解析:B 【分析】先求出不等式的解集,再根据不等式在数轴上的表示方法即可得. 【详解】32x x -≤, 23x x --≤-, 33x -≤-, 1≥x ,由此可知,只有选项B 表示正确, 故选:B . 【点睛】本题考查了在数轴上表示一元一次不等式的解集,熟练掌握不等式的解法是解题关键.3.D解析:D 【分析】求出方程的解,根据已知得出a-3≥0,求出即可. 【详解】解:解方程a-x=3得:x=a-3, ∵方程的解是非负数, ∴a-3≥0, 解得:a≥3, 故选:D . 【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.4.A解析:A 【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知和不等式组的解集求解即可. 【详解】∵解不等式0x a ->得:x a >, 解不等式122x x ->-得:1x <,∴不等式组的解集为1a x <<, 又∵不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,即整数解为-1,0,∴21a -≤<-, 故选:A . 【点睛】本题考查了解一元一次不等式组,不等式组的整数解,能根据不等式组的解集和已知得出答案是解此题的关键.5.B解析:B 【分析】直接利用一元一次不等式的解法分析得出答案. 【详解】 解:3(x-1)≤5-x 3x-3≤5-x , 则4x≤8, 解得:x≤2,故不等式3(x-1)≤5-x 的正整数解有:1,2共2个. 故选:B . 【点睛】本题主要考查了一元一次不等式的整数解,正确解不等式是解题的关键.6.A解析:A 【分析】先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项. 【详解】解不等式x-1≤0得x≤1, 解不等式x+3>0得x >-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A . 【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.7.B解析:B 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.8.A解析:A 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.9.A解析:A 【分析】先解方程,再结合题意列出不等式,解之即可得出答案. 【详解】解:∵3x+3a=2, ∴x=233a- , 又∵方程的解为正数, ∴233a->0, ∴a <23. 故选:A. 【点睛】本题考查一元一次不等式与一元一次方程的综合运用,正确理解一元一次方程解的意义及熟练求解一元一次不等式是解题关键.10.D解析:D 【分析】根据表格及题意可得第2天、第3天、第4天、第5天的背诵最多的诗词,然后根据不等式的关系可进行求解. 【详解】解:由表格及题可得:∵每天最多背诵8首,最少背诵2首, ∴由第2天、第3天、第4天、第5天可得:128x x +≤①,238x x +≤②,1348x x x ++≤③,248x x +≤④,①+②+④-③得:2316x ≤, ∴2163x ≤, ∴123416181333x x x x +++≤+=, ∴7天后,小圆背诵的诗词最多为13首; 故选D . 【点睛】本题主要考查一元一次不等式的应用,熟练掌握不等式的性质与求法是解题的关键.11.B解析:B 【分析】根据数轴图像即可求出解集. 【详解】根据数轴可知表示的解集为12x -<≤, 即数轴上表示的是不等式组12x -<≤的解集故选B . 【点睛】本题考查在数轴表示不等式组的解集,解答本题的关键是明确题意,利用数形结合的思想解答.12.D解析:D 【分析】根据不等式的基本性质逐项判断即可得. 【详解】A 、0a b ->,成立;B 、不等式的两边同减去3,不改变不等号的方向,即33a b ->-,成立;C 、不等式的两边同乘以正数13,不改变不等号的方向,即1133a b >,成立;D 、不等式的两边同乘以负数3-,改变不等号的方向,即33a b -<-,不成立; 故选:D . 【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.二、填空题13.【分析】先按照方案一结合题意求解出增订前的各类书的数量并求出增订的总数量再按照方案二的比例分别解出按照方案二增订后的各类书的总量进而求解比例即可【详解】设原本有A 类新书4x 本B 类新书x 本则C 类新书有 解析:1825【分析】先按照方案一结合题意求解出增订前的各类书的数量,并求出增订的总数量,再按照方案二的比例分别解出按照方案二增订后的各类书的总量,进而求解比例即可. 【详解】设原本有A 类新书4x 本,B 类新书x 本,则C 类新书有(900-5x )本,由题意:4400559005428x x x ≤⎧⎪⎨-≤⨯⎪⎩,解得:70100x ≤≤, 设两种方案都增订m 本书, 方案一:增订A 类15m 本,B 类310m 本,C 类12m 本, 则增订后共计:A 类145x m +本,B 类310x m +本,C 类190052x m ⎛⎫-+ ⎪⎝⎭本, 按方案一增订,则增订后A ,B 两类书总数量之比为7:2,可得:1475=3210x mx m ++,解得:1710x m =,即:10=17m x , 由70100x ≤≤,且m 和x 均为正整数,得x =85,m =50, ∴求得增订前:A 类340本,B 类85本,C 类475本,方案二:增订A 类2205m =本,B 类1510m =本,C 类1252m =本, 则增订后共计:A 类360本,B 类90本,C 类500本,增订后A ,C 两类书总数量之比为36018=50025, 故答案为:1825. 【点睛】本题考查列方程及不等式解决问题,解题关键在于根据题意建立不等式,求解出范围中符合题意的数据.14.﹣2<m <﹣1【分析】根据各象限内坐标符号特征列出不等式组然后解不等式组即可解答【详解】解:∵点P (3m+61+m )在第四象限∴即解得:﹣2<m <﹣1故答案为:﹣2<m <﹣1【点睛】本题考查各象限内解析:﹣2<m <﹣1 【分析】根据各象限内坐标符号特征列出不等式组,然后解不等式组即可解答 【详解】解:∵点P (3m +6,1+m )在第四象限, ∴3601+0m m +>⎧⎨<⎩即21m m >-⎧⎨<-⎩,解得:﹣2<m <﹣1, 故答案为:﹣2<m <﹣1. 【点睛】本题考查各象限内坐标符号特征、解一元一次不等式组,记住各象限内点的坐标符号特征是解答的关键.15.或【分析】根据新定义法则分x 或x+4或x ﹣4最小2或x+1或2x 最大几种情况分别列出一元一次不等式组和一元一次方程进行解答即可【详解】(1)当最小时则即无解此情况不成立(2)当最小时则即解得此时:即解析:43或2- 【分析】根据新定义法则,分x 或x+4或x ﹣4最小、2或x+1或2x 最大几种情况,分别列出一元一次不等式组和一元一次方程进行解答即可.【详解】(1)当4最小时,则4444x x +>⎧⎨->⎩,即00x x >⎧⎨<⎩, x 无解,此情况不成立.(2)当4x +最小时,则4444x x x ≥+⎧⎨-≥+⎩,即00x x ≤⎧⎨≤⎩, ∴解得0x ≤,此时:12x +<,22x <,{}max 2,1,22x x ∴+=,42x ∴+=,即2x =-.(3)当4x -最小时,则4444x x x >-⎧⎨+>-⎩,即00x x >⎧⎨>⎩, ∴解得0x >,此时无法判断,{}max 2,1,2x x +的值,则分情况讨论如下:①当2最大时:2122x x ≥+⎧⎨≥⎩,即11x x ≤⎧⎨≤⎩, 01x ∴<≤,此时:42x -=,2x =(舍去).②当2x 最大时:2221x x x >⎧⎨>+⎩,即11x x >⎧⎨>⎩, 1x ∴>,此时有:42x x -=,43x =. ③当1x +最大时,1212x x x +>⎧⎨+>⎩,即11x x >⎧⎨<⎩,无解,此情况不成立. 综上所述:43x =或2x =-. 【点睛】本题考查新定义下解一元一次不等式组和一元一次方程的能力,由已知等式找到x 的分界点以及准确分类讨论是解答的关键.16.【分析】求出不等式组中每个不等式的解集根据已知即可得出关于a 的不等式即可得出答案【详解】解:不等式组无解解得:故答案为:【点睛】本题考查了一元一次不等式组的应用解此题的关键是能得出关于a 的不等式题目 解析:2a【分析】求出不等式组中每个不等式的解集,根据已知即可得出关于a 的不等式,即可得出答案.【详解】 解:不等式组11x x a >⎧⎨<-⎩无解, 11a ∴-,解得:2a ,故答案为:2a .【点睛】本题考查了一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式,题目比较好,难度适中.17.【分析】分别求出每个不等式的解集再取它们的公共部分即可得到不等式组的解集【详解】解:解不等式①得x <2解不等式②得x≥-2所以不等式组的解集为:故答案为:【点睛】此题考查了解一元一次不等式组解不等式 解析:22x -≤<【分析】分别求出每个不等式的解集,再取它们的公共部分即可得到不等式组的解集.【详解】解:23113x x -<⎧⎨-≤⎩①② 解不等式①得,x <2,解不等式②得,x≥-2所以,不等式组的解集为:22x -≤<故答案为:22x -≤<.【点睛】此题考查了解一元一次不等式组,解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大中间找,大大小小无法找(空集).18.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a 的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解解析:a≥1【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围.【详解】解:∵一元一次不等式组1x x a ≤⎧⎨≤⎩的解集为1x ≤, ∴a≥1,故答案为:a ≥1.【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围.19.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 20.【分析】先求出每个不等式的解集再求出不等式组的解集即可【详解】解不等式得:解不等式得:不等式组的解集为故答案为【点睛】本题考查了解一元一次不等式组能根据不等式的解集根据同大取大同小取小大小小大中间找 解析:1x 3-<<【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩①②, 解不等式①得:x<3,解不等式②得:x 1>-,∴不等式组的解集为1x 3-<<,故答案为1x<3-<.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找出不等式组的解集是解此题的关键.三、解答题21.(1)共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆;(2)最省钱的租车方案为:租用甲种汽车5辆,乙种汽车3辆.【分析】(1)可根据租用甲、乙两种型号的汽车座位总数不小于290,可载行李总数不小于100件列出不等式组,求出x 的取值,看在取值范围中x 可取的整数的个数即为方案数.(2)根据(1)中方案分别计算甲、乙所需要的费用,然后比较,花费较少的即为最省钱的租车方案.【详解】解:(1)由租用甲种汽车x 辆,则租用乙种汽车()8x -辆.由题意得:()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩解得:56x ≤≤.即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)租汽车的总费用为:()25002000850016000x x x +-=+(元)当x 取最小值时,总费用最省,因此当5x =时,总费用最省当5x =时,总费用为:50051600018500⨯+=元最省钱的租车方案为方案一:租用甲种汽车5辆,乙种汽车3辆.【点睛】本题主要考查的是一元一次不等式组的应用,找出题目的不等关系是解题的关键. 22.(1)120套;(2)60人生产桌子,24人生产椅子【分析】(1)用720套单人课桌椅÷6=每天要生产单人课桌椅的套数可得答案;(2)找到关键描述语:①生产桌子的5人一组.每组每天可生产12张,②生产椅子的4人一组,每组每天可生产24把,③至少提前1天完成这项生产任务,进而找到所求的量的关系,列出不等式组求解.【详解】解:(1)∵720÷6=120(套),∴光明厂平均每天要生产120套单人课桌椅.(2)设x 人生产桌子,则(84﹣x )人生产椅子, 由题意可得:1257205842457204x x ⎧⨯⨯≥⎪⎪⎨-⎪⨯⨯≥⎪⎩, 解得:60≤x ≤60,故x =60,∴84-x =24,∴60人生产桌子,24人生产椅子.【点睛】此题主要考查了一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.23.(1)食品120件,则帐篷200件;(2)方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆;(3)方案一运费最少,最少运费是14800元.【分析】(1)设食品x 件,则帐篷(80)x +件,等量关系:帐篷件数+食品件数=320,列出一元一次方程,即可求出解;(2)先由不等关系得到一元一次不等式组,求出解集,再根据实际含义确定方案; (3)分别计算每种方案的运费,然后比较得出结果.【详解】解:(1)设食品x 件,则帐篷(80)x +件,由题意得:(80)320x x ++=,解得:120x =.∴帐篷有12080200+=件.答:食品120件,则帐篷200件;(2)设租用甲种货车a 辆,则乙种货车(8)a -辆,由题意得:4020(8)2001020(8)120a a a a +-⎧⎨+-⎩, 解得:24a .又a 为整数,2a ∴=或3或4,∴乙种货车为:6或5或4.∴方案共有3种:方案一:甲车2辆,乙车6辆;方案二:甲车3辆,乙车5辆;方案三:甲车4辆,乙车4辆;(3)3种方案的运费分别为:方案一:220006180014800⨯+⨯=(元);方案二:320005180015000⨯+⨯=(元);方案三:420004180015200⨯+⨯=(元).148001500015200<<∴方案一运费最少,最少运费是14800元.【点睛】本题查了一元一次方程的应用和一元一次不等式组的应用.关键是弄清题意,找出等量或者不等关系.24.(1)-3;(2)x 6=.【分析】(1)根据新定义列式计算即可;(2)根据新定义分两种情况列方程求解即可.【详解】解:()121-<,∴()21213-⊗=--=-故答案为:3-()2①当3x 732x -≥-时,即x≥2()()3x 732x 2-⊗-=即3x 732x 2-+-=x 6=.②当3x 732x -<-时,即x<2()()3x 732x 2-⊗-=即()3x 732x 2---=125x =(不合题意,舍去) x 6.∴=【点睛】本题主要考察了新定义的计算,解一元一次方程以及有理数的混合运算,解题的关键是熟练掌握解一元一次方程的一般步骤和有理数的混合运算法则.25.(1)x <25;(2)-7<x≤1.【分析】(1)根据解不等式的步骤:去括号——移项——合并同类项——系数化为1,解之即可得出答案;(2)求出每个不等式的解集,根据找不等式组解集的规律找出即可.【详解】(1)解:去括号得:2x-2+2<5-3x-3,移项得:2x+3x <2,合并同类项得:5x <2,系数化为1得:x <25(2)解:()32421152x x x x ⎧--≥⎪⎨-+<⎪⎩①② 解不等式①得, x≤1,解不等式②得, x >-7,∴原不等式组的解集为:-7<x≤1【点睛】本题考查了解一元一次不等式组和一元一次不等式,解题的关键是注意不等号的方向.26.(1)42n m =⎧⎨=⎩;(2)-43a ≤<-;(3)99a ;(4)2712x x ++; 【分析】(1)根据代入消元法解方程组即可;(2)解不等式组即可;(3)根据幂的运算性质计算即可;(4)根据多项式乘以多项式计算即可;【详解】(1)26m n m n =⎧⎨+=⎩, 把2=m n 代入6+=m n 中,得到:26m m +=,解得:2m =,∴4n =,∴方程组的解为42n m =⎧⎨=⎩. (2)26015a a +<⎧⎨-≤⎩, 由260a +<得:3a <-,由15-≤a 得:4a ≥-,∴不等式组的解集为:-43a ≤<-.(3)原式99989a a a =+=. (4)原式224312712x x x x x =+++=++.【点睛】 本题主要考查了二元一次方程组求解,不等式组求解,整式乘法的应用,准确计算是解题的关键.。

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

人教版七年级下册数学单元练习卷:第九章 不等式与不等式组一、填空题(本大题共10小题,每小题3分,共30分) 1.如果1<x <2,那么(x –1)(x –2)__________0.(填写“>”、“<”或“=”)2.写出一个解集为x <–1,且未知数的系数为2的一元一次不等式:__________. 3.当x __________时,式子–2(x –1)的值小于8.4.不等式组1023x x x -<⎧⎨+>⎩的解集是__________.5.不等式2x +5>4x –1的正整数解是__________.6.一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打__________折.7.某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x 元,则x 的取值范围是__________.8.已知关于x 的不等式组12634x x a -<⎧⎨+≤⎩只有两个整数解,则a 的取值范围__________.9.2x ≥的最小值是a ,6x ≤-的最大值是b ,则a +b =__________. 10.已知不等式组1x a x b ≥--⎧⎨-≥-⎩①②在同一条数轴上表示不等式①②的解集如图,则b –a的值为__________.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 11.不等式x +1>3的解集是 A .x >1B .x >–2C .x >2D .x <212.在数轴上表示不等式x –1≤0的解集,正确的是 A .B .C .D .13.x 与3的和的一半是负数,用不等式表示为A .12x +3>0 B .12x +3<0 C .12(x +3)<0D .12(x +3)>014.下列说法中,错误的是 A .x =1是不等式x <2的解B .–2是不等式2x –1<0的一个解C .不等式–3x >9的解集是x =–3D .不等式x <10的整数解有无数个 15.若–12a ≥b ,则a ≤–2b ,其根据是 A .不等式的两边加(或减)同一个数(或式子),不等号的方向不变 B .不等式的两边乘(或除以)同一个正数,不等号的方向不变 C .不等式的两边乘(或除以)同一个负数,不等号的方向改变 D .以上答案均不对16.下列不等式中,不含有1x =-这个解的是 A .213x +≤- B .213x -≥-C .213x -+≥D .213x --≤17.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为A .8B .6C .5D .418.关于x 的不等式组()3141x x x m⎧->-⎨<⎩的解集为x <3,那么m 的取值范围为A .m =3B .m >3C .m <3D .m ≥319.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?则小明至少答对的题数是 A .11道 B .12道C .13道D .14道20.阅读理解:我们把a b c d 称作二阶行列式,规定它的运算法则为a cad bc b d=-,例如1324=1423=2⨯-⨯-,如果231xx-0>,则x 的取值范围是A .x >1B .x <–1C .x >3D .x <–3三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解不等式()2263x x -≤-,并写出它的正整数解.22.解不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩,并写出它的整数解.23.已知关于x 的不等式x a <7的解也是不等式2752x a a->–1的解,求a 的取值范围.24.解不等式组:()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答.(1)解不等式①,得__________,依据是:__________. (2)解不等式③,得__________.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.25.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:(1)若a –b >0,则a __________b ; (2)若a –b =0,则a __________b ; (3)若a –b <0,则a __________b .这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题:比较4+3a 2–2b +b 2与3a 2–2b +1的大小.26.分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式253xx+->0时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①25030xx+>⎧⎨->⎩或②25030xx+<⎧⎨-<⎩,解不等式组①,得x>3,解不等式组②,得x<–5 2 .所以原分式不等式的解集为x>3或x<–5 2 .请你参考小亮思考问题的方法,解分式不等式342xx--<0.27.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x–1=0,②2103x+=,③x–(3x+1)=–5中,不等式组25312x xx x-+>-⎧⎨->-+⎩的关联方程是________;(2)若不等式组112132xx x⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可);(3)若方程3–x=2x,3+x=122x⎛⎫+⎪⎝⎭都是关于x的不等式组22x x mx m<-⎧⎨-≤⎩的关联方程,直接写出m的取值范围.28.为降低空气污染,启东飞鹤公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B型两种公交车共10辆,其中每台的价格,年载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次.请你设计一个方案,使得购车总费用最少.参考答案1.【答案】<2.【答案】2x <–2(答案不唯一) 3.【答案】>–3 4.【答案】31x -<< 5.【答案】1,2 6.【答案】9 7.【答案】440≤x ≤480 8.【答案】4<a ≤7 9.【答案】–4 10.【答案】1311.【答案】C 12.【答案】D 13.【答案】C 14.【答案】C 15.【答案】C 16.【答案】A 17.【答案】C 18.【答案】D 19.【答案】D 20.【答案】A21.【解析】去括号得:2x –4≤6–3x ,移项得:2x +3x ≤6+4, 整理解得:x ≤2, 正整数解为1,2.22.【解析】由不等式2x –6<6–2x 得:x <3.由不等式2x +1>32x +得:13x >. ∴不等式组的解集为133x <<.又x 为整数,∴x =1,2.∴原不等式组的整数解为1,2.23.【解析】解不等式27152x a a-->人教版七年级数学下册第九章不等式与不等式组单元测试题一、 选择题。

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版年级数学下册第九章 不等式与不等式组单元测试题 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b ;④b 2>ab ,其中正确的不等式有( ) A .1个B .2个C .3个D .4个2.已知,下列式子不成立的是( )A .B .C .D .如果,那么3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组中,若未知数、满足,则的取值范围是( )A .B .C .D .5.某市自来水公司按如下标准收取水费:若每户每月用水不超过,则每立方米收费元;若每户每月用水超过,则超过部分每立方米收费元,小颖家某月的水费不少于元,那么她家这个月的用水量(吨数为整数)至少是( ) A .B .C .D .6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( ) A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________. 2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:a b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________.三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.②(1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案: 一、选择题。

人教版数学七年级第九章不等式与不等式组单元测试精选(含答案)8

人教版数学七年级第九章不等式与不等式组单元测试精选(含答案)8

人教版数学七年级第九章不等式与不等式组单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.开发区某物流公司计划调用甲、乙两种型号的物流货车共15辆,运送360件A种货物和396件B种货物.已知甲种物流货车每辆最多能载30件A种货物和24件B种货物,乙种物流货车每辆最多能载20件A种货物和30件B种货物.设安排甲种物流货车x辆,你认为下列符合题意的不等式组是()A.3020(15)360{2430(15)396x xx x+-+-……B.3020(15)360{2430(15)396x xx x+->+->C.3020(15)360{2430(15)396x xx x+-+-„„D.3020(15)360{2430(15)396x xx x+-<+-<2.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30 cm,长与宽的比为3∶2,则该行李箱的长的最大值为()A.26 cmB.52 cmC.78 cmD.104 cm3.若|3x-2|=2-3x,则( )A.x=23B.x>23C.x≤23D.x≥234.当-ax<ay,x>-y,则a的值为( ) A.a=0 B.a<0 C.a>0 D.任意有理数5.若不等式组x24255xx a-⎧+>-⎪⎨⎪>⎩的解集为空集,则a的取值范围是( )A.a>3 B.a≥3C.a<3 D.a≤3 6.下列变形中,错误的是( )A .若3a >6,则a >2B .若-23x >1,则x <-23C .若-x <5,则x >-5D .若13x <1,则x <3 7.若设a >b >0,用“>”、“<”填空:①3a____b ,②-4a____4b ,则下列选项中,填空正确的是( )A .>,>B .>,<C .<,<D .<,> 8.如果x >y ,则下列式子中错误的是( ) A .x −3>y −3B .x +a >y +aC .−3x >−3yD .x3>y39.若关于x 的不等式3-x >a 的解集为x <4,则关于m 的不等式2m +3a <1的解集为( )A .m <2B .m >1C .m >-2D .m <-110.若关于x 的不等式(a −3)x >2的解集为x <2a−3,则a 的取值范围是( ) A .a >3B .a <3C .a >−3D .a <−311.下列说法不正确的是( ) A .如果a −5>b −5,那么a >b B .如果2a >−2b ,那么a >−b C .如果a 2>1,那么a >1aD .如果a >b ,c >d ,那么a +c >b +d12.下列说法正确的有( )①x =4是x −3>1的解;②不等式x −3<0的解有无数个;③x >5是不等式x +2>3的解集;④x =3是x +2>1的解;⑤不等式x +2<5有无数个正整数解; A .1个B .2个C .3个D .4个13.下列各式:(1)5x -≥;(2)30y x -<;(3)50xπ+<;(4)23x x +≠;(5)333x x+≤;(6)20x +<是一元一次不等式的有( ) A .2个B .3个C .4个D .5个14.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x≥11B .11≤x <23C .11<x≤23D .x≤2315.如果关于x 的不等式x >2a ﹣1的最小整数解为x=3,则a 的取值范围是( )A .0<a <2B .a <2C .32≤a <2 D .a≤216.某品牌电脑的成本为2400元,标价为2800元,如果商店要以利润不低于5%的售价打折销售,最低可打多少折出售( ) A .8折B .8.5折C .9折D .9.5折17.下列说法不正确的是 ( ) A .-x <2的解集是x >-2 B .x <-2的整数解有无数个 C .-15是-8x <1的一个解D .x <5的正整数解为x =4,3,2,1二、填空题18.商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_____元/千克. 19.不等式2x+3<-1的解集是:__________.20.不等式3(x ﹣1)≥5(x ﹣3)+6的正整数解是_____. 21.已知,关于x 、y 的方程组343x y ax y a+=-⎧⎨-=⎩其中-3≤a≤1,若x≤1,则y 的取值范围____________.22.满足5(x ﹣1)≤4x+8<5x 的整数x 为__.23.一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x 应满足的不等式为____________. 24.当代数式2x-3x 的值大于10时,x 的取值范围是____________. 25.关于x 的不等式组{2x −3a <7a 6b −3x <5a的解集是5<x <22,则a =_____,b =______.26.已知点P(m -3,1-2m)在第三象限,则由所有满足题意的整数m 组成的最大两位数是____.27.一个两位数,十位上的数字比个位数上的数字小2.若这个两位数在40至60之间,那么这个两位数是________.28.如果关于x 的不等式组{x+212>3−x,x <m;的所有整数解的和是-7,则m 的取值范围是_______________;29.不等式组2152315x x x -≥⎧⎨->-⎩的解集为_____.30.如果a <b ,要使ac >bc ,则c___0; 31.不等式组{2x −1>3x +4<8的解集为_____.32.不等式-3x +1>-8的正整数解是__________. 33. 若关于x 的一元一次不等式组10x x a -<⎧⎨->⎩无解,则a 的取值范围是_____.34.小王家鱼塘有可出售的大鱼和小鱼共800千克,大鱼每千克售价10元,小鱼每千克售价6元,若将这800千克鱼全部出售,收人可以超过6 800元,则其中售出的大鱼至少有多少千克?若设售出的大鱼为x 千克,则可列式为________________________. 35.某次个人象棋赛规定:赢一局得2分,平一局得0分,负一局反扣1分,在12局比赛中,积分超过15分就可以晋升下一轮比赛,而且在全部12轮比赛中,没有出现平局,小王最多输________局比赛.三、解答题36.某种子商店销售“黄金一号”玉米种子,为惠民促销,推出两种销售方案供采购者选择.方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分的种子价格打7折.()1请分别求出方案一和方案二中购买的种子数量(x 千克)和付款金额(y 元)之间的函数关系式;()2若你去购买一定量的种子,你会怎样选择方案?说明理由.37.解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1并求它的整数解的和.38.解不等式:6x -1≤5;把解集在数轴上表示出来.39.已知满足不等式5-3x≤1的最小正整数是关于x 的方程|ax -2|=1的解,求a 的值. 40.若不等式组{x +a ≥01−2x >x −2①有解;②无解.请分别探讨a 的取值范围.41.若不等式3(x -1)>2(x +1)的解都是不等式ax >b 的解,请问a ,b 应满足什么关系?42.解下列不等式组:(1){2x >x +1,3x <2(x +1);(2){x−22+3≥x +1,1−3(x −1)<8−x; 43.解下列不等式组,并把解集在数轴上表示出来. (1){x −1>03(x +2)<5x;(2){6x +15>2(4x +3)2x−13≥12x −23 . 44.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x -1=0,② 2103x +=③x -(3x+1)=-5 中,不等式组25312x x x x -+>-⎧⎨->-+⎩的关联方程是________(2)若不等式组 112132x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数, 则这个关联方程可以是________(写出一个即可) (3)若方程 3-x=2x ,3+x= 122x ⎛⎫+ ⎪⎝⎭都是关于 x 的不等式组 22x x m x m<-⎧⎨-≤⎩的关联方程,直接写出 m 的取值范围.45.某工厂接受了20天内生产1200台GH 型电子产品的总任务.已知每台GH 型产品由4个G 型装置和3个H 型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G 型装置或3个H 型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G 、H 型装置数量正好全部配套组成GH 型产品. (1)按照这样的生产方式,工厂每天能配套组成多少套GH 型电子产品?请列出二元一次方程组解答此问题.(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G 型装置.1.设原来每天安排x 名工人生产G 型装置,后来补充m 名新工人,求x 的值(用含m 的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务? 46.(1)解方程:2x−13−x+14=1;(2)当x 取何值时,代数式6x +9的值比代数式x +23的值小23. 47.解不等式21531322x x -++≥,并把它的解集在数轴上表示出来.48.(1)已知不等式组3()4213x x ba xx--≤⎧⎪+⎨>-⎪⎩的解集为1≤x<2,求a、b的值.(2)已知关于x的不等式组3155x ax a≥-⎧⎨≤-⎩无解,试化简|a+1|﹣|3﹣a|.49.解不等式322x-≤2,并把它的解表示在数轴上.50.我们用[a]表示不大于a的最大整数,例如:[3.5]=3,[4]=4,[-1.5]=-2;用{a}表示大于a的最小整数,例如:{3.5}=4,{1}=2,{-2.5}=-2.解决下列问题:(1)[-5.5]等于多少,{2.5}等于多少;(2)若[x]=3,写出x的取值范围;若{y}=-2,写出y的取值范围.(3)已知x,y满足方程组{[x]+3{y}=2[x]−4{y}=−5,求x,y的取值范围.参考答案1.A 2.C 3.C 4.C 5.B 6.B 7.B 8.C 9.A 10.B 11.C 12.B 13.B 14.C 15.C 16.C 17.C 18.20. 19.x&lt;-2 20.1,2,3. 21.1≤y≤422.9,10,11,12,13 23.2(x +50)≥280 24.x <-4 25.225, 37626.21 27.46或5728.−3<m ≤−2或2<m ≤329.3≤x <4. 30.< 31.2<x <4. 32.1,2 33.1a ≥34.10x +6(800-x )>6 800 35.236.(1)方案一的函数是:14y x =,方案二的函数是:()5(03)3550.73(3)x x y x x <≤⎧=⨯+⨯⨯->⎨⎩;(2)详见解析. 37.038.x≤1;数轴表示见解析. 39.a =32或12. 40.①a >-1②a≤-1 41.ba≤5,且a >0.42.(1)1<x <2 (2)-2<x ≤243.(1)x >3;在数轴上表示见解析;(2)﹣2≤x <92,在数轴上表示见解析 44.(1)①;(2)20x -= ;(3)00.5m ≤<.45.(1)工厂每天能配套组成48套GH 型电子产品;(2) 30名. 46.(1)x =195;(2)x =﹣95. 47.x≤2,解集表示在数轴上见解析. 48.(1)a =﹣1,b =2;(2)4.49.x≤2,将不等式的解集表示在数轴上见解析.50.(1) [-5.5]=-6,{2.5}=3;(2) 3≤x <4;-3≤y <-2;(3)-1≤x <0,0≤y <1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷第1页,总4页 不等式测试卷
(各位同学,请自己安排2个小时考试,自己批阅统计好分数,在班级小程
序拍照发给老师检查。


一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若0a b <<,则下列不等式不能成立的是( )
A .11a b >
B .11a b a >-
C .|a|>|b|
D .22a b >
2.已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )
A .[7,26]-
B .[1,20]-
C .[4,15]
D .[1,15]
3.关于x 的不等式22280x ax a --<(0a >)的解集为()12,x x ,且2115x x -=,则a = A .154 B .72 C .52 D .152
4.设集合{}220A x x x =-->,{}
2log 2B x x =≤,则集合()R C A B =I A .{}12x x -≤≤ B .{}02x x <≤ C .{}04x x <≤ D .{}14x x -≤≤ 5.若关于x 的不等式ax b 0->的解集是(),2∞--,则关于x 的不等式2ax bx 0+>的解集为( )
A .()2,0-
B .()(),02,∞∞-⋃+
C .()0,2
D .()(),20,∞∞--⋃+ 6.已知关于x 的不等式
101ax x -<+的解集是11,2骣琪-琪桫,则a 的值为( ) A .2 B .2- C .12 D .12
- 7.不等式20ax x c -+>的解集为}{
|21x x -<<,函数2y ax x c =-+的图象大致为( ) A . B .。

相关文档
最新文档