电力系统实验书

合集下载

电力系统稳态分析实验指示书

电力系统稳态分析实验指示书

电力系统稳态分析实验指示书实验1 CEES潮流计算分析软件的运行环境练习实验1、实验目的:通过单线图的制作、实验参数设置,过程操作、结果分析,熟悉掌握电网潮流计算仿真软件的使用操作方法,为后续试验做好准备。

2、实验内容及要求:1)熟悉和掌握电力系统仿真软件的运行环境和使用方法。

2)掌握新建项目界面下的电力系统单线图制作方法。

3)掌握电气元件的参数的设置和修改方法。

4)制作教材P82例3-1的单线图,并按题的要求正确设置参数。

5)保存打印、分析实验结果,填写实验报告。

3、操作提示:1)进入计算机,点击CEES软件图标进入软件人机界面的“编辑”状态。

2)点击“新建项目”或“修改项目”设置项目名称,3)利用界面右侧的各种图符制作所需电力系统单线图。

4)遇到困难点击“帮助”5)点击“输出保存”选择输出方式和保存。

4、注意事项:1)新建项目时路径名的盘符不能用“C:\”,否则计算机重启后会将保存的东西清洗掉。

在进入编辑状态下,应先点击“文件”,将“自动文件保存项目设置”时间改为120分钟,否则可能中途会卡机。

2)图元不够用时可点击相关同类图标,自行自作所需图元。

3)元件的连接一般均通过母线,发电机、变压器单元接线时可直接连接,软件自动在其间增加黑点。

4)注意设置短路的时刻和显示方式。

5)平衡节点必须只有一个。

6)注意变压器阻抗、导纳参数的归算设置。

实验2辐射型电网潮流计算的验证实验1、实验目的:通过实验的参数设置,过程操作、结果分析,验证辐射型电网潮流计算理论分析计算方法的正确性,启发学生思考问题、复习巩固相关专业知识。

2、实验内容及要求:1)熟悉和掌握电力系统仿真软件的运行环境和使用方法。

2)掌握新建项目界面下的电力系统单线图制作方法。

3)掌握电气元件的参数的设置和修改方法。

4)制作教材P82例3-1的单线图,并按题的要求正确设置参数。

5)仿真计算并校验例题的计算结果。

6)保存打印、分析实验结果,填写实验报告。

电力系统实验报告

电力系统实验报告

一、实验目的1. 掌握电力系统基本元件的特性和参数测量方法。

2. 理解电力系统运行的基本原理,包括稳态运行和暂态过程。

3. 学习使用电力系统仿真软件进行潮流计算和分析。

4. 提高实验操作能力和数据分析能力。

二、实验内容1. 电力系统基本元件特性实验(1)实验原理本实验主要研究电力系统中常用元件的特性,包括电阻、电感、电容和变压器。

通过测量元件在不同条件下的电压、电流和功率,分析其特性。

(2)实验步骤1. 测量电阻元件的伏安特性,绘制伏安曲线。

2. 测量电感元件的伏安特性,分析其频率响应。

3. 测量电容元件的伏安特性,分析其频率响应。

4. 测量变压器变比和损耗。

(3)实验结果与分析通过实验,得到了电阻、电感、电容和变压器的伏安特性曲线,分析了其频率响应和损耗情况。

2. 电力系统稳态运行实验(1)实验原理本实验研究电力系统在稳态运行条件下的电压、电流和功率分布。

通过仿真软件模拟电力系统运行,分析稳态运行特性。

(2)实验步骤1. 建立电力系统模型,包括发电机、变压器、线路和负荷。

2. 设置电力系统运行参数,如电压、频率和负荷。

3. 运行仿真软件,观察电压、电流和功率分布情况。

4. 分析稳态运行特性,如电压分布、潮流分布和功率损耗。

(3)实验结果与分析通过仿真实验,得到了电力系统稳态运行时的电压分布、潮流分布和功率损耗情况。

分析了不同运行参数对系统性能的影响。

3. 电力系统暂态过程实验(1)实验原理本实验研究电力系统在发生故障或扰动时的暂态过程。

通过仿真软件模拟故障或扰动,分析暂态过程的电压、电流和功率变化。

(2)实验步骤1. 建立电力系统模型,包括发电机、变压器、线路和负荷。

2. 设置故障或扰动参数,如故障类型、故障位置和故障持续时间。

3. 运行仿真软件,观察电压、电流和功率变化情况。

4. 分析暂态过程特性,如电压恢复、频率变化和稳定裕度。

(3)实验结果与分析通过仿真实验,得到了电力系统发生故障或扰动时的暂态过程特性。

电力系统仿真实验指导书

电力系统仿真实验指导书

电力系统仿真实验指导书本指导书以电力系统仿真实验为主题,介绍了电力系统仿真实验的基本原理、实验步骤以及实验注意事项。

通过本实验的学习,能够加深对电力系统仿真的理解,掌握基本的仿真技术和方法,为后续电力系统相关实验的学习打下基础。

本实验采用仿真软件实现,所需软件主要为MATLAB和SIMULINK。

学生需要提前熟悉MATLAB和SIMULINK的基本操作和常用函数,具备一定的电力系统基础知识。

一、实验原理电力系统仿真实验是通过电力系统的模型来模拟和控制真实电力系统的运行,以实现对电力系统的研究和分析。

通过仿真实验,可以1观察和分析电力系统在不同工况下的运行特性,验证电力系统的稳定性和可靠性,优化电力系统的运行参数等。

电力系统仿真实验的基本原理是将真实电力系统抽象成数学模型,并通过计算机软件来模拟和控制这个数学模型。

模型的输入是电力系统的初始条件和外部扰动,输出是电力系统的动态响应和稳态结果。

通过对模型输入的控制和模型输出的观测,可以实现对电力系统的研究和分析。

二、实验步骤1. 确定仿真实验的目标和内容。

根据实验要求和实验目标,确定仿真实验的内容和范围。

2. 建立电力系统的数学模型。

根据实验要求和实验目标,将电力系统抽象成数学模型,并确定模型的输入和输出。

23. 编写仿真程序。

使用MATLAB和SIMULINK等软件,编写仿真程序,实现对电力系统模型的仿真和控制。

编写的程序应包括模型的输入和输出控制,仿真参数的设置,仿真结果的观测和分析等。

4. 运行仿真程序。

加载仿真程序,设置仿真参数,运行仿真程序,观察仿真结果。

5. 分析仿真结果。

根据仿真结果,分析电力系统的运行特性,验证仿真模型的准确性和有效性。

6. 优化仿真模型和参数。

根据实验结果,对仿真模型和参数进行优化,提高仿真模型的准确性和有效性。

三、实验注意事项31. 熟悉仿真软件的基本操作。

在进行电力系统仿真实验前,需要提前熟悉使用MATLAB和SIMULINK等仿真软件的基本操作和常用函数。

电力系统分析实验指导书

电力系统分析实验指导书

3.1电力系统稳定性实验(一)3.1.1实验目的1)加深理解电力系统静态稳定的原理。

2)了解提高电力系统静态稳定的方法。

3.1.2原理与说明电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。

一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。

因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。

实验用一次系统接线图如图3-1所示。

本实验系统是一种物理模型。

原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。

原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节装置来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。

实验台上安装有TQDB-III多功能微机保护实验装置,可以用来测量电压、电流、功率和频率。

实验台上还设置了模拟短路故障等控制设备。

图3-1一次系统接线图3.1.3实验项目与方法3.1.3.1负荷调节实验1)启动机组,满足条件后并网运行,并网后退出同期装置,并网步骤见“同步发电机准同期并列实验”。

2)将调速装置的工作方式设为“自动”,将励磁装置的工作方式设为“恒Ug”。

3)调节调速装置的增速减速按钮,可以调节发电机有功功率输出,调节励磁调节装置的增磁减磁按钮,可以调节发电机输出的无功功率。

4)将有功、无功减到零值作空载运行,记录空载励磁电流。

电力系统模拟实训报告书

电力系统模拟实训报告书

一、实训目的本次电力系统模拟实训旨在使学生了解电力系统的基本原理、运行方式和常见故障,掌握电力系统模拟软件的使用方法,提高学生的实际操作能力和分析解决问题的能力。

二、实训内容1. 电力系统基本原理及运行方式(1)电力系统组成:发电厂、输电线路、变电所、配电线路和用户。

(2)电力系统运行方式:并列运行、单相运行、分相运行。

(3)电力系统故障:短路故障、接地故障、过电压故障。

2. 电力系统模拟软件的使用(1)电力系统模拟软件简介:电力系统模拟软件是一种用于分析和研究电力系统的计算机程序,具有强大的功能,如潮流计算、短路计算、稳定性分析等。

(2)电力系统模拟软件的使用方法:以某电力系统模拟软件为例,介绍其使用方法。

3. 电力系统模拟案例分析(1)潮流计算:以某实际电力系统为例,进行潮流计算,分析系统运行状态。

(2)短路计算:以某实际电力系统为例,进行短路计算,分析系统故障情况。

(3)稳定性分析:以某实际电力系统为例,进行稳定性分析,评估系统稳定性。

三、实训过程1. 理论学习:学习电力系统基本原理、运行方式和常见故障,掌握电力系统模拟软件的使用方法。

2. 软件操作:在计算机上安装并熟悉电力系统模拟软件,按照实训要求进行操作。

3. 案例分析:针对实际电力系统,进行潮流计算、短路计算和稳定性分析,分析系统运行状态、故障情况和稳定性。

4. 撰写报告:总结实训过程,分析实训结果,提出改进建议。

四、实训结果与分析1. 潮流计算结果分析:通过潮流计算,得出电力系统各节点电压、线路潮流等参数,分析系统运行状态,发现电压偏低、线路过载等问题。

2. 短路计算结果分析:通过短路计算,得出短路故障发生时系统各节点电压、线路电流等参数,分析故障情况,为故障处理提供依据。

3. 稳定性分析结果分析:通过稳定性分析,评估电力系统稳定性,发现系统存在稳定性隐患,提出改进建议。

五、实训体会1. 电力系统模拟实训使学生深入了解电力系统运行原理,提高实际操作能力。

电力系统基础实验指导书_

电力系统基础实验指导书_

电力系统基础实验指导书北京交通大学电气工程学院电气工程综合实验中心实验1 电力系统运行方式及潮流分析实验一、实验目的1、掌握电力系统主接线电路的建立方法2、掌握辐射形网络的潮流计算方法;3、比较计算机潮流计算与手算潮流的差异;4、掌握不同运行方式下潮流分布的特点。

二、实验内容1、辐射形网络的潮流计算;2、不同运行方式下潮流分布的比较分析三、实验方法和步骤1.辐射形网络主接线系统的建立输入参数(系统图如下):G1:300+j180MV A(平衡节点)变压器B1:变比=18/110,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;变压器B2、B3:Un=15MVA,变比=110/11 KV,Uk%=10.5%,Pk=128KW,P0=40.5KW,I0/In=3.5%;负荷F1:20+j15MVA;负荷F2:28+j10MV A;线路L1、L2:长度:80km,电阻:0.21Ω/km,电抗:0.416Ω/km,电纳:2.74×10-6S/km。

辐射形网络主接线图2.辐射形网络的潮流计算(1)调节发电机输出电压,使母线A的电压为115KV,运行DDRTS进行系统潮流计算,在监控图页上观察计算结果,并填入下表:(2)手算潮流:变压器B2(B3)潮流计算:线路L1(L2)潮流计算:(3)计算比较误差分析3.不同运行方式下潮流比较分析(1)实验网络结构图如上。

由线路上的断路器切换以下实验运行方式:①双回线运行(L1、L2均投入运行)②单回线运行(L1投入运行,L2退出)对上述两种运行方式分别运行潮流计算功能,将潮流计算结果填入下表:(2)比较分析两种运行方式下线路损耗、母线电压情况四、思考题1、辐射型网络的潮流计算的步骤是什么?2、试分析比较手动潮流计算方法与计算机潮流计算方法的误差,并分析其根源。

3、电力网络的节点类型有那些?试比较分析其特点。

4、对潮流进行控制一般都有哪些措施?实验2 电力系统横向故障分析实验一、实验目的1、对电力系统各种短路现象的认识;2、掌握各种短路故障的电压电流分布特点;3、分析比较仿真运算与手动运算的区别;二、实验内容1.各种短路电流实验观察比较各种短路时的三相电流、三相电压;2.归纳总结各种短路的特点3.仿真运算与手动运算的比较分析三、实验方法和步骤1.辐射形网络主接线系统的建立输入参数(系统图如下):额定电压:220KV;负荷F1:100+j42MV A;负荷处母线电压:17.25V;变压器B1:Un=360MVA,变比=18/220,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;变压器B2:Un=360MVA,变比=220/18,Uk%=14.3%,Pk=230KW,P0=150KW,I0/In=1%;线路L1、L2:长度:100km,电阻:0.04Ω/km,电抗:0.3256Ω/km。

电力系统分析(实验指导书)

电力系统分析(实验指导书)

电力系统分析 实验指导书安全注意事项:1、实验电压:500V,实验电流:4.2A,具有一定危险性。

2、实验过程中,人体不可接触带电线路,如自耦调压器的接线端、发电机的接线端等。

3、控制柜上的总电源只允许指导老师操作,其他人员不得自行开关。

控制柜上的所有组件必须经指导老师允许并严格按照指令进行操作。

4、实验台上的微机线路保护装置只允许指导老师操作,实验台上的其他组件必须经指导老师允许并严格按照指令进行操作。

第一节发电机组的起动与运转实验一、实验目的1、了解微机调速装置的工作原理、掌握其操作方法。

2、熟悉发电机组中的原动机(直流电动机)的基本特性。

3、掌握发电机组起励建压、解列、停机操作。

二、原理说明本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于设定原动机的转速(即发电机输出电压的频率)和有功功率,励磁系统用于调整发电机输出电压值和无功功率。

图1-1为调速系统的原理结构示意图,图1-2为励磁系统的原理结构示意图。

图1-1 调速系统原理结构示意图A、B、C为墙壁插头电源进线在控制柜中发电机图1-2 励磁系统原理结构示意图装于原动机上的编码器将转速信号以脉冲的形式送入THLZD-2电力系统综合自动化控制柜(以下简称“控制柜”)中的THLWT-3型微机调速装置(以下简称“微机调速装置”),该装置将转速信号转换成电压,和给定电压一起送入ZKS-15型直流电机调速装置(隐装于控制柜中),采用双闭环方式调节原动机的电枢电压,从而改变原动机的转速和输出功率。

发电机输出端的三相交流电压信号送入电量采集模块1,三相交流电流信号经电流互感器也送入电量采集模块1,信号被处理后,计算结果经RS485通信口送入THLWL-3型微机励磁装置(以下简称“微机励磁装置”);发电机的直流励磁电压信号和直流励磁电流信号送入电量采集模块2,信号被处理后,计算结果也经RS485通信口送入微机励磁装置;微机励磁装置根据计算结果输出控制电压,来调节发电机的励磁电流。

电力系统基础实验指导书

电力系统基础实验指导书

电力系统基础实验指导书北京建筑大学建电系实验一一机—无穷大系统稳态运行方式实验一、实验目的1、了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2、了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称度运行对发电机的影响等。

二、预习与思考1、何为电压损耗和电压降落?2、影响简单电力系统静态稳定性的因素有哪些?3、提高电力系统静态稳定有哪些措施?三、实验原理电力系统稳态对称和不对称运动分析,除了包含许多理论概念之外,还有一些重要的“数值概念”,为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。

因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观的、易于形成的深刻记忆的手段之一。

实验用一次系统接线图如图2-1所示。

XL4A相QF6XL2 QF2C相A相C相系统开关发电机开关发电机QF5QF 3 XL3XL1 QF1本实验系统是一种物理模型。

原动机采用直流电动机来模拟,当然,它们的1特性与大型原动机是不相似的。

原动机输出功率的大小,可通过给定直流电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。

试验台的输电线路使用多个结成链形的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”无线就是直接用实验室的交流电源,因此是由实际电力系统供电的,基本上符合“无穷大”母线的条件。

为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。

利用光电编码盘的脉冲信号测量交流发电机的转速,此外,台上还设置了模拟短路故障等控制设备。

电力系统及自动化实验指导书

电力系统及自动化实验指导书

高等学校实验课系列教材——电力系统及自动化实验指导书
高等学校实验课系列教材——电力系统及自动化实验指导书
• • • • • •
①微机自并励(恒流或恒压控制方式): ②微机他励(恒流或恒压控制方式): (4)实验报告要求 1.3 电力系统暂态稳定实验 (1)实验目的 (2)实验原理
高等学校实验课系列教材——电力系统及自动化实验指导书
高等学校实验课系列教材——电力系统及自动化实验指导书
• • • • •
3)单回路稳态非全相运行实验 (4)实验报告要求 1.2 电力系统功率特性和功率极限实验 (1)实验目的 (2)实验原理
高等学校实验课系列教材——电力系统及自动化实验指导书
高等学校实验课系列教材——电力系统及自动化实验指导书
• (3)实验内容 • 1)无调节励磁时,功率特性和功率极限的 测定 • 2)手动调节励磁时,功率特性和功率极限 的测定 • 3)自动调节励磁时,功率特性和功率极限 的测定
高等学校实验课系列教材——电力系统及自动化实验指导书
高等学校实验课系列教材——电力系统及自动化实验指导书
高等学校实验课系列教材——电力系统及自动化实验指导书
图2.1 DL系列电流继电器
高等学校实验课系列教材——电力系统及自动化实验指导书
高等学校实验课系列教材——电力系统及自动化实验指导书
• (3)实验内容 • 1)电流继电器特性实验 • 2)电压继电器特性实验
图2.2 电流继电器动作电流值测试实验原理图
高等学校实验课系列教材——电力系统及自动化实验指导书
• 2)根据负荷大小不同时的不同转速,绘出 转速和有功功率的关系曲线(见图1.3), 计算出原动机的调差系数。 • 3)分析、比较在负荷相同而调速器在不同 的运行方式时,转速有什么不同?为什么?

电力系统综合实验实验报告

电力系统综合实验实验报告

电力系统综合实验实验报告一、实验目的电力系统综合实验旨在深入了解电力系统的运行原理、特性和控制方法,通过实际操作和数据分析,提高对电力系统的认识和解决实际问题的能力。

二、实验设备与工具本次实验使用了以下设备和工具:1、电力系统模拟实验台:包括发电机、变压器、输电线路、负载等模拟组件。

2、测量仪器:如电压表、电流表、功率表、频率表等。

3、计算机及相关软件:用于数据采集、分析和模拟计算。

三、实验原理1、电力系统的基本构成电力系统由发电、输电、变电、配电和用电等环节组成。

发电环节将其他形式的能源转化为电能,通过输电线路将电能输送到变电站,经降压后分配给用户。

2、电力系统的运行特性包括电压、电流、功率、频率等参数的变化规律,以及系统的稳定性、可靠性和经济性等方面的特性。

3、电力系统的控制方法通过调节发电机的输出功率、变压器的变比、无功补偿设备等,实现对电力系统的电压、频率和功率的控制。

四、实验内容与步骤1、电力系统潮流计算(1)根据给定的电力系统网络结构和参数,建立数学模型。

(2)使用计算机软件进行潮流计算,得出各节点的电压、电流和功率分布。

2、电力系统稳定性分析(1)在实验台上设置不同的运行工况,如短路故障、负荷突变等。

(2)观察系统的动态响应,分析系统的稳定性。

3、电力系统的电压调整(1)改变发电机的励磁电流,观察母线电压的变化。

(2)投入无功补偿设备,如电容器、电抗器,研究其对电压的调节效果。

4、电力系统的频率调整(1)改变发电机的输出功率,观察系统频率的变化。

(2)研究一次调频和二次调频对频率稳定的作用。

五、实验数据与结果分析1、潮流计算结果各节点的电压幅值和相角。

各支路的电流和功率。

分析潮流分布的合理性,找出可能存在的问题。

2、稳定性分析结果系统在故障或扰动后的振荡情况。

计算稳定裕度,评估系统的稳定性。

3、电压调整结果发电机励磁电流与母线电压的关系曲线。

无功补偿设备投入前后的电压变化情况。

4、频率调整结果发电机输出功率与系统频率的关系曲线。

电力系统实验 最新版

电力系统实验 最新版

实验1 单机带负荷实验一、实验目的1. 了解和掌握单机带负荷运行方式的特点。

2. 了解在单机带负荷运行方式下原动机的转速和功角与单机—无穷大系统运行方式下有什么不同。

3. 通过独立电力网与大电力系统的分析比较,进一步理解系统稳定概念。

二、原理说明单机带负荷运行方式与单机对无穷大系统运行方式有着截然不同的概念:单机对无穷大系统在稳定运行时,发电机的频率与无穷大频率一样,它受大系统的频率牵制,随系统的频率变化而变化,发电机的容量只占无穷大系统容量的很小一部分;而单机带负荷是一个独立电力网,发电机是唯一电源,任何负荷的投切都会引起发电机的频率和电压变化(原动机的调速器,发电机的励磁调节器均为有差调节),此时,也可以通过二次调节将发电机的频率和电压调至额定值。

图1 单机带负荷接线图负载箱阻抗的分配如下:阻性负载包括一组 3×1600Ω/0.2A(0.1kW)板式电阻,两组 3×800Ω/0.4A(0.2kW)板式电阻,一组 3×320Ω/1A(0.5kW)板式电阻和两组 3×160Ω/2A (1kW)板式电阻,通过开关投切可调节阻性负载的大小。

三、实验内容与步骤打开电源前,调整实验台上各切换开关的位置,确保三个电压指示为同一相电压或线电压;发电机运行方式为单机运行;发电机励磁方式手动励磁,他励;1. 依次打开控制柜电源、试验台电源,原动机开关旋至开,按下微机调速器启动按钮,自动将机组启动至 1500rpm,打开励磁电源,通过调节手动励磁调压手柄,使发电机电压达到300V。

2. 合上输电线路的所有断路器,发电机通过两回线送电到负载。

3. 通过控制电阻性负载的投退改变有功负载的大小,记录在不同负载下发电机转速,送、受端的电压,有功功率、功率因数及电流。

数据记录在表 1‐1 中,由于负载对称,只需记录一相电流即可。

根据记录的数据分析发电机转速与受端功率,受端电压和功率与负载阻抗,受端功率和电压等的关系。

电力系统稳态分析实验指导书

电力系统稳态分析实验指导书

电力系统稳态分析实验指导书目录实验一单机-无穷大系统稳态运行方式实验 (2)1.1 实验目的 (2)1.2 原理说明 (2)1.3 实验内容与步骤 (3)实验二电力系统潮流计算分析实验 (6)2.1 实验目的 (6)2.2 原理说明 (6)2.3 实验内容与步骤 (6)实验三电力系统有功功率—频率特性实验 (11)3.1实验目的 (11)3.2 原理说明 (11)3.3 实验内容与步骤 (13)实验四电力系统无功功率—电压特性实验 (18)4.1 实验目的 (18)4.2 原理说明 (18)4.3 实验内容与步骤 (19)实验一单机-无穷大系统稳态运行方式实验1.1 实验目的1.熟悉远距离输电的线路基本结构和参数的测试方法。

2.掌握对称稳定工况下,输电系统的各种运行状态与运行参数的数值变化范围。

3.掌握输电系统稳态不对称运行的条件、参数和不对称运行对发电机的影响等。

1.2 原理说明单机-无穷大系统模型,是简单电力系统分析的最基本,最主要的研究对象。

本实验平台建立的是一种物理模型,如下图1-1所示。

图1-1 单机-无穷大系统示意图发电机组的原动机采用国标直流电动机模拟,但其特性与电厂的大型原动机并不相似。

发电机组并网运行后,输出有功功率的大小可以通过调节直流电动机的电枢电压来调节(具体操作必须严格按照调速器的正确安全操作步骤进行!可参考《微机调速装置基本操作实验》)。

发电机组的三相同步发电机采用的是工业现场标准的小型发电机,参数与大型同步发电机不相似,但可将其看作一种具有特殊参数的电力系统发电机。

实验平台给发电机提供了三种典型的励磁系统:手动励磁、常规励磁和微机励磁系统,可以通过实验台的转换开关切换(具体操作必须严格按照励磁调节装置的正确安全操作步骤进行!实验平台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大系统”采用大功率三相自耦调压器,三相自耦调压器的容量远大于发电机的容量,可近似看作无穷大电源,并且通过调压器可以方便的模拟系统电压的波动。

电力系统综实验

电力系统综实验

电力系统综合实验电力系统动态模拟实验室编华北电力大学二○○五年六月电力系统综合实验电力系统动态模拟实验室/ee/psda前言电力系统综合实验是根据1982年电力系统及自动化专业武汉会议确定的教学大纲编写的。

其目的是在学生基本学完专业课的基础上,对某些问题进行综合的实验探讨,以提高学生实验研究、分析处理数据和提出科学报告的能力。

通过实验,使学生对电力系统的结构、系统中各元件的性能、电力系统正常运行、故障运行、失步特征等建立比较完整的概念。

通过实验,使学生在实验方案设计、仪器仪表的选择与使用、实验电路的接线与调试、数据处理与误差分析、曲线与向量图的绘制等方面得到训练。

实验内容包括:电力系统静态稳定、电力系统暂态稳定、同步发电机静态运行安全极限测定、用不同方法测定同步发电机参数等。

为了使学生掌握动态模拟方法,以便利用动模实验室进行实验,首先简略介绍了模拟理论及动模的作用、电力系统中各元件的模拟、模拟计算举例等,最后对实验室的某些专用仪器进行了介绍。

所列实验内容可根据专业设置选做其中部分项目。

目录前言电力系统动态模拟介绍 (1)实验一电力系统静态稳定 (16)实验二电力系统暂态稳定 (19)实验三同步发电机静态安全运行极限的测定 (22)实验四三相突然短路法测定同步发电机参数 (26)实验五电压恢复法测定同步发电机参数 (30)实验六静测法测定同步发电机次暂态电抗X”d和X”q (33)实验七同步发电机空载特性、短路特性及参数测定 (36)实验八同步发电机纯电感性负载特性实验 (39)附一DF1024波形记录仪使用介绍 (41)附二微机式保护/故障模拟控制装置使用说明 (47)实验一 电力系统静态稳定一.实验目的1. 观察单机对无穷大系统静态稳定破坏的物理过程,增加对静态稳定的感性认识。

2. 通过实验加深对电力系统静态稳定性问题基本理论的理解。

3. 通过实验研究影响电力系统静态稳定性的因素和提高静态稳定性的措施。

电力系统分析实验指导书

电力系统分析实验指导书

3。

1 电力系统稳定性实验(一)3。

1。

1 实验目的1)加深理解电力系统静态稳定的原理.2) 了解提高电力系统静态稳定的方法.3。

1.2 原理与说明电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念"。

一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据.因此,除了通过结合实际的问题,让学生掌握此类“数值概念"外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。

实验用一次系统接线图如图3—1所示。

本实验系统是一种物理模型。

原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。

原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。

实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。

发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节装置来实现自动调节。

实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。

“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大"母线的条件.实验台上安装有TQDB—III多功能微机保护实验装置,可以用来测量电压、电流、功率和频率。

实验台上还设置了模拟短路故障等控制设备。

图3—1 一次系统接线图3。

1.3 实验项目与方法3。

1。

3。

1 负荷调节实验1)启动机组,满足条件后并网运行,并网后退出同期装置,并网步骤见“同步发电机准同期并列实验"。

2) 将调速装置的工作方式设为“自动”,将励磁装置的工作方式设为“恒Ug”.3)调节调速装置的增速减速按钮,可以调节发电机有功功率输出,调节励磁调节装置的增磁减磁按钮,可以调节发电机输出的无功功率。

电力系统分析实验指导书(DOC)

电力系统分析实验指导书(DOC)

在相同的运行条件下〔即系统电压U x、发电机电势保持E q保持不变,即并网前U x=E q〕,测定输电线单回线和双回线运行时,发电机的功一角特性曲线,功率极限值和到达功率极限时的功角值。

同时观察并记录系统中其他运行参数〔如发电机端电压等〕的变化。

将两种情况下的结果加以比拟和分析。

实验步骤:〔1〕输电线路为单回线;〔2〕发电机与系统并列后,调节发电机使其输出的有功和无功功率为零;〔4〕逐步增加发电机输出的有功功率,而发电机不调节励磁;〔5〕观察并记录系统中运行参数的变化,填入表4-1中;〔6〕输电线路为双回线,重复上述步骤,填入表4-2中。

表4-1 单回线表4-2 双回线注意:〔1〕有功功率应缓慢调节,每次调节后,需等待一段时间,观察系统是否稳定,以取得准确的测量数值。

〔2〕当系统失稳时,减小原动机出力,使发电机拉入同步状态。

〔3〕δ2.发电机电势E q不同对系统静态稳定的影响在同一接线及相同的系统电压下,测定发电机电势E q不同时〔E q<U x或E q>U x〕发电机的功一角特性曲线和功率极限。

实验步骤:(1)输电线为单回线,并网前E q<U x;(2)发电机与系统并列后,调节发电机使其输出有功功率为零;(3)逐步增加发电机输出的有功功率,而发电机不调节励磁;〔4〕观察并记录系统中运行参数的变化,填入表4-3中;〔5〕输电线为单回线,并网前E q>U x,重复上述步骤,填入表4-4中。

表4-3 单回线并网前E q<U x表4-4 单回线并网前E q>U x〔二〕手动调节励磁时,功率特性和功率极限的测定给定初始运行方式,在增加发电机有功输出时,手动调节励磁保持发电机端电压恒定,测定发电机的功一角曲线和功率极限,并与无调节励磁时所得的结果比拟分析,说明励磁调节对功率特性的影响。

实验步骤:〔1〕单回线输电线路;〔2〕发电机与系统并列后,使P=0,Q=0,δ=0,校正初始值;〔3〕逐步增加发电机输出的有功功率,调节发电机励磁,保持发电机端电压恒定或无功输出为零;〔4〕观察并记录系统中运行参数的变化,填入表4-5中。

《电力系统》实验指导书

《电力系统》实验指导书

《电力系统》实验指导书常州工学院实验平台认识一:WDT-ⅢC型电力系统综合自动化试验装置简介电力系统综合自动化实验台是一个自动化程度很高的多功能实验平台,它由发电机组、实验操作台、无穷大系统等设备组成。

如附图1-1所示,发电机与无穷大之间采用双回路输电线路,并设有中间开关站,通过中间开关站和单回、双回线路的组合,使发电机与无穷大系统之间可构成四种不同联络阻抗,供系统实验分析比较时使用(如实验二图2所示)。

图1-1 电力系统综合自动化试验台外形图1.发电机组它是由同在一个轴上的三相同步发电机(S N=2.5kV A,V N=400V ,n N=1500r.p.m ),模拟原动机用的直流电动机(P N=2.2 kW,V N=220V )以及测速装置和功率角指示器组成。

直流电动机、同步发电机经弹性联轴器对轴联结后组装在一个活动底盘上构成可移动式机组。

具有结构紧凑、占地少、移动轻便等优点,机组的活动底盘有四个螺旋式支脚和三个橡皮轮,将支脚旋下即可开机实验。

2.试验操作台它是由输电线路及保护单元、功率调节和同期单元,仪表测量和短路故障模拟单元等组成。

输电线路采用具有中间开关站的双回路输电线路模型,并对其中一段线路设有“YHB-A微机保护装置”,此线路的过流保护还具有单相自动重合闸功能。

功率调节和同期单元,由“TGS-03B微机调速装置”、“WL-04B微机励磁调节器”、“HGWT-03B微机准同期控制器”等微机型的自动装置和其相对应的手动装置组成。

仪表测量和短路故障模拟单元由各种测量表计及其切换开关、各种带灯操作按钮以及观测波形用的测试孔和各种类型的短路故障操作等部分组成。

在做电力系统试验时,全部的操作均在试验操作屏台上进行。

3.无穷大系统无穷大电源是由15kV A的自耦调压器组成。

通过调整自耦调压器的电压可以改变无穷大母线的电压。

试验操作台的“操作面板”上有模拟接线图、操作按钮和切换开关以及指示灯和测量仪表等。

电力系统实验书

电力系统实验书

第一章同步发电机准同期并列实验一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。

二、原理与说明将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。

准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。

根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。

正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。

它能反映两个待并系统间的同步情况,如频率差,相角差以及电压幅值差。

线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。

它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。

手动准同期并列,应在正弦整步电压的最低点(同相点)合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。

自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。

准同期控制器根据给定的允许压差和允许频率,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。

当所有条件均满足时,在整定的越前时刻送出合闸脉冲。

三、实验项目和方法(一)机组启动与建压1.检查调速器上“模拟调节”电位指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。

调速器面板上数码管在并网前显示发电机转速(左)和控制量(右),在并网后显示控制量(左)和功率角(右)。

调速器上“并网”灯和“光电故障”灯均为熄灭状态,“输出零”灯亮;3.按调速器上“微机方式自动/手动”按钮使“微机自动”灯亮;4.励磁调节器选择它励、恒U F运行方式,合上励磁开关;5.把实验台上“同期方式”开关置“断开”位置;6.合上“系统电压”开关和线路开关QF1,QF2,检查系统电压接近额定值380V;7.合上“原动机开关”,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速;8.当机组转速上升至95%以上时,微机励磁调节器自动将发电机电压建压到与系统电(二)观察与分析1.操作调速器上的“增速”或“减速”按钮调整机组转速,记录微机准同期控制器显示的发电机和系统频率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章同步发电机准同期并列实验一、实验目的1.加深理解同步发电机准同期并列原理,掌握准同期并列条件;2.掌握微机准同期控制器及模拟式综合整步表的使用方法;3.熟悉同步发电机准同期并列过程;4.观察、分析有关波形。

二、原理与说明将同步发电机并入电力系统的合闸操作通常采用准同期并列方式。

准同期并列要求在合闸前通过调整待并机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。

根据并列操作的自动化程度不同,又分为手动准同期、半自动准同期和全自动准同期三种方式。

正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。

它能反映两个待并系统间的同步情况,如频率差,相角差以及电压幅值差。

线性整步电压反映的是不同频率的两方波电压间相角差的变化规律,其波形为三角波。

它能反映两个待并系统间的频率差和相角差,并且不受电压幅值差的影响,因此得到广泛应用。

手动准同期并列,应在正弦整步电压的最低点(同相点)合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。

自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。

准同期控制器根据给定的允许压差和允许频率,不断地检查准同期条件是否满足,在不满足要求时闭锁合闸并且发出均压均频控制脉冲。

当所有条件均满足时,在整定的越前时刻送出合闸脉冲。

三、实验项目和方法(一)机组启动与建压1.检查调速器上“模拟调节”电位指针是否指在0位置,如不在则应调到0位置;2.合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄。

调速器面板上数码管在并网前显示发电机转速(左)和控制量(右),在并网后显示控制量(左)和功率角(右)。

调速器上“并网”灯和“光电故障”灯均为熄灭状态,“输出零”灯亮;3.按调速器上“微机方式自动/手动”按钮使“微机自动”灯亮;4.励磁调节器选择它励、恒U F运行方式,合上励磁开关;5.把实验台上“同期方式”开关置“断开”位置;6.合上“系统电压”开关和线路开关QF1,QF2,检查系统电压接近额定值380V;7.合上“原动机开关”,按“停机/开机”按钮使“开机”灯亮,调速器将自动启动电动机到额定转速;8.当机组转速上升至95%以上时,微机励磁调节器自动将发电机电压建压到与系统电(二)观察与分析1.操作调速器上的“增速”或“减速”按钮调整机组转速,记录微机准同期控制器显示的发电机和系统频率。

观察并记录旋转灯光整步表上的灯光旋转方向及旋转速度与频差方向及频差大小的对应关系;观察并记录不同频差方向,不同频差大小时的模拟式整步表的指针旋转方向及旋转速度、频率平衡表指针的偏转方向及偏转角度的大小的对应关系。

2.操作励磁调节器上的“增磁”或“减磁”按钮调节发电机端电压,观察并记录不同电压差方向、不同电压差大小时的模拟式电压平衡表指针的偏转方向和偏转角度的大小的对应关系。

3.调节转速和电压,观察并记录微机准同期控制器的频差闭锁、压差闭锁、相差闭锁灯亮熄的规律。

4.将示波器跨接在“发电机电压”测孔与“系统电压”测孔间,观察正弦整步电压(即脉动电压)波形,观察并记录整步表旋转速度与正弦整步电压的周期的关系;观察并记录电压幅值差大小与正弦整步电压最小幅值间的关系;观察并记录正弦整步电压幅值达到最小值的时刻所对应的整步表指针位置和灯光位置。

5.用示波器跨接到“三角波”测孔与“参考地”测孔之间,观察线性整步电压(即三角波)的波形,观察并记录整步表旋转速度与线性整步电压的周期的关系;观察并记录电压幅值差大小与线性整步电压最小幅值间的关系;观察并记录线性整步电压幅值达到最小值的时刻所对应的整步表指针位置和灯光位置。

(三)手动准同期1.按准同期并列条件合闸将“同期方式”转换开关置“手动”位置。

在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。

观察微机准同期控制器上显示的发电机电压和系统电压,相应操作微机励磁调节器上的“增磁”或“减磁”按钮进行调压,直至“压差闭锁”灯灭。

观察微机准同期控制器上显示的发电机频率和系统频率,相应操作微机励磁调节器上的“增速”或“减速”按钮进行调压,直至“频差闭锁”灯灭。

此时表示压差、频差均满足条件,观察整步表上旋转灯位置,当旋转至0°位置前某一合适时刻时,即可合闸。

观察并记录合闸时的冲击电流。

2.偏离准同期并列条件合闸本实验项目仅限于实验室进行,不得在电厂机组上使用!!!实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况:(1)电压差相角差条件满足,频率差不满足,在f F>f X和f F<f X时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度的大小,分别填入表1-1;注意:频率差不要大于0.5HZ。

(2)频率差相角差条件满足,电压差不满足,V F>V X和V F<V X时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度的大小,分别填入表1-1;注意:电压差不要大于10%额定电压。

(3)频率差电压差条件满足,相角差不满足,顺时针旋转和逆时针旋转时手动合闸,观察并记录实验台上有功功率表P和无功功率表Q指针偏转方向及偏转角度的大小,分别填入表1-1;注意:相角差不要大于30°。

有功功率P和无功功率Q也可以通过微机励磁调节器的显示观察。

(四)半自动准同期并列将“同期方式”转换开关置“半自动”位置,按下准同期控制器上的“同期命令”按钮即向准同期控制器发出同期并列命令,此时。

同期命令指示灯亮,微机正常灯闪烁加快。

准同期控制器将给出相应操作指示信息,运行人员可以按这个指示进行相应操作。

调速调压方法同手动准同期。

当压差、频差条件满足时,整步表上旋转灯光旋转至接近0°位置时,整步表园盘中心灯亮,表示全部条件满足,准同期控制器会自动发出合闸命令,“合闸出口”灯亮,随后DL 灯亮,表示已经合闸。

同期命令指示灯熄,微机正常灯恢复闪烁,进入待命状态。

(五)全自动准同期将“同期方式”转换开关置“全自动”位置;按下准同期控制器的“同期”按钮,同期命令指示灯亮,微机正常灯闪烁加快,此时,微机准同期控制器将自动进行均压、均频控制并检测合闸条件,一旦合闸条件满足即发出合闸命令。

在全自动过程钟,观察当“升速”或“降速”命令指示灯亮时,调速器上有什么反应;当“升压”或“降压”命令指示灯亮时,微机调节励磁器上有什么反应。

当一次合闸过程完毕,控制器会自动解除合闸命令,避免二次合闸;此时同期命令指示灯熄,微机正常灯恢复正常闪烁。

(六)准同期条件的整定按“参数设置”按钮即可使“参数设置”灯亮进入参数设置状态,(再按一下“参数设置”按钮即可使“参数设置”灯熄退出参数设置状态)共显示8个参数,可供修改的参数有7个,即开关时间、频差允许值、压差允许值、均压脉冲周期、均压脉冲宽度、均频脉冲周期、均频脉冲宽度,另外的第8个参数是实测上一次开关合闸时间,单位为毫秒。

以上7个参数按“参数选择”按钮可循环出现。

按上三角或下三角按钮可改变其大小,改变某些参数来重复做一下全自动同期。

(参数整定参见附录五)1.整定频差允许△f=0.3Hz,压差允许值△U=3V,越前时间t yq=0.1s,通过改变实际开关动作时间,即整定“同期开关时间”的时间继电器,重复进行全自动同期实验,观察在不同同期开关时间下并列过程有何差异,并记录三相冲击电流中最大的一相的电流值Im,填入表1-2。

据此,估算出开关操作回路固有时间的大致范围,根据上一次开关的实测合闸时间,整定同期装置的越前时间。

在此状态下,观察并列过程中的冲击电流的大小。

2.改变频差允许值Δf,重复进行全自动同期实验,观察在不同频差允许值下并列过程有何差异,并记录三相冲击电流中最大的一相的电流值Im,填入表1-3。

注:此实验微机调速器工作在微机手动方式3.改变频差允许值ΔV,重复进行全自动同期实验,观察在不同压差允许值下并列过程有何差异,并记录三相冲击电流中最大的一相的电流值Im,填入表1-4。

表1-4(七)停机当同步发电机与系统解列之后,按调速器的“停机/开机”按钮使“停机”灯亮,即可自动停机,当机组转速降到85%以下时,微机励磁调节器自动逆变灭磁。

待机组停稳后断开原动机开关,跳开励磁开关以及线路和无穷大电源开关。

切断操作电源开关。

四、实验报告要求1.比较手动准同期和自动准同期的调整并列过程;2.分析合闸冲击电流的大小与哪些因素有关;3.分析正弦整步电压波形的变化规律;4.滑差频率f S,、开关时间t yq的整定原则?注意事项:1.手动合闸时,仔细观察整步表上的旋转灯,在旋转灯接近0位置之前某一时刻合闸。

2.当面板上的指示灯、数码管显示都停滞不动时,此时微机准同期控制器处于“死机”状态,按一下“复位”按钮可使微机准同期控制器回复正常。

3.微机自动励磁调节器上的增减磁按钮按键只持续5秒内有效,过了5秒后如还需调节则松开按钮,重新按下。

4.在做三种同期切换时,做完一项后,需做另一项时,断开断路器开关,然后选择“同期方式”转换开关。

五、思考题1.相序不对(如系统侧相序为A、B、C,发电机侧相序为A、C、B)能否并列?为什么?2.电压互感器的极性如果有一侧(系统侧或发电机侧)接反,会有何结果?3.准同期并列与自同期并列,在本质上有何差别?如果在这套机组上实验自同期并列,应如何操作?4.合闸冲击电流的大小与哪些因素有关?频率差变化或电压差变化时,正弦整步电压的变化规律如何?5.当两侧频率几乎相等,电压差也在允许的范围内,但合闸命令迟迟不能发出,这是一种什么现象?应采取什么措施解决?6.在f F>f X或者f F<f X,V F>V X或者V F<V X下并列,机端有功功率表及无功功率表的指示有何特点?为什么?第二章一机一无穷大系统稳态运行方式实验一、实验目的1.了解和掌握对称稳定的情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。

二、原理与说明电力系统稳态对称与不对称运行分析,除了包含许多理论概念以外,还有一些重要的“数值概念”。

为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。

相关文档
最新文档