2019-2020天津市河北区初三期末数学试题--带答案
2019年天津市河北区九年级上册期末数学冲刺试卷(有答案)
天津市河北九年级(上)期末数学冲刺试卷一、选择题(共10小题,每小题3分,满分30分)1.若反比例函数y=的图象经过点(2,﹣6),则的值为()A.﹣12 B.12 C.﹣3 D.32.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2)B.(2,4),(3,1)C.(2,2),(3,1)D.(3,1),(2,2)3.下列事件中,不可能事件是()A.投掷一枚均匀硬币,正面朝上B.明天是阴天C.任意选择某个电视频道,正在播放动画片D.两负数的和为正数4.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定5.若反比例函数y=﹣的图象经过点A(3,m),则m的值是()A.﹣3 B.3 C.﹣ D.6.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.= D.=7.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm28.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.59.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5 D.610.如图,已知双曲线y=(<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB 相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题(本大题共8小题,每小题3分,共24分)11.把抛物线y=a2+b+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=2﹣4+5,则a+b+c=.12.如图,在平面直角坐标系中,点A是函数y=(<0,<0)图象上的点,过点A与y 轴垂直的直线交y轴于点B,点C、D在轴上,且BC∥AD.若四边形ABCD的面积为3,则值为.13.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.14.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率.15.若2a﹣3b=0(b≠0),则=.16.如图,在⊙O的内接五边形ABCDE中,∠CAD=30°,则∠B+∠E=.17.在平面直角坐标系Oy中,直线y=﹣+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为.18.如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=.三、解答题(本大题共6小题,共66分)19.将油箱注满升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(是常数,≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?20.如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.21.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.22.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生自同一班级的概率.23.如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD与水平地面成30°角,斜坡CD与水平地面BC成30°的角,求旗杆AB的高度.24.如图1,反比例函数y=(>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥轴,与AC相交于点N,连接CM,求△CMN面积的最大值.天津市河北九年级(上)期末数学冲刺试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.若反比例函数y=的图象经过点(2,﹣6),则的值为()A.﹣12 B.12 C.﹣3 D.3【考点】反比例函数图象上点的坐标特征.【分析】直接利用反比例函数图象上点的坐标性质直接代入求出即可.【解答】解:∵反比例函数y=的图象经过点(2,﹣6),∴的值为:2×(﹣6)=﹣12.故选:A.【点评】此题主要考查了反比例函数图象上点的坐标特征,正确利用y=求出是解题关键.2.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2)B.(2,4),(3,1)C.(2,2),(3,1)D.(3,1),(2,2)【考点】位似变换;坐标与图形性质.【分析】直接利用位似图形的性质得出对应点坐标乘以得出即可.【解答】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原的后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选:C.【点评】此题主要考查了位似变换,正确把握位似图形的性质是解题关键.3.下列事件中,不可能事件是()A.投掷一枚均匀硬币,正面朝上B.明天是阴天C.任意选择某个电视频道,正在播放动画片D.两负数的和为正数【考点】随机事件.【分析】不可能事件是指在一定条件下,一定不发生的事件.根据不可能事件的概念即可判断.【解答】解:A、投掷一枚均匀硬币,正面朝上的概率是0.5,该事件是随机事件;B、明天不一定是阴天,该事件是随机事件;C、任意选择某个电视频道,不一定是正在播放动画片,该事件是随机事件;D、一定不会发生,故选项中的事件是不可能事件.故选D.【点评】解决本题需要正确理解不可能事件的概念;用到的知识点为:不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.将一个直角三角形的三边扩大3倍,得到的三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定【考点】勾股定理的逆定理.【分析】根据三组对应边的比相等的三角形相似,依据相似三角形的性质就可以求解.【解答】解:将直角三角形的三条边长同时扩大同一倍数,得到的三角形与原三角形相似,因而得到的三角形是直角三角形故选A.【点评】本题主要考查相似三角形的判定以及性质,得出两三角形相似是解题的关键,是基础题,难度不大.5.若反比例函数y=﹣的图象经过点A(3,m),则m的值是()A.﹣3 B.3 C.﹣ D.【考点】反比例函数图象上点的坐标特征.【分析】直接把点的坐标代入解析式即可.【解答】解:把点A代入解析式可知:m=﹣.故选C.【点评】主要考查了反比例函数图象上点的坐标特征.直接把点的坐标代入解析式即可求出点坐标中未知数的值.6.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.= D.=【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.7.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【考点】圆锥的计算.【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.【点评】本题考查了圆锥的有关计算,解题的关键是了解圆锥的有关元素与扇形的有关元素的对应关系.8.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.5【考点】几何概率;扇形统计图.【分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【解答】解:∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比例为:108÷360=,∴宇宙中一块陨石落在地球上,落在陆地的概率是=0.3,故选B.【点评】此题主要考查了几何概率,以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.9.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,AB上的两个动点,则BM+MN的最小值为()A.10 B.8 C.5 D.6【考点】轴对称-最短路线问题.【分析】过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,EF就是所求的线段.【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为2,所以BE=4.∵△ABC∽△EFB,∴=,即=EF=8.故选B.【点评】本题考查最短路径问题,关键确定何时路径最短,然后运用勾股定理和相似三角形的性质求得解.10.如图,已知双曲线y=(<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB 相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数的几何意义.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数的几何意义,可知△BOC的面积=||.只需根据OA的中点D的坐标,求出值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴=﹣3×2=﹣6,∴△BOC的面积=||=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=||.二、填空题(本大题共8小题,每小题3分,共24分)11.把抛物线y=a2+b+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=2﹣4+5,则a+b+c=7.【考点】二次函数图象与几何变换.【分析】因为抛物线y=a2+b+c的图象先向右平移3个单位,再向下平移2个单位,得到图象的解析式是y=2﹣4+5,所以y=2﹣4+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=a2+b+c的图象,先由y=2﹣4+5的平移求出y=a2+b+c的解析式,再求a+b+c的值.【解答】解:∵y=2﹣4+5=(﹣2)2+1,当y=2﹣4+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=a2+b+c的图象,∴y=(﹣2+3)2+1+2=2+2+4;∴a+b+c=1+2+4=7.故答案是:7.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.如图,在平面直角坐标系中,点A是函数y=(<0,<0)图象上的点,过点A与y 轴垂直的直线交y轴于点B,点C、D在轴上,且BC∥AD.若四边形ABCD的面积为3,则值为﹣3.【考点】反比例函数系数的几何意义.【分析】根据已知条件得到四边形ABCD是平行四边形,于是得到四边形AEOB的面积=AB•OE,由于S平行四边形ABCD=AB•CD=3,得到四边形AEOB的面积=3,即可得到结论.【解答】解:∵AB⊥y轴,∴AB∥CD,∵BC∥AD,∴四边形ABCD是平行四边形,∴四边形AEOB的面积=AB•OE,=AB•CD=3,∵S平行四边形ABCD∴四边形AEOB的面积=3,∴||=3,∵<0,∴=﹣3,故答案为:﹣3.是【点评】本题考查了反比例函数系数的几何意义,明确四边形AEOB的面积=S平行四边形ABCD解题的关键.13.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两次指针指向的数都是奇数的情况,再利用概率公式即可求得答案.【解答】解:列表得如下:4种结果,∴两次指针指向的数都是奇数的概率为,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名同学的植树总棵数为19的情况,再利用概率公式即可求得答案.【解答】解:画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.15.若2a﹣3b=0(b≠0),则=.【考点】比例的性质.【分析】由已知条件变形得到2a=3b,然后利用比例性质求解.【解答】解:∵2a﹣3b=0,∴2a=3b,∴=.故答案为.【点评】本题考查了比例性质:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.16.如图,在⊙O的内接五边形ABCDE中,∠CAD=30°,则∠B+∠E=210°.【考点】圆周角定理.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=30°,∴∠B+∠E=180°+30°=210°.故答案为:210°.【点评】本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.17.在平面直角坐标系Oy 中,直线y=﹣+3与两坐标轴围成一个△AOB .现将背面完全相同,正面分别标有数1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为.【考点】概率公式;一次函数的性质.【分析】综合考查等可能条件下的概率和一次函数及坐标系的知识,先求出中任取一张时所得点的坐标数,再画出图象交点个数,由图象上各点的位置直接解答即可.【解答】解:由题意得,所得的点有5个,分别为(1,1)(2,)(3,)(,2)(,3);再在平面直角坐标系中画出直线y=﹣+3与两坐标轴围成的△AOB .在平面直角坐标系中描出上面的5个点,可以发现落在△AOB 内的点有(1,1)(2,)(,2),所以点P 落在△AOB 内的概率为.【点评】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.18.如图,矩形ABCD 中,AD=2,AB=5,P 为CD 边上的动点,当△ADP 与△BCP 相似时,DP= 1或4或2.5 .【考点】相似三角形的判定;矩形的性质.【分析】需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC ,根据该相似三角形的对应边成比例求得DP 的长度.【解答】解:①当△APD∽△PBC时,=,即=,解得:PD=1,或PD=4;②当△PAD∽△PBC时,=,即=,解得:DP=2.5.综上所述,DP的长度是1或4或2.5.故答案是:1或4或2.5.【点评】本题考查了矩形的性质,相似三角形的判定与性质.对于动点问题,需要分类讨论,以防漏解.三、解答题(本大题共6小题,共66分)19.(2014•云南)将油箱注满升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(是常数,≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?【考点】反比例函数的应用.【分析】(1)将a=0.1,S=700代入到函数的关系S=中即可求得的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得S的值.【解答】解:(1)由题意得:a=0.1,S=700,代入反比例函数关系S=中,解得:=Sa=70,所以函数关系式为:S=;(2)将a=0.08代入S=得:S===875千米,故该轿车可以行驶875千米;【点评】本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.20.(2016春•昌平区期末)如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.【考点】相似三角形的判定.【分析】根据直角三角形斜边上的中线性质求出AM=CM,推出∠C=∠CAM,求出∠DAB=∠CAM,求出∠DAB=∠C,根据相似三角形的判定得出即可.【解答】证明:∵∠BAC=90°,点M是BC的中点,∴AM=CM,∴∠C=∠CAM,∵DA⊥AM,∴∠DAM=90°,∴∠DAB=∠CAM,∴∠DAB=∠C,∵∠D=∠D,∴△DBA∽△DAC.【点评】本题考查了相似三角形的判定,直角三角形斜边上的中线性质的应用,能求出∠DAB=∠C是解此题的关键.21.(2014•白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.【考点】切线的判定.【分析】(1)连接OD,OE,由AB为圆的直径得到三角形BCD为直角三角形,再由E为斜边BC的中点,得到DE=BE=DC,再由OB=OD,OE为公共边,利用SSS得到三角形OBE与三角形ODE全等,由全等三角形的对应角相等得到DE与OD垂直,即可得证;(2)在直角三角形ABC中,由∠BAC=30°,得到BC为AC的一半,根据BC=2DE求出BC的长,确定出AC的长,再由∠C=60°,DE=EC得到三角形EDC为等边三角形,可得出DC的长,由AC﹣CD即可求出AD的长.【解答】(1)证明:连接OD,OE,BD,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.【点评】此题考查了切线的判定,以及全等三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.22.(2016•凉山州)为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:(1)求该校一共有多少个班?并将条形图补充完整;(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生自同一班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据留守儿童有4名的班级有6个,占30%,可求得有留守儿童的班级总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2自一个班,B1,B2自一个班,列表可得出自一个班的共有4种情况,继而可得所选两名留守儿童自同一个班级的概率.【解答】解:(1)该校的班级共有6÷30%=20(个),有2名贫困生的班级有20﹣5﹣6﹣5﹣2=2(个),补全条形图如图:(2)根据题意,将两个班级4名学生分别记作A1、A2、B1、B2,列表如下:12种等可能结果,其中被选中的两名学生自同一班级的有4种结果,∴被选中的两名学生自同一班级的概率为=.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(2012•包河区一模)如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡坡面上的影长CD=8米,太阳光线AD与水平地面成30°角,斜坡CD与水平地面BC成30°的角,求旗杆AB的高度.【考点】解直角三角形的应用-坡度坡角问题.【分析】延长AD交BC于E点,则BE即为AB的影长.然后根据物长和影长的比值计算即可.【解答】解:延长AD交BC于E点,则∠AEB=30°作DQ⊥BC于Q在Rt△DCQ中,∠DCQ=30°,DC=8∴DQ=4,QC=8cos30°=在Rt△DQE中,QE==4(米)∴BE=BC+CQ+QE=20+8(米)在Rt△ABE中,AB=BEtan30°=(米).答:旗杆的高度约为米.【点评】本题查了解直角三角形的应用.解决本题的关键是作出辅助线得到AB的影长.24.(2014•济南)如图1,反比例函数y=(>0)的图象经过点A(2,1),射线AB 与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥轴,与AC相交于点N,连接CM,求△CMN面积的最大值.【考点】反比例函数综合题;一次函数的性质;二次函数的最值.【分析】(1)根据反比例函数图象上点的坐标特征易得=2;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt△OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征=•t•得到N点坐标为(t,t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△CMN(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<2),最后根据二次函数的最值问题求解.【解答】解:(1)把A(2,1)代入y=得=2×1=2;(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=得a=2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=+b,把A(2,1)、C(0,﹣1)代入得,解,∴直线AC的解析式为y=﹣1;(3)设M点坐标为(t,)(0<t<2),∵直线l⊥轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,=•t•(﹣t+1)∴S△CMN=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴当t=时,S有最大值,最大值为.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征和待定系数法求一次函数解析式;理解坐标与图形的性质;会利用二次函数的性质解决最值问题.。
精品:天津市河北区2019-2020学年九年级上学期期末数学试题(解析版)
【点睛】本题考查了反比例函数与一次函数的交点问题,解题时注意数形结合思想的运用.
16.如图,在平面直角坐标系中,点A是函数 (x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为______.
【答案】-2
【解析】
【分析】根据已知条件得到三角形ABC的面积= ,得到|k|=2,即可得到结论.
8.在一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,如果参加聚会的同学有x名.根据题意列出的方程是( ).
A. x (x + 1) = 110B. x (x-1) = 110
C. 2x ( x + 1) = 110D. x (x-1) = 110×2
【答案】B
【解析】
【分析】如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠B=100°,则∠ADE=_____.
【答案】100°
【解析】
【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.
【详解】解:∵四边形ABCD内接于⊙O,∠B=100°,
∴∠ADE=∠B=100°.
D.在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件,故不符合题意;
故选A.
【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
2019-2020学年天津市河北区九年级上学期期末考试数学模拟试卷及答案解析
2019-2020学年天津市河北区九年级上学期期末考试数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是()A.45°B.60°C.75°D.90°2.在半径为1的圆中,圆心角为120°所对的弧长是()A.B.C.D.3.下列事件是必然事件的是()A.有两边及一角对应相等的两三角形全等B.若a2=b2则有a=bC.方程x2﹣x+1=0有两个不等实根D.圆的切线垂直于过切点的半径4.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜甲获胜的概率是()A.B.C.D.5.如图,在▱ABCD中,F是AD延长线上一点,连接BF交DC于点E,则图中相似三角形共有()对.A.2对B.3对C.4对D.5对6.如图,D、E分别是△ABC边AB,AC上的点,∠ADE=∠ACB,若AD=2,AB=6,AC=4,则AE的长是()A.1B.2C.3D.47.已知反比例函数y=的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2.则m的取值范围是()A.m<0B.m>0C.m D.m8.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.39.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为()A.1B.2C.4D.无法计算10.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF =FG.则下列结论正确的有()。
天津市河北区2019-2020学年中考数学学业水平测试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是( ) A .2B .3C .4D .52.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( ) A .B .C .D .3.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,33) B .(2,33) C .(33,32) D .(32,3﹣33) 4.如图,AB 与⊙O 相切于点A ,BO 与⊙O 相交于点C ,点D 是优弧AC 上一点,∠CDA =27°,则∠B 的大小是( )A .27°B .34°C .36°D .54°5.下列各式:①a 0=1 ②a 2·a 3=a 5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x 2+x 2=2x 2,其中正确的是 ( ) A .①②③B .①③⑤C .②③④D .②④⑤6.一元二次方程210x x --=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断7.下列选项中,可以用来证明命题“若a 2>b 2,则a >b“是假命题的反例是( ) A .a =﹣2,b =1B .a =3,b =﹣2C .a =0,b =1D .a =2,b =18.下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-49.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩10.若抛物线y =x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( ) A .抛物线开口向下B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x =1时,y 有最大值为0D .抛物线的对称轴是直线x =32二、填空题(本题包括8个小题) 11.已知反比例函数y=2m x-,当x >0时,y 随x 增大而减小,则m 的取值范围是_____. 12.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______. 13.某书店把一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,则标 价为___________元.14.如图,已知,第一象限内的点A 在反比例函数y =2x的图象上,第四象限内的点B 在反比例函数y =kx的图象上.且OA ⊥OB ,∠OAB =60°,则k 的值为_________.15.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x≥0)与22x y 5=(x ≥0)于B 、C 两点,过点C作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DEAB=_.16.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.17.如图,正方形ABCD的边长为422,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为点F,则EF的长是__________.18.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …-5 -4 -3 -2 -1 …y … 3 -2 -5 -6 -5 …则关于x的一元二次方程ax2+bx+c=-2的根是______.三、解答题(本题包括8个小题)19.(6分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)20.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.21.(6分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22.(8分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?23.(8分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =. ()2若20ADE ∠=,求DMC ∠的度数.24.(10分)如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.25.(10分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量.26.(12分)如图,已知反比例函数1ky x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.结合图象直接写出:当1y >2y >0时,x 的取值范围.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.D 【解析】 【分析】设这个数是a ,把x=1代入方程得出一个关于a 的方程,求出方程的解即可. 【详解】 设这个数是a , 把x=1代入得:13(-2+1)=1-5a 3-,∴1=1-5a 3-, 解得:a=1. 故选:D . 【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.2.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.3.A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=33×3=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33×cos10°=92,∴MO=92﹣1=32,∴点D的坐标为(32,332).故选A.4.C【解析】【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.解:∵AB 与⊙O 相切于点A , ∴OA ⊥BA . ∴∠OAB=90°. ∵∠CDA=27°, ∴∠BOA=54°. ∴∠B=90°-54°=36°. 故选C .考点:切线的性质. 5.D 【解析】 【分析】根据实数的运算法则即可一一判断求解. 【详解】①有理数的0次幂,当a=0时,a 0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确. 故选D. 6.A 【解析】 【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况. 【详解】21,1,14145a b c b ac ==-=-∴∆-=+=∴方程有两个不相等的实数根.故选A. 【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口. 7.A 【解析】 【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1, ∴a =﹣2,b =1是假命题的反例. 故选A . 【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法. 8.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a 2·a 2=a 4 ,故A 选项错误; B. (-a 2)3=-a 6 ,正确;C. 3a 2-6a 2=-3a 2 ,故C 选项错误;D. (a -2)2=a 2-4a+4,故D 选项错误, 故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.9.A 【解析】 【分析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决. 【详解】 由题意可得,4.50.51y x y x =+⎧⎨=-⎩, 故选A . 【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 10.D 【解析】 【分析】A 、由a=1>0,可得出抛物线开口向上,A 选项错误;B 、由抛物线与y 轴的交点坐标可得出c 值,进而可得出抛物线的解析式,令y=0求出x 值,由此可得出抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误;C 、由抛物线开口向上,可得出y 无最大值,C 选项错误;D 、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D 选项正确. 综上即可得出结论. 【详解】解:A 、∵a=1>0,∴抛物线开口向上,A 选项错误;B 、∵抛物线y=x 1-3x+c 与y 轴的交点为(0,1), ∴c=1,∴抛物线的解析式为y=x 1-3x+1. 当y=0时,有x 1-3x+1=0, 解得:x 1=1,x 1=1,∴抛物线与x 轴的交点为(1,0)、(1,0),B 选项错误; C 、∵抛物线开口向上, ∴y 无最大值,C 选项错误; D 、∵抛物线的解析式为y=x 1-3x+1, ∴抛物线的对称轴为直线x=-b 2a =-321⨯=32,D 选项正确.故选D . 【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键. 二、填空题(本题包括8个小题) 11.m >1. 【解析】分析:根据反比例函数y=2m x-,当x >0时,y 随x 增大而减小,可得出m ﹣1>0,解之即可得出m 的取值范围.详解:∵反比例函数y=2m x-,当x >0时,y 随x 增大而减小,∴m ﹣1>0,解得:m >1. 故答案为m >1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m ﹣1>0是解题的关键. 12.2y x =-等 【解析】 【分析】根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,所以解析式满足a <0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,例如:2y x =-.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.13.28【解析】设标价为x 元,那么0.9x-21=21×20%,x=28.14.-6【解析】如图,作AC ⊥x 轴,BD ⊥x 轴,∵OA ⊥OB ,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD ,∴△ACO ∽△ODB , ∴OA OC AC OB BD OD==, ∵∠OAB=60°,∴OA OB =, 设A (x ,2x),∴,,∴B,),把点B 代入y=kx 得,-x ,解得k=-6, 故答案为-6.15.5【解析】试题分析:本题我们可以假设一个点的坐标,然后进行求解.设点C 的坐标为(1,15),则点B 的坐标为5,15),点D 的坐标为(1,1),点E 的坐标为51),则5,51,则DE AB =55. 考点:二次函数的性质16.5【解析】试题分析:利用根与系数的关系进行求解即可.解:∵x 1,x 2是方程x 2-3x +2=0的两根,∴x 1+ x 2=3b a -=,x 1x 2=2c a=, ∴x 1+x 2+x 1x 2=3+2=5.故答案为:5.17.2【解析】【分析】设EF=x ,先由勾股定理求出BD ,再求出AE=ED ,得出方程,解方程即可.【详解】设EF=x ,∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90°,∠ABD=∠ADB=45°,∴22+4,EF=BF=x ,∴2x ,∵∠BAE=22.5°,∴∠DAE=90°-22.5°=67.5°,∴∠AED=180°-45°-67.5°=67.5°,∴∠AED=∠DAE ,∴BD=BE+ED=2x+4+22=42+4,解得:x=2,即EF=2.18.x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.三、解答题(本题包括8个小题)19.(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解析】【分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性质),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.20.(1) 14;(2)112.【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.21.(1)30;(2)①补图见解析;②120;③70人.【解析】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为:30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为:120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230+=70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(1)50(2)36%(3)160【解析】【分析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%.(3)()130%26%24%20%-++=,20020%1000÷=人,8100%100016050⨯⨯=人. 答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.23.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=, ADE ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=,15DFC DCF ADE AED ∴∠=∠=∠=∠=,601575FDE ∴∠=+=,90MFD FDM ∴∠+∠=,90FMD ∴∠=,故答案为90()1ABE 为等边三角形,60EAB ∴∠=,EA AB =. ADF 为等边三角形,60FDA ∴∠=,AD FD =.四边形ABCD 为矩形,90BAD ADC ∴∠=∠=,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=,150CDF FDA ADC ∠=∠+∠=,EAD CDF ∴∠=∠.在EAD 和CDF 中,AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴≌CDF .ED FC ∴=;()2EAD ≌CDF ,20ADE DFC ∴∠=∠=,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=.【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.24.树高为 5.5 米【解析】【分析】根据两角相等的两个三角形相似,可得 △DEF ∽△DCB ,利用相似三角形的对边成比例,可得DE EF DC CB =, 代入数据计算即得BC 的长,由 AB =AC+BC ,即可求出树高.【详解】∵∠DEF =∠DCB =90°,∠D =∠D ,∴△DEF ∽△DCB∴ DE EF DC CB=, ∵DE =0.4m ,EF =0.2m ,CD =8m , ∴0.40.28CB=, ∴CB =4(m ),∴AB =AC+BC =1.5+4=5.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.25.(1)50;(2)详见解析;(3)36°;(4)全校2000名学生共捐6280册书.【解析】【分析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360°乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可.【详解】(1)∵捐2 本的人数是15 人,占30%,∴该班学生人数为15÷30%=50 人;(2)根据条形统计图可得:捐 4 本的人数为:50﹣(10+15+7+5)=13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为360°×550=36°.(4)∵九(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=157 50,∴全校2000 名学生共捐2000×15750=6280(本),答:全校2000 名学生共捐6280 册书.【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.26.(1)y1=2x;y2=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】【分析】(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1.∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.>y2>0时,−1<x<0(舍去).在第三象限,当y1【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知////AB CDEF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=2.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC 的度数是()A.85°B.105°C.125°D.160°3.已知圆内接正三角形的面积为33,则边心距是()A.2 B.1 C.3D.324.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。
天津市河北区2019-2020学年中考数学最后模拟卷含解析
天津市河北区2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( )A .30°B .36°C .54°D .72°2.如图,BD 为⊙O 的直径,点A 为弧BDC 的中点,∠ABD =35°,则∠DBC =( )A .20°B .35°C .15°D .45°3.对于有理数x 、y 定义一种运算“”:,其中a 、b 、c 为常数,等式右边是通常的加法与乘法运算,已知,,则的值为( ) A .-1 B .-11 C .1 D .114.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.小手盖住的点的坐标可能为( )A .()5,2B .()3,4-C .()6,3-D .()4,6--6.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b-- 7.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.8.不等式组1030xx+>⎧⎨->⎩的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<39.下列运算正确的是()A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x410.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.0.4×108B.4×108C.4×10﹣8D.﹣4×10811.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3 123()A 3B3C3D3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°14.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.15.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.16.计算2x3·x2的结果是_______.17.分解因式:m3–m=_____.18.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为63米,斜坡BC的坡度i=1:3.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)20.(6分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;搅匀后,从中任意取一个球,标号为正数的概率是;搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b经过一、二、三象限的概率.21.(6分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的22.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.23.(8分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为度;(3)请将频数分布直方图补充完整;(4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?24.(10分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.求证:AF=CE.25.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次26.(12分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).(1)当x为何值时,OP∥AC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)27.(12分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m下降到12月份的11340元/2m.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m?请说明理由参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【详解】解:在正五边形ABCDE中,∠A=15×(5-2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=12(180°-108°)=36°.故选B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.2.A【解析】【分析】根据∠ABD=35°就可以求出»AD的度数,再根据»180BD︒=,可以求出»AB,因此就可以求得ABC∠的度数,从而求得∠DBC【详解】解:∵∠ABD=35°,∴的度数都是70°,∵BD为直径,∴的度数是180°﹣70°=110°,∵点A为弧BDC的中点,∴的度数也是110°,∴的度数是110°+110°﹣180°=40°,∴∠DBC==20°,故选:A.【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.3.B【解析】【分析】入2△2求出值.【详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28所以解这个方程组,得所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【点睛】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.4.D【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A. 是轴对称图形,但不是中心对称图形,故不符合题意;B. 不是轴对称图形,是中心对称图形,故不符合题意;C. 是轴对称图形,但不是中心对称图形,故不符合题意;D. 既是轴对称图形又是中心对称图形,故符合题意.故选D.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.5.B【解析】【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B 符合.故选:B .【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).6.C【解析】解:A .22233a a b ab =,故本选项错误; B .2133a a a a =--,故本选项错误; C .22a b a b ++,不能约分,故本选项正确; D .222()()()a ab a a b a a b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.7.A【解析】【分析】画出从正面看到的图形即可得到它的主视图.【详解】这个几何体的主视图为:故选:A .【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.8.B【解析】根据解不等式组的方法可以求得原不等式组的解集.【详解】1030x x +>⎧⎨->⎩①②, 解不等式①,得x >-1,解不等式②,得x >1,由①②可得,x >1,故原不等式组的解集是x >1.故选B .【点睛】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.9.D【解析】A. x 4+x 4=2x 4 ,故错误;B. (x 2)3=x 6 ,故错误;C. (x ﹣y )2=x 2﹣2xy+y 2 ,故错误; D. x 3•x=x 4 ,正确,故选D.10.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】0.000 000 04=4×10-8,故选C【点睛】此题考查科学记数法,难度不大11.D【解析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论.解:设△OAC 和△BAD 的直角边长分别为a 、b ,则点B 的坐标为(a+b ,a ﹣b ).∵点B 在反比例函数6y x=的第一象限图象上,∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×1=2.故选D.点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.12.B【解析】【分析】一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.【详解】解:3的相反数是﹣3.故选:B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.210或226.【解析】【分析】本题有两种情况,一种是点G在线段BD的延长线上,一种是点G在线段BD上,解题过程一样,利用正方形和三角形的有关性质,求出MD、MG的值,再由勾股定理求出AG的值,根据SAS证明AGD CEDV V≌,可得CE AG=,即可得到CE的长.【详解】解:当点G在线段BD的延长线上时,如图3所示.过点G作GM AD⊥于M,45ADB GDM ∴∠=∠=︒,GM AD DG ⊥=Q , 2MD MG ∴==,在Rt AMG V 中,由勾股定理,得:AG ==在AGD V 和CED V 中,GD ED =,,AD CD =90ADC GDE ∠=∠=︒Q ,ADG CDE ∴∠=∠AGD CED ∴V V ≌CE AG ∴==当点G 在线段BD 上时,如图4所示.过G 作GM AD ⊥于M .BD Q 是正方形ABCD 的对角线,45ADG ∴∠=︒GM AD DG ⊥=Q , 2MD MG ∴==,6AM AD MD ∴==﹣在Rt AMG V 中,由勾股定理,得:AG ==在AGD V 和CED V 中,GD ED =,,AD CD =90ADC GDE ∠=∠=︒Q ,ADG CDE ∴∠=∠AGD CED ∴V V ≌CE AG ∴==故答案为【点睛】本题主要考查了勾股定理和三角形全等的证明.14.28【解析】设这种电子产品的标价为x 元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.15.14【解析】【分析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.【详解】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S 四边形, ∴针头扎在阴影区域内的概率为14; 故答案为:14. 【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比. 16.52x【解析】试题分析:根据单项式乘以单项式,结合同底数幂相乘,底数不变,指数相加,可知2x 3·x 2=2x 3+2=2x 5. 故答案为:2x 517.m (m+1)(m-1)【解析】【分析】根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),可以先提公因式,再利用平方差完成因式分解 【详解】解:()()()32111m m m m m m m -=-=+- 故答案为:m (m+1)(m-1).【点睛】本题考查因式分解,掌握因式分解的技巧是解题关键.18.15°【解析】【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【详解】解答:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圆周角定理得1152BAF BOF∠=∠=o,故答案为15°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.本题解析:(1)∵斜坡BC的坡度3tan∠BCD=33 BDDC=,∴∠BCD=30°;(2)在Rt△BCD中,CD=BC×cos∠3×3,则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),则AB=AG−BG=10−3.6=6.4(米).答:旗杆AB的高度为6.4米。
天津市河北区2019-2020学年中考第四次模拟数学试题含解析
天津市河北区2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()A.50°B.40°C.30°D.25°2.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C.D.3.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.4.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°5.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果5400cm,设金色纸边的宽为xcm,那么x满足的方程是()要使整幅挂图的面积是2A.213014000+-=x xx x+-=B.2653500C.213014000--=x xx x--=D.26535006.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.25°7.下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A.1 B.2 C.3 D.48.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分9.一个多边形的边数由原来的3增加到n 时(n >3,且n 为正整数),它的外角和( ) A .增加(n ﹣2)×180° B .减小(n ﹣2)×180° C .增加(n ﹣1)×180°D .没有改变10.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .32πB .43π C .4 D .2+32π 11.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m+n )C .4nD .4m12.对于函数y=21x ,下列说法正确的是( ) A .y 是x 的反比例函数 B .它的图象过原点 C .它的图象不经过第三象限D .y 随x 的增大而减小二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:(12)﹣1﹣(5﹣π)0=_____. 14.分解因式:x 2y ﹣6xy+9y=_____.15.如图,直线y=x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2,再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,……按此作法进行去,点B n 的纵坐标为 (n 为正整数).16.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数961654919841965发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 17.因式分解:9a 2﹣12a+4=______.18.如图,等腰△ABC 中,AB=AC ,∠DBC=15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)小张同学尝试运用课堂上学到的方法,自主研究函数y=21x的图象与性质.下面是小张同学在研究过程中遇到的几个问题,现由你来完成: (1)函数y=21x 自变量的取值范围是 ; (2)下表列出了y 与x 的几组对应值:x…﹣2﹣32 m﹣34﹣1212 34132 2 …y …14491 1694416914914…表中m 的值是 ;(3)如图,在平面直角坐标系xOy 中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4)结合函数y=21x 的图象,写出这个函数的性质: .(只需写一个)20.(6分)矩形ABCD 中,DE 平分∠ADC 交BC 边于点E ,P 为DE 上的一点(PE <PD ),PM ⊥PD ,PM 交AD 边于点M .(1)若点F 是边CD 上一点,满足PF ⊥PN ,且点N 位于AD 边上,如图1所示. 求证:①PN=PF ;②DF+DN=2DP ;(2)如图2所示,当点F 在CD 边的延长线上时,仍然满足PF ⊥PN ,此时点N 位于DA 边的延长线上,如图2所示;试问DF ,DN ,DP 有怎样的数量关系,并加以证明.21.(6分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k 为常数,且k≠0)的图象交于A (1,a ),B (3,b )两点.求反比例函数的表达式在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标求△PAB 的面积.22.(8分)十八大报告首次提出建设生态文明,建设美丽中国.十九大报告再次明确,到2035年美丽中国目标基本实现.森林是人类生存发展的重要生态保障,提高森林的数量和质量对生态文明建设非常关键.截止到2013年,我国已经进行了八次森林资源清查,其中全国和北京的森林面积和森林覆盖率情况如下:表1全国森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)12200 1150 12500 1340015894.0917490.92 19545.22 20768.73森林覆盖率12.7% 12% 12.98% 13.92% 16.55% 18.21% 20.36% 21.63% 表2北京森林面积和森林覆盖率清查次数一(1976年)二(1981年)三(1988年)四(1993年)五(1998年)六(2003年)七(2008年)八(2013年)森林面积(万公顷)33.74 37.88 52.05 58.81森林覆盖率11.2% 8.1% 12.08% 14.99% 18.93% 21.26% 31.72% 35.84%(以上数据来源于中国林业网)请根据以上信息解答下列问题:(1)从第次清查开始,北京的森林覆盖率超过全国的森林覆盖率;(2)补全以下北京森林覆盖率折线统计图,并在图中标明相应数据;(3)第八次清查的全国森林面积20768.73(万公顷)记为a ,全国森林覆盖率21.63%记为b ,到2018年第九次森林资源清查时,如果全国森林覆盖率达到27.15%,那么全国森林面积可以达到万公顷(用含a 和b 的式子表示).23.(8分)小明遇到这样一个问题:已知:1b ca-=. 求证:240b ac -≥. 经过思考,小明的证明过程如下: ∵1b ca-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a cb+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 24.(10分)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且点C 是»BD的中点,过点 C 作AD 的垂线 EF 交直线 AD 于点 E . (1)求证:EF 是⊙O 的切线;(2)连接BC ,若AB=5,BC=3,求线段AE 的长.25.(10分)某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A 种型号B 种型号第一周3台5台1800元第二周 4台 10台 3100元(进价、售价均保持不变,利润=销售收入-进货成本) (1)求A ,B 两种型号的电风扇的销售单价.(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.26.(12分)在平面直角坐标系xOy 中,一次函数y kx b =+的图象与y 轴交于点()B 0,1,与反比例函数my x=的图象交于点()A 3,2-. ()1求反比例函数的表达式和一次函数表达式;()2若点C 是y 轴上一点,且BC BA =,直接写出点C 的坐标.27.(12分)如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y=ax 2+bx+c 经过点A 、B 和D (4,).(1)求抛物线的表达式.(2)如果点P 由点A 出发沿AB 边以2cm/s 的速度向点B 运动,同时点Q 由点B 出发,沿BC 边以1cm/s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ 2(cm 2). ①试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选A.【点睛】此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.2.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k >0时,反比例函数y=kx,在一、三象限,而二次函数y=kx 2+k 开口向上,与y 轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D . 故选D . 【点睛】本题主要考查二次函数、反比例函数的图象特点. 3.A 【解析】 【分析】当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可. 【详解】解:当点F 在MD 上运动时,0≤x <2,则: y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则: y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A. 【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键. 4.B 【解析】试题分析:如图,翻折△ACD ,点A 落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°. 故选:B5.B 【解析】【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【详解】由题意,设金色纸边的宽为xcm ,得出方程:(80+2x )(50+2x )=5400,整理后得:2653500x x +-=故选:B.【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.6.A【解析】【分析】根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.【详解】解:∵BC ⊥AE ,∴∠BCE=90°,∵CD ∥AB ,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选:A .【点睛】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7.D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;对角线相等的平行四边形为矩形,(3)错误;圆的切线垂直于过切点的半径,(4)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.D【解析】【分析】根据多边形的外角和等于360°,与边数无关即可解答.【详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.10.B【解析】【分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【详解】如图:BC=AB=AC=1,∠BCB′=120°,∴B 点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯.故选B . 11.D【解析】【详解】解:设小长方形的宽为a ,长为b ,则有b=n-3a ,阴影部分的周长: 2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m .故选D .12.C【解析】【分析】直接利用反比例函数的性质结合图象分布得出答案.【详解】对于函数y=21x,y 是x 2的反比例函数,故选项A 错误; 它的图象不经过原点,故选项B 错误;它的图象分布在第一、二象限,不经过第三象限,故选项C 正确;第一象限,y 随x 的增大而减小,第二象限,y 随x 的增大而增大,故选C .【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题【详解】解:原式=2﹣1=1,故答案为1.【点睛】此题考查负整数指数幂,0指数幂的化简,难度不大14.y (x ﹣3)2【解析】本题考查因式分解.解答:()()22269693x y xy y y x x y x -+=-+=-.15.n 1-.【解析】寻找规律: 由直线y=x 的性质可知,∵B 2,B 3,…,B n 是直线y=x 上的点,∴△OA 1B 1,△OA 2B 2,…△OA n B n 都是等腰直角三角形,且A 2B 2=OA 2=OB 1OA 1;A 3B 3=OA 3=OB 2OA 2=2OA 1;A 4B 4=OA 4=OB 3OA 3=3OA 1; …… n 1n n n n 1n 11A B OA OB OA ---====.又∵点A 1坐标为(1,0),∴OA 1=1.∴n 1n n n A B OA -==,即点B n 的纵坐标为n 1-.16.②③【解析】分析: 根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,故可以估计A 种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A 种种子发芽的频率逐渐稳定在98%左右,而B 种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A 种种子发芽率大于B 种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.17.(3a ﹣1)1【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】9a 1-11a+4=(3a-1)1.故答案是:(3a ﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.18.50°.【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD ,根据等边对等角可得∠A=∠ABD ,然后表示出∠ABC ,再根据等腰三角形两底角相等可得∠C=∠ABC ,然后根据三角形的内角和定理列出方程求解即可:【详解】∵MN 是AB 的垂直平分线,∴AD="BD." ∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°. ∵AB=AC ,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案为50°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)x≠0;(2)﹣1;(3)见解析;(4)图象关于y 轴对称.【解析】【分析】(1)由分母不等于零可得答案;(2)求出y=1时x 的值即可得;(3)根据表格中的数据,描点、连线即可得;(4)由函数图象即可得.【详解】(1)函数y=21x 的定义域是x≠0, 故答案为x≠0; (2)当y=1时,21x =1, 解得:x=1或x=﹣1,∴m=﹣1,故答案为﹣1;(3)如图所示:(4)图象关于y轴对称,故答案为图象关于y轴对称.【点睛】本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质.20.(1)①证明见解析;②证明见解析;(2)2DN DF DP-,证明见解析.【解析】【分析】(1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;②由勾股定理可求得2DP,利用①可求得MN=DF,则可证得结论;(2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.【详解】解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM⊥PD,∠DMP=45°,∴DP=MP.∵PM⊥PD,PF⊥PN,∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.在△PMN和△PDF中,PMN PDFPM PDMPN DPF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PMN≌△PDF(ASA),∴PN=PF,MN=DF;②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴2DP.∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴2DP;(2)2DN DFDP-=.理由如下:过点P作PM1⊥PD,PM1交AD 边于点M1,如图,∵四边形ABCD是矩形,∴∠ADC=90°.又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.在△PM1N和△PDF中111PM N PDFPM PDM PN DPF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△PM1N≌△PDF(ASA),∴M1N=DF,由勾股定理可得:21DM=DP2+M1P2=2DP2,∴DM12DP.∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,∴DN﹣DF=2DP.【点睛】本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.21.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB= 1.1.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B 可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD 即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=kx,得k=3,∴反比例函数的表达式y=3x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=1,∴直线AD的解析式为y=﹣2x+1,令y=0,得x=52,∴点P坐标(52,0),(3)S△PAB=S△ABD﹣S△PBD=12×2×2﹣12×2×12=2﹣12=1.1.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.22.(1)四;(2)见解析;(3)0.2715ab.【解析】【分析】(1)比较两个折线统计图,找出满足题意的调查次数即可;(2)描出第四次与第五次北京森林覆盖率,补全折线统计图即可;(3)根据第八次全面森林面积除以森林覆盖率求出全国总面积,除以第九次的森林覆盖率,即可得到结果.【详解】解:(1)观察两折线统计图比较得:从第四次清查开始,北京的森林覆盖率超过全国的森林覆盖率; 故答案为四;(2)补全折线统计图,如图所示:(3)根据题意得:a b ×27.15%=0.2715a b, 则全国森林面积可以达到0.2715a b万公顷, 故答案为0.2715a b . 【点睛】此题考查了折线统计图,弄清题中的数据是解本题的关键.23.证明见解析【解析】 解:∵42a c b+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根.∴240b ac -≥,∴24b ac ≥.24.(1)证明见解析(2)165【解析】【分析】(1)连接OC ,根据等腰三角形的性质、平行线的判定得到OC ∥AE ,得到OC ⊥EF ,根据切线的判定定理证明;(2)根据勾股定理求出AC ,证明△AEC ∽△ACB ,根据相似三角形的性质列出比例式,计算即可.【详解】(1)证明:连接OC ,∵OA=OC,∴∠OCA=∠BAC,∵点C是»BD的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠BCA=90°,∴22AB BC-=4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴AE AC AC AB=,∴AE=2165 ACAB=.【点睛】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键.25.(1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.【解析】【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.(1)设A ,B 两种型号电风扇的销售单价分别为x 元/台、y 元/台.依题意,得3518004103100x y x y +=⎧⎨+=⎩解得250210x y =⎧⎨=⎩答:A ,B 两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A 种型号的电风扇a 台,则采购B 种型号的电风扇(30-a)台.依题意,得200a +170(30-a)≤5400,解得a≤10.答:A 种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a +(210-170)(30-a)=1400,解得a =20.∵a≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.26.(1)y=6x -,y=-x+1;(2)C(0,+1 )或C(0,【解析】【分析】(1)依据一次函数y kx b =+的图象与y 轴交于点(0,1)B ,与反比例函数m y x=的图象交于点(3,2)A -,即可得到反比例函数的表达式和一次函数表达式;(2)由(3,2)A -,(0,1)B 可得:AB ==BC =,再根据1BO =,可得1CO =或1,即可得出点C 的坐标.【详解】 (1)∵双曲线m y x =过(3,2)A -,将(3,2)A -代入m y x=,解得:6m =-. ∴所求反比例函数表达式为:6y x =-. ∵点(3,2)A -,点(0,1)B 在直线y kx b =+上,∴23k b -=+,1b =,∴1k =-,∴所求一次函数表达式为1y x =-+.(2)由(3,2)A -,(0,1)B 可得:AB ==BC =又∵1BO =,∴1CO =或1,∴(0C ,1)或(0C ,1-).本题考查了待定系数法求反比例函数、一次函数的解析式和反比例函数与一次函数的交点问题.此题难度适中,注意掌握数形结合思想的应用.27.(1)抛物线的解析式为:;(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②存在.R点的坐标是(3,﹣);(3)M的坐标为(1,﹣).【解析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.试题解析:(1)设抛物线的解析式是y=ax2+bx+c,∵正方形的边长2,∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,解得a=,b=﹣,c=﹣2,∴抛物线的解析式为:,答:抛物线的解析式为:;(2)①由图象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.∵S=5t2﹣8t+4(0≤t≤1),∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,解得t=,t=(不合题意,舍去),此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB, 则R的横坐标为3,R的纵坐标为﹣,即R(3,﹣),代入,左右两边相等,∴这时存在R(3,﹣)满足题意;(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,则R(1,﹣)代入,,左右不相等,∴R不在抛物线上.(1分)综上所述,存点一点R(3,﹣)满足题意.答:存在,R点的坐标是(3,﹣);(3)如图,M′B=M′A,∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M, 理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,解得:k=,b=﹣,∴y=x﹣,抛物线的对称轴是x=1,把x=1代入得:y=﹣∴M的坐标为(1,﹣);答:M的坐标为(1,﹣).考点:二次函数综合题.。
天津市河北区2019-2020学年中考数学五模试卷含解析
天津市河北区2019-2020学年中考数学五模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积()A.11 B.10 C.9 D.162.如图图形中,是中心对称图形的是()A.B.C.D.3.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差4.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B5.下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形6.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B.明天下雪的概率为12,表示明天有半天都在下雪C.甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.了解一批充电宝的使用寿命,适合用普查的方式7.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为()A.x<2 B.x>2 C.x<5 D.x>58.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家月用电量(度)25 30 40 50 60户数 1 2 4 2 1A.极差是3 B.众数是4 C.中位数40 D.平均数是20.59.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是()A.B.C.D.10有意义,则实数x的取值范围是()2xA.x>0 B.x≥0C.x≠0D.任意实数11.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为()A.18元B.36元C.54元D.72元12.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是()A.若这5次成绩的中位数为8,则x=8B.若这5次成绩的众数是8,则x=8C.若这5次成绩的方差为8,则x=8D.若这5次成绩的平均成绩是8,则x=8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.|-3|=_________;14.小红沿坡比为13的斜坡上走了100米,则她实际上升了_____米.15.如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)16.计算()22133x y xy ⎛⎫-⋅=⎪⎝⎭_______. 17.⊙M 的圆心在一次函数y=12x+2图象上,半径为1.当⊙M 与y 轴相切时,点M 的坐标为_____.18.计算:()()5353+-=_________ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题: (1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°. (2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.(3)若从对校园安全知识达到“了解”程度的3个女生A 、B 、C 和2个男生M 、N 中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A 的概率.计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生“是否随手丢垃圾”情况的众数是;(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?21.(6分)解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.22.(8分)我市某学校在“行读石鼓阁”研学活动中,参观了我市中华石鼓园,石鼓阁是宝鸡城市新地标.建筑面积7200平方米,为我国西北第一高阁.秦汉高台门阙的建筑风格,追求稳定之中的飞扬灵动,深厚之中的巧妙组合,使景观功能和标志功能融为一体.小亮想知道石鼓阁的高是多少,他和同学李梅对石鼓阁进行测量.测量方案如下:如图,李梅在小亮和“石鼓阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,李梅看着镜面上的标记,她来回走动,走到点D时,看到“石鼓阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得李梅眼睛与地面的高度ED=1.6米,CD=2.2米,然后,在阳光下,小亮从D点沿DM方向走了29.4米,此时“石鼓阁”影子与小亮的影子顶端恰好重合,测得小亮身高1.7米,影长FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“石鼓阁”的高AB的长度.23.(8分)在⊙O 中,弦AB 与弦CD 相交于点G ,OA ⊥CD 于点E ,过点B 作⊙O 的切线BF 交CD 的延长线于点F .(I )如图①,若∠F=50°,求∠BGF 的大小;(II )如图②,连接BD ,AC ,若∠F=36°,AC ∥BF ,求∠BDG 的大小.24.(10分)(定义)如图1,A ,B 为直线l 同侧的两点,过点A 作直线1的对称点A′,连接A′B 交直线l 于点P ,连接AP ,则称点P 为点A ,B 关于直线l 的“等角点”. (运用)如图2,在平面直坐标系xOy 中,已知A (2,),B (﹣2,﹣)两点.(1)C (4,),D (4,),E (4,)三点中,点 是点A ,B 关于直线x=4的等角点; (2)若直线l 垂直于x 轴,点P (m ,n )是点A ,B 关于直线l 的等角点,其中m >2,∠APB=α,求证:tan =;(3)若点P 是点A ,B 关于直线y=ax+b (a≠0)的等角点,且点P 位于直线AB 的右下方,当∠APB=60°时,求b 的取值范围(直接写出结果).25.(10分)已知:如图,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG=EF.(1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:21·2AE EF ED .26.(12分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.27.(12分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.【详解】根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵H BHC BCHCE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故选B.【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.2.D【解析】【分析】根据中心对称图形的概念和识别.【详解】故选D.【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.3.D【解析】【详解】解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D.原来数据的方差=222 (12)2(22)(32)4-+⨯-+-=12,添加数字2后的方差=222 (12)3(22)(32)5-+⨯-+-=25,故方差发生了变化.故选D.4.A【解析】试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.故选A.考点:1、计算器—数的开方;2、实数与数轴5.C【解析】【分析】根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.6.C【解析】【分析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.【详解】A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为12”,表示明天有可能下雪,错误;C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C【点睛】考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.7.C【解析】【分析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.【详解】解:∵一次函数y=kx﹣b经过点(2,0),∴2k﹣b=0,b=2k.函数值y随x的增大而减小,则k<0;解关于k(x﹣3)﹣b>0,移项得:kx>3k+b,即kx>1k;两边同时除以k,因为k<0,因而解集是x<1.故选C.【点睛】本题考查一次函数与一元一次不等式.8.C极差、中位数、众数、平均数的定义和计算公式分别对每一项进行分析,即可得出答案.【详解】解:A、这组数据的极差是:60-25=35,故本选项错误;B、40出现的次数最多,出现了4次,则众数是40,故本选项错误;C、把这些数从小到大排列,最中间两个数的平均数是(40+40)÷2=40,则中位数是40,故本选项正确;D、这组数据的平均数(25+30×2+40×4+50×2+60)÷10=40.5,故本选项错误;故选:C.【点睛】本题考查了极差、平均数、中位数、众数的知识,解答本题的关键是掌握各知识点的概念.9.B【解析】【分析】俯视图是从上面看几何体得到的图形,据此进行判断即可.【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B.【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.10.C【解析】【分析】根据分式和二次根式有意义的条件进行解答.【详解】解:依题意得:x2≥1且x≠1.解得x≠1.故选C.【点睛】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.【分析】设y 与x 之间的函数关系式为y =kπx 2,由待定系数法就可以求出解析式,再求出x =6时y 的值即可得.【详解】解:根据题意设y =kπx 2,∵当x =3时,y =18,∴18=kπ•9,则k =2π, ∴y =kπx 2=2π•π•x 2=2x 2, 当x =6时,y =2×36=72, 故选:D .【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键.12.D【解析】【分析】根据中位数的定义判断A ;根据众数的定义判断B ;根据方差的定义判断C ;根据平均数的定义判断D .【详解】A 、若这5次成绩的中位数为8,则x 为任意实数,故本选项错误;B 、若这5次成绩的众数是8,则x 为不是7与9的任意实数,故本选项错误;C 、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D 、若这5次成绩的平均成绩是8,则15(8+9+7+8+x )=8,解得x=8,故本选项正确; 故选D .【点睛】本题考查中位数、众数、平均数和方差:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差()()()()22221232...n x x x x x x x xS n -+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-1|=1.故答案为1.14.50【解析】【分析】根据题意设铅直距离为x ,根据勾股定理求出x 的值,即可得到结果.【详解】解:设铅直距离为x ,根据题意得:222)100x +=,解得:50x =(负值舍去),则她实际上升了50米,故答案为:50【点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.15.6.2【解析】【分析】根据题意和锐角三角函数可以求得BC 的长,从而可以解答本题.【详解】解:在Rt △ABC 中,∵∠ACB=90°,∴BC=AB•sin ∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC 的长约为6.2米.故答案为:6.2.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.16.33x y -【解析】【分析】根据同底数幂的乘法法则计算即可.【详解】()22133x y xy ⎛⎫-⋅ ⎪⎝⎭ 22133x y xy =-⨯⋅ 33x y =-故答案是:33x y -【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.17.(1,52)或(﹣1,32) 【解析】【分析】设当⊙M 与y 轴相切时圆心M 的坐标为(x ,12x+2),再根据⊙M 的半径为1即可得出y 的值. 【详解】 解:∵⊙M 的圆心在一次函数y=12x+2的图象上运动, ∴设当⊙M 与y 轴相切时圆心M 的坐标为(x, 12x+2), ∵⊙M 的半径为1,∴x=1或x=−1,当x=1时,y=52, 当x=−1时,y=32. ∴P 点坐标为:(1, 52)或(−1, 32). 故答案为(1,52)或(−1, 32). 【点睛】 本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.18.2【解析】【分析】利用平方差公式求解,即可求得答案.【详解】 ()()5353+-=(5)2-(3)2=5-3=2. 故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)60,30;;(2)300;(3)13 【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)利用样本估计总体的方法,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A 的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∵了解部分的人数为60﹣(15+30+10)=5,∴扇形统计图中“了解”部分所对应扇形的圆心角为:560×360°=30°; 故答案为60,30;(2)根据题意得:900×15+560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,故答案为300;(3)画树状图如下:所有等可能的情况有6种,其中抽到女生A 的情况有2种,所以P (抽到女生A )=26=13. 【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.20.(1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.【解析】【分析】(1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;(2)根据众数的定义求解即可;(3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.【详解】(1)∵被调查的总人数为60÷30%=200人,∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为130200×100%=65%,补全图形如下:(2)由条形图知,B情况出现次数最多,所以众数为B,故答案为B.(3)1500×5%=75,答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.【点睛】本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.21.﹣1≤x<1.【解析】【分析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式①,得x<1,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<1.不等式组的解集在数轴上表示如下:22.“石鼓阁”的高AB的长度为56m.【解析】【分析】根据题意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根据反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,根据相似三角形的性质可得ABBC=EDDC,再根据∠AHB=∠GHF,可证△ABH∽△GFH,同理得ABBH=GFFH,代入数值计算即可得出结论.【详解】由题意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,由反射定律可知:∠ACB=∠ECD,则△ABC∽△EDC,∴ABBC=EDDC,即ABBC=1.62.2①,∵∠AHB=∠GHF,∴△ABH∽△GFH,∴ABBH=GFFH,即2.229.43.4ABBC+++=1.73.4②,联立①②,解得:AB=56,答:“石鼓阁”的高AB的长度为56m.【点睛】本题考查了相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.23.(I)65°;(II)72°【解析】【分析】(I)如图①,连接OB,先利用切线的性质得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF的度数;(II)如图②,连接OB,BO的延长线交AC于H,利用切线的性质得OB⊥BF,再利用AC∥BF得到BH⊥AC,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG的度数.【详解】解:(I)如图①,连接OB,∵BF为⊙O的切线,∴OB⊥BF,∴∠OBF=90°,∵OA⊥CD,∴∠OED=90°,∴∠AOB=180°﹣∠F=180°﹣50°=130°,∵OA=OB,∴∠1=∠A=12(180°﹣130°)=25°,∴∠2=90°﹣∠1=65°,∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;(II)如图②,连接OB,BO的延长线交AC于H,∵BF为⊙O的切线,∴OB⊥BF,∵AC∥BF,∴BH⊥AC,与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,∵OA=OB,∴∠OBA=∠OAB=12(180°﹣144°)=18°,∵∠AOB=∠OHA+∠OAH,∴∠OAH=144°﹣90°=54°,∴∠BAC=∠OAH+∠OAB=54°+18°=72°,∴∠BDG=∠BAC=72°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.24.(1)C(2)(3)b<﹣且b≠﹣2或b>【解析】【分析】(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B′(10,﹣),∴直线AB′解析式为:y=﹣,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠APG=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即,∴mn=2,即m=,∵∠APB=α,AP=AP′,∴∠A=∠A′=,在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q 由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N ∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=,∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO=∠ONQ=90°∴△AMO∽△ONQ∴,∴,∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得,解得,∴直线BQ的解析式为:y=﹣,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得,∴直线AQ的解析式为:y=﹣3,若点P 与B 点重合,则直线PQ 与直线BQ 重合,此时,b=﹣,若点P 与点A 重合,则直线PQ 与直线AQ 重合,此时,b=,又∵y=ax+b (a≠0),且点P 位于AB 右下方,∴b <﹣ 且b≠﹣2或b >. 【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.25. (1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到ABED 是平行四边形. 再由平行线分线段成比例定理得到:FG CF AD CA =, EF CF AB CA = ,FG AD =EF AB,即可得到结论; (2)连接BD ,与AE 交于点H .由菱形的性质得到12EH AE BD =,⊥AE ,进而得到90DHE ∠=o ,90AFE o ∠=,即有DHE AFE ∠∠=,得到△DHE ∽△AFE ,由相似三角形的性质即可得到结论. 详解:(1)∵ AD ∥BC DE ,∥AB ,∴四边形ABED 是平行四边形.∵FG ∥AD ,∴FG CF AD CA =. 同理 EF CF AB CA= . 得:FG AD =EF AB∵FG EF =,∴AD AB =.∴四边形ABED 是菱形.(2)连接BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE BD =,⊥AE . 得90DHE ∠=o .同理90AFE o ∠=.∴DHE AFE ∠∠=.又∵AED ∠是公共角,∴△DHE ∽△AFE . ∴EH DE EF AE =. ∴21·2AE EF ED =.点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.26.(1)见解析(2)【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF 是菱形;(2)连接EF 交于点O ,运用解直角三角形的知识点,可以求得AC 与EF 的长,再利用菱形的面积公式即可求得菱形AECF 的面积.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC . 在Rt △ABC 中,∠BAC=90°,点E 是BC 边的中点,∴AE=CE=BC . 同理,AF=CF=AD .∴AF=CE .∴四边形AECF 是平行四边形.∴平行四边形AECF 是菱形.(2)解:在Rt △ABC 中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=.连接EF 交于点O ,∴AC ⊥EF 于点O ,点O 是AC 中点.∴OE=.∴EF=.∴菱形AECF的面积是AC·EF=.考点:1.菱形的性质和面积;2.平行四边形的性质;3.解直角三角形.27.(1)证明见解析;(2)AE=2时,△AEF的面积最大.【解析】【分析】(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.【详解】(1)证明:∵四边形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,,∴△FEH≌△ECD,∴FH=ED.(2)解:设AE=a,则ED=FH=4-a,∴S△AEF=AE·FH=a(4-a)=-(a-2)2+2,∴当AE=2时,△AEF的面积最大.【点睛】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.。
2019-2020学年九年级上学期期末数学试题及答案解析(天津市)
2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列方程中有一个根为﹣1的方程是()A. x2+2x=0B. x2+2x﹣3=0C. x2﹣5x+4=0D. x2﹣3x﹣4=02.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列成语描述的事件为随机事件的是()A. 守株待兔B. 水中捞月C. 瓮中捉鳖D. 水涨船高4.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A y=2(x﹣1)2﹣3 B. y=2(x﹣2)2﹣3C. y=2(x﹣1)2+3D. y=2(x﹣2)2+35.已知⊙O中最长的弦为8cm,则⊙O的半径为()cm.A. 2B. 4C. 8D. 166. ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙ ⊙A. “⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙”⊙⊙⊙⊙⊙B. “⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙”⊙⊙⊙⊙⊙C. “⊙⊙⊙0.0001⊙⊙⊙”⊙⊙⊙⊙⊙⊙D. ⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙10⊙⊙⊙⊙⊙⊙⊙⊙⊙⊙5⊙7.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MNBC等于().A. 5B.C. D.8.下列方程没有实数根的是( )A. x 2﹣x ﹣1=0B. x 2﹣6x +5=0C. x 2﹣+3=0D. x 2+x +1=09.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( ) A.15B.310C.13D.1210.边长为2的正六边形的面积为( ) A.B.C. 6D.11.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为x ,则所列方程正确的是( ) A. 2(1)4400x += B. 2(1) 1.44x += C. 210000(1)4400x +=D. 10000(12)14400x +=12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>.其中正确结论的个数是( )A. 1B. 2C. 3D. 4二.填空题(共6小题)13.一元二次方程(x﹣5)(x﹣7)=0的解为_____.14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.15.已知点A⊙a⊙1)与点A′⊙5⊙b)是关于原点对称,则a+b =________⊙16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.17.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.18.如图,在半径为2⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP 于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.三.解答题(共7小题)19.已知抛物线y=x2+bx+c的图像过A⊙⊙1⊙0⊙⊙B⊙3⊙0)两点.求抛物线的解析式和顶点坐标.20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.的21.现有A ,B ,C ,D 四张不透明卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(⊙)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(⊙)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.22.已知AB 是⊙O 的直径,C ,D 是⊙O 上AB 同侧两点,∠BAC =26°. (⊙)如图1,若OD ⊥AB ,求∠ABC 和∠ODC 的大小;(⊙)如图2,过点C 作⊙O 切线,交AB 的延长线于点E ,若OD ∥EC ,求∠ACD 的大小.的23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm . (⊙)若花园的面积是252m 2,求AB 的长;(⊙)当AB 的长是多少时,花园面积最大?最大面积是多少?24.在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B 、C 的对应点分别是E 、D .(1)如图1,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图2,若α=60°时,点F 边AC 中点,求证:四边形BFDE 是平行四边形.25.在平面直角坐标系中,已知抛物线y =x 2﹣2ax +4a +2(a 是常数), (⊙)若该抛物线与x 轴的一个交点为(﹣1,0),求a 的值及该抛物线与x 轴另一交点坐标; (⊙)不论a 取何实数,该抛物线都经过定点H . ①求点H 的坐标;②证明点H 是所有抛物线顶点中纵坐标最大的点.是2019-2020学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列方程中有一个根为﹣1的方程是()A. x2+2x=0B. x2+2x﹣3=0C. x2﹣5x+4=0D. x2﹣3x﹣4=0【答案】D【解析】【分析】利用一元二次方程解的定义对各选项分别进行判断.【详解】解:A、当x=﹣1时,x2+2x=1﹣2=﹣1,所以x=﹣1不是方程x2+2x=0的解;B、当x=﹣1时,x2+2x﹣3=1﹣2﹣3=﹣4,所以x=﹣1不是方程x2+2x﹣3=0的解;C、当x=﹣1时,x2﹣5x+4=1+5+4=10,所以x=﹣1不是方程x2﹣5x+4=0的解;D、当x=﹣1时,x2﹣3x﹣4=1+3﹣4=0,所以x=﹣1是方程x2﹣3x﹣4=0的解.故选:D.【点睛】本题考查一元二次方程的解即能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列成语描述的事件为随机事件的是()A. 守株待兔B. 水中捞月C. 瓮中捉鳖D. 水涨船高【答案】A【解析】【分析】根据事件发生可能性大小判断相应事件的类型即可.【详解】解:A.守株待兔是随机事件,故A符合题意;的B.水中捞月是不可能事件,故B不符合题意;C.瓮中捉鳖是必然事件,故C不符合题意;D.水涨船高是必然事件,故D不符合题意;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A. y=2(x﹣1)2﹣3B. y=2(x﹣2)2﹣3C. y=2(x﹣1)2+3D. y=2(x﹣2)2+3【答案】C【解析】【分析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+3.故选:C.【点睛】本题考查二次函数的三种形式,一般式:y=ax2+bx +c ,顶点式:y=a(x -h)2+k ;两根式:y=()12).a x x x x --(5.已知⊙O 中最长弦为8cm ,则⊙O 的半径为( )cm . A. 2 B. 4C. 8D. 16【答案】B 【解析】 【分析】⊙O 最长的弦就是直径从而不难求得半径的长.【详解】⊙⊙O 中最长的弦为8cm ,即直径为8cm⊙ ⊙⊙O 的半径为4cm⊙ 故选B.【点睛】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是解题的关键. 6. 下列说法中正确的是( )A. “任意画出一个等边三角形,它是轴对称图形”是随机事件B. “任意画出一个平行四边形,它是中心对称图形”是必然事件C. “概率为0.0001的事件”是不可能事件D. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 【答案】B 【解析】试题分析:A .“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误; B .“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确; C .“概率为0.0001的事件”是随机事件,选项错误;D .任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误. 故选B .考点:随机事件.7.如图,已知AB 、AC 都是⊙O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M ,N ,若MNBC 等的于()A. 5B.C.D.【答案】C【解析】【分析】先根据垂径定理得出M、N分别是AB与AC的中点,故MN是△ABC的中位线,由三角形的中位线定理即可得出结论.【详解】解:⊙OM⊙AB,ON⊙AC,垂足分别为M、N,⊙M、N分别是AB与AC的中点,⊙MN是⊙ABC的中位线,⊙BC=2MN=故选:C.【点睛】本题考查垂径定理、三角形中位线定理;熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.8.下列方程没有实数根的是()A. x2﹣x﹣1=0B. x2﹣6x+5=0C. x2﹣x+3=0D. x2+x+1=0【答案】D【解析】【分析】首先根据题意判断上述四个方程的根的情况,只要看根的判别式△= 2b-4ac的值的符号即可.【详解】解:A、⊙⊙=b2﹣4ac=1+4=5>0,⊙方程有两个不相等的实数根,故本选项错误;B、⊙⊙=b2﹣4ac=36﹣20=16>0,⊙方程有两个不相等的实数根,故本选项错误;C 、⊙⊙=b 2﹣4ac =12﹣12=0,⊙方程有两个相等的实数根,故本选项错误;D 、⊙⊙=b 2﹣4ac =1﹣4=﹣3<0,⊙方程没有实数根,故本选项正确. 故选:D .【点睛】本题考查根的判别式.一元二次方程2+00ax bx c a +=≠()的根与⊙= 2b -4ac 有如下关系:(1) ⊙>0⊙方程有两个不相等的实数根;(2) ⊙=0⊙方程有两个相等的实数根;(3) ⊙<0⊙方程没有实数根. 9.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为( ) A.15B.310C.13D.12【答案】D 【解析】 【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 【详解】解:绿球的概率:P =510=12, 故选:D .【点睛】本题考查概率相关概念,熟练运用概率公式计算是解题的关键. 10.边长为2的正六边形的面积为( )A. B.C. 6【答案】A 【解析】 【分析】首先根据题意作出图形,然后可得△OBC 是等边三角形,然后由三角函数的性质,求得OH 的长,继而求得正六边形的面积.【详解】解:如图,连接OB ,OC ,过点O 作OH⊙BC 于H , ⊙六边形ABCDEF 是正六边形, ⊙⊙BOC =16×360°=60°, ⊙OB =0C ,⊙⊙OBC 是等边三角形,⊙BC =OB =OC =2,⊙它的半径为2,边长为2;⊙在Rt⊙OBH 中,OH =OB•sin60°=2×2,⊙⊙S 正六边形ABCDEF =6S ⊙OBC =6×12 故选:A .【点睛】本题考查圆的内接正六边形的性质、正多边形的内角和、等边三角形的判定与性质以及三角函数等知识.此题难度不大,注意掌握数形结合思想的应用.11.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为x ,则所列方程正确的是( )A. 2(1)4400x +=B. 2(1) 1.44x += C. 210000(1)4400x +=D. 10000(12)14400x += 【答案】B【解析】【分析】直接根据题意得出第三季度投放单车的数量为:(1+x )2=1+0.44,进而得出答案.【详解】解:设该公司第二、三季度投放单车数量的平均增长率为x ,根据题意可得:(1+x )2=1.44.故选:B .【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出下列结论:①0abc >;②930a b c ++=;③248b ac a -<;④50a b c ++>.其中正确结论的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】分析】 根据图象可直接判断a 、c 的符号,再结合对称轴的位置可判断b 的符号,进而可判断①;抛物线的图象过点(3,0),代入抛物线的解析式可判断②;根据抛物线顶点的位置可知:顶点的纵坐标小于-2,整理后可判断③;根据图象可知顶点的横坐标大于1,整理后再结合③的结论即可判断④.【详解】解:①由图象可知:0a >,0c <,由于对称轴02b a ->,∴0b <,∴0abc >,故①正确; ②∵抛物线过(3,0),∴3x =时,930y a b c =++=,故②正确; ③顶点坐标为:24,24b ac b a a ⎛⎫-- ⎪⎝⎭.由图象可知:2424ac b a -<-,∵0a >,∴248ac b a -<-,即248b ac a ->,故③错误; ④由图象可知:12b a ->,0a >,∴20a b +<, ∵930a b c ++=,∴93c a b =--,∴5593422(2)0a b c a b a b a b a b ++=+--=--=-+>,故④正确; 故选C .【点睛】本题考查了抛物线的图象与性质和抛物线的图象与其系数的关系,熟练掌握抛物线的图象与性质、【灵活运用数形结合的思想方法是解题的关键.二.填空题(共6小题)13.一元二次方程(x﹣5)(x﹣7)=0的解为_____.【答案】x1=5,x2=7【解析】【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.14.抛掷一枚质地均匀的硬币一次,正面朝上的概率是_____.【答案】1 2【解析】【分析】抛掷一枚质地均匀的硬币,其等可能的情况有2个,求出正面朝上的概率即可.【详解】抛掷一枚质地均匀的硬币,等可能的情况有:正面朝上,反面朝上,则P(正面朝上)=12.故答案为12.【点睛】本题考查了概率公式,概率=发生的情况数÷所有等可能情况数.15.已知点A⊙a⊙1)与点A′⊙5⊙b)是关于原点对称,则a+b =________⊙【答案】-6【解析】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.16.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.【答案】15【解析】【分析】本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.【详解】解:设利润为w元,则w=(20﹣x)(x﹣10)=﹣(x﹣15)2+25,∵10≤x≤20,∴当x=15时,二次函数有最大值25,故答案是:15.【点睛】本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.17.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.【答案】120°【解析】【分析】设扇形的半径为r,圆心角为n°.利用扇形面积公式求出r,再利用弧长公式求出圆心角即可.【详解】设扇形的半径为r,圆心角为n°.由题意:1816··233rππ=,∴r=4,∴2416 3603 nππ=∴n=120,故答案为120°【点睛】本题考查扇形的面积的计算,弧长公式等知识,解题的关键是掌握基本知识.18.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP 于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.【答案】(1). (2). -1【解析】【分析】①在Rt△AOE中,解直角三角形求出AE即可解决问题.OF≤,由此即可解②取AC的中点H,连接OH,OF,HF,求出OH,FH,根据OF≥FH-OH,即1决问题.【详解】解:⊙如图,连接OA.⊙OA=OC=2,⊙⊙OCA=⊙OAC=30°,⊙⊙AOE=⊙OAC+⊙ACO=60°,⊙AE=OA•sin60°,⊙OE⊙AB,⊙AE=EB⊙AB=2AE=,故答案为⊙取AC的中点H,连接OH,OF,HF,⊙OA=OC,AH=HC,⊙OH⊙AC,⊙⊙AHO=90°,⊙⊙COH=30°,⊙OH=12OC=1,HCAC=⊙CF⊙AP,⊙⊙AFC=90°,⊙HF=12 AC⊙OF≥FH﹣OH,即1,⊙OF﹣1.1.【点睛】本题考查轨迹,圆周角定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题.三.解答题(共7小题)19.已知抛物线y=x2+bx+c的图像过A⊙⊙1⊙0⊙⊙B⊙3⊙0)两点.求抛物线的解析式和顶点坐标.【答案】y=x2-2x-3⊙顶点坐标为(1⊙-4⊙.【解析】【分析】把A、B两点坐标代入抛物线解析式,利用待定系数法可求得其解析式,再化为顶点式即可求得其顶点坐标. 【详解】∵抛物线经过A⊙-1⊙0⊙⊙B⊙3⊙0)两点,∴10 930b cb c-+⎧⎨++⎩==⊙解得b= -2⊙c= -3⊙⊙ 抛物线解析式为y=x2-2x-3 ⊙⊙ y=x2-2x-3=⊙x-1⊙2-4⊙∴抛物线的顶点坐标为(1⊙-4⊙.【点睛】本题考查了待定系数法、二次函数的性质.20.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,5),C(4,2)(每个方格的边长均为1个单位长度)(1)将△ABC平移,使点A移动到点A1,请画出△A1B1C1;(2)作出△ABC关于O点成中心对称的△A2B2C2,并直接写出A2,B2,C2的坐标;(3)△A1B1C1与△A2B2C2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.【答案】(1)见解析;(2)见解析,点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)是,对称中心的坐标的坐标为(﹣2,﹣1).【解析】【分析】(1)利用点A和1A坐标的关系确定平移的方向与距离,关于利用此平移规律写出B1、C1的坐标,然后描点即可;(2)利用关于点对称的点的坐标特征写出A2,B2,C2的坐标,然后描点即可;(3)连接A1 A2,B1 B2,C1 C2,它们都经过点P,从而可判断△A1B1C1与△A2B2C2关于点P中心对称,再写出P点坐标即可.【详解】解:(1)如图,⊙A1B1C1为所作;(2)如图,⊙A2B2C2为所作;点A2,B2,C2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)⊙A1B1C1与⊙A2B2C2关于点P中心对称,如图,对称中心的坐标的坐标为(﹣2,﹣1).【点睛】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.现有A,B,C,D四张不透明的卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(⊙)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(⊙)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.【答案】(⊙)14;(⊙)12【解析】【分析】(⊙)根据题意,直接利用概率公式求解可得;(⊙)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(⊙)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14,故答案为:14;(⊙)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,则两次所抽取的卡片恰好都是轴对称图形的概率为612=12.【点睛】本题考查列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22.已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(⊙)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(⊙)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD的大小.【答案】(⊙)∠ABC=64°,∠ODC=71°;(⊙)∠ACD=19°.【解析】【分析】(I)连接OC,根据圆周角定理得到∠ACB=90°,根据三角形的内角和得到∠ABC=65°,由等腰三角形的性质得到∠OCD=∠OCA+∠ACD=70°,于是得到结论;(II)如图2,连接OC,根据圆周角定理和切线性质即可得到结论.【详解】解:(⊙)连接OC,⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙⊙BAC=26°,⊙⊙ABC=64°,⊙OD⊙AB,⊙⊙AOD=90°,⊙⊙ACD=12⊙AOD=12×90°=45°,⊙OA=OC,⊙⊙OAC=⊙OCA=26°,⊙⊙OCD=⊙OCA+⊙ACD=71°,⊙OD=OC,⊙⊙ODC=⊙OCD=71°;(⊙)如图2,连接OC,⊙⊙BAC=26°,⊙⊙EOC=2⊙A=52°,⊙CE是⊙O的切线,⊙⊙OCE=90°,⊙⊙E=38°,⊙OD⊙CE,⊙⊙AOD=⊙E=38°,⊙⊙ACD=12AOD=19°.【点睛】本题考查切线的性质,圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =xm .(⊙)若花园的面积是252m 2,求AB 的长;(⊙)当AB 的长是多少时,花园面积最大?最大面积是多少?【答案】(⊙)13m 或19m ;(⊙)当AB =16时,S 最大,最大值为:256.【解析】【分析】(⊙)根据题意得出长×宽=252列出方程,进一步解方程得出答案即可;(⊙)设花园的面积为S ,根据矩形的面积公式得到S=x (28-x)=- 2x +28x=–()214x -+196,于是得到结果.【详解】解:(⊙)⊙AB =xm ,则BC =(32﹣x )m ,⊙x (32﹣x )=252,解得:x 1=13,x 2=19,答:x 的值为13m 或19m ;(⊙)设花园的面积为S ,由题意得:S =x (32﹣x )=﹣x 2+32x =﹣(x ﹣16)2+256,⊙a =﹣1<0,⊙当x=16时,S最大,最大值为:256.【点睛】本题主要考查二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.24.在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度α得到△AED,点B、C的对应点分别是E、D.(1)如图1,当点E恰好在AC上时,求∠CDE的度数;(2)如图2,若α=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.【答案】(1)15°;(2)证明见解析.【解析】【分析】(1)如图1,利用旋转的性质得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根据等腰三角形的性质求出∠ADC,从而计算出∠CDE的度数;(2)如图2,利用直角三角形斜边上的中线性质得到BF=12AC,利用含30度的直角三角形三边的关系得到BC=12AC,则BF=BC,再根据旋转的性质得到∠BAE=∠CAD=60°,AB=AE,AC=AD ,DE=BC,从而得到DE=BF,△ACD和△BAE为等边三角形,接着由△AFD≌△CBA得到DF=BA,然后根据平行四边形的判定方法得到结论.【详解】解:(1)如图1,∵△ABC绕点A顺时针旋转α得到△AED,点E恰好在AC上,∴CA=CD,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,∵CA=DA,∴∠ACD=∠ADC=12(180°−30°)=75°,∠ADE=90°-30°=60°,∴∠CDE=75°−60°=15°;(2)证明:如图2,∵点F是边AC中点,∴BF=12 AC,∵∠BAC=30°,∴BC=12 AC,∴BF=BC,∵△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,∴DE=BF,△ACD和△BAE为等边三角形,∴BE=AB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△AFD≌△CBA,∴DF=BA,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.25.在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(⊙)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(⊙)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.【答案】(⊙)a=﹣12,抛物线与x轴另一交点坐标是(0,0);(⊙)①点H的坐标为(2,6);②证明见解析.【解析】【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【详解】(⊙)⊙抛物线y=x2﹣2ax+4a+2与x轴一个交点为(﹣1,0),⊙0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣12,⊙y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(⊙)⊙⊙抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),⊙不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);⊙证明:⊙抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,⊙该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.的。
天津市河北区2019-2020学年中考数学三模考试卷含解析
天津市河北区2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知一元二次方程2x 2+2x ﹣1=0的两个根为x 1,x 2,且x 1<x 2,下列结论正确的是( ) A .x 1+x 2=1B .x 1•x 2=﹣1C .|x 1|<|x 2|D .x 12+x 1=122.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线平行B .对角线相等且互相垂直的四边形是正方形C .平分弦的直径垂直于弦,并且平分弦所对的弧D .若三角形的三边a ,b ,c 满足a 2+b 2+c 2=ac +bc +ab ,则该三角形是正三角形 3.已知a <1,点A (x 1,﹣2)、B (x 2,4)、C (x 3,5)为反比例函数a 1y x-=图象上的三点,则下列结论正确的是( ) A .x 1>x 2>x 3B .x 1>x 3>x 2C .x 3>x 1>x 2D .x 2>x 3>x 14.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )A .3B .3.2C .4D .4.55.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为倒数的点是( )A .点A 与点BB .点A 与点DC .点B 与点DD .点B 与点C6.如图,已知函数3y x =-与k y x =的图象在第二象限交于点()1,A m y ,点()21,B m y -在ky x=的图象上,且点B 在以O 点为圆心,OA 为半径的O e 上,则k 的值为( )A .34-B .1-C .32-D .2-7.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n 个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n 的值约为( ) A .20B .30C .40D .508.将一副三角尺(在Rt ABC ∆中,090ACB ∠=,060B ∠=,在Rt EDF ∆中,090EDF ∠=,045E ∠=)如图摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,将EDF ∆绕点D 顺时针方向旋转α(00060α<<),DE '交AC 于点M ,DF '交BC 于点N ,则PMCN的值为( )A 3B .32C .33D .129.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( ) A .12B .13C .14D .1610.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A .y =(x -1)2+2B .y =(x +1)2+2C .y =(x -1)2-2D .y =(x +1)2-211.下列命题是真命题的是( ) A .如果a+b =0,那么a =b =0 B 16±4 C .有公共顶点的两个角是对顶角 D .等腰三角形两底角相等12.﹣18的倒数是( ) A .18B .﹣18C .-118D .118二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长,与AB 的延长线交于点F .设DA u u u v =a v,DC u u u v =b v ,那么向量DFu u u v 用向量a v 、b v表示为_____.14.四边形ABCD 中,向量AB BC CD ++=u u u r u u u r u u u r_____________.15.若1x -+(y ﹣2018)2=0,则x ﹣2+y 0=_____.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是___.17.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x≤30,且x 为整数)出售,可卖出(30﹣x )件.若使利润最大,每件的售价应为______元.18.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m+2016的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,AB =AC =4,∠A =36°.在AC 边上确定点D ,使得△ABD 与△BCD 都是等腰三角形,并求BC 的长(要求:尺规作图,保留作图痕迹,不写作法)20.(6分)如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹) (2)连接AP 当B Ð为多少度时,AP 平分CAB ∠.21.(6分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表: 分数/分 80 85 90 95 人数/人42104根据图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_____,并将条形统计图补充完整; (2)获得“祖冲之奖”的学生成绩的中位数是_____分,众数是_____分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“﹣2”,“﹣1”和“2”,随机摸出一个小球,把小球上的数字记为x 放回后再随机摸出一个小球,把小球上的数字记为y ,把x 作为横坐标,把y 作为纵坐标,记作点(x ,y).用列表法或树状图法求这个点在第二象限的概率.22.(8分)已知:二次函数2y ax bx =+满足下列条件:①抛物线y=ax 2+bx 与直线y=x 只有一个交点;②对于任意实数x ,a (-x+5)2+b (-x+5)=a (x-3)2+b (x-3)都成立. (1)求二次函数y=ax 2+bx 的解析式;(2)若当-2≤x≤r (r≠0)时,恰有t≤y≤1.5r 成立,求t 和r 的值. 23.(8分)如图,直线y =﹣x+2与反比例函数ky x=(k≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .求a ,b 的值及反比例函数的解析式;若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.24.(10分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的A等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?25.(10分)先化简,再求值:先化简22211x xx-+-÷(11xx-+﹣x+1),然后从﹣2<x5合适的整数作为x的值代入求值.26.(12分)济南国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:m)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.滑行时间x/s 0 1 2 3 …滑行距离y/m 0 4 12 24 …(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约840m,他需要多少时间才能到达终点?将得到的二次函数图象补充完整后,向左平移2个单位,再向下平移5个单位,求平移后的函数表达式.27.(12分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=12,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键. 2.D【解析】【分析】根据真假命题的定义及有关性质逐项判断即可.【详解】A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.故选D.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.3.B【解析】【分析】根据a 1y x -=的图象上的三点,把三点代入可以得到x 1=﹣12a - ,x 1= 14a -,x 3=15a -,在根据a的大小即可解题 【详解】解:∵点A (x 1,﹣1)、B (x 1,4)、C (x 3,5)为反比例函数a 1y x-=图象上的三点, ∴x 1=﹣12a - ,x 1= 14a -,x 3=15a - , ∵a <1, ∴a ﹣1<0, ∴x 1>x 3>x 1. 故选B . 【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a 的大小来判断 4.B【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B. 5.A 【解析】 【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 根据倒数定义可知,-2的倒数是-12,有数轴可知A 对应的数为-2,B 对应的数为-12,所以A 与B 是互为倒数. 故选A .考点:1.倒数的定义;2.数轴. 6.A 【解析】 【分析】由题意(),3A m m -,因为O e 与反比例函数ky x=都是关于直线y x =-对称,推出A 与B 关于直线y x =-对称,推出()3,B m m -,可得31m m =-,求出m 即可解决问题;【详解】Q 函数3y x =-与ky x=的图象在第二象限交于点()1,A m y , ∴点(),3A m m -O Q e 与反比例函数ky x=都是关于直线y x =-对称, A ∴与B 关于直线y x =-对称,()3,B m m ∴-, 31m m ∴=-,12m ∴=-∴点13,22A ⎛⎫- ⎪⎝⎭133224k ∴=-⨯=-故选:A . 【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A ,B 关于直线y x =-对称. 7.A 【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得:.n0430n=+ ,计算得出:n=20, 故选A.点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 8.C 【解析】 【分析】先根据直角三角形斜边上的中线性质得CD=AD=DB ,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM ∽△CDN ,得到PM CN =PD CD,然后在Rt △PCD 中利用正切的定义得到tan ∠PCD=tan30°=PDCD ,于是可得PM CN∵点D为斜边AB的中点,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF绕点D顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴PMCN=PDCD,在Rt△PCD中,∵tan∠PCD=tan30°=PD CD,∴PMCN=tan30°=3.故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.9.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比. 10.A 【解析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解:将二次函数y=x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x ﹣1)2+2, 故选A .考点:二次函数图象与几何变换. 11.D 【解析】 【分析】 【详解】解:A 、如果a+b=0,那么a=b=0,或a=﹣b ,错误,为假命题;B 的平方根是±2,错误,为假命题;C 、有公共顶点且相等的两个角是对顶角,错误,为假命题;D 、等腰三角形两底角相等,正确,为真命题; 故选D . 12.C 【解析】 【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数. 【详解】 ∵-181()18⨯-=1, ∴﹣18的倒数是118-, 故选C. 【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.a r +2b r【解析】【分析】根据平行四边形的判定与性质得到四边形DBFC 是平行四边形,则DC=BF ,故AF=2AB=2DC ,结合三角形法则进行解答.【详解】如图,连接BD ,FC ,∵四边形ABCD 是平行四边形,∴DC ∥AB ,DC=AB .∴△DCE ∽△FBE .又E 是边BC 的中点, ∴11DE EC EF EB ==, ∴EC=BE ,即点E 是DF 的中点,∴四边形DBFC 是平行四边形,∴DC=BF ,故AF=2AB=2DC ,∴DF u u u v =DA u u u v +AF u u u v =DA u u u v +2DC u u u v =a v +2b v .故答案是:a v +2b v .【点睛】此题考查了平面向量的知识、相似三角形的判定与性质以及平行四边形的性质.注意掌握三角形法则的应用是关键.14.AD u u u r【解析】分析:根据“向量运算”的三角形法则进行计算即可.详解:如下图所示,由向量运算的三角形法则可得: AB BC CD u u u v u u u v u u u v ++=AC CD u u u v u u u v+=AD uuu v .故答案为AD uuu v .点睛:理解向量运算的三角形法则是正确解答本题的关键.15.1【解析】【分析】直接利用偶次方的性质以及二次根式的性质分别化简得出答案.【详解】 解:∵-1x +(y ﹣1018)1=0,∴x ﹣1=0,y ﹣1018=0,解得:x =1,y =1018,则x ﹣1+y 0=1﹣1+10180=1+1=1.故答案为:1.【点睛】此题主要考查了非负数的性质,正确得出x ,y 的值是解题关键.16.59. 【解析】【分析】根据题意,画出树状图,然后根据树状图和概率公式求概率即可.【详解】解:画树状图得:Q 共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,至少有一辆汽车向左转的概率是:59.故答案为:59.【点睛】此题考查的是求概率问题,掌握树状图的画法和概率公式是解决此题的关键.17.3【解析】试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.18.2.【解析】【分析】把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.【详解】解:∵m是方程2x2﹣3x﹣2=0的一个根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案为:2.【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.25-+【解析】【分析】作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长.【详解】如图所示,作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,∵∠A =∠CBD =36°,∠C =∠C ,∴△ABC ∽△BDC , ∴DC BC BC AC =, 设BC =BD =AD =x ,则CD =4﹣x ,∵BC 2=AC×CD ,∴x 2=4×(4﹣x ),解得x 1=25-+,x 2=25--(舍去),∴BC 的长25-+.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.21.(1)刘徽奖的人数为40人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)P (点在第二象限)29=. 【解析】【分析】(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得.【详解】(1)∵获奖的学生人数为20÷10%=200人,∴赵爽奖的人数为200×24%=48人,杨辉奖的人数为200×46%=92人,则刘徽奖的人数为200﹣(20+48+92)=40,补全统计图如下:故答案为40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分.故答案为90、90;(3)列表法:∵第二象限的点有(﹣2,2)和(﹣1,2),∴P (点在第二象限)29=. 【点睛】 本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.22.(1)y=12-x 2+x ;(2)t=-4,r=-1. 【解析】【分析】(1)由①联立方程组,根据抛物线y=ax 2+bx 与直线y=x 只有一个交点可以求出b 的值,由②可得对称轴为x=1,从而得a 的值,进而得出结论;(2)进行分类讨论,分别求出t 和r 的值.【详解】(1)y=ax 2+bx 和y=x 联立得:ax 2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1, ∵对称轴为532x x -++-=1, ∴2b a-=1, ∴a=12-, ∴y=12-x 2+x. (2)因为y=12-x 2+x=12-(x-1)2+12, 所以顶点(1,12) 当-2<r<1,且r≠0时,当x=r 时,y 最大=12-r 2+r=1.5r ,得r=-1, 当x=-2时,y 最小=-4,所以,这时t=-4,r=-1.当r ≥1时,y 最大=12,所以1.5r=12, 所以r=13,不合题意,舍去, 综上可得,t=-4,r=-1.【点睛】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题.23.(1)y =3x -;(2)P (0,2)或(-3,5);(3)M (1-,0)或(3+0). 【解析】【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a ,b ,最后用待定系数法求出反比例函数解析式;(2)设出点P 坐标,用三角形的面积公式求出S △ACP =12×3×|n +1|,S △BDP =12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M 坐标,表示出MA 2=(m +1)2+9,MB 2=(m−3)2+1,AB 2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y =-x +2与反比例函数y =k x (k≠0)的图象交于A (a ,3),B (3,b )两点,∴-a +2=3,-3+2=b ,∴a =-1,b =-1,∴A (-1,3),B (3,-1),∵点A (-1,3)在反比例函数y =k x 上, ∴k =-1×3=-3,∴反比例函数解析式为y =3x -; (2)设点P (n ,-n +2),∵A (-1,3),∴C (-1,0),∵B (3,-1),∴D (3,0),∴S △ACP =12AC×|x P −x A |=12×3×|n +1|,S △BDP =12BD×|x B −x P |=12×1×|3−n|, ∵S △ACP =S △BDP ,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1m=,∴M(−10)③当MB=AB时,(m−3)2+1=32,∴m=3m=,∴M(30)即:满足条件的M(−10)或(30).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.24.(1)图见解析;(2)126°;(3)1.【解析】【分析】(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.【详解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).将条形统计图补充完整,如图所示.(2)42÷120×100%×360°=126°.答:扇形统计图中的A等对应的扇形圆心角为126°.(3)1500×42120=1(人).答:该校学生对政策内容了解程度达到A等的学生有1人.【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.25.﹣1x,﹣12.【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后在-2<x5中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.【详解】原式=2x-11(1)(1) x+1(1)1x x xx x---+÷-+()()=2x-1x+1x+1x-1-x+1⋅=x-1-x x-1()=1x-,∵-2<x5(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-1 2 .【点睛】本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.26.(1)20s ;(2)2511222y x ⎛⎫=+- ⎪⎝⎭ 【解析】【分析】(1)利用待定系数法求出函数解析式,再求出y =840时x 的值即可得;(2)根据“上加下减,左加右减”的原则进行解答即可.【详解】解:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y =ax 2+bx ,将(1,4)、(2,12)代入,得: 44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩, 所以抛物线的解析式为y =2x 2+2x ,当y =840时,2x 2+2x =840,解得:x =20(负值舍去),即他需要20s 才能到达终点;(2)∵y =2x 2+2x =2(x+12)2﹣12, ∴向左平移2个单位,再向下平移5个单位后函数解析式为y =2(x+2+12)2﹣12﹣5=2(x+52)2﹣112. 【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律. 27.(1)y =x ﹣2,y=12-x 2+32+1;(2)a <12;(3)m <﹣2或m >1. 【解析】【分析】(1)直接将点代入函数解析式,用待定系数法即可求解函数解析式;(2)点(2,1)代入一次函数解析式,得到n =−2m ,利用m 与n 的关系能求出二次函数对称轴x =1,由一次函数经过一、三象限可得m >1,确定二次函数开口向上,此时当 y 1>y 2,只需让a 到对称轴的距离比a +1到对称轴的距离大即可求a 的范围.(3)将A (h ,k )分别代入两个二次函数解析式,再结合对称抽得h =n 2m -,将得到的三个关系联立即可得到11h m =-+,再由题中已知−1<h <1,利用h 的范围求出m 的范围. 【详解】 (1)将点(2,1),(3,1),代入一次函数y =mx+n 中,0213m n m n=+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩, ∴一次函数的解析式是y =x ﹣2,再将点(2,1),(3,1),代入二次函数y =mx 2+nx+1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩, ∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx+n 经过点(2,1),∴n =﹣2m ,∵二次函数y =mx 2+nx+1的对称轴是x =n 2m -, ∴对称轴为x =1,又∵一次函数y =mx+n 图象经过第一、三象限,∴m >1,∵y 1>y 2,∴1﹣a >1+a ﹣1,∴a <12. (3)∵y =mx 2+nx+1的顶点坐标为A (h ,k ),∴k =mh 2+nh+1,且h =n 2m-, 又∵二次函数y =x 2+x+1也经过A 点,∴k =h 2+h+1,∴mh 2+nh+1=h 2+h+1,∴11 hm=-+,又∵﹣1<h<1,∴m<﹣2或m>1.【点睛】本题考点:点与函数的关系;二次函数的对称轴与函数值关系;待定系数法求函数解析式;不等式的解法;数形结合思想是解决二次函数问题的有效方法.。
天津市河北区2019-2020学年中考数学五模考试卷含解析
天津市河北区2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是()A.(6,4)B.(4,6)C.(5,4)D.(4,5)2.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D3.13的负倒数是()A.13B.-13C.3 D.﹣34.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积()A.65πB.90πC.25πD.85π5.如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于()A.90°B.120°C.60°D.30°6.下列各数中,相反数等于本身的数是()A.–1 B.0 C.1 D.27.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC 的度数为()A.125°B.75°C.65°D.55°8.如图,将边长为8㎝的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN的长是()A.3cm B.4cm C.5cm D.6cm9.如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.10.如图图形中,可以看作中心对称图形的是()A.B.C.D.11.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是()A.a=b•cosA B.c=a•sinA C.a•cotA=b D.a•tanA=b12.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若a,b互为相反数,则a2﹣b2=_____.14.如果某数的一个平方根是﹣5,那么这个数是_____.15.如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=kx(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为_____.16.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.17.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.18.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,过点D作∠ABD=∠ADE,交AC于点E.(1)求证:DE为⊙O的切线.(2)若⊙O的半径为256,AD=203,求CE的长.20.(6分)解不等式组3(2)41213x xxx--≤⎧⎪+⎨-⎪⎩f,并写出其所有的整数解.21.(6分)如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.求证:四边形ADCE是矩形;①若AB=17,BC=16,则四边形ADCE的面积=.②若AB=10,则BC=时,四边形ADCE是正方形.22.(8分)如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣12x+b过点C.求m和b的值;直线y=﹣12x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.23.(8分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.(1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为;(2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;②M为直线l上的一个动点,若以(m,0)为圆心,2为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.24.(10分)先化简,再求值:(1﹣11a+)÷221aa-,其中a=﹣1.25.(10分)计算:|﹣2|++(2017﹣π)0﹣4cos45°26.(12分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.27.(12分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC 的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.【详解】如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,∵O′为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8−2=6,∴AC=BC=3,∴OC=8−3=5,∵⊙O′与x 轴相切,∴O′D=O′B=OC=5,在Rt △O′BC 中,由勾股定理可得=4,∴P 点坐标为(4,5),故选:D.【点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.2.B【解析】【分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B 最接近,故选B.3.D【解析】【分析】根据倒数的定义,互为倒数的两数乘积为1,2×13=1.再求出2的相反数即可解答.【详解】根据倒数的定义得:2×13=1. 因此13的负倒数是-2. 故选D .本题考查了倒数,解题的关键是掌握倒数的概念.4.B【解析】【分析】根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可.【详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长,所以圆锥的表面积=π×52+12×2π×5×13=90π.故选B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.5.C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC=OAAC=12,∴∠BAC=60°.故选C.点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.6.B【解析】【分析】根据相反数的意义,只有符号不同的数为相反数.【详解】解:相反数等于本身的数是1.故选B.【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,1的相反数是1.7.D【解析】延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145,∴∠DBC=180−∠1=180−125=55.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.8.A【解析】分析:根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.详解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=12BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故选:A.点睛:此题主要考查了折叠问题,明确折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.9.A【解析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.故选A.考点:轴对称图形【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义.11.C【解析】∵∠C=90°,∴cosA=bc,sinA=ac,tanA=ab,cotA=ba,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键. 12.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.14.25【解析】【分析】利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.15.35 +【解析】解:如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,∵四边形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E为AB的中点,∴AD=AE,在△ADF和△EAO 中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=35+,k2=35-,∵k﹣1>0,∴k=35+.故答案为35+.点睛:本题考查了矩形的性质和反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.16.1【解析】【分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17.y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.18.2n+1.【解析】【详解】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)CE=1.【解析】【分析】(1)求出∠ADO+∠ADE=90°,推DE⊥OD,根据切线的判定推出即可;(2)求出CD,AC的长,证△CDE∽△CAD,得出比例式,求出结果即可.【详解】(1)连接OD,∵AB是直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵OB=OD,∴∠BDO=∠ABD,∵∠ABD=∠ADE,∴∠ADO+∠ADE=90°,即,OD⊥DE,∵OD为半径,∴DE为⊙O的切线;(2)∵⊙O的半径为,∴AB=2OA==AC,∵∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,由勾股定理得:DC===5,∵∠ODE=∠ADC=90°,∠ODB=∠ABD=∠ADE,∴∠EDC=∠ADO,∵OA=OD,∴∠ADO=∠OAD,∵AB=AC,AD⊥BC,∴∠OAD=∠CAD,∴∠EDC=∠CAD,∵∠C=∠C ,∴△CDE ∽△CAD , ∴=, ∴=,解得:CE=1.【点睛】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握等腰三角形的性质与切线的判定. 20.不等式组的解集为1≤x <2,该不等式组的整数解为1,2,1.【解析】【分析】先求出不等式组的解集,即可求得该不等式组的整数解.【详解】()3241213x x x x ⎧--≤⎪⎨+>-⎪⎩①②, 由①得,x≥1,由②得,x <2.所以不等式组的解集为1≤x <2,该不等式组的整数解为1,2,1.【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21. (1)见解析;(2)①1; ②2【解析】试题分析:(1)根据平行四边形的性质得出四边形ADCE 是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)①求出DC ,根据勾股定理求出AD ,根据矩形的面积公式求出即可;②要使ADCE 是正方形,只需要AC ⊥DE ,即∠DOC=90°,只需要OD 2+OC 2=DC 2,即可得到BC 的长.试题解析:(1)证明:∵AE ∥BC ,∴∠AEO=∠CDO .又∵∠AOE=∠COD ,OA=OC ,∴△AOE ≌△COD ,∴OE=OD ,而OA=OC ,∴四边形ADCE 是平行四边形.∵AD 是BC 边上的高,∴∠ADC=90°.∴□ADCE 是矩形.(2)①解:∵AD 是等腰△ABC 底边BC 上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD=22AC CD -=22178-=12,∴四边形ADCE 的面积是AD×DC=12×8=1. ②当BC=102时,DC=DB=52.∵ADCE 是矩形,∴OD=OC=2.∵OD 2+OC 2=DC 2,∴∠DOC=90°,∴AC ⊥DE ,∴ADCE 是正方形.点睛:本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解答此题的关键,比较典型,难度适中.22.(1)4,5;(2)①7;②4或1242-或1242+8.【解析】【分析】()1分别令y 0=可得b 和m 的值;()2①根据ACP V 的面积公式列等式可得t 的值; ②存在,分三种情况:i)当AC CP =时,如图1,ii)当AC AP =时,如图2,iii)当AP PC =时,如图3,分别求t 的值即可.【详解】()1把点()C 2,m 代入直线y x 2=+中得:m 224=+=,∴点()C 2,4,Q 直线1y x b 2=-+过点C , 142b 2=-⨯+,b 5=; ()2①由题意得:PD t =,y x 2=+中,当y 0=时,x 20+=,x 2=-,()A 2,0∴-,1y x 52=-+中,当y 0=时,1x 502-+=, x 10=,()D 10,0∴,AD 10212∴=+=,ACP QV 的面积为10, ()112t 4102∴-⋅=, t 7=,则t 的值7秒;②存在,分三种情况:i)当AC CP =时,如图1,过C 作CE AD ⊥于E ,PE AE 4∴==,PD 1284∴=-=,即t 4=;ii)当AC AP =时,如图2,2212AC AP AP 4442===+=1DP t 1242∴==-2DP t 1242==+;iii)当AP PC =时,如图3,OA OB 2==Q ,BAO 45∠∴=o ,CAP ACP 45∠∠∴==o ,APC 90∠∴=o ,AP PC 4∴==,PD 1248∴=-=,即t 8=;综上,当t 4=秒或(1242-秒或(1242+秒或8秒时,ACP V 为等腰三角形.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.23.(1)①R ,S;②(4-,0)或(4,0);(2)①33n -≤≤;②m≤1-或m≥1.【解析】【分析】【详解】(1)∵点A 的坐标为(−2,1),∴2+1=4,点R(0,4),S(2,2),T(2,−2)中,0+4=4,2+2=4,2+2=5,∴点A 的同族点的是R ,S ;故答案为R ,S ;②∵点B 在x 轴上,∴点B 的纵坐标为0,设B(x,0),则|x|=4,∴x=±4,∴B(−4,0)或(4,0);故答案为(−4,0)或(4,0);(2)①由题意,直线3y x =-与x 轴交于C (2,0),与y 轴交于D (0,3-).点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为2.即点N 在右图中所示的正方形CDEF 上.∵点E 的坐标为(3-,0),点N 在直线xn =上, ∴33n -≤≤.②如图,设P(m,0)为圆心, 2为半径的圆与直线y=x−2相切,2,45PN PCN CPN ︒=∠=∠=Q∴PC=2,∴OP=1,观察图形可知,当m≥1时,若以(m,0)为圆心2为半径的圆上存在点N ,使得M ,N 两点为同族点,再根据对称性可知,m≤1-也满足条件,∴满足条件的m 的范围:m≤1-或m≥124.原式=12a-=﹣2.【解析】分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.详解:原式=112()+11(1)(1) a aa a a a+-÷++-=(1)(1)·12a a aa a+-+=1 2a-,当a=﹣1时,原式=312--=﹣2.点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.25.1.【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【详解】解:原式=2+2+1﹣4×=2+2+1﹣2=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(1)详见解析;(2)2【解析】(1)连接OD ,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC ,再求AC.【详解】(1)证明:连结OD .如图,CD Q 与O e 相切于点D ,OD CD ,∴⊥ 2BDC 90∠∠∴+︒=,AB Q 是O e 的直径,ADB 90∠∴︒=,即1290∠∠+︒=,1BDC ∠∠∴=,OA OD Q =,1A ∠∠∴=,BDC A ∠∠∴=;(2)解:在Rt ODC V 中,C 45∠︒Q =, 2212OC OD AC OA OC ∴==∴=+=+ .【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.27.(1)y=﹣x 2+x+2;(2)y=2x+2;(3)①线段BP 与线段AE 的关系是相互垂直;②点P 的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【解析】【分析】(1)将A (5,0)和点B (﹣3,﹣4)代入y=ax 2+bx+2,即可求解;(2)C 点坐标为(0,2),把点B 、C 的坐标代入直线方程y=kx+b 即可求解;(3)①AE 直线的斜率k AE =2,而直线BC 斜率的k AE =2即可求解;②考虑当P 点在线段BC 上时和在线段BE 上时两种情况,利用PM′=PM 即可求解.(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函数的表达式为y=﹣x2+x+2;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),则AE直线的斜率k AE=2,而直线BC斜率的k AE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴线段BP与线段AE的关系是相互垂直;②设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MM′⊥BC,∴k MM′=﹣,直线MM′的方程为:y=﹣x+(2+m),则M′坐标为(0,2+m)或(4+m,0),由题意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故点P的坐标为(﹣4±2,﹣8±4);当P点在线段BE上时,点P坐标为(m,﹣4),点M坐标为(m,2),则PM=6,直线MM′的方程不变,为y=﹣x+(2+m),则M′坐标为(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,无解;故点P的坐标为(0,﹣4)或(﹣,﹣4);综上所述:点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2019-2020学年人教版天津市河北区九年级(上)期末数学试卷 含解析
2019-2020学年九年级(上)期末数学试卷一、选择题1.下列四个图案中,是中心对称图形的是()A.B.C.D.2.下列事件是随机事件的是()A.随意掷一块质地均匀的骰子,掷出的点数是奇数B.在一个标准大气压下,把水加热到100℃,水就会沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球3.若双曲线的图象的一支位于第三象限,则k的取值范围是()A.k<1 B.k>1 C.0<k<1 D.k≤14.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0 5.如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.126.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把△EFO缩小为△E′F′O,且△E′F′O与△EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1)B.(8,﹣4)C.(2,﹣1)或(﹣2,1)D.(8,﹣4)或(﹣8,4)7.正六边形的半径与边心距之比为()A.B.C.D.8.在一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,如果参加聚会的同学有x名.根据题意列出的方程是()A.x(x+1)=110 B.x(x﹣1)=110C.2x(x+1)=110 D.x(x﹣1)=110×29.已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O的半径为的是()A.B.C.D.10.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论①2a+c>0;②若(),(),(,y3)在抛物线上,则y1>y2>y3③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形;其中正确结论个数有()个.A.1 B.2 C.3 D.4二、填空题:本大题共8个小题,每小题3分,共24分11.抛物线y=x2﹣2x﹣1与x轴有个交点.12.如果二次函数(m为常数)的图象有最高点,那么m的值为.13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠B=100°,则∠ADE=.14.两个相似三角形对应边上的中线之比为4:9,则两三角形面积之比为.15.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1)、B(1,﹣2)两点.一次函数的值大于反比例函数的值时x的取值范围是.16.如图,在平面直角坐标系中,点A是函数y=(x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为.17.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为.18.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s 的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为s时,△BEF是直角三角形.三、解答题:本大题共6个小题,共46分.解答应写出文字说明,证明过程或演算步19.在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.20.如图在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)如AF=3,AG=5,求△ADE与△ABC的周长之比.21.一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,m),B(n,1)两点.(1)求出这个一次函数的表达式;(2)求△OAB的面积.22.已知AB是⊙O的直径,弦CD与AB相交于点E,连接AD,BC,已知AE=AD,∠BAD=34°.(1)如图①,连接CO,求∠ADC和∠OCD的大小;(2)如图②,过点D作⊙O的切线与CB的延长线交于点F,连接BD,求∠BDF的大小.23.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG =2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.24.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.参考答案一、选择题1.下列四个图案中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.2.下列事件是随机事件的是()A.随意掷一块质地均匀的骰子,掷出的点数是奇数B.在一个标准大气压下,把水加热到100℃,水就会沸腾C.有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.解:A、随意掷一块质地均匀的骰子,掷出的点数是奇数,是随机事件,符合题意;B、在一个标准大气压下,把水加热到100℃,水就会沸腾,属必然事件,不符合题意;C、有一名运动员奔跑的速度是80米/秒,是不可能事件,不符合题意;D、在一个仅装着白球和黑球的袋中摸球,摸出红球,是不可能事件,不符合题意.故选:A.3.若双曲线的图象的一支位于第三象限,则k的取值范围是()A.k<1 B.k>1 C.0<k<1 D.k≤1【分析】反比例函数的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.解:∵双曲线的图象的一支位于第三象限,∴k﹣1>0,∴k>1;故选:B.4.关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0 D.k>且k≠0 【分析】根据一元二次方程的定义得到k≠0且△=(﹣1)2﹣4k>0,然后求出两不等式的公共部分即可.解:根据题意得k≠0且△=(﹣1)2﹣4k>0,解得k<且k≠0.故选:C.5.如图,在△ABC中,DE∥BC,,DE=4,则BC的长是()A.8 B.10 C.11 D.12【分析】由在△ABC中,DE∥BC,根据平行线分线段成比例定理,即可得DE:BC=AD:AB,又由,DE=4,即可求得BC的长.解:∵,∴=,∵在△ABC中,DE∥BC,∴=,∵DE=4,∴BC=3DE=12.故选:D.6.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把△EFO缩小为△E′F′O,且△E′F′O与△EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1)B.(8,﹣4)C.(2,﹣1)或(﹣2,1)D.(8,﹣4)或(﹣8,4)【分析】由在直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以O为位似中心,把△EFO缩小为△E′F′O,且△E′F′O与△EFO的相似比为1:2,利用位似图形的性质,即可求得点E的对应点E′的坐标.解:∵点E(﹣4,2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,∴点E的对应点E′的坐标为:(2,﹣1)或(﹣2,1).故选:C.7.正六边形的半径与边心距之比为()A.B.C.D.【分析】求出正六边形的边心距(用R表示),根据“接近度”的定义即可解决问题.解:∵正六边形的半径为R,∴边心距r=R,∴R:r=1:=2:,故选:D.8.在一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,如果参加聚会的同学有x名.根据题意列出的方程是()A.x(x+1)=110 B.x(x﹣1)=110C.2x(x+1)=110 D.x(x﹣1)=110×2【分析】设参加聚会的有x名学生,根据“每人都向其他人赠送了一份小礼品,共互送110份小礼品”,列出关于x的一元二次方程,解之即可.解:设参加聚会的有x名学生,根据题意得:x(x﹣1)=110,故选:B.9.已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O的半径为的是()A.B.C.D.【分析】利用圆与三角形各边相切的不同情况,利用勾股定理列方程求出圆的半径,找出正确的答案.解:①∵⊙O是△ABC的内切圆,∴⊙O的半径=,∴A不正确;②∵⊙O与AB,BC相切,∴r2+(c﹣a)2=(b﹣r)2∴r=,∴B不正确;③∵⊙O与AC,BC相切,圆心在AB上,∴=,∴r=,∴C正确;④∵⊙O与AB,AC相切,圆心在BC上,∴(a﹣r)2=r2+(c﹣b)2,∴r=,∴D不正确.故选:C.10.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论①2a+c>0;②若(),(),(,y3)在抛物线上,则y1>y2>y3③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形;其中正确结论个数有()个.A.1 B.2 C.3 D.4【分析】利用二次函数的性质一一判断即可.解:∵﹣<,a>0,∴a>﹣b,∵x=﹣1时,y>0,∴a﹣b+c>0,∴2a+c>a﹣b+c>0,故①正确,若(),(),(,y3)在抛物线上,由图象法可知,y1>y2>y3;故②正确,∵抛物线与直线y=t有交点时,方程ax2+bx+c=t有解,t≥n,∴ax2+bx+c﹣t=0有实数解要使得ax2+bx+k=0有实数解,则k=c﹣t≤c﹣n;故③错误,设抛物线的对称轴交x轴于H.∵=﹣,∴b2﹣4ac=4,∴x=,∴|x1﹣x2|=,∴AB=2PH,∵BH=AH,∴PH=BH=AH,∴△PAB是直角三角形,∵PA=PB,∴△PAB是等腰直角三角形.故④正确.综上,结论正确的是①②④,故选:C.二、填空题:本大题共8个小题,每小题3分,共24分11.抛物线y=x2﹣2x﹣1与x轴有 2 个交点.【分析】令y=0得到一元二次方程,根据根的判别式的正负判断即可.解:令y=0,得到x2﹣2x﹣1=0,∵△=4+4=8>0,∴此方程有两个不相等的实数根,则抛物线y=x2﹣2x﹣1与x轴的交点的个数是2.故答案是:2.12.如果二次函数(m为常数)的图象有最高点,那么m的值为﹣2 .【分析】根据二次函数的定义结合其有最高点确定m的值即可.解:∵二次函数(m为常数)的图象有最高点,∴,解得:m=﹣2,故答案为:﹣2.13.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠B=100°,则∠ADE=100°.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.解:∵∠B=100°,∴∠ADE=100°.故答案为:100°.14.两个相似三角形对应边上的中线之比为4:9,则两三角形面积之比为16:81 .【分析】根据相似三角形对应边上的中线之比等于相似比,相似三角形面积的比等于相似比的平方即可得出结果.解:∵两个相似三角形对应边上的中线之比为4:9,∴两个相似三角形相似比为4:9,∴两个相似三角形的面积之比为16:81,故答案为:16:81.15.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1)、B(1,﹣2)两点.一次函数的值大于反比例函数的值时x的取值范围是x<﹣2或0<x<1 .【分析】根据图象即可求得.解:∵A(﹣2,1),B(1,﹣2),由图象可知:一次函数的值大于反比例函数的值时x的取值范围是x<﹣2或0<x<1.故答案为x<﹣2或0<x<1.16.如图,在平面直角坐标系中,点A是函数y=(x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为﹣2 .【分析】根据已知条件得到三角形ABO的面积=AB•OB,由于三角形ABC的面积=AB •OB=1,得到|k|=2,即可得到结论.解:∵AB⊥y轴,∴AB∥CO,∴三角形AOB的面积=AB•OB,∵S三角形ABC=AB•OB=1,∴|k|=2,∵k<0,∴k=﹣2,故答案为﹣2.17.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为π﹣2.【分析】先求出CE=2CD,求出∠DEC=30°,求出∠DCE=60°,DE=2,分别求出扇形CEB′和三角形CDE的面积,即可求出答案.解:∵四边形ABCD是矩形,∴AD=BC=4,CD=AB=2,∠BCD=∠ADC=90°,∴CE=BC=4,∴CE=2CD,∴∠DEC=30°,∴∠DCE=60°,由勾股定理得:DE=2,∴阴影部分的面积是S=S扇形CEB′﹣S△CDE=﹣×2×2=,故答案为:.18.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s 的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为1或1.75或2.25 s时,△BEF是直角三角形.【分析】若△BEF是直角三角形,则有两种情况:①∠BFE=90°,②∠BEF=90°;在上述两种情况所得到的直角三角形中,已知了BC边和∠B的度数,即可求得BE的长;AB的长易求得,由AE=AB﹣BE即可求出AE的长,也就能得出E点运动的距离(有两种情况),根据时间=路程÷速度即可求得t的值.解:∵AB是⊙O的直径,∴∠ACB=90°;Rt△ABC中,BC=2cm,∠ABC=60°;∴AB=2BC=4cm;①当∠BFE=90°时;∵∠BFE=∠ACB,∵F是弦BC的中点,∴当△BEF是直角三角形时点E与点O重合,∴BE=2BF=2cm;故此时AE=AB﹣BE=2cm;∴E点运动的距离为:2cm或6cm,故t=1s或3s;由于0≤t<3,故t=3s不合题意,舍去;所以当∠BFE=90°时,t=1s;②当∠BEF=90°时;同①可求得BE=BF=0.5cm,此时AE=AB﹣BE=3.5cm;∴E点运动的距离为:3.5cm或4.5cm,故t=1.75s或2.25s;综上所述,当t的值为1、1.75或2.25s时,△BEF是直角三角形.故答案为:1或1.75或2.25s.三、解答题:本大题共6个小题,共46分.解答应写出文字说明,证明过程或演算步19.在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.【分析】(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李参加的概率即可知道规则是否公平.解:(1)画树状图为:共有12种等可能的结果,其中摸出的球上的数字之和小于5的情况有6种,所以P(小王)=;(2)不同意,理由如下:∵P(小王)=,P(小李)=,∴规则是公平的.20.如图在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)如AF=3,AG=5,求△ADE与△ABC的周长之比.【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)依据△ADE∽△ABC,利用相似三角形的周长之比等于对应高之比,即可得到结论.解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC;(2)由(1)可得△ADE∽△ABC,又∵AG⊥BC于点G,AF⊥DE于点F,∴△ADE与△ABC的周长之比==.21.一次函数y=kx+b的图象与反比例函数y=的图象相交于A(﹣1,m),B(n,1)两点.(1)求出这个一次函数的表达式;(2)求△OAB的面积.【分析】(1)先把A(﹣1,m),B(n,﹣1)分别代入反比例函数解析式可求出m、n,于是确定A点坐标为(﹣1,2),B点坐标为(2,﹣1),然后利用待定系数法求直线AB的解析式;(2)设直线AB交y轴于P点,先确定P点坐标,然后利用S△OAB=S△AOP+S△BOP和三角形面积公式进行计算.解:(1)把A(﹣1,m),B(n,﹣1)分别代入y=得﹣m=﹣2,﹣n=﹣2,解得m=2,n=2,所以A点坐标为(﹣1,2),B点坐标为(2,﹣1),把A(﹣1,2),B(2,﹣1)代入y=kx+b得,解得,所以这个一次函数的表达式为y=﹣x+1;(2)设直线AB交y轴于P点,如图,当x=0时,y=1,所以P点坐标为(0,1),所以S△OAB=S△AOP+S△BOP=×1×1+×1×2=.22.已知AB是⊙O的直径,弦CD与AB相交于点E,连接AD,BC,已知AE=AD,∠BAD=34°.(1)如图①,连接CO,求∠ADC和∠OCD的大小;(2)如图②,过点D作⊙O的切线与CB的延长线交于点F,连接BD,求∠BDF的大小.【分析】(1)连接OD,根据等腰三角形的性质即可得到结论;(2)连接OD,根据切线的性质得到∠ODF=90°,根据圆周角定理得到∠ADB=90°,根据等腰三角形的性质即可得到结论.解:(1)连接OD,∵AE=AD,∠BAD=34°,∴∠ADC=∠AED=(180°﹣34°)=73°,∵OA=OD=OC,∴∠ADO=∠A=34°,∴∠OCD=∠ODC=∠ADC﹣∠ADO=73°﹣34°=39°;(2)连接OD,∵DF是⊙O的切线,∴∠ODF=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO=∠BDF,∵OA=OD,∴∠A=∠ADO,∴∠BDF=∠BAD=34°.23.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG =2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=+2,此时α=315°.解:(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(2)①在旋转过程中,∠OAG′成为直角有两种情况:(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°,即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,同理可求∠BOG′=30°,∴α=180°﹣30°=150°.综上所述,当∠OAG′=90°时,α=30°或150°.②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=,∵OG=2OD,∴OG′=OG=,∴OF′=2,∴AF′=AO+OF′=+2,∵∠COE′=45°,∴此时α=315°.24.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.【分析】(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3,即可求解;(2)设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,即可求解;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,即可求解.解:(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3并解得:b=2,抛物线的表达式为:y=﹣x2+2x+3;(2)存在,理由:令y=0,则x=﹣1或3,故点B(3,0),将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x+3,设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,当x=时,PD最大值为:;(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,直线BH表达式中的k值为,则直线CH的表达式为:y=﹣x+3,当x=1时,y=3﹣,当y=0时,x=,故点N、M的坐标分别为:(1,3﹣)、(,0),CN+MN+MB的最小值=CH=CM+FH=.。
2018-2019学年天津市河北区九年级上期末数学试卷及答案解析
2018-2019学年天津市河北区九年级上期末数学试卷一、选择区:本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合目要求的1.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°2.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°3.下列事件是必然事件的是()A.n边形的每个内角都相等B.同位角相等C.分式方程有增根D.三角形内角和等于180°4.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为()A.B.C.D.5.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对6.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,=,DE=10,则BC的长为()A.16B.14C.12D.117.已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<08.函数y=ax2﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C 与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.二、填空题:木大题共8个小题,每小题3分,共24分11.正六边形的外接圆的半径与内切圆的半径之比为.12.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的面积之比为1:3,则相似比为.13.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有个.14.已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是.15.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出△AOB的位似△CDE,则位似中心的坐标为.16.如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A且OA=AB,动点P从点A出发,以2πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止,当点P 运动的时间为s时,BP与⊙O相切.17.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=.18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(I)计算AB的长等于.(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个△ADE,使△ADE~△ABC,且满足点D在AC边上,点E在AB边上,AE=2.简要说明画图方法(不要求证明).三、解答题;本大题共6个小题,共46分.解答应写出文字说明、证明过程或演算步19.(5分)一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.20.(6分)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是”,她的这种看法是否正确?说明理由.21.(7分)如图,为了计算河两岸间的宽度,我们在河对岸的岸边选定一个目标作为点A,再在河岸的这一边选点B和点C,使AB⊥BC,然后再选点E,使EC⊥BC,BC与AE 的交点为D.测得BD=120米,DC=60米,EC=50米,请求出两岸之间AB的距离.22.(8分)如图,AB⊥BC,DC⊥BC,E是BC上一点,且AE⊥DE.(I)求证:△ABE∽△ECD;(Ⅱ)若AB=4,AE=BC=5,求ED的长.23.(10分)如图,在△ABC中,∠C=90°,AB=10,AC=8,将线段AB绕点A按逆时针方向旋转90°到线段AD.△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(I)求∠1的大小.(Ⅱ)求AE的长.24.(10分)如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x ﹣2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.2018-2019学年天津市河北区九年级(上)期末数学试卷参考答案与试题解析一、选择区:本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合目要求的1.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°【分析】由圆周角定理知,∠AOB=360°÷5=72°.【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠AOB=360°÷5=72°.故选:A.【点评】本题考查了圆周角定理,由等弧所对的圆心角相等来解决问题.2.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A.90°B.120°C.180°D.135°【分析】根据弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),代入即可求出圆心角的度数.【解答】解:由题意得,2π=,解得:n=180.即这条弧所对的圆心角的度数是180°.故选:C.【点评】本题考查了弧长的计算,解答本题关键是熟练掌握弧长的计算公式,及公式字母表示的含义.3.下列事件是必然事件的是()A.n边形的每个内角都相等B.同位角相等C.分式方程有增根D.三角形内角和等于180°【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A.n边形的每个内角都相等是随机事件;B.同位角相等是随机事件;C.分式方程有增根是随机事件;D.三角形内角和等于180°是必然事件;故选:D.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为()A.B.C.D.【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234、324、342、432,然后直接利用概率公式求解即可求得答案【解答】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432;∴排出的数是偶数的概率为:=【点评】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.6.如图,在△ABC中,D,E分别是AB和AC上的点,且DE∥BC,=,DE=10,则BC的长为()A.16B.14C.12D.11【分析】根据已知条件得到,根据相似三角形的性质即可得到结论.【解答】解:∵=,∴,∵DE∥BC,∴△ADE∽△ABC,∴=,∴=,∴BC=14,故选:B.【点评】本题主要考查了相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.7.已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点解答.【解答】解:∵反比例函数y=(k<0)中,k<0,∴此函数图象在二、四象限,∵﹣2<0,∴点A(﹣2,y1)在第二象限,∴y1>0,∵3>0,∴B(3,y2)点在第四象限,∴y2<0,∴y1,y2的大小关系为y2<0<y1.故选:B.【点评】此题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,比较简单.8.函数y=ax2﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】本题只有一个待定系数a,且a≠0,根据a>0和a<0分类讨论.也可以采用“特值法”,逐一排除.【解答】解:当a>0时,函数y=ax2﹣a的图象开口向上,但当x=0时,y=﹣a<0,故B不可能;当a<0时,函数y=ax2﹣a的图象开口向下,但当x=0时,y=﹣a>0,故C、D不可能.可能的是A.故选:A.【点评】讨论当a>0时和a<0时的两种情况,用了分类讨论的思想.9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称【分析】根据反比例函数的性质一一判断即可;【解答】解:A、若点(2,4)在其图象上,则(﹣2,4)不在其图象上,故本选项不符合题意;B、当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C、错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D、正确,本选项符合题意,故选:D.【点评】本题考查反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C 与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=()A.B.C.D.【分析】借助翻折变换的性质得到DE=CE;设AB=3k,CE=x,则AE=3k﹣x;根据相似三角形的判定与性质即可解决问题.【解答】解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,∴,设CE=x,则ED=x,AE=3k﹣x,设CF=y,则DF=y,FB=3k﹣y,∴,∴,∴=,∴CE:CF=4:5.故选:B.解法二:解:设AD=k,则DB=2k,∵△ABC为等边三角形,∴AB=AC=3k,∠A=∠B=∠C=∠EDF=60°,∴∠EDA+∠FDB=120°,又∵∠EDA+∠AED=120°,∴∠FDB=∠AED,∴△AED∽△BDF,由折叠,得CE=DE,CF=DF∴△AED的周长为4k,△BDF的周长为5k,∴△AED与△BDF的相似比为4:5∴CE:CF=DE:DF=4:5.故选:B.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是借助相似三角形的判定与性质(用含有k的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.二、填空题:木大题共8个小题,每小题3分,共24分11.正六边形的外接圆的半径与内切圆的半径之比为2:.【分析】从内切圆的圆心和外接圆的圆心向三角形的边长引垂线,构建直角三角形,解三角形i可.【解答】解:设正六边形的半径是r,则外接圆的半径r,内切圆的半径是正六边形的边心距,因而是r,因而正六边形的外接圆的半径与内切圆的半径之比为2:.故答案为:2:.【点评】考查了正多边形和圆,正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.12.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的面积之比为1:3,则相似比为1:.【分析】根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵△ABC∽△A′B′C′,△ABC与△A′B′C′的面积之比为1:3,∴△ABC与△A′B′C′的相似比为1:.故答案为:1:.【点评】本题考查了相似三角形的性质,是基础题,熟记性质是解题的关键.13.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中白球大约有15个.【分析】由摸到红球的频率稳定在0.25附近得出口袋中得到红色球的概率,进而求出白球个数即可.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在0.25左右,∴口袋中得到红色球的概率为0.25,∴=,解得:x=15,即白球的个数为15个,故答案为:15.【点评】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.14.已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是24π.【分析】首先求得底面周长,即侧面展开图的扇形弧长,然后根据扇形的面积公式即可求得侧面积,即圆锥的侧面积,再求得圆锥的底面积,侧面积与底面积的和就是全面积.【解答】解:底面周长是:2×3π=6π,则侧面积是:×6π×5=15π,底面积是:π×32=9π,则全面积是:15π+9π=24π.故答案为:24π.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出△AOB的位似△CDE,则位似中心的坐标为(2,2).【分析】直接利用位似图形的性质得出位似中心.【解答】解:如图所示,点P即为位似中点,其坐标为(2,2),故答案为:(2,2).【点评】此题主要考查了位似变换,正确掌握位似中心的定义是解题关键.16.如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A且OA=AB,动点P从点A出发,以2πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止,当点P 运动的时间为1或5s时,BP与⊙O相切.【分析】分为两种情况:求出∠POB的度数,根据弧长公式求出弧AP长,即可求出答案.【解答】解:连接OP,∵直线BP与⊙O相切,∴∠OPB=90°,∵AB=OA=OP,∴OB=2OP,∴∠PBO=30°,∴POB=60°,∴弧AP的长是=2π,即时间是2π÷2π=1(秒);当在P′点时,直线BP与⊙O相切,此时优弧APP′的长是=10π,即时间是10π÷2π=5(秒);故答案为1或5.【点评】本题考查了切线的性质,含30度角的直角三角形性质,弧长公式得应用,关键是求出弧AP的长.17.如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=.【分析】首先利用勾股定理求出DE,再利用三角形的面积公式求出OA即可.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE==,∵AO⊥DE,∴×DE×AO=×AE×AD,∴AO=.故答案为.【点评】本题考查正方形的性质,勾股定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(I)计算AB的长等于5.(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个△ADE,使△ADE~△ABC,且满足点D在AC边上,点E在AB边上,AE=2.简要说明画图方法(不要求证明)取点M,N,连接MN交AC于点D,使得=,取点P,连接PC交AB于点E,使得=,连接DE.△ADE即为所求.【分析】(Ⅰ)根据勾股定理计算即可;(Ⅱ)在AC,AB上分别截取AD=2.5,AE=2即可解决问题;【解答】解:(Ⅰ)AB==5.故答案为5.(Ⅱ)如图,取点M,N,连接MN交AC于点D,使得=,取点P,连接PC交AB于点E,使得=,连接DE.△ADE即为所求.故答案为:取点M,N,连接MN交AC于点D,使得=,取点P,连接PC交AB 于点E,使得=,连接DE.△ADE即为所求.【点评】本题考查作图﹣应用与设计,勾股定理,相似三角形的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题;本大题共6个小题,共46分.解答应写出文字说明、证明过程或演算步19.(5分)一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,当V=10m3时,ρ=1.43kg/m3.(1)求ρ与V的函数关系式;(2)求当V=2m3时求氧气的密度ρ.【分析】首先根据题意,一定质量的氧气,它的密度ρ(kg/m3)是它的体积V(m3)的反比例函数,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.【解答】解:(1)设ρ=,当V=10m3时,ρ=1.43kg/m3,所以1.43=,即k=14.3,所以ρ与V的函数关系式是ρ=;(2)当V=2m3时,把V=2代入得:ρ=7.15(kg/m3),所以当V=2m3时,氧气的密度为7.15(kg/m3).【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.20.(6分)现有两组相同的扑克牌,每组两张,两张牌的牌面数字分别是2和3,从每组牌中各随机摸出一张牌,称为一次试验.(1)小红与小明用一次试验做游戏,如果摸到的牌面数字相同小红获胜,否则小明获胜,请用列表法或画树状图的方法说明这个游戏是否公平?(2)小丽认为:“在一次试验中,两张牌的牌面数字和可能为4、5、6三种情况,所以出现‘和为4’的概率是”,她的这种看法是否正确?说明理由.【分析】(1)根据题意画树状图,再根据概率公式求出概率,即可得出答案;(2)根据概率公式求出和为4的概率,即可得出答案.【解答】解:(1)根据题意画树状图如下:数字相同的情况有2种,则P(小红获胜)=P(数字相同)=,P(小明获胜)=P(数字不同)=,则这个游戏公平;(2)不正确,理由如下;因为“和为4”的情况只出现了1次,所以和为4的概率为,所以她的这种看法不正确.【点评】此题考查了游戏的公平性,关键是根据题意画出树状图,求出每件事情发生的概率,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.(7分)如图,为了计算河两岸间的宽度,我们在河对岸的岸边选定一个目标作为点A,再在河岸的这一边选点B和点C,使AB⊥BC,然后再选点E,使EC⊥BC,BC与AE 的交点为D.测得BD=120米,DC=60米,EC=50米,请求出两岸之间AB的距离.【分析】利用两角对应相等可得△ABD∽△ECD,利用相似三角形的对应边成比例可得AB的长.【解答】解:∵AB⊥BC,EC⊥BC,∴∠ABC=∠BCE=90°,∵∠ADB=∠CDE,∴△ABD∽△ECD,∴=,即:=,解得AB=100.答:两岸之间AB的距离为100米.【点评】本题考查相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.22.(8分)如图,AB⊥BC,DC⊥BC,E是BC上一点,且AE⊥DE.(I)求证:△ABE∽△ECD;(Ⅱ)若AB=4,AE=BC=5,求ED的长.【分析】(Ⅰ)先根据同角的余角相等可得:∠DEC=∠A,利用两角相等证明三角形相似;(Ⅱ)先根据勾股定理得:BE=3,根据△ABE∽△ECD,列比例式可得结论.【解答】(Ⅰ)证明:∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°,∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AED=90°,∴∠AEB+∠DEC=90°,∴∠DEC=∠BAE,∴△ABE∽△ECD;(Ⅱ)解:Rt△ABE中,∵AB=4,AE=5,∴BE=3,∵BC=5,∴EC=5﹣3=2,由(1)得:△ABE∽△ECD,∴=,∴=,∴DE=.【点评】本题考查了相似或全等三角形判定与性质,解直角三角形,熟练掌握相似三角形的判定和性质是解题的关键.23.(10分)如图,在△ABC中,∠C=90°,AB=10,AC=8,将线段AB绕点A按逆时针方向旋转90°到线段AD.△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(I)求∠1的大小.(Ⅱ)求AE的长.【分析】(Ⅰ)由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论;(Ⅱ)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE即可;【解答】解:(Ⅰ)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠1=∠ABD=45°;(Ⅱ)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴=,∵AC=8,AB=AD=10,∴AE=12.5.【点评】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB是解本题的关键.24.(10分)如图,在平面直角坐标系xOy中,反比例函数y=的图象与一次函数y=k(x ﹣2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.【分析】(1)根据点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上列出m 和k的一元一次方程,求出k和m的值即可;联立两函数解析式,求出交点坐标;(2)设C点的坐标为(0,y c),求出点M的坐标,再根据△ABC的面积为10,知×3×|y c﹣(﹣4)|+×1×|y c﹣(﹣4)|=10,求出y c的值即可.【解答】解:(1)∵点A(3,2)在反比例函数y=,和一次函数y=k(x﹣2)上;∴2=,2=k(3﹣2),解得m=6,k=2;∴反比例函数解析式为y=,和一次函数解析式为y=2x﹣4;∵点B是一次函数与反比例函数的另一个交点,∴=2x﹣4,解得x1=3,x2=﹣1;∴B点的坐标为(﹣1,﹣6);(2)∵点M是一次函数y=2x﹣4与y轴的交点,∴点M的坐标为(0,﹣4),设C点的坐标为(0,y c),由题意知×3×|y c﹣(﹣4)|+×1×|y c﹣(﹣4)|=10,解得|y c+4|=5,当y c+4≥0时,y c+4=5,解得y c=1,当y c+4≤0时,y c+4=﹣5,解得y c=﹣9,∴点C的坐标为(0,1)或(0,﹣9).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出两个函数的解析式以及直线AB与y轴的交点坐标,此题难度一般.。
2019年天津市河北区届九年级上期末数学模拟试卷含答案解析
2016-2017学年天津市河北区九年级(上)期末数学模拟试卷一、选择题(共10小题,每小题3分,满分30分)1.已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6) C.(2,﹣3)D.(3,﹣2)2.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,n)C.(m,)D.()3.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为()A.B.C.D.4.下列各组图形相似的是()A.B.C.D.5.下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长L与边长a的关系C.长方形的长为a,宽为20,其面积S与a的关系D.长方形的面积为40,长为a,宽为b,a与b的关系6.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为()A.20米B.18米C.16米D.15米7.在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D 为AB的中点,则阴影部分的面积是()A.2﹣πB.4﹣πC.2﹣πD.π8.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为()A.B.C.D.9.点P是△ABC中AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似,满足这样条件的直线最多有()A.2条 B.3条 C.4条 D.5条10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9 D.9二、填空题(本大题共8小题,每小题3分,共24分)11.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.12.如图,在平面直角坐标系中,点A是函数y=(k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为.13.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.14.口袋中装有二黄三蓝共5个小球,它们大小、形状等完全一样,每次同时摸出两个小球,恰为一黄一蓝的概率是.15.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是米.16.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=度.17.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.18.如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD 与四边形DEFC的面积之比是.三、解答题(本大题共6小题,共36分)19.如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.20.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?21.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.22.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.23.如图,在矩形ABCD中,AC是对角线,E是AC的中点,过E作MN交AD于M,交BC于N.(1)求证:AM=CN;(2)若∠CEN=90°,EN:AB=2:3,EC=3,求BC的长.24.如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.2016-2017学年天津市河北区九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6) C.(2,﹣3)D.(3,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】先根据点(2,3),在反比例函数y=的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.【解答】解:∵反比例函数y=的图象经过点(2,3),∴k=2×3=6,A、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B、∵1×6=6,∴此点在反比例函数图象上;C、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上.故选:B.2.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n)B.(m,n)C.(m,)D.()【考点】位似变换;坐标与图形性质.【分析】根据A,B两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.【解答】解:∵△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为:().故选D.3.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:全部20个球,只有2个红球,所以任意摸出一个乒乓球是红色的概率是=.故选D.4.下列各组图形相似的是()A.B.C.D.【考点】相似图形.【分析】根据相似图形的定义,结合图形,以选项一一分析,排除错误答案.【解答】解:A、形状不同,大小不同,不符合相似定义,故错误;B、形状相同,但大小不同,符合相似定义,故正确;C、形状不同,不符合相似定义,故错误;D、形状不同,不符合相似定义,故错误.故选B.5.下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长L与边长a的关系C.长方形的长为a,宽为20,其面积S与a的关系D.长方形的面积为40,长为a,宽为b,a与b的关系【考点】反比例函数的定义.【分析】根据每一个选项的题意,列出方程,然后由反比例函数的定义进行一一验证即可.【解答】解:A、根据题意,得S=a2,所以正方形的面积S与边长a的关系是二次函数关系;故本选项错误;B、根据题意,得l=4a,所以正方形的周长l与边长a的关系是正比例函数关系;故本选项错误;C、根据题意,得S=20a,所以正方形的面积S与边长a的关系是正比例函数关系;故本选项错误;D、根据题意,得b=,所以正方形的面积S与边长a的关系是反比例函数关系;故本选项正确.故选D.6.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为()A.20米B.18米C.16米D.15米【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】根据题意解:=,即,∴旗杆的高==18米.故选:B.7.在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D 为AB的中点,则阴影部分的面积是()A.2﹣πB.4﹣πC.2﹣πD.π【考点】扇形面积的计算.【分析】根据点D 为AB 的中点可知BC=BD=AB ,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC 的长,根据S 阴影=S △ABC ﹣S 扇形CBD 即可得出结论. 【解答】解:∵D 为AB 的中点, ∴BC=BD=AB , ∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC•tan30°=2•=2,∴S 阴影=S △ABC ﹣S 扇形CBD =×2×2﹣=2﹣π.故选A .8.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A .B .C .D . 【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两球恰好是一个黄球和一个红球的情况,再利用概率公式即可求得答案. 【解答】解:画树状图得:∵共有12种等可能的结果,两球恰好是一个黄球和一个红球的有6种情况,∴两球恰好是一个黄球和一个红球的为: =.故选A .9.点P 是△ABC 中AB 边上的一点,过点P 作直线(不与直线AB 重合)截△ABC ,使截得的三角形与原三角形相似,满足这样条件的直线最多有( ) A .2条 B .3条 C .4条 D .5条 【考点】相似三角形的判定.【分析】根据已知及相似三角形的判定作辅助线即可求得这样的直线有几条.【解答】解:(1)作∠APD=∠C∵∠A=∠A∴△APD∽△ABC(2)作PE∥BC∴△APE∽△ABC(3)作∠BPF=∠C∵∠B=∠B∴△FBP∽△ABC(4)作PG∥AC∴△PBG∽△ABC所以共4条故选C.10.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为()A.25B.18C.9 D.9【考点】反比例函数图象上点的坐标特征;平行线的性质;等边三角形的性质.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴.设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5﹣5n).∵点C、D均在反比例函数y=图象上,∴,解得:.故选C.方法2:过C点作CE∥OA交OB于E,过E点作EF⊥OA于F,过D点作DG⊥EC于G,设OF=a,则EC=10﹣2a,∴C(10﹣a,a),DC=EC=(10﹣2a)=(5﹣a),∴DG=DC=(5﹣a),EG==(5﹣a),∴D(+a, +a),∵C,D都在双曲线上,∴(+a)(+a)=(10﹣a)×a解得a=1或5,当a=5时,C点和E点重合,舍去.∴k=(10﹣a)×a=9.二、填空题(本大题共8小题,每小题3分,共24分)11.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【考点】根据实际问题列反比例函数关系式.【分析】利用长方体的体积=圆柱体的体积,进而得出等式求出即可.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.12.如图,在平面直角坐标系中,点A是函数y=(k<0,x<0)图象上的点,过点A与y轴垂直的直线交y轴于点B,点C、D在x轴上,且BC∥AD.若四边形ABCD的面积为3,则k值为﹣3.【考点】反比例函数系数k的几何意义.【分析】根据已知条件得到四边形ABCD是平行四边形,于是得到四边形AEOB的面积=AB•OE,由于S平行四边形ABCD=AB•CD=3,得到四边形AEOB的面积=3,即可得到结论.【解答】解:∵AB⊥y轴,∴AB∥CD,∵BC∥AD,∴四边形ABCD是平行四边形,∴四边形AEOB的面积=AB•OE,=AB•CD=3,∵S平行四边形ABCD∴四边形AEOB的面积=3,∴|k|=3,∵<0,∴k=﹣3,故答案为:﹣3.13.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【考点】概率公式.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.14.口袋中装有二黄三蓝共5个小球,它们大小、形状等完全一样,每次同时摸出两个小球,恰为一黄一蓝的概率是.【考点】列表法与树状图法.【分析】根据题意分析可得:从5个球中随机一次摸出2个共5×4÷2=10种情况,其中有6种情况可使摸出两个球恰好一黄一蓝;故其概率是=.【解答】解:∵从5个球中随机一次摸出2个共5×4÷2=10种情况,其中有6种情况可使摸出两个球恰好一红一黑;∴P(一黄一蓝)==.故答案为:.15.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是6米.【考点】相似三角形的应用.【分析】根据甲的身高与影长构成的三角形与乙的身高和影长构成的三角形相似,列出比例式解答.【解答】解:设甲的影长是x米,∵BC⊥AC,ED⊥AC,∴△ADE∽△ACB,∴=,∵CD=1m,BC=1.8m,DE=1.5m,∴=,解得:x=6.所以甲的影长是6米.16.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=45度.【考点】切线的性质;平行四边形的性质.【分析】连接OD,只要证明△AOD是等腰直角三角形即可推出∠A=45°,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.17.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【考点】利用轴对称设计图案;概率公式.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.18.如图,在正方形ABCD 中,点E 是BC 边上一点,且BE :EC=2:1,AE 与BD 交于点F ,则△AFD 与四边形DEFC 的面积之比是 9:11 .【考点】正方形的性质;相似三角形的判定与性质.【分析】根据题意,先设CE=x ,S △BEF =a ,再求出S △ADF 的表达式,利用四部分的面积和等于正方形的面积,得到x 与a 的关系,那么两部分的面积比就可以求出来. 【解答】解:设CE=x ,S △BEF =a , ∵CE=x ,BE :CE=2:1, ∴BE=2x ,AD=BC=CD=AD=3x ; ∵BC ∥AD ∴∠EBF=∠ADF , 又∵∠BFE=∠DFA ; ∴△EBF ∽△ADF ∴S △BEF :S △ADF ===,那么S △ADF =a .∵S △BCD ﹣S △BEF =S 四边形EFDC =S 正方形ABCD ﹣S △ABE ﹣S △ADF ,∴x 2﹣a=9x 2﹣×3x•2x ﹣,化简可求出x 2=;∴S △AFD :S 四边形DEFC =:=:=9:11,故答案为9:11.三、解答题(本大题共6小题,共36分)19.如图,在平面直角坐标系xOy 中,双曲线y=与直线y=﹣2x +2交于点A (﹣1,a ). (1)求a ,m 的值;(2)求该双曲线与直线y=﹣2x +2另一个交点B 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A坐标代入一次函数解析式中即可求得a的值,将A(﹣1,4)坐标代入反比例解析式中即可求得m的值;(2)解方程组,即可解答.【解答】解:(1)∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A的坐标是(﹣1,4),代入反比例函数y=,∴m=﹣4.(2)解方程组解得:或,∴该双曲线与直线y=﹣2x+2另一个交点B的坐标为(2,﹣2).20.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?【考点】相似三角形的应用.【分析】先求出墙上的影高CD落在地面上时的长度,再设树高为h,根据同一时刻物高与影长成正比列出关系式求出h的值即可.【解答】解:设墙上的影高CD落在地面上时的长度为xm,树高为hm,∵某一时刻测得长为1m的竹竿影长为0.9m,墙上的影高CD为1.2m,∴=,解得x=1.08(m),∴树的影长为:1.08+2.7=3.78(m),∴=,解得h=4.2(m).答:测得的树高为4.2米.21.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.【考点】切线的性质;垂径定理.【分析】首先连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD中,过A,D两点的⊙O 与BC边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,然后设⊙O的半径为x,则OE=EF﹣OE=8﹣x,利用勾股定理即可得:(8﹣x)2+36=x2,继而求得答案.【解答】解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,设⊙O的半径为x,则OE=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.22.一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.【考点】游戏公平性;列表法与树状图法.【分析】(1)直接利用概率公式进而得出答案;(2)画出树状图,得出所有等可能的情况数,找出两次摸到小球的标号数字同为奇数或同为偶数的情况数,即可求出所求的概率.【解答】解:(1)∵1,2,3,4,5,6六个小球,∴摸到标号数字为奇数的小球的概率为:=;(2)画树状图:如图所示,共有36种等可能的情况,两次摸到小球的标号数字同为奇数或同为偶数的有18种,摸到小球的标号数字为一奇一偶的结果有18种,=,P(乙)==,∴P(甲)=∴这个游戏对甲、乙两人是公平的.23.如图,在矩形ABCD中,AC是对角线,E是AC的中点,过E作MN交AD于M,交BC于N.(1)求证:AM=CN;(2)若∠CEN=90°,EN:AB=2:3,EC=3,求BC的长.【考点】矩形的性质;全等三角形的判定与性质.【分析】(1)证明△AME≌△CNE,即可得出结论;(2)证明△CEN∽△CBA,得出对应边成比例.即可求出BC的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,B=90°,∴∠MAE=∠NCE,∠AME=∠CNE,∵E是AC的中点,∴AE=CE,在△AME和△CNE中,,∴△AME≌△CNE(AAS),∴AM=CN;(2)解:∵∠CEN=∠B=90°,∠ECN=∠BCA,∴△CEN∽△CBA,∴=,即,解得:BC=4.5.24.如图1,反比例函数y=(x>0)的图象经过点A(2,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求tan∠DAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于点N,连接CM,求△CMN面积的最大值.【考点】反比例函数综合题;一次函数的性质;二次函数的最值.【分析】(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=2﹣1,BH=2﹣1,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根据特殊角的三角函数值得tan∠DAC=;由于AD⊥y轴,则OD=1,AD=2,然后在Rt △OAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,﹣1),于是可根据待定系数法求出直线AC的解析式为y=x﹣1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0<t<2),由于直线l⊥x轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t,t﹣1),则MN=﹣t+1,根据三角形面积公式得到S△CMN=•t•(﹣t+1),再进行配方得到S=﹣(t﹣)2+(0<t<2),最后根据二次函数的最值问题求解.【解答】解:(1)把A(2,1)代入y=得k=2×1=2;(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=得a=2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,﹣1)代入得,解,∴直线AC的解析式为y=x﹣1;(3)设M点坐标为(t,)(0<t<2),∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,=•t•(﹣t+1)∴S△CMN=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴当t=时,S有最大值,最大值为.2017年2月17日。
天津市河北区2019-2020学年中考数学一模考试卷含解析
天津市河北区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:22.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°⨯米折返跑.在整个过程中,跑步者距起跑线的距离y(单3.小苏和小林在如图①所示的跑道上进行450位:m)与跑步时间t(单位:s)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次4.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()5.不等式组12342x x +>⎧⎨-≤⎩的解集表示在数轴上正确的是( ) A . B . C . D .6.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13 .小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m 1.求该市今年居民用水的价格.设去年居民用水价格为x 元/m 1,根据题意列方程,正确的是( )A .301551(1)3xx -=+ B .301551(1)3x x -=- C .301551(1)3x x -=+ D .301551(1)3x x -=- 7.分式方程213x x =-的解为( ) A .x=-2 B .x=-3 C .x=2 D .x=38.若2x y +=,2xy =-,则y x x y +的值是( ) A .2 B .﹣2 C .4 D .﹣49.图为小明和小红两人的解题过程.下列叙述正确的是( )计算:31x -+231x x --A .只有小明的正确B .只有小红的正确C .小明、小红都正确D .小明、小红都不正确10.如图,△ABC 是等边三角形,点P 是三角形内的任意一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为12,则PD+PE+PF =( )11.3--的倒数是()A.13-B.-3 C.3 D.1312.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下面是“利用直角三角形作矩形”尺规作图的过程.已知:如图1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如图2,(1)分别以点A、C为圆心,大于12AC同样长为半径作弧,两弧交于点E、F;(2)作直线EF,直线EF交AC于点O;(3)作射线BO,在BO上截取OD,使得OD=OB;(4)连接AD,CD.∴四边形ABCD就是所求作的矩形.老师说,“小明的作法正确.”请回答,小明作图的依据是:__________________________________________________.14.分解因式:4a2-4a+1=______.15.用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.16.如图,已知等腰直角三角形ABC 的直角边长为1,以Rt△ABC 的斜边AC 为直角边,画第二个等腰直角三角形ACD,再以Rt△ACD 的斜边AD 为直角边,画第三个等腰直角三角形ADE……依此类推,直到第五个等腰直角三角形AFG,则由这五个等腰直角三角形所构成的图形的面积为__________.17.已知x+y=3,xy=6,则x 2y+xy 2的值为____.18.如图1,在R t △ABC 中,∠ACB=90°,点P 以每秒2cm 的速度从点A 出发,沿折线AC ﹣CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE ,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且AD 2=DE•DF .(1)求证:△BFD ∽△CAD ;(2)求证:BF•DE=AB•AD .20.(6分)某水果批发市场香蕉的价格如下表 购买香蕉数(千克)不超过20千克 20千克以上但不超过40千克 40千克以上 每千克的价格 6元 5元 4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?21.(6分)在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是1-,且与y 轴交于点()B 0,1-,点P 为抛物线上一点.()1求抛物线的表达式;()2若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q.如果OP OQ =,求点Q 的坐标.22.(8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.23.(8分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.24.(10分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB 相交于点E,与边CD相交于点F.(1)求证:OE=OF;(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于12BD的所有的等腰三角形.25.(10分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.26.(12分)如图,已知A(a,4),B(﹣4,b)是一次函数与反比例函数图象的两个交点.(1)若a=1,求反比例函数的解析式及b的值;(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?(3)若a﹣b=4,求一次函数的函数解析式.27.(12分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=kx(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=kx上,求平行四边形OBDC的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】利用垂径定理的推论得出DO⊥AB,AF=BF,进而得出DF的长和△DEF∽△CEA,再利用相似三角形的性质求出即可.【详解】连接DO,交AB于点F,∵D是»AB的中点,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位线,AC∥DO,∵BC为直径,AB=8,AC=6,∴BC=10,FO=12AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴CE AC DE FD,∴CEDE=62=1.故选:A.【点睛】此题主要考查了垂径定理的推论以及相似三角形的判定与性质,根据已知得出△DEF∽△CEA是解题关键.2.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.3.D【解析】【详解】A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.4.C【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 5.C【解析】【详解】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.解:设去年居民用水价格为x 元/cm 1,根据题意列方程:30155113x x -=⎛⎫+ ⎪⎝⎭,故选A . 7.B【解析】解:去分母得:2x=x ﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B .8.D【解析】因为()2222x y x xy y +=++,所以()222222228x y x y xy +=+-=-⨯-=,因为22842y x y x x y xy ++===--,故选D. 9.D【解析】【分析】直接利用分式的加减运算法则计算得出答案.【详解】 解:31x -231x x-+- =﹣31x -+3(1)(1)x x x --+ =﹣3(1)(1)(1)x x x +-++3(1)(1)x x x --+ =333(1)(1)x x x x --+--+ =26(1)(1)x x x ---+, 故小明、小红都不正确.故选:D .【点睛】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.过点P 作平行四边形PGBD ,EPHC ,进而利用平行四边形的性质及等边三角形的性质即可.【详解】延长EP 、FP 分别交AB 、BC 于G 、H ,则由PD ∥AB ,PE ∥BC ,PF ∥AC ,可得,四边形PGBD ,EPHC 是平行四边形,∴PG=BD ,PE=HC ,又△ABC 是等边三角形,又有PF ∥AC ,PD ∥AB 可得△PFG ,△PDH 是等边三角形,∴PF=PG=BD ,PD=DH ,又△ABC 的周长为12,∴PD+PE+PF=DH+HC+BD=BC=13×12=4, 故选C .【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.11.A【解析】【分析】 先求出33--=-,再求倒数.【详解】 因为33--=- 所以3--的倒数是13-故选A【点睛】考核知识点:绝对值,相反数,倒数.由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a ,b . 【详解】∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1. ∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2. 故选B . 【点睛】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.到线段两端点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个角为90°的平行四边形为矩形 【解析】 【分析】先利用作法判定OA=OC ,OD=OB ,则根据平行四边形的判定方法判断四边形ABCD 为平行四边形,然后根据矩形的判定方法判断四边形ABCD 为矩形. 【详解】解:由作法得EF 垂直平分AC ,则OA=OC , 而OD=OB ,所以四边形ABCD 为平行四边形, 而∠ABC=90°,所以四边形ABCD 为矩形.故答案为到线段两段点的距离相等的点在这条线段的垂直平分线上;对角线互相平分的四边形为平行四边形;有一个内角为90°的平行四边形为矩形. 【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作. 14.2(21)a 【解析】 【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.解:22441(21)a a a -+=-. 故答案为2(21)a -. 【点睛】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握. 15.圆形 【解析】 【分析】根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较. 【详解】围成的圆形场地的面积较大.理由如下: 设正方形的边长为a ,圆的半径为R , ∵竹篱笆的长度为48米,∴4a=48,则a=1.即所围成的正方形的边长为1;2π×R=48, ∴R=24π,即所围成的圆的半径为24π,∴正方形的面积S 1=a 2=144,圆的面积S 2=π×(24π)2=576π,∵144<576π,∴围成的圆形场地的面积较大. 故答案为:圆形. 【点睛】此题主要考查实数的大小的比较在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学. 16.12.2 【解析】 【详解】∵△ABC 是边长为1的等腰直角三角形,∴S △ABC =12×1×1=12=11-1;,,∴S △ACD =121-1∴第n 个等腰直角三角形的面积是1n-1.∴S △AEF =14-1=4,S △AFG =12-1=8, 由这五个等腰直角三角形所构成的图形的面积为12+1+1+4+8=12.2.故答案为12.2.17.32 【解析】分析:因式分解,把已知整体代入求解. 详解:x 2y+xy 2=xy(x+y)= 63⨯=32.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c). (2)公式法:完全平方公式,平方差公式. (3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力. 18.2.4cm 【解析】分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP 的值,利用sin ∠B 的值,可求出PD . 详解:由图2可得,AC=3,BC=4, ∴AB=22345+=. 当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin ∠B=AC AB =35, ∴PD=BP·sin ∠B=2×35=65=1.2(cm ).故答案是:1.2 cm .点睛:本题考查了动点问题的函数图象,勾股定理,锐角三角函数等知识,解答本题的关键是根据图形得到AC 、BC 的长度,此题难度一般.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.见解析 【解析】试题分析:(1)2AD DE DF =⋅, ADF EDA ∠∠= ,可得ΔADF ∽ΔEDA ,从而得F DAE ∠∠=,再根据∠BDF=∠CDA 即可证; (2)由ΔBFD ∽ΔCAD ,可得BF DF AC AD =,从而可得BF ADAC DE=,再由ΔBFD ∽ΔCAD ,可得B C ∠∠=从而得AB AC =,继而可得BF ADAB DE= ,得到BF DE AB AD ⋅=⋅.试题解析:(1)∵2AD DE DF =⋅,∴AD DFDE AD=, ∵ADF EDA ∠=∠ ,∴ADF ∆∽EDA ∆ , ∴F DAE ∠=∠,又∵∠ADB=∠CDE ,∴∠ADB+∠ADF=∠CDE+∠ADF , 即∠BDF=∠CDA , ∴BFD ∆∽CAD ∆; (2)∵BFD ∆∽CAD ∆ ,∴BF DFAC AD=, ∵AD DF DE AD = ,∴BF ADAC DE =, ∵BFD ∆∽CAD ∆,∴B C ∠=∠,∴AB AC =, ∴BF ADAB DE= , ∴BF DE AB AD ⋅=⋅. 【点睛】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.20.第一次买14千克香蕉,第二次买36千克香蕉 【解析】 【分析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y >40③当20<x <3时,则3<y <2. 【详解】设张强第一次购买香蕉xkg ,第二次购买香蕉ykg ,由题意可得0<x <3. 则①当0<x≤20,y≤40,则题意可得5065264x y x y +⎧⎨+⎩==. 解得1436x y ⎧⎨⎩==.②当0<x≤20,y >40时,由题意可得5064264x y x y +⎧⎨+⎩==. 解得3218x y ⎧⎨⎩==.(不合题意,舍去)③当20<x <3时,则3<y <2,此时张强用去的款项为 5x+5y=5(x+y )=5×50=30<1(不合题意,舍去);④当20<x≤40 y >40时,总质量将大于60kg ,不符合题意, 答:张强第一次购买香蕉14kg ,第二次购买香蕉36kg . 【点睛】本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.21.()1为2y x 2x 1=+-;()2点Q 的坐标为()3,2--或()1,2-. 【解析】 【分析】()1依据抛物线的对称轴方程可求得b 的值,然后将点B 的坐标代入线22y x x c =-+可求得c 的值,即可求得抛物线的表达式;()2由平移后抛物线的顶点在x 轴上可求得平移的方向和距离,故此4QP =,然后由点QO PO =,//QP y 轴可得到点Q 和P 关于x 对称,可求得点Q 的纵坐标,将点Q 的纵坐标代入平移后的解析式可求得对应的x 的值,则可得到点Q 的坐标. 【详解】()1Q 抛物线2y x bx c =++顶点A 的横坐标是1-,b x 12a ∴=-=-,即b 121-=-⨯,解得b 2=. 2y x 2x c ∴=++.将()B 0,1-代入得:c 1=-,∴抛物线的解析式为2y x 2x 1=+-.()2Q 抛物线向下平移了4个单位.∴平移后抛物线的解析式为2y x 2x 5=+-,PQ 4=.OP OQ Q =,∴点O 在PQ 的垂直平分线上.又QP //y Q 轴,∴点Q 与点P 关于x 轴对称. ∴点Q 的纵坐标为2-.将y 2=-代入2y x 2x 5=+-得:2x 2x 52+-=-,解得:x 3=-或x 1=.∴点Q 的坐标为()3,2--或()1,2-.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键.22.解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=82 123;解法二(列表法):(以下过程同“解法一”)【解析】【分析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):1020300 ﹣﹣ 102030 10 10 ﹣﹣ 30 40 20 20 30 ﹣﹣ 50 30304050﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果, 因此P(不低于30元)=812=23; 考点:列表法与树状图法. 【详解】 请在此输入详解! 23.证明见解析 【解析】试题分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似. 试题解析:∵四边形ABCD 为矩形,90,BAD D ∴∠=∠=o90DAE BAE ∴∠+∠=o ,BF AE ⊥Q 于点F ,90ABF BAE ∴∠+∠=o , DAE BAF ∴∠=∠,.ABF EAD ∴V V ∽点睛:两组角对应相等,两三角形相似.24.(1)证明见解析;(2)△DOF ,△FOB ,△EOB ,△DOE . 【解析】【分析】(1)由四边形ABCD 是平行四边形,可得OA=OC ,AB ∥CD ,则可证得△AOE ≌△COF (ASA ),继而证得OE=OF ;(2)证明四边形DEBF 是矩形,由矩形的性质和等腰三角形的性质即可得出结论. 【详解】(1)∵四边形ABCD 是平行四边形, ∴OA=OC ,AB ∥CD ,OB=OD , ∴∠OAE=∠OCF , 在△OAE 和△OCF 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOE ≌△COF (ASA ), ∴OE=OF ;(2)∵OE=OF ,OB=OD , ∴四边形DEBF 是平行四边形, ∵DE ⊥AB , ∴∠DEB=90°,∴四边形DEBF 是矩形, ∴BD=EF , ∴OD=OB=OE=OF=12BD , ∴腰长等于12BD 的所有的等腰三角形为△DOF ,△FOB ,△EOB ,△DOE . 【点睛】本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.25.(1)证明见解析;(2)阴影部分面积为43π 【解析】【分析】(1)连接OC ,易证∠BCD=∠OCA ,由于AB 是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD 是⊙O 的切线;(2)设⊙O 的半径为r ,AB=2r ,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:△OAC 的面积以及扇形OAC 的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=23,易求S△AOC=12×23×1=3S扇形OAC=12044 3603ππ⨯=,∴阴影部分面积为43 3π-.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.26.(1) 反比例函数的解析式为y=4x,b的值为﹣1;(1) 当x<﹣4或0<x<1时,反比例函数大于一次函数的值;(3) 一次函数的解析式为y=x+1 【解析】【分析】(1)由题意得到A (1,4),设反比例函数的解析式为y =kx(k≠0),根据待定系数法即可得到反比例函数解析式为y =4x;再由点B (﹣4,b )在反比例函数的图象上,得到b =﹣1; (1)由(1)知A (1,4),B (﹣4,﹣1),结合图象即可得到答案; (3)设一次函数的解析式为y =mx+n (m≠0),反比例函数的解析式为y =px,因为A (a ,4),B (﹣4,b )是一次函数与反比例函数图象的两个交点,得到44pap b ⎧=⎪⎪⎨⎪=⎪-⎩, 解得p =8,a =1,b =﹣1,则A (1,4),B (﹣4,﹣1),由点A 、点B 在一次函数y =mx+n 图象上,得到2442m n m n +=⎧⎨-+=-⎩,解得12m n =⎧⎨=⎩,即可得到答案. 【详解】(1)若a =1,则A (1,4), 设反比例函数的解析式为y =kx(k≠0), ∵点A 在反比例函数的图象上, ∴4=1k , 解得k =4,∴反比例函数解析式为y =4x; ∵点B (﹣4,b )在反比例函数的图象上, ∴b =44-=﹣1, 即反比例函数的解析式为y =4x,b 的值为﹣1; (1)由(1)知A (1,4),B (﹣4,﹣1),根据图象:当x <﹣4或0<x <1时,反比例函数大于一次函数的值; (3)设一次函数的解析式为y =mx+n (m≠0),反比例函数的解析式为y =px, ∵A (a ,4),B (﹣4,b )是一次函数与反比例函数图象的两个交点,∴44pap b ⎧=⎪⎪⎨⎪=⎪-⎩,即44a p b p =⎧⎨-=⎩①②, ①+②得4a ﹣4b =1p , ∵a ﹣b =4,∴16=1p,解得p=8,把p=8代入①得4a=8,代入②得﹣4b=8,解得a=1,b=﹣1,∴A(1,4),B(﹣4,﹣1),∵点A、点B在一次函数y=mx+n图象上,∴24 42 m nm n+=⎧⎨-+=-⎩解得12 mn=⎧⎨=⎩∴一次函数的解析式为y=x+1.【点睛】本题考查一次函数与反比例函数,解题的关键是待定系数法求函数解析式.27.(1)y=12x;(2)1;【解析】【分析】(1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(32m+,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行四边形的面积公式即可求解.【详解】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=1.【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.。
天津市河北区2019-2020学年中考数学考前模拟卷(2)含解析
天津市河北区2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O ,AC 8=,BD 6=,DH AB ⊥于点H ,且DH 与AC 交于G ,则OG 长度为( )A .92B .94C .352D .3542.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .453.下列计算结果为a 6的是( )A .a 2•a 3B .a 12÷a 2C .(a 2)3D .(﹣a 2)34.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为()A .215B .8C .210D .2135.如图,直线a ∥b ,点A 在直线b 上,∠BAC=100°,∠BAC 的两边与直线a 分别交于B 、C 两点,若∠2=32°,则∠1的大小为( )A .32°B .42°C .46°D .48°6.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为( ) A .12B .13C .310D .157.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( ) A .0.96a 元B .0.972a 元C .1.08a 元D .a 元8.下列关于x 的方程中一定没有实数根的是( ) A .210x x --=B .24690x x -+=C .2x x =-D .220x mx --=9.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为( ) A .35.578×103 B .3.5578×104 C .3.5578×105D .0.35578×10510.如图所示的几何体的主视图是( )A .B .C .D .11.3-的倒数是( ) A .13-B .3C .13D .13±12.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( ) A .13∠=∠ B .11803∠=-∠o C .1903∠=+∠oD .以上都不对二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.因式分解:=______.14.化简:a b a b b a+--22= __________. 15.如图,在平面直角坐标系中,经过点A 的双曲线y=kx(x >0)同时经过点B ,且点A 在点B 的左侧,点A 的横坐标为1,∠AOB=∠OBA=45°,则k 的值为_______.16.若正六边形的内切圆半径为2,则其外接圆半径为__________.17.计算:2﹣1+()22-=_____.18.比较大小:4 17(填入“>”或“<”号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)20.(6分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
天津市河北区20192020学年九年级上期末数学试卷附答案.docx
2019-2020学年九年级(上)期末数学试卷选择题(共10小题)1.下列四个图案中,是中心对称图形的是( )2, 下列事件是随机事件的是( )A. 随意掷一块质地均匀的骰子,掷出的点数是奇数B. 在一个标准大气压下,把水加热到100°C,水就会沸腾C. 有一名运动员奔跑的速度是80米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球3. 若双曲线的图象的一支位于第三象限,则A 的取值范围是()xA. k<\B. k>lC. 0<^<1D.虹 14. 关于x 的一元二次方程kx-x^\=0有两个不相等的实数根,则A 的取值范围是()A. k<lB. k>l-C.々〈A 且 MOD.且 AKO4 4 446. 如图,平面直角坐标系中,点0(-4, 2), F (-l, -1),以原点0为位似中心,把左疯缩小为△舟F' 0,且F'。
与△成的相似比为1: 2,则点E 的对应点"的B. (8, -4)金 B.周C.⑥D. △A. B.A. (2, - 1)C.(2, - 1)或(-2, 1)D. (8, -4)或(一8, 4)7.正六边形的半径与边心距之比为()A, 1: V3 B. V3: 1 C.扼:2 D. 2: V38.在一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,如果参加聚会的同学有x名.根据题意列出的方程是()A. x (A+1) =110B. x (x- 1) =110C. 2x(混1) =110D. x(x-1) =110X29.已知ZkeC中,ZC=90° , BC=a, CA=b, AB=c,。
与三角形的边相切,下列选项中,。
的半径为耍的是()10.如图,抛物线y=ax+bx^c(a, b, c是常数,a乂0)与x轴交于X,夕两点,顶点户(成,Z7).给出下列结论①2a+c>0;②若(_A, y ), (—1, y ),(―,巧)在抛物线上,则/1>J2>732 七2 y2 2③关于x的方程梭+b对k= 0有实数解,则k>c- n;④当时,△姗为等腰直角三角形;a其中正确结论个数有()个.二.填空题(共8小题)11.抛物线y=x - 2x-1与x轴有个交点.12.如果二次函数y=mx"t'-2 5为常数)的图象有最高点,那么及的值为.13.如图,四边形做刀内接于O0,E为€»延长线上一点,若Z5=100°,则匕也14.两个相似三角形对应边上的中线之比为4: 9,则两三角形面积之比为.15,如图,一次函数y=k对b的图象与反比例函数y=—的图象交于A (~2, 1)、B (1,x-2)两点.一次函数的值大于反比例函数的值时x的取值范围是.16.如图,在平面直角坐标系中,点,是函数y=—(JT<0)图象上的点,过点』作y轴的x垂线交尹轴于点昆点。
2019年天津市河北区九年级上册期末数学模拟试卷(1)(有答案)
天津市河北区九年级(上)期末数学模拟试卷一、选择题(共10小题,每小题3分,满分30分)1.已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A.第一、二象B.第一、三象限C.第二、四象限D.第三、四象限2.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是()A.B.C.D.4.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B.5 C.6 D.85.抛物线y=a2+b+c的图象如图所示,则一次函数y=a+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.6.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.7.在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是()A.2﹣πB.4﹣πC.2﹣πD.π8.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是()A.10 B.14 C.16 D.409.如图,AD为等边△ABC边BC上的高,AB=4,AE=1,P为高AD上任意一点,则EP+BP 的最小值为()A.B. C. D.10.如图,直线y=和双曲线相交于点P,过点P作PA0垂直于轴,垂足为A0,轴上的点A0,A1,A2,…A n的横坐标是连续整数,过点A1,A2,…A n:分别作轴的垂线,与双曲线(>0)及直线y=分别交于点B1,B2,…B n和点C1,C2,…C n,则的值为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.把抛物线y=a2+b+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=2﹣4+5,则a+b+c=.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则=.13.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.14.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为个.15.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:,使△ABC∽△AED.16.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)17.从﹣,﹣1,0,1这四个数中,任取一个数作为m的值,恰好使得关于,y的二元一次方程组有整数解,且使以为自变量的一次函数y=(m+1)+3m﹣3的图象不经过第二象限,则取到满足条件的m值的概率为.18.如图,一次函数y=﹣+b与反比例函数y=(>0)的图象交于A,B两点,与轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥轴于点E,交OB于点F,设点A的横坐标为m.(1)b=(用含m的代数式表示);(2)若S△OAF +S四边形EFBC=4,则m的值是.三、解答题(本大题共6小题,共36分)19.如图,在平面直角坐标系Oy中,反比例函数的图象与一次函数y=+2的图象的一个交点为A(m,﹣1).(1)求反比例函数的解析式;(2)设一次函数y=+2的图象与y轴交于点B,若P是y轴上一点,且满足△PAB的面积是3,直接写出点P的坐标.20.如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,求CO和DO.21.如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.22.某学校七年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明;(2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规完:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.(3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?23.已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN(2)求证:=.24.如图,已知矩形OABC中,OA=2,AB=4,双曲线(>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在轴上的D点,作EG⊥OC,垂足为G,证明△EGD ∽△DCF,并求的值.天津市河北区九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.已知反比例函数的图象过点P(1,3),则该反比例函数图象位于()A.第一、二象B.第一、三象限C.第二、四象限D.第三、四象限【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的图象过点P(1,3)求出的值,进而可得出结论.【解答】解:∵反比例函数的图象过点P(1,3),∴=1×3=3>0,∴此函数的图象在一、三象限.故选:B.【点评】本题考查的是反比例函数图象上点的坐标特点,根据反比例函数中=y的特点求出的值是解答此题的关键.2.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方【考点】位似变换.【分析】如果两个图形不仅是相似图形而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫位似图形,这个点叫做位似中心,位似图形是特殊的相似形,因而满足相似形的性质,因而正确的是C.【解答】解:∵分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE 是△ABC放大或缩小后的图形,∴A错误.∵位似图形是特殊的相似形,满足相似形的性质,∴B,D错误,正确的是C.故选C.【点评】本题主要考查了位似图形的定义,位似是特殊的相似.3.有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是()A.B.C.D.【考点】概率公式.【分析】找到小易抽到杀手牌的个数除以9张卡牌是小易抽到杀手牌的概率.【解答】解:小易抽到杀手牌的概率=.故选C【点评】本题主要考查概率公式.用到的知识点为:概率=所求情况数与总情况数之比.4.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B.5 C.6 D.8【考点】平行线分线段成比例.【分析】由AD∥BE∥CF可得=,代入可求得EF.【解答】解:∵AD∥BE∥CF,∴=,∵AB=1,BC=3,DE=2,∴=,解得EF=6,故选:C.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段可得对应线段成比例是解题的关键.5.抛物线y=a2+b+c的图象如图所示,则一次函数y=a+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.【考点】二次函数的图象;一次函数的图象;反比例函数的图象.【分析】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.【解答】解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=a+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,故选:B.【点评】本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键.6.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【考点】相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C .【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.7.在Rt △ABC 中,∠ACB=90°,AC=2,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A .2﹣πB .4﹣πC .2﹣πD .π【考点】扇形面积的计算.【分析】根据点D 为AB 的中点可知BC=BD=AB ,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC 的长,根据S 阴影=S △ABC ﹣S 扇形CBD 即可得出结论.【解答】解:∵D 为AB 的中点,∴BC=BD=AB ,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC•tan30°=2•=2,∴S 阴影=S △ABC ﹣S 扇形CBD =×2×2﹣=2﹣π. 故选A .【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式及直角三角形的性质是解答此题的关键.8.在一个不透明的盒子中装有n个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n大约是()A.10 B.14 C.16 D.40【考点】利用频率估计概率.【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越越小,根据这个频率稳定性定理,可以用频率的集中趋势估计概率,这个固定的近似值就是这个事件的概率.【解答】解:∵通过大量重复试验后发现,摸到红球的频率稳定于0.4,∴=0.4,解得:n=10.故选A.【点评】此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.9.如图,AD为等边△ABC边BC上的高,AB=4,AE=1,P为高AD上任意一点,则EP+BP 的最小值为()A.B. C. D.【考点】轴对称-最短路线问题;等边三角形的性质.【分析】要求EP+BP的最小值,需考虑通过作辅助线转化EP,BP的值,从而找出其最小值求解.【解答】解:如图所示:连接EC,交AD于点P,此时EP+BP最小,过点E作EF⊥BC于点F,∵AD为等边△ABC边BC上的高,∴B点与C点关于AD对称,又∵AB=4,∴BD=CD=2,∴AD=2,∵EF⊥BC,AD⊥BC,∴EF∥AD,∴△BEF∽△BAD,∴==,∴=,解得:BF=1.5,∴FD=0.5,∴EF=,∴在Rt△EFC中EC==,∴EP+BP的最小值为:EP+BP=.故选:B.【点评】此题主要考查了轴对称﹣最短路线问题和等边三角形的性质和轴对称及勾股定理等知识的综合应用,根据已知得出M点位置是解题关键.10.如图,直线y=和双曲线相交于点P,过点P作PA0垂直于轴,垂足为A0,轴上的点A0,A1,A2,…A n的横坐标是连续整数,过点A1,A2,…A n:分别作轴的垂线,与双曲线(>0)及直线y=分别交于点B1,B2,…B n和点C1,C2,…C n,则的值为()A.B.C.D.【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式表示出A n B n、C n B n的值,再根据其比值解答即可.【解答】解:∵A1,A2,…A n为连续整数,又∵直线y=和双曲线相交于点P的横坐标为1,∴从A0开始,为1,2,3…,n+1,代入y=,得y n=,即A n B n=,C n B n=﹣,A n B n÷C n B n=÷(﹣)=.故选C.【点评】解答此题要理解两个问题:常函数的概念,直线和双曲线的交点坐标.求出距离,算出它们的比值.二、填空题(本大题共8小题,每小题3分,共24分)11.把抛物线y=a2+b+c的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的解析式是y=2﹣4+5,则a+b+c=7.【考点】二次函数图象与几何变换.【分析】因为抛物线y=a2+b+c的图象先向右平移3个单位,再向下平移2个单位,得到图象的解析式是y=2﹣4+5,所以y=2﹣4+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=a2+b+c的图象,先由y=2﹣4+5的平移求出y=a2+b+c的解析式,再求a+b+c的值.【解答】解:∵y=2﹣4+5=(﹣2)2+1,当y=2﹣4+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=a2+b+c的图象,∴y=(﹣2+3)2+1+2=2+2+4;∴a+b+c=1+2+4=7.故答案是:7.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.12.如图,点A是反比例函数y=图象上的一个动点,过点A作AB⊥轴,AC⊥y轴,垂足点分别为B、C,矩形ABOC的面积为4,则=﹣4.【考点】反比例函数系数的几何意义.【分析】由于点A是反比例函数y=上一点,矩形ABOC的面积S=||=4,则的值即可求出.=||=4,又双曲线位于第二、四象限,则=﹣4,【解答】解:由题意得:S矩形ABOC故答案为:﹣4.【点评】本题主要考查了反比例函数y=中的几何意义,即过双曲线上任意一点引轴、y轴垂线,所得矩形面积为||,是经常考查的一个知识点.13.如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与两次指针指向的数都是奇数的情况,再利用概率公式即可求得答案.【解答】解:列表得如下:4种结果,∴两次指针指向的数都是奇数的概率为,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.14.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为24个.【考点】概率公式.【分析】首先设黄球的个数为个,根据题意得:=,解此分式方程即可求得答案.【解答】解:设黄球的个数为个,根据题意得:=,解得:=24,经检验:=24是原分式方程的解;∴黄球的个数为24.故答案为:24;【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:∠AEB=∠B(答案不唯一),使△ABC∽△AED.【考点】相似三角形的判定.【分析】根据∠AEB=∠B和∠A=∠A可以求证△AED∽△ABC,故添加条件∠AEB=∠B即可以求证△AED∽△ABC.【解答】解:∵∠AEB=∠B,∠A=∠A,∴△AED∽△ABC,故添加条件∠AEB=∠B即可以使得△AED∽△ABC,故答案为:∠AEB=∠B(答案不唯一).【点评】本题考查了相似三角形的判定,等边三角形对应角相等的性质,本题中添加条件∠AEB=∠B并求证△AED∽△ABC是解题的关键.16.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)【考点】正多边形和圆.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.【解答】解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=1,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),==.∴图中阴影部分面积为:S扇形OBC故答案为:.【点评】此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S是解扇形OBC题关键.17.从﹣,﹣1,0,1这四个数中,任取一个数作为m 的值,恰好使得关于,y 的二元一次方程组有整数解,且使以为自变量的一次函数y=(m +1)+3m ﹣3的图象不经过第二象限,则取到满足条件的m 值的概率为 . 【考点】概率公式;一元一次不等式组的整数解;一次函数图象与系数的关系.【分析】首先由题意可求得满足条件的m 值,然后直接利用概率公式求解即可求得答案.【解答】解:∵关于,y 的二元一次方程组有整数解,∴, ∴m 的值为:﹣1,0,1;∵一次函数y=(m +1)+3m ﹣3的图象不经过第二象限,∴,解得:﹣1<m ≤1,∴m 的值为:0,1;综上满足条件的m 值为:0,1;∴取到满足条件的m 值的概率为: =.故答案为:.【点评】此题考查了概率公式的应用、二元一次方程组的正整数解以及一次函数的性质.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,一次函数y=﹣+b 与反比例函数y=(>0)的图象交于A ,B 两点,与轴、y 轴分别交于C ,D 两点,连结OA ,OB ,过A 作AE ⊥轴于点E ,交OB 于点F ,设点A 的横坐标为m .(1)b= m + (用含m 的代数式表示);(2)若S △OAF +S 四边形EFBC =4,则m 的值是 .【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法点A的纵坐标相等列出等式即可解决问题.(2)作AM⊥OD于M,BN⊥OC于N.记△AOF面积为S,则△OEF面积为2﹣S,四边形EFBN面积为4﹣S,△OBC和△OAD面积都是6﹣2S,△ADM面积为4﹣2S=2(2﹣s),所=2S△OEF,推出EF=AM=NB,得B(2m,)代入直线解析式即可解决问题.以S△ADM【解答】解:(1)∵点A在反比例函数y=(>0)的图象上,且点A的横坐标为m,∴点A的纵坐标为,即点A的坐标为(m,).令一次函数y=﹣+b中=m,则y=﹣m+b,∴﹣m+b=即b=m+.故答案为:m+.(2)作AM⊥OD于M,BN⊥OC于N.∵反比例函数y=,一次函数y=﹣+b都是关于直线y=对称,∴AD=BC,OD=OC,DM=AM=BN=CN,记△AOF面积为S,则△OEF面积为2﹣S,四边形EFBN面积为4﹣S,△OBC和△OAD面积都是6﹣2S,△ADM 面积为4﹣2S=2(2﹣s),=2S△OEF,∴S△ADM由对称性可知AD=BC,OD=OC,∠ODC=∠OCD=45°,△AOM≌△BON,∴AM=NB=DM=NC,∴EF=AM=NB,∴点B坐标(2m,)代入直线y=﹣+m+,∴=﹣2m=m+,整理得到m2=2,∵m>0,∴m=.故答案为.【点评】本题考查反比例函数与一次函数图象的交点、对称等知识,解题的关键是利用对称性得到很多相等的线段,学会设参数解决问题,属于中考填空题中的压轴题.三、解答题(本大题共6小题,共36分)19.(2013•海淀区二模)如图,在平面直角坐标系Oy中,反比例函数的图象与一次函数y=+2的图象的一个交点为A(m,﹣1).(1)求反比例函数的解析式;(2)设一次函数y=+2的图象与y轴交于点B,若P是y轴上一点,且满足△PAB的面积是3,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A(m,﹣1)代入一次函数y=+2解析式,即可得出A点坐标,进而求出反比例函数解析式;(2)利用三角形面积公式得出底边长进而得出P点坐标.【解答】解:(1)∵点A(m,﹣1)在一次函数y=+2的图象上,∴m=﹣3.∴A点的坐标为(﹣3,﹣1).∵点A (﹣3,﹣1)在反比例函数y=的图象上,∴=3.∴反比例函数的解析式为:y=.(2)∵一次函数y=+2的图象与y轴交于点B,满足△PAB的面积是3,A点的坐标为(﹣3,﹣1),∴△ABP的高为3,底边长为:2,∴点P的坐标为(0,0)或(0,4).【点评】此题主要考查了待定系数法求反比例函数解析式以及三角形面积公式等知识,根据已知得出A点坐标以及注意不要漏解是解题关键,20.(2016秋•河北区期末)如图,已知AC⊥AB,BD⊥AB,AO=78cm,BO=42cm,CD=159cm,求CO和DO.【考点】相似三角形的判定与性质.【分析】根据题意,易证△AOC∽△BDO,根据相似三角形的判定与性质,列出比例等式即可解得CO和DO的长.【解答】解:设DO=cm,则CO=(159﹣)cm,∵AC⊥AB,BD⊥AB,∠A=∠B=90°,∠AOC=∠BOD,∴△AOC∽△BDO.∴=.即=.∴=55.65.∴CO=103.35cm,DO=55.65cm.【点评】此题考查了相似三角形的判定和性质:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似;性质:相似三角形的对应角相等,对应边的比相等.21.(2013•聊城)如图,AB是⊙O的直径,AF是⊙O切线,CD是垂直于AB的弦,垂足为E,过点C作DA的平行线与AF相交于点F,CD=,BE=2.求证:(1)四边形FADC是菱形;(2)FC是⊙O的切线.【考点】切线的判定与性质;菱形的判定.【分析】(1)首先连接OC,由垂径定理,可求得CE的长,又由勾股定理,可求得半径OC 的长,然后由勾股定理求得AD的长,即可得AD=CD,易证得四边形FADC是平行四边形,继而证得四边形FADC是菱形;(2)首先连接OF,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.【解答】证明:(1)连接OC,∵AB是⊙O的直径,CD⊥AB,∴CE=DE=CD=×4=2,设OC=,∵BE=2,∴OE=﹣2,在Rt△OCE中,OC2=OE2+CE2,∴2=(﹣2)2+(2)2,解得:=4,∴OA=OC=4,OE=2,∴AE=6,在Rt△AED中,AD==4,∴AD=CD,∵AF是⊙O切线,∴AF⊥AB,∵CD⊥AB,∴AF∥CD,∵CF∥AD,∴四边形FADC是平行四边形,∵AD=CD,∴平行四边形FADC是菱形;(2)连接OF,AC,∵四边形FADC是菱形,∴FA=FC,∴∠FAC=∠FCA,∵AO=CO,∴∠OAC=∠OCA,∴∠FAC+∠OAC=∠FCA+∠OCA,即∠OCF=∠OAF=90°,即OC⊥FC,∵点C在⊙O上,∴FC是⊙O的切线.【点评】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.(2007•泰州)某学校七年级数学兴趣小组组织一次数学活动.在一座有三道环形路的数字迷宫的每个进口处都标记着一个数,要求进入者把自己当做数“1”,进入时必须乘进口处的数,并将结果带到下一个进口,依次累乘下去,在通过最后一个进口时,只有乘积是5的倍数,才可以进入迷宫中心,现让一名5岁小朋友小军从最外环任一个进口进入.(1)小军能进入迷宫中心的概率是多少?请画出树状图进行说明;(2)小组两位组员小张和小李商量做一个小游戏,以猜测小军进迷宫的结果比胜负.游戏规则规完:小军如果能进入迷宫中心,小张和小李各得1分;小军如果不能进入迷宫中心,则他在最后一个进口处所得乘积是奇数时,小张得3分,所得乘积是偶数时,小李得3分,你认为这个游戏公平吗?如果公平,请说明理由;如果不公平,请在第二道环进口处的两个数中改变其中一个数使游戏公平.(3)在(2)的游戏规则下,让小军从最外环进口任意进入10次,最终小张和小李的总得分之和不超过28分,请问小军至少几次进入迷宫中心?【考点】游戏公平性;列表法与树状图法.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:(1)树状图,P(进入迷宫中心)=;(2)不公平,理由如下:=,P(非5的倍数的奇数)==,法一:由树状图可知,P(5的倍数)P(非5的倍数的偶数)=.所以不公平.法二:从(1)中树状图得知,不是5的倍数时,结果是奇数的有2种情况,而结果是偶数的有6种情况,显然小李胜面大,所以不公平.法三:由于积是5的倍数时两人得分相同,所以可直接比较积不是5的倍数时,奇数、偶数的概率.P(奇数)=,P(偶数)=,所以不公平.(6分)可将第二道环上的数4改为任﹣奇数;(7分)(3)设小军次进入迷宫中心,则2+3(10﹣)≤28解之得≥2.所以小军至少2次进入迷宫中心.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.(2015•黄冈)已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点M,交BC于点N,连接AN,过点C的切线交AB的延长线于点P.(1)求证:∠BCP=∠BAN(2)求证:=.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)由AC为⊙O直径,得到∠NAC+∠ACN=90°,由AB=AC,得到∠BAN=∠CAN,根据PC是⊙O的切线,得到∠ACN+∠PCB=90°,于是得到结论.(2)由等腰三角形的性质得到∠ABC=∠ACB,根据圆内接四边形的性质得到∠PBC=∠AMN,证出△BPC∽△MNA,即可得到结论.【解答】(1)证明:∵AC为⊙O直径,∴∠ANC=90°,∴∠NAC+∠ACN=90°,∵AB=AC,∴∠BAN=∠CAN,∵PC是⊙O的切线,∴∠ACP=90°,∴∠ACN+∠PCB=90°,∴∠BCP=∠CAN,∴∠BCP=∠BAN;(2)∵AB=AC,∴∠ABC=∠ACB,∵∠PBC+∠ABC=∠AMN+∠ACN=180°,∴∠PBC=∠AMN,由(1)知∠BCP=∠BAN,∴△BPC∽△MNA,∴.【点评】本题考查了切线的性质,等腰三角形的性质,圆周角定理,相似三角形的判定和性质,圆内接四边形的性质,解此题的关键是熟练掌握定理.24.(2013•绵阳)如图,已知矩形OABC中,OA=2,AB=4,双曲线(>0)与矩形两边AB、BC分别交于E、F.(1)若E是AB的中点,求F点的坐标;(2)若将△BEF沿直线EF对折,B点落在轴上的D点,作EG⊥OC,垂足为G,证明△EGD ∽△DCF,并求的值.【考点】反比例函数综合题.。
天津市河北区2022年九年级上学期期末数学试题(附解析)
九年级上学期期末数学试题一、单选题1.下列图形是中心对称图形的是( )A.B.C.D.2.下列事件中,是必然事件的是( )A.掷一枚硬币,正面朝上B.购买一张彩票,一定中奖C.任意画一个三角形,它的内角和等于D.存在一个实数,它的平方是负数3.下列一元二次方程没有实数根的是( )A.x2+2x+1=0B.x2+x+2=0C.x2﹣1=0D.x2﹣2x﹣1=04.抛物线y=2(x-3)2+4的顶点坐标是( )A.(3,4)B.(-3,4)C.(3,-4)D.(2,4)5.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是( )A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度6.如图,在Rt ABC中,BAC=,将ABC绕点A顺时针旋转后得到 A(点B的对应点是点,点C的对应点是点),连接C .若 C =,则B的大小是( )A.32°B.64°C.77°D.87°7.如图,⊙O是∆ABC的外接圆,半径为,若,则的度数为( )A.30°B.25°C.15°D.10°8.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45° B.50°C.60°D.75°9.在等腰三角形ABC中,AC=BC=2,D是AB边上一点,以AD为直径的⊙O恰好与BC相切于点C,则BD的长为( )A.1B.C.2D.10.已知二次函数y=a(x+1)(x﹣m)(a为非零常数,1<m<2),当x<-1时,y随x的增大而增大,则下列结论正确的是( )①当x>2时,y随x的增大而减小;②若图象经过点(0,1),则﹣1<a<0;③若(﹣2021,y1),(2021,y2)是函数图象上的两点,则y1<y2;④若图象上两点(,y1),(+n,y2)对一切正数n,总有y1>y2,则1<m≤.A.①②B.①③C.①②③D.①③④二、填空题11.在平面直角坐标系中,点与点关于原点对称,则点的坐标为 .12.大小、形状完全相同的5张卡片,背面分别写着“我”“的”“中”“国”“梦”这5个字,从中随机抽取一张,则这张卡片背面恰好写着“中”字的概率是 .13.如图,设A(-2,y 1)、B(1,y 2)、C(2,y 3)是抛物线y=-(x+1)2+m 上的三点,则y 1,y 2,y 3的大小关系为 (用“>”连接).14.用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是 .15.如图,一条公路的转弯处是一段圆弧(图中的),点O 是这段弧的圆心,C 是 上一点,.垂足为D , , ,则这段弯路的半径是 m .16.已知:如图,半圆O 的直径AB =12cm ,点C ,D 是这个半圆的三等分点,则弦AC ,AD 和围成的图形(图中阴影部分)的面积S 是 .17.抛物线y =ax 2+bx+c (a≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(3,0),对称轴为直线x=1,则当y <0时,x 的取值范围是 .18.点A 和B 在直线y =﹣x+6上,点A 的横坐标是2,且AB=5.当线段AB 绕点A 顺时针旋转90°后,点B 的坐标是 .三、解答题19.解方程: .20.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个不符合题意选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.21.已知AB 是⊙O 的直径,弦CD 与AB 相交于点E ,过点C 作⊙O 的切线,与BA 的延长线交于点P ,∠BPC=38°.(1)如图①,连接OD ,若D 为的中点,求∠ODC 的大小;(2)如图②,连接BD ,若DE=DB ,求∠PBD 的大小.22.已知某品牌床单进价为每件60元,每月的销量w (件)与售价x (元)的相关信息如下表(符合一次函数关系):售价(元/件)100110120130…月销售量(件)200180160140…(1)销售该品牌床单每件的利润是 元(用含x 的式子表示).(2)用含x 的代数式表示月销量w .(3)设销售该品牌床单的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?23.在平面直角坐标系中,O 为原点,点A (4,0),点B(,3),把△ABO 绕点B逆时针旋转得到△A'BO',点A 、O 旋转后的对应点为A 、O',记旋转角为α.(1)如图①,若α=90°,求AA'的长;(2)如图②,若α=60°,求点O'的坐标;(3)如图③,P为AB上一点,且PA:PB=2:1,连接PO'、PA',在△ABO绕点B逆时针旋转一周的过程中,求△PO'A'的面积的最大值和最小值(直接写出结果即可).24.如图,抛物线y=x2+bx+c交x轴于A,B两点,交轴于点C,点A,B的坐标分别为(-1,0),(4,0).(1)求抛物线的解析式;(2)点P是直线BC下方的抛物线上一动点,求△CPB的面积最大时点P的坐标;(3)若M是抛物线上一点,且∠MCB=∠ABC,请直接写出点M的坐标.答案解析部分1.【答案】D【知识点】中心对称及中心对称图形【解析】【解答】解:A.不是中心对称图形,故本选项不合题意;B.不是中心对称图形,故本选项不合题意;C.不是中心对称图形,故本选项不合题意;D.是中心对称图形,故本选项符合题意.故答案为:D.【分析】根据中心对称图形的定义逐项判断即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学答案 第1页 共5页
河北区2019-2020学年度第一学期期末九年级质量检测
数 学 答 案
本试卷满分100分 一、选择题:本大题共10个小题,每小题3分,共30分﹒
题号 1 2 3 4 5 6 7 8 9 10
答案
B A B
C
D C D B C
C
二、填空题:本大题共8个小题,每小题3
分,共24分.
11 . 2 ; 12 . ﹣2 ; 13. 100° ; 14. 16︰81 ;
15. 2x <−或01x << ;16. ﹣2 ; 17.
83
π− ; 18. 1或1.75或2.25.
三、解答题:本大题共6个小题,共46分.
19.(本小题满分5分)
解:(1)画树状图为:
共有12种可能的结果,其中摸出的球上的数字之和小于5的情况有6种, 所以P (小王)=61212
=;…… 3分 (2)不同意,理由如下:
∵P (小王)12=,P (小李)11122
=−=, ∴规则是公平的.……5分
20.(本小题满分6分)
解:(1)∵AG ⊥BC ,AF ⊥DE ,
∴∠AFE =∠AGC =90°,……1分
∵∠EAF =∠GAC ,
∴∠AED =∠ACB ,……2分
九年级数学答案 第2页 共5页
∵∠EAD =∠BAC ,∴△ADE ∽△ABC ;……4分
(2)由(1)可得△ADE ∽△ABC ,
又∵AG ⊥BC 于点G ,AF ⊥DE 于点F , ∴△ADE 与△ABC 的周长之比=
AF AG =35.……6分
21.(本小题满分7分)
解:(1)把A (﹣1,m ),B (n ,﹣1)分别代入2y x −=
得2m −=−,2n −=−,
∴2m =,2n =,……2分
∴A 点坐标为(﹣1,2),B 点坐标为(2,﹣1), 把A (﹣1,2),B (2,﹣1)代入y kx b =+ 得221k b k b −+= +=− ,解得11
k b =− = ,……4分 ∴这个一次函数的表达式为1y x =−+;……5分
(2)设直线AB 交y 轴于P 点,如图,
当0x =时,1y =,所以P 点坐标为(0,1), ∴S △OAB =S △AOP +S △BOP =11311+12=
222××××;……7分 22.(本小题满分8分)
(1)解:∵AE =AD
∴∠AED =∠ADE .……1分
∵∠BAD=34°,
∴∠ADC ()1=18034732×°−°=°,……2分
34.BCD BAD ∠=∠=°
∴73.B D ∠=∠=°……3分
∵,OC OB =
∴73.OCB B ∠=∠=°……4分
∴733439OCD OCB BCD ∠=∠−∠=°−°=°;……5分
(2)如图,连接.OD
∵34BAD ∠=°,
∴268.BOD BAD ∠=∠=°……6分
∵,OB OD =
∴56,OBD ODB ∠=∠=°……7分
∵DF 是O ⊙的切线,
∴.OD DF ⊥
∴90.ODF ∠=°
∴905634.BDF ODF ODB ∠=∠−∠=°−°=°……8分
23.(本小题满分10分)
解:(1)如图1,延长ED 交AG 于点H ,
∵点O 是正方形ABCD 两对角线的交点,
∴OA =OD ,OA ⊥OD ,
∵OG =OE ,
在△AOG 和△DOE 中,
90OA OD AOG DOE OG OE
= ∠=∠=° = , ∴△AOG ≌△DOE ,……3分
∴∠AGO =∠DEO ,……4分
∵∠AGO +∠GAO =90°,
∴∠GAO +∠DEO =90°,……5分
∴∠AHE =90°,
即DE ⊥AG ;……6分
(2)在旋转过程中,∠OAG ′成为直角有两种情况:
(Ⅰ)α由0°增大到90°过程中,当∠OAG ′=90°时,
∵OA =OD =OG =OG ′,
∴∠AG ′O =30°,
∵OA ⊥OD ,OA ⊥AG ′,
∴OD ∥AG ′,
∴∠DOG ′=∠AG ′O =30°,
即30α=°;……8分
(Ⅱ)α由90°增大到180°过程中,当∠OAG ′=90°时,
同理可求∠BOG ′=30°,
∴18030150α=°−°=°.……10分
综上所述,当∠OAG ′=90°时,30α=°或150°.
24.(本小题满分10分)
解:(1)∵抛物线2y x bx c =−++经过点A 、B 、C ,把A (﹣1,0),C (0,3)代入
解析式得,
103b c c −−+= =
,
解得b =2,c =3.
∴该抛物线解析式为:2
23y x x =−++.……3分
(2)令2230x x −++=,
解得11x =−,23x =,
即B (3,0),
设直线BC 的解析式为'y kx b =+,
则''330b k b = += ,解得:'13k b =− = , 故直线BC 的解析式为3y x =−+;……5分
∴设P (t ,3﹣t ),
∴D (t ,223t t −++),
∴PD =()()
2233t t t −++−−
=23t t −+ =23924
t −−+ , ∴PD 最大值94
.……7分 (3)CN +MN +MB
N 坐标为(1
,3,M
,0).……10分。