2018-2019学年北京市朝阳区高一(下)期末数学试卷
2023-2024学年北京市朝阳区高一下学期期末考试数学试卷+答案解析
2023-2024学年北京市朝阳区高一下学期期末考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数z满足,则()A. B. C. D.2.已知向量,,则()A. B. C.3 D.53.如图,八面体的每个面都是正三角形,并且4个顶点A,B,C,D在同一平面内,若四边形ABCD是边长为2的正方形,则这个八面体的表面积为()A.8B.16C.D.4.已知m,n是平面外的两条不同的直线,若,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.在中,,,,则()A. B. C. D.6.李华统计了他爸爸2024年5月的手机通话明细清单,发现他爸爸该月共通话60次,他按每次通话时间长短进行分组每组为左闭右开的区间,画出了如图所示的频率分布直方图.则每次通话时长不低于5分钟且小于15分钟的次数为()A.18B.21C.24D.277.已知向量,不共线,,,若与同向,则实数t的值为()A. B. C.3 D.或38.近年来,我国国民经济运行总体稳定,延续回升向好态势.下图是我国2023年4月到2023年12月规模以上工业增加值同比增长速度以下简称增速统计图.注:规模以上工业指年主营业务收入2000万元及以上的工业企业.下列说法正确的是()A.4月,5月,6月这三个月增速的方差比4月,5月,6月,7月这四个月增速的方差大B.4月,5月,6月这三个月增速的平均数比4月,5月,6月,7月这四个月增速的平均数小C.连续三个月增速的方差最大的是9月,10月,11月这三个月D.连续三个月增速的平均数最大的是9月,10月,11月这三个月9.在梯形ABCD中,,,,,,则与夹角的余弦值为()A. B. C. D.10.已知,,若动点P,Q与点A,M共面,且满足,,则的最大值为()A.0B.C.1D.2二、填空题:本题共6小题,每小题5分,共30分。
2018年北京市朝阳区初一(上)期末数学试卷含答案
A, B两点,它们所表示的两个有理数互为..相.反.数.,则关于原
A.在点 A 的左侧 C.在点 B 的右侧
B .与线段 AB的中点重合 D .与点 A或点 B 重合
3.下列各式中结果为负数的是
A. ( 3)
B
.3
C
. ( 3) 2
D
. 32
4.已知 x 2 是方程 x 4a 10 的解,则 a 的值是
5⊕ 3= 20,写出你定
义的运算: m⊕ n=
(用含 m, n 的式子表示).
25.自 2014 年 5 月 1 日起,北京市居民使用自来水实施阶梯水价,具体标准如下表:
阶梯
户年用水量 ( m3)
水价 (元 /m3)
水费
分类价格(元 /m3 )
水资源费
污水处理费
第一阶梯 0~180(含)
5
2.07
其中可用“两点确定一条直线”来解释的现象有
.(填序号)
13.下面的框图表示了小明解方程 5( x 3) x 3 的流程:
其中,步骤“③”的依据是
.
14.如图,在 3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或
汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上
的 3 个数之和都相等,则这个方阵图中
x 的值为
.
5( x 3) x 3
①
5( x 3) x 3 0
②
6( x 3) 0
④③
x3 0
第 14 题图
第 15 题图
15.如图, 某海域有三个小岛 A,B,O,在小岛 O处观测到小岛 A 在它北偏东 62°的方向上,
观测到小岛 B 在它南偏东 38° 12'的方向上, 则∠ AOB的补角的度数是
北京市朝阳区高三年级期2022学年数学统一考试含答案
北京市朝阳区2022-2022学年度高三年级第一学期统一考试数学试卷(文史类)2022.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知集合{|(1)0,}A x x x x =-<∈R ,1{|2,}2B x x x =<<∈R ,那么集合A B = A.∅B .1{|1,}2x x x <<∈RC .{|22,}x x x -<<∈RD .{|21,}x x x -<<∈R 2.下列四个函数中,在其定义域上既是奇函数又是单调递增函数的是A .1y x =- B .tan y x =C .3y x =D .2y x=-3. 已知3sin 5x =,则sin 2x 的值为A . 1225 B .2425 C .1225或1225- D .2425或2425-4. 设x ∈R 且0x ≠,则“1x >”是“1+2x x>”成立的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5. 设m ,n 是两条不同的直线,α,β是两个不同的平面.下列命题正确的是A .若,,m n m n αβ⊂⊂⊥,则αβ⊥ B .若//,,//m n αβαβ⊥,则 m n ⊥C .若,,//m n αβαβ⊥⊥,则//m nD .若,,m n m αβαβ⊥=⊥ ,则n β⊥6. 已知三角形ABC 外接圆O 的半径为1(O 为圆心),且OB OC +=0 , ||2||OA AB =,则CA BC ⋅等于( )A .154-B .34-C .154D .347. 已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数()1()()2g x f f x =-的零点个数是A .4 B .3 C .2 D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是()A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 设平面向量,若//,则y = .10. 已知角A 为三角形的一个内角,且3cos 5A =,sin A = . cos 2A = . 11. 已知 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 .12. 设各项均为正数的等比数列{}n a 的前n 项和为n S ,若23=a ,245S S =,则1a 的值为,4S 的值为.13.已知函数221,0,()(1)2,0,xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上具有单调性,则实数m 的取值范围是.14. 《九章算术》是我国古代一部重要的数学著作.书中有如下问题:“今有良马与驽马发长安,至齐。
北京市朝阳区2018-2019学年八年级(上)期末数学试卷及答案
2018-2019学年北京市朝阳区初二(上)期末数学及答案一.选择题(共8小题,满分24分)1. 画△ABC的边AB上的高,下列画法中,正确的是()【答案】D【解析】试题分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解:过点C作边AB的垂线段,即画AB边上的高CD,所以画法正确的是D.故选:D.考点:三角形的角平分线、中线和高.2.下列各式属于最简二次根式的是()A. B. C. D.【答案】B【解析】试题解析:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选B.3.若分式的值为0,则x的值是()A. 2或﹣2B. 2C. ﹣2D. 0【答案】A【解析】【分析】直接利用分式的值为零则分子为零进而得出答案.【详解】∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.4.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.详解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选B.点睛:此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.5.以下图形中,不是轴对称图形的是()A. B. C. D.【答案】D【解析】试题分析:A、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;B、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;C、沿一条直线对折后可以重合,是轴对称图形,故本选项错误;D、沿任何一条直线对折后都不能重合,不是轴对称图形,故本选项正确.故选:D.点睛:本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则( )A. ∠A>∠B>∠CB. ∠A>∠B=∠CC. ∠B>∠C>∠AD. ∠B=∠C>∠A【答案】B【解析】【分析】将∠A、∠B、∠C统一单位后比较即可.【详解】∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选B.【点睛】本题考查了度、分、秒的转化计算,比较简单,注意以60为进制即可.7.下列各式变形中,是因式分解的是()A. a2﹣2ab+b2﹣1=(a﹣b)2﹣1B. x4﹣1=(x2+1)(x+1)(x﹣1)C. (x+2)(x﹣2)=x2﹣4D. 2x2+2x=2x2(1+)【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】A选项:它的结果不是乘积的形式,不是因式分解,故是错误的;B选项:x4﹣1=(x2+1)(x+1)(x﹣1)结果是乘积形式,是因式分解,故是正确的;C选项:(x+2)(x﹣2)=x2﹣4中结果不是乘积的形式,不是因式分解,故是错误的;D选项:2x2+2x=2x2(1+)结果不是整式乘积的形式,不是因式分解,故是错误的;故选:B.【点睛】考查了因式分解的定义,理解因式分解的定义(把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式)是解题的关键。
北京市朝阳区2018-2019学年高一上期末数学试卷含答案解析
2018-2019学年北京市朝阳区高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组中的两个集合M和N,表示同一集合的是()A.M={π},N={3.14159} B.M={2,3},N={(2,3)}C.M={x|﹣1<x≤1,x∈N},N={1} D.,2.若a>b,则下列命题成立的是()A.ac>bc B.C.D.ac2≥bc23.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数A.1.2 B.1.3 C.1.4 D.1.54.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?5.给定函数①,②,③y=|x2﹣2x|,④,其中在区间(0,1)上单调递减的函数序号是()A.①④B.②④C.②③D.①③6.已知a=,b=20.3,c=0.30.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a7.函数的图象的大致形状是( )A .B .C .D .8.某苗圃基地为了解基地内甲、乙两块地种植同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组树苗高度的数据,对两块地抽取树苗的高度的平均数甲,乙和方差进行比较,下面结论正确的是( )A .甲>乙,乙地树苗高度比甲地树苗高度更稳定B .甲<乙,甲地树苗高度比乙地树苗高度更稳定C .甲<乙,乙地树苗高度比甲地树苗高度更稳定D .甲>乙,甲地树苗高度比乙地树苗高度更稳定9.如图是王老师锻炼时所走的离家距离(S )与行走时间(t )之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是( )A .B .C .D .10.已知函数f(x)=a(x﹣a)(x+a+3),g(x)=2x﹣2,若对任意x∈R,总有f(x)<0或g(x)<0成立,则实数a的取值范围是()A.(﹣∞,﹣4)B.[﹣4,0)C.(﹣4,0)D.(﹣4,+∞)二、填空题:本大题共6小题,每小题5分,共30分.11.已知函数则的值是.12.从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=.若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.13.已知0<x<1.5,则函数y=4x(3﹣2x)的最大值为.14.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为360颗,以此实验数据1000为依据可以估计出该不规则图形的面积为平方米.(用分数作答)15.若函数的图象关于y轴对称,则a=.16.关于函数有以下四个命题:①对于任意的x∈R,都有f(f(x))=1;②函数f(x)是偶函数;③若T为一个非零有理数,则f(x+T)=f(x)对任意x∈R恒成立;④在f(x)图象上存在三个点A,B,C,使得△ABC为等边三角形.其中正确命题的序号是.三、解答题:本大题共4小题,共40分.17.已知函数的定义域为集合A,函数g(x)=lg(﹣x2+2x+m)的定义域为集合B.(Ⅰ)当m=3时,求A∩∁R B;(Ⅱ)若A∩B={x|﹣1<x<4},求实数m的值.18.空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个理得到如图条形图:(1)估计该城市一个月内空气质量类别为良的概率;(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.19.已知定义域为R的单调减函数f(x)是奇函数,当x>0时,.(Ⅰ)求f(0)的值;(Ⅱ)求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围.20.定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),都有f(kx)=kf(x)(k≥2,k∈N*)成立,则称f(x)为k阶伸缩函数.(Ⅰ)若函数f(x)为二阶伸缩函数,且当x∈(1,2]时,,求的值;(Ⅱ)若函数f(x)为三阶伸缩函数,且当x∈(1,3]时,,求证:函数在(1,+∞)上无零点;(Ⅲ)若函数f(x)为k阶伸缩函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,k n+1](n∈N*)上的取值范围.2018-2019学年北京市朝阳区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组中的两个集合M和N,表示同一集合的是()A.M={π},N={3.14159} B.M={2,3},N={(2,3)}C.M={x|﹣1<x≤1,x∈N},N={1} D.,【考点】集合的相等.【分析】根据两个集合相等,元素相同,排除A;根据两个集合相等,元素相同,排除B先解集合M,然后判断元素是否相同,排除C先化简集合N,然后根据集合元素的无序性,选择D【解答】解:A:M={π},N={3.14159},因为π≠3.14159,故元素不同,集合也不同,故排除B:M={2,3},N={(2,3)},因为M的元素为2和3,而N的元素为一个点(2,3),故元素不同,集合不同,故排除C:M={x|﹣1<x≤1,x∈N},N={1},由M={x|﹣1<x≤1,x∈N}得,M={0,1},故两个集合不同,故排除D:∵∴=,根据集合元素的无序性可以判断M=N,故选择D故答案为D【点评】本题考查两个集合相等的条件,涉及到元素相同以及集合元素的三个性质:无序性,互异性,确定性,为基础题2.若a>b,则下列命题成立的是()A.ac>bc B.C.D.ac2≥bc2【考点】不等式的基本性质.【专题】计算题.【分析】通过给变量取特殊值,举反例可得A、B、C都不正确,对于a>b,由于c2≥0,故有ac2≥bc2,故D成立.【解答】解:∵a>b,故当c=0时,ac=bc=0,故A不成立.当b=0 时,显然B、C不成立.对于a>b,由于c2≥0,故有ac2≥bc2,故D成立.故选D.【点评】本题主要考查不等式与不等关系,不等式性质的应用,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于基础题.3.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数A.1.2 B.1.3 C.1.4 D.1.5【考点】二分法求方程的近似解.【专题】应用题.【分析】由二分法的定义进行判断,根据其原理﹣﹣零点存在的区间逐步缩小,区间端点与零点的值越越接近的特征选择正确选项【解答】解:由表中数据中结合二分法的定义得零点应该存在于区间(1.4065,1.438)中,观察四个选项,与其最接近的是C,故应选C【点评】本题考查二分法求方程的近似解,求解关键是正确理解掌握二分法的原理与求解步骤,根据其原理得出零点存在的区间,找出其近似解.属于基本概念的运用题4.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4?B.k>5?C.k>6?D.k>7?【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 1/第一圈2 4 是第二圈3 11 是第三圈4 26 是第四圈5 57 否故退出循环的条件应为k>4故答案选A.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5.给定函数①,②,③y=|x 2﹣2x|,④,其中在区间(0,1)上单调递减的函数序号是( )A .①④B .②④C .②③D .①③【考点】函数单调性的判断与证明.【专题】函数思想;综合法;函数的性质及应用.【分析】根据增函数、减函数的定义,对数函数的单调性,二次函数的单调性,以及指数函数的单调性即可判断每个函数在(0,1)上的单调性,从而找出正确选项.【解答】解:①y=,x 增大时,增大,即y 增大;∴该函数在(0,1)上单调递增;②,x 增大时,x+1增大,减小;∴该函数在(0,1)上单调递减;③;∴x ∈(0,1)时,y=﹣x 2+2x ,对称轴为x=1;∴该函数在(0,1)上单调递增;④,∴指数函数在(0,1)上单调递减;∴在区间(0,1)上单调递减的函数序号是②④.故选:B .【点评】考查增函数、减函数的定义,根据单调性定义判断函数单调性的方法,对数函数的单调性,含绝对值函数的处理方法:去绝对值号,二次函数的单调性,以及指数函数的单调性.6.已知a=,b=20.3,c=0.30.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a【考点】不等关系与不等式.【专题】不等式的解法及应用.【分析】利用指数函数的单调性即可判断出.【解答】解:∵,∴b >c >a .故选A .【点评】熟练掌握指数函数的单调性是解题的关键.7.函数的图象的大致形状是( )A .B .C .D .【考点】函数的图象.【专题】数形结合.【分析】先利用绝对值的概念去掉绝对值符号,将原函数化成分段函数的形式,再结合分段函数分析位于y 轴左右两侧所表示的图象即可选出正确答案.【解答】解:∵y==当x >0时,其图象是指数函数y=a x 在y 轴右侧的部分,因为a >1,所以是增函数的形状,当x <0时,其图象是函数y=﹣a x 在y 轴左侧的部分,因为a >1,所以是减函数的形状, 比较各选项中的图象知,C 符合题意故选C .【点评】本题考查了绝对值、分段函数、函数的图象与图象的变换,培养学生画图的能力,属于基础题.8.某苗圃基地为了解基地内甲、乙两块地种植同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组树苗高度的数据,对两块地抽取树苗的高度的平均数甲,乙和方差进行比较,下面结论正确的是( )A .甲>乙,乙地树苗高度比甲地树苗高度更稳定B .甲<乙,甲地树苗高度比乙地树苗高度更稳定C .甲<乙,乙地树苗高度比甲地树苗高度更稳定D .甲>乙,甲地树苗高度比乙地树苗高度更稳定【考点】茎叶图.【专题】对应思想;定义法;概率与统计.【分析】根据茎叶图,计算甲、乙的平均数,再根据数据的分布情况与方差的概念,比较可得答案.【解答】解:根据茎叶图有:①甲地树苗高度的平均数为=28cm,乙地树苗高度的平均数为=35cm,∴甲地树苗高度的平均数小于乙地树苗的高度的平均数;②甲地树苗高度分布在19~41之间,且成单峰分布,且比较集中在平均数左右,乙地树苗高度分布在10~47之间,不是明显的单峰分布,相对分散些;∴甲地树苗高度与乙地树苗高度比较,方差相对小些,更稳定些;故选:B.【点评】本题考查了利用茎叶图估计平均数与方差的应用问题,关键是正确读出茎叶图,并分析数据,是基础题.9.如图是王老师锻炼时所走的离家距离(S)与行走时间(t)之间的函数关系图,若用黑点表示王老师家的位置,则王老师行走的路线可能是()A.B.C.D.【考点】函数的图象.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得在中间一段时间里,他到家的距离为定值,故他所走的路程是一段以家为圆心的圆弧,结合所给的选项得出结论.【解答】解:根据王老师锻炼时所走的离家距离(S)与行走时间(t)之间的函数关系图,可得在中间一段时间里,他到家的距离为定值,故他所走的路程是一段以家为圆心的圆弧,结合所给的选项,故选:C.【点评】本题主要函数的解析式表示的意义,函数的图象特征,属于中档题.10.已知函数f(x)=a(x﹣a)(x+a+3),g(x)=2x﹣2,若对任意x∈R,总有f(x)<0或g(x)<0成立,则实数a的取值范围是()A.(﹣∞,﹣4)B.[﹣4,0)C.(﹣4,0)D.(﹣4,+∞)【考点】函数的值.【专题】函数的性质及应用.【分析】由题意可知x<1时,g(x)<0成立,进而得到a(x+a)(x﹣2a+1)<0对x≥1均成立,得到a满足的条件,求解不等式组可得答案.【解答】解:由g(x)=2x﹣2<0,得x<1,故对x≥1时,g(x)<0不成立,从而对任意x≥1,f(x)<0恒成立,由于a(x﹣a)(x+a+3)<0对任意x≥1恒成立,如图所示,则必满足,解得﹣4<a<0.则实数a的取值范围是(﹣4,0).故选:C.【点评】本题考查了函数的值,考查了不等式的解法,体现了恒成立思想的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.11.已知函数则的值是﹣2.【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】将x=代入函数的表达式,求出函数值即可.【解答】解:f()==﹣2,故答案为:﹣2.【点评】本题考查了求函数值问题,考查分段函数以及对数函数的性质,是一道基础题.12.从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a=0.03.若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为3.【考点】频率分布直方图.【专题】概率与统计.【分析】欲求a,可根据直方图中各个矩形的面积之和为1,列得一元一次方程,解出a,欲求选取的人数,可先由直方图找出三个区域内的学生总数,及其中身高在[140,150]内的学生人数,再根据分层抽样的特点,代入其公式求解.【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为×10=3人.故答案为:0.03,3.【点评】本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的,都等于.13.已知0<x<1.5,则函数y=4x(3﹣2x)的最大值为.【考点】二次函数的性质.【专题】函数的性质及应用.【分析】将二次函数进行配方,根据二次函数的图象和性质进行求值即可.【解答】解:∵y=4x(3﹣2x)=﹣8x2+12x=﹣8(x﹣)2+,∴当x=时,函数取得最大值,故答案为:.【点评】本题主要考查二次函数的图象和性质,利用配方得到函数的对称轴是解决二次函数的关键.14.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为360颗,以此实验数据1000为依据可以估计出该不规则图形的面积为平方米.(用分数作答)【考点】模拟方法估计概率.【专题】计算题;方程思想;综合法;概率与统计.【分析】根据几何概型的意义进行模拟试验计算不规则图形的面积,利用面积比可得结论.【解答】解:∵向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为360颗,记“黄豆落在正方形区域内”为事件A,∴P(A)==,=平方米,∴S不规则图形故答案为:.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.15.若函数的图象关于y轴对称,则a=.【考点】函数的图象.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得函数f(x)为偶函数,函数f(x)的定义域关于原点对称,从而求得a 的值.【解答】解:由于函数的图象关于y轴对称,故该函数为偶函数,故函数f(x)的定义域关于原点对称,故a=﹣,故答案为:﹣.【点评】本题主要考查偶函数的图象特征,偶函数的定义域关于原点对称,属于基础题.16.关于函数有以下四个命题:①对于任意的x∈R,都有f(f(x))=1;②函数f(x)是偶函数;③若T为一个非零有理数,则f(x+T)=f(x)对任意x∈R恒成立;④在f(x)图象上存在三个点A,B,C,使得△ABC为等边三角形.其中正确命题的序号是①②③④.【考点】命题的真假判断与应用;分段函数的应用.【专题】函数思想;函数的性质及应用;简易逻辑.【分析】①根据函数的对应法则,可得不管x是有理数还是无理数,均有f(f(x))=1;②根据函数奇偶性的定义,可得f(x)是偶函数;③根据函数的表达式,结合有理数和无理数的性质;④取x1=﹣,x2=0,x3=,可得A(,0),B(0,1),C(﹣,0),三点恰好构成等边三角形.【解答】解:对于①,若x是有理数,则f(x)=1,则f(1)=1,若x是无理数,则f(x)=0,则f(0)=1,即对于任意的x∈R,都有f(f(x))=1;故①正确,对于②,∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=﹣f(x),则函数f(x)是偶函数,故②正确;对于③,若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数,∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;对于④,取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0,∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.故答案为:①②③④.【点评】本题主要考查命题的真假判断,给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.三、解答题:本大题共4小题,共40分.17.已知函数的定义域为集合A,函数g(x)=lg(﹣x2+2x+m)的定义域为集合B.(Ⅰ)当m=3时,求A∩∁R B;(Ⅱ)若A∩B={x|﹣1<x<4},求实数m的值.【考点】对数函数的定义域;交集及其运算;交、并、补集的混合运算.【专题】计算题;集合思想;定义法;集合.【分析】(Ⅰ)先化简集合A,B,再根据补集和交集的定义即可求出;(Ⅱ)根据交集的定义即可求出m的范围.【解答】解:(Ⅰ)由的定义域得A={x|﹣1<x≤5}.当m=3时,B={x|﹣1<x<3},则∁R B={x|x≤﹣1或x≥3}.所以A∩∁R B={x|3≤x≤5}.(Ⅱ)因为A={x|﹣1<x≤5},A∩B={x|﹣1<x<4},所以有﹣42+2×4+m=0.解得m=8.此时B={x|﹣2<x<4},符合题意.所以m=8.【点评】本题考查了函数的定义域的求法和集合的基本运算,属于基础题.18.空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个某市年月日﹣月日(天)对空气质量指数进行检测,获得数据后整理得到如图条形图:(1)估计该城市一个月内空气质量类别为良的概率;(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.【考点】列举法计算基本事件数及事件发生的概率;分布的意义和作用.【专题】图表型;概率与统计.【分析】(1)由条形统计图可知,空气质量类别为良的天数为16天,从而可求此次监测结果中空气质量类别为良的概率;(2)样本中空气质量级别为三级的有4天,设其编号为a,b,c,d.样本中空气质量级别为四级的有2天,设其编号为e,f.列举出基本事件及符合条件的事件,根据概率公式求出相应的概率即可.【解答】解:(1)由条形统计图可知,空气质量类别为良的天数为16天,所以此次监测结果中空气质量类别为良的概率为.…(2)样本中空气质量级别为三级的有4天,设其编号为a,b,c,d.样本中空气质量级别为四级的有2天,设其编号为e,f.则基本事件有:(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15个.其中至少有一天空气质量类别为中度污染的有9个,∴至少有一天空气质量类别为中度污染的概率为.【点评】本题考查条形图,考查学生的阅读能力,考查列举法计算基本事件数及事件发生的概率,属于基础题.19.已知定义域为R的单调减函数f(x)是奇函数,当x>0时,.(Ⅰ)求f(0)的值;(Ⅱ)求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求实数k的取值范围.【考点】奇偶性与单调性的综合.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)利用定义域为R的函数f(x)是奇函数,求f(0)的值;(Ⅱ)求出x<0的解析式,即可求f(x)的解析式;(Ⅲ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,f(x)在R上是减函数,所以t2﹣2t>k﹣2t2.即3t2﹣2t﹣k>0对任意t∈R恒成立,即可求实数k的取值范围.【解答】解:(Ⅰ)因为定义域为R的函数f(x)是奇函数,所以f(0)=0.(Ⅱ)因为当x<0时,﹣x>0,所以.又因为函数f(x)是奇函数,所以f(﹣x)=﹣f(x).所以.综上,(Ⅲ)由f(t2﹣2t)+f(2t2﹣k)<0得f(t2﹣2t)<﹣f(2t2﹣k).因为f(x)是奇函数,所以f(t2﹣2t)<f(k﹣2t2).又f(x)在R上是减函数,所以t2﹣2t>k﹣2t2.即3t2﹣2t﹣k>0对任意t∈R恒成立.方法一令3t2﹣2t﹣k=0,则△=4+12k<0.由△<0,解得.方法二即k<3t2﹣2t对任意t∈R恒成立.令g(t)=3t2﹣2t,t∈R则∴故实数k的取值范围为.【点评】本题考查函数的解析式,考查不等式恒成立问题的解法,注意运用单调性和参数分离,以及函数的最值的求法,属于中档题.20.定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),都有f(kx)=kf(x)(k≥2,k∈N*)成立,则称f(x)为k阶伸缩函数.(Ⅰ)若函数f(x)为二阶伸缩函数,且当x∈(1,2]时,,求的值;(Ⅱ)若函数f(x)为三阶伸缩函数,且当x∈(1,3]时,,求证:函数在(1,+∞)上无零点;(Ⅲ)若函数f(x)为k阶伸缩函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,k n+1](n∈N*)上的取值范围.【考点】函数的值.【专题】证明题;转化思想;综合法;函数的性质及应用.【分析】(Ⅰ)当x∈(1,2]时,,从而f()=,由此能求出函数f(x)为二阶伸缩函数,由此能求出的值.(Ⅱ)当x∈(1,3]时,,由此推导出函数在(1,+∞)上无零点.(Ⅲ)当x∈(k n,k n+1]时,,由此得到,当x∈(k n,k n+1]时,f(x)∈[0,k n),由此能求出f(x)在(0,k n+1](n∈N*)上的取值范围是[0,k n).【解答】解:(Ⅰ)由题设,当x∈(1,2]时,,∴.∵函数f(x)为二阶伸缩函数,∴对任意x∈(0,+∞),都有f(2x)=2f(x).∴.(Ⅱ)当x∈(3m,3m+1](m∈N*)时,.由f(x)为三阶伸缩函数,有f(3x)=3f(x).∵x∈(1,3]时,.∴.令,解得x=0或x=3m,它们均不在(3m,3m+1]内.∴函数在(1,+∞)上无零点.(Ⅲ)由题设,若函数f(x)为k阶伸缩函数,有f(kx)=kf(x),且当x∈(1,k]时,f(x)的取值范围是[0,1).∴当x∈(k n,k n+1]时,.∵,所以.∴当x ∈(k n ,k n+1]时,f (x )∈[0,k n ). 当x ∈(0,1]时,即0<x ≤1,则∃k (k ≥2,k ∈N *)使,∴1<kx ≤k ,即kx ∈(1,k ],∴f (kx )∈[0,1).又,∴,即.∵k ≥2,∴f (x )在(0,k n+1](n ∈N *)上的取值范围是[0,k n ). 【点评】本题考查函数值的求法,考查函数值无零点的证明,是中档题,解题时要认真审题,注意函数性质的合理运用.2019年3月12日。
2018-2019学年北京市朝阳区高三(上)期中数学试卷(理科)
2018-2019学年北京市朝阳区高三(上)期中数学试卷(理科)副标题题号一二三总分得分一、选择题(本大题共8小题,共40.0分)1.已知集合A={x|x(x-2)≤0},B={x|0<x≤1},则A∩B=()A. {x|0≤x≤1}B. {x|0<x≤1}C. {x|0<x≤2}D. ?2.执行如图所示的程序框图,输出的s值为()A. -10B. -2C. 2D. 103.设平面向量=(1,1),=(1,2),=+k.若⊥,则实数k的值等于()A. B. C. 0 D.4.已知x>y>0,则下列不等关系中正确的是()A. cosx>cosyB. log3x<log3yC.D.5.“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6.已知函数f(x)=|2x-2|.若f(a)=f(b)(a≠b),则a+b的取值范围是()A. (-∞,1)B. (-∞,2)C. (1,+∞)D. (2,+∞)7.已知函数当时,方程的根的个数为()A. 1B. 2C. 3D. 48.将正奇数数列1,3,5,7,9,…依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),…,称(1,3)为第1组,(5,7,9)为第2组,依此类推,则原数列中的2019位于分组序列中()A. 第404组B. 第405组C. 第808组D. 第809组二、填空题(本大题共6小题,共30.0分))=______.9.已知,,则cosα=______;tan(π+α10.已知x,y满足,则z=x+2y的最大值为______.11.已知函数y=f(x)满足下列条件:①定义域为R;②函数y=f(x)在(0,1)上单调递增;③函数y=f(x)的导函数y=f'(x)有且只有一个零点,写出函数f(x)的一个表达式______.12.如图,在平行四边形ABCD中,E,F分别为边AB,BC的中点,连接CE、DF,交于点G,若=+(λ,μ∈R),则=______.13.海水受日月的引力,在一定的时候发生的涨落现象叫潮.港口的水深会随潮的变化而变化.某港口水的深度y(单位:米)是时刻t(0≤t≤24,单位:小时)的函数,记作y=f(t).下面是该港口某日水深的数据:t03691215182124y8.011.07.95.08.011.08.05.08.0经长期观察,曲线y=f(t)可以近似地看成函数y=Asinωt+b(A>0,ω>0)的图象.根据以上数据,函数y=f(t)的近似表达式为______.14.从标有数字a,b,c,d(a≤b≤c≤d,且a,b,c,d∈{1,2,3,…,9})的四个小球中任选两个不同的小球,将其上的数字相加,可得4种不同的结果;将其上的数字相乘,可得3种不同的结果.那么这4个小球上的不同的数字恰好有______个;试写出满足条件的所有组a,b,c,d______.三、解答题(本大题共6小题,共80.0分)15.设{a n}(n∈N*)是各项均为正数的等比数列,且a2=3,a4-a3=18.(Ⅰ)求{a n}的通项公式;(Ⅱ)若b n=a n+log3a n,求b1+b2+…+b n.16.已知函数f(x)=2sinxcosx+sin2x-cos2x.(Ⅰ)求f(x)的最小正周期及单调递增区间;(Ⅱ)若对任意,f(x)≤m(m为实数)恒成立,求m的最小值.17.在△ABC中,角A,B,C的对边分别为a,b,c,A=,tanB=-4,b=8.(Ⅰ)求a;(Ⅱ)求点A到边BC的距离.18.已知函数f(x)=2mx3-3x2+1(m∈R).(Ⅰ)当m=1时,求f(x)在区间[-1,2]上的最大值和最小值;(Ⅱ)求证:“m>1”是“函数f(x)有唯一零点”的充分而不必要条件.19.已知函数.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)试判断函数f(x)的单调性并证明;(Ⅲ)若函数f(x)在x=1处取得极大值,记函数f(x)的极小值为g(a),试求g(a)的最大值.20.设m,n为正整数,一个正整数数列a1,a2,…,a n满足m=a1≥a2≥…≥a n≥1.对i=1,2,…,m,定义集合B i={j∈{1,2,…,n}|a j≥i}.数列b1,b2,…,b m中的b i(i=1,2,…,m)是集合B i中元素的个数.(Ⅰ)若数列a1,a2,…,a n为5,3,3,2,1,1,写出数列b1,b2,…,b m;(Ⅱ)若n=2m,m≥3,b1,b2,…,b m为公比为的等比数列,求a1+a2+…+a n;(Ⅲ)对j=1,2,…,n,定义集合C j={i∈{1,2,…,m}|b i≥j},令c j是集合C j中元素的个数.求证:对j=1,2,…,n,均有a j=c j.答案和解析1.【答案】 B【解析】解:A={x|0≤x≤2},B={x|0<x≤1};∴A∩B={x|0<x≤1}.故选:B.可以求A,然后进行交集的运算即可.考查描述法的定义,以及交集的运算.2.【答案】 C【解析】解:根据程序框图的循环结构:在执行循环前:s=0,k=1,由于:k<4,执行下一次循环,则:k=2,s=-1+2=1,由于k<4,执行下一次循环,则:k=3,s=1-3=2,由于k<4,执行下一次循环,则:k=4,s=-2+4=2,由于k=5>4,则:输出s=2.故选:C.直接利用程序框图的循环结构,进一步利用k的范围,进一步求出结果.本题考查的知识要点:程序框图的循环结构的应用,主要考查学生的运算能力和转化能力,属于基础题型.3.【答案】 A【解析】解:;∵;∴;。
朝阳区2023-2024学年第一学期期末质量检测高三数学试卷及答案
北京市朝阳区2023-2024学年度第一学期期末质量检测高三数学 2024.1(考试时间120分钟 满分150分) 本试卷分为选择题40分和非选择题110分第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|03}A x x =≤≤,3{|log 1}B x x =<,则AB =(A )[0,3](B )[0,3)(C )(0,3)(D )(0,3](2)设a ∈R ,若复数(2i)(2i)a -+在复平面内对应的点位于虚轴上,则a =(A )4- (B )1- (C )1 (D )4(3)若01a <<,则(A )1132a a < (B )23a a < (C )11log log 23aa > (D )sin cos a a >(4)在ABC △中,若π1,cos 63a A C =∠==-,则c =(A(B )23(C)(D )83(5)在平面直角坐标系xOy 中,已知点(0,1),(2,1)A B ,动点P 满足0PA PB ⋅=,则||OP 的最大值为(A )1(B(C )2(D1(6)如图,在正方体1111ABCD A B C D -中,点E 是平面1111A B C D 内一点,且//EB 平面1ACD ,则1tan DED ∠的最大值为(A)2(B )1 (C(D )2(7)设函数()()2mf x x m x =+∈-R 的定义域为(1,2)-,则“30m -<≤”是“()f x 在区间(1,2)-内有且仅有一个零点”的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(8)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若30PEF ∠=,则sin PFE ∠= (A(B(C(D(9)根据经济学理论,企业生产的产量受劳动投入、资本投入和技术水平的影响,用Q 表示产量,L 表示劳动投入,K 表示资本投入,A 表示技术水平,则它们的关系可以表示为Q AK L αβ=,其中0,0,0,01,01A K L αβ>>><<<<.当A 不变,K 与L 均变为原来的2倍时,下面结论中正确的是 (A )存在12α<和12β<,使得Q 不变 (B )存在12α>和12β>,使得Q 变为原来的2倍 (C )若14αβ=,则Q 最多可变为原来的2倍 (D )若221+2αβ=,则Q 最多可变为原来的2倍 (10)在ABC △中,AB AC ==,当λ∈R 时,||AB BC λ+的最小值为4.若AM MB =,22sin cos AP AB AC θθ=+,其中ππ[,]63θ∈,则||MP 的最大值为(A )2 (B )4 (C)(D)第二部分(非选择题 共110分)二、填空题共5小题,每小题5分,共25分。
北京市朝阳区2019-2020学年度第一学期期末质量检测高一年级数学试卷(解析版)
北京市朝阳区2019-2020学年高一(上)期末数学试卷选择题:本大题共10小题,每小题5分,共50分.1.已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2} 2.已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1 3.下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则4.函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π5.已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=6.已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2 8.已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4} 9.已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c10.已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的.(横线上填“上方”或者“下方”)14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是.若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a的取值范围是.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是,从A点出发,以恒定的角速度ω转动,经过t秒转动到点B (x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值2019-2020学年北京市朝阳区高一(上)期末数学试卷参考答案与试题解析选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1}B.{0,1}C.{0,1,2}D.{﹣1,0,1,2}【分析】先分别求出集合A,B,再由并集定义能求出A∪B.【解答】解:∵集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0}={x∈Z|0≤x≤2}={0,1,2},∴A∪B={﹣1,0,1,2}.故选:D.【点评】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.(5分)已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1B.∀x≥﹣1,x2>1C.∀x<﹣1,x2>1D.∃x≤﹣1,x2≤1【分析】根据全称命题的否定是特称命题进行判断.【解答】解:命题是全称命题,则命题的否定为:∃x<﹣1,x2≤1,故选:A.【点评】本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.3.(5分)下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则【分析】利用不等式的基本性质,判断选项的正误即可.【解答】解:对于A,若a>b>0,则ac2>bc2,c=0时,A不成立;对于B,若a>b,则a2>b2,反例a=0,b=﹣2,所以B不成立;对于C,若a<b<0,则a2<ab<b2,反例a=﹣4,b=﹣1,所以C不成立;对于D,若a<b<0,则,成立;故选:D.【点评】本题考查命题的真假的判断与应用,不等式的基本性质的应用,是基本知识的考查.4.(5分)函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π【分析】利用二倍角的余弦公式求得y=cos2x,再根据y=A cos(ωx+φ)的周期等于T =,可得结论.【解答】解:∵函数y=cos2x﹣sin2x=cos2x,∴函数的周期为T==π,故选:B.【点评】本题主要考查三角函数的周期性及其求法,二倍角的余弦公式,利用了y=A sin (ωx+φ)的周期等于T=,属于基础题.5.(5分)已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=【分析】结合基本初等函数的性质分别求解选项中函数的值域即可判断.【解答】解:∵x>0,根据幂函数的性质可知,y=>0,不符合题意,∵﹣1≤sin x≤1,∴2+sin x>0恒成立,故选项B不符合题意,C:∵x2﹣x+1=,而f(x)=ln(x2﹣x+1),故值域中不恒为正数,符合题意,D:当x>0时,f(x)=2x﹣1>0恒成立,不符合题意,故选:C.【点评】本题主要考查了基本初等函数的值域的求解,属于基础试题.6.(5分)已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】先化简命题,再讨论充要性.【解答】解:由a,b,c∈R,知:∵a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(b﹣c)2+(a﹣c)2],∴“a=b=c”⇒“a2+b2+c2=ab+ac+bc”,“a2+b2+c2>ab+ac+bc”⇒“a,b,c不全相等”.“a=b=c”是“a2+b2+c2>ab+ac+bc”的既不充分也不必要条件.故选:D.【点评】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是基础题.7.(5分)通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2【分析】先把数据代入已知解析式,再利用对数的运算性质即可得出.【解答】解:根据题意得:lgE1=4.8+1.5×9 ①,lgE2=4.8+1.5×7 ②,①﹣②得lgE1﹣lgE2=3,lg()=3,所以,即E1=1000E2,故选:C.【点评】本题考查了对数的运用以及运算,熟练掌握对数的运算性质是解题的关键.8.(5分)已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3}B.{a|a>﹣3}C.{a|a=﹣3}D.{a|﹣3<a<4}【分析】作出函数f(x)与函数g(x)的图象,数形结合即可判断出a的取值范围【解答】解:在同一坐标系中作出函数f(x)与g(x)的示意图如图:因为f(x)=x+﹣a≥2﹣a=4﹣a(x>0),当且仅当x=2时取等号,而g(x)的对称轴为x=2,最大值为7,根据条件可知0<4﹣a<7,解得﹣3<a<4,故选:D.【点评】本题考查函数图象交点问题,涉及对勾函数图象在第一象限的画法,二次函数最值等知识点,属于中档题.9.(5分)已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c 的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c【分析】因为三个实数a,b,c都大于1,所以lga>0,lgb>0,lgc>0,原等式可化为lgalg+lgblg=0,分别分析选项的a,b,c的大小关系即可判断出结果.【解答】解:∵三个实数a,b,c都大于1,∴lga>0,lgb>0,lgc>0,∵(lga)2﹣2lgalgb+lgblgc=0,∴(lga)2﹣lgalgb+lgblgc﹣lgalgb=0,∴lga(lga﹣lgb)+lgb(lgc﹣lga)=0,∴lgalg+lgblg=0,对于A选项:若a=b=c,则lg=0,lg=0,满足题意;对于B选项:若a>b>c,则,0<<1,∴lg>0,lg<0,满足题意;对于C选项:若b>c>a,则0<<1,>1,∴lg<0,lg>0,满足题意;对于D选项:若b>a>c,则0<<1,0<<1,∴lg<0,lg<0,∴lgalg+lgblg <0,不满足题意;故选:D.【点评】本题主要考查了对数的运算性质,是中档题.10.(5分)已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19B.20C.21D.22【分析】要使x9﹣(x1+x2+x3+x4)取得最大值,结合题意,则需前8项最小,第9项最大,则第10项为第9项加1,由此建立不等式,求出第9项的最大值,进而得解.【解答】解:依题意,要使x9﹣(x1+x2+x3+x4)取得最大值,则x i=i(i=1,2,3,4,5,6,7,8),且x10=x9+1,故,即,又2×292+2×29﹣1815=﹣75<0,2×302+2×30﹣1815=45>0,故x9的最大值为29,∴x9﹣(x1+x2+x3+x4)的最大值为29﹣(1+2+3+4)=19.故选:A.【点评】本题考查代数式最大值的求法,考查逻辑推理能力及创新意识,属于中档题.二.填空题:本大题共6小题,每空5分,共30分.11.(5分)计算sin330°=﹣.【分析】所求式子中的角变形后,利用诱导公式化简即可得到结果.【解答】解:sin330°=sin(360°﹣30°)=﹣sin30°=﹣.故答案为:﹣【点评】此题考查了诱导公式的作用,熟练掌握诱导公式是解本题的关键.12.(5分)若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是[﹣2,2].【分析】根据集合A的意义,利用△≤0求出实数a的取值范围.【解答】解:集合A={x|x2﹣ax+2<0}=∅,则不等式x2﹣ax+2<0无解,所以△=(﹣a)2﹣4×1×2≤0,解得﹣2≤a≤2,所以实数a的取值范围是[﹣2,2].故答案为:[﹣2,2].【点评】本题考查了一元二次不等式的解法与应用问题,是基础题.13.(5分)已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的上方.(横线上填“上方”或者“下方”)【分析】求出点C1,M的纵坐标,作差后利用基本不等式即可比较大小,进而得出结论.【解答】解:依题意,A1(x1,log2x1),B1(x2,log2x2),则,则=,故点C1在线段A1B1中点M的上方.故答案为:上方.【点评】本题考查对数运算及基本不等式的运用,考查逻辑推理能力,属于基础题.14.(5分)给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是①②③.【分析】利用三函数的奇偶性、单调性、对称轴、图象的平移等性质直接求解.【解答】解:在①中,函数=cos2x是偶函数,故①正确;在②中,∵y=tan x在(﹣,)上单调递增,∴函数f(x)=tan2x在上单调递增,故②正确;在③中,函数图象的对称轴方程为:2x+=kπ+,k∈Z,即x=,k=0时,x=,∴直线x=是函数图象的一条对称轴,故③正确;在④中,将函数的图象向左平移单位,得到函数y=cos(2x+)的图象,故④错误.故答案为:①②③.【点评】本题考查命题真假的判断,考查三函数的奇偶性、单调性、对称轴、图象的平移等基础知识,考查运算求解能力,是中档题.15.(5分)已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1).若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a 的取值范围是{a|a≥0或a≤﹣1}.【分析】先求出对称点的坐标,再求出第二问的对立面,即可求解.【解答】解:因为点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1);A和A'中至多有一个点的横纵坐标满足不等式组,其对立面是A和A'中两个点的横纵坐标都满足不等式组,可得:且⇒a<0且﹣1<a<2⇒﹣1<a<0故满足条件的a的取值范围是{a|a≥0或a≤﹣1}.故答案为:(﹣1,1),{a|a≥0或a≤﹣1}.【点评】本题主要考查对称点的求法以及二元一次不等式组和平面区域之间的关系,属于基础题.16.(5分)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是A(r cosα,r sinα),从A点出发,以恒定的角速度ω转动,经过t 秒转动到点B(x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).【分析】由任意角三角函数的定义,A(r cosα,r sinα),根据题意∠BOx=ωt+α,进而可得点C的纵坐标y与时间t的函数关系式.【解答】解:由任意角三角函数的定义,A(r cosα,r sinα),若从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),则∠BOx=ωt+α,点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).故答案为:A(r cosα,r sinα),y=r sin(ωt+α).【点评】本题考查任意角三角函数的定义,三角函数解析式,属于中档题.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.(14分)已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;【分析】(Ⅰ)容易求出A={x|﹣1≤x≤6},然后进行补集的运算即可;(Ⅱ)根据A∪B=A可得出B⊆A,从而可讨论B是否为空集:B=∅时,m+1>2m﹣1;B≠∅时,,解出m的范围即可.【解答】解:(Ⅰ)A={x|﹣1≤x≤6},∴∁R A={x|x<﹣1或x>6},(Ⅱ)∵A∪B=A,∴B⊆A,∴①B=∅时,m+1>2m﹣1,解得m<2;②B≠∅时,,解得,∴实数m的取值范围为.【点评】本题考查了描述法的定义,一元二次不等式的解法,并集、补集的定义及运算,子集的定义,考查了计算能力,属于基础题.18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.【分析】(Ⅰ)直接利用三角函数的定义的应用和函数的关系式的应用求出结果.(Ⅱ)利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅲ)利用函数的定义域的应用求出函数的值域和最小值.【解答】解:(Ⅰ)若点在角α的终边上,所以,,故,所以tan2α===.f(α)==2.(Ⅱ)由于函数f(x)=sin2x﹣2=.所以函数的最小正周期为.(Ⅲ)由于,所以,所以当x=时,函数的最小值为.【点评】本题考查的知识要点:三角函数的定义的应用,三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.【分析】(Ⅰ)由已知,建立关于a的方程,解出即可;(Ⅱ)将a=2代入,利用取值,作差,变形,判号,作结论的步骤证明即可;(Ⅲ)问题转化为h(x)=2x2﹣3x+3a在(0,1)上有唯一零点,由二次函数的零点分布问题解决.【解答】解:(Ⅰ)由2f(1)=﹣f(﹣1)得,,解得a=﹣3;(Ⅱ)当a=2时,,设x1,x2∈(2,+∞),且x1<x2,则,∵x1,x2∈(2,+∞),且x1<x2,∴x2﹣x1>0,(x1﹣2)(x2﹣2)>0,∴f(x1)>f(x2),∴f(x)在(2,+∞)上单调递减;(Ⅲ),若函数g(x)在(0,1)上有唯一零点,即h(x)=2x2﹣3x+3a在(0,1)上有唯一零点(x=a不是函数h(x)的零点),且二次函数h(x)=2x2﹣3x+3a的对称轴为,若函数h(x)在(0,1)上有唯一零点,依题意,①当h(0)h(1)<0时,3a(3a﹣1)<0,解得;②当△=0时,9﹣24a=0,解得,则方程h(x)=0的根为,符合题意;③当h(1)=0时,解得,则此时h(x)=2x2﹣3x+1的两个零点为,符合题意.综上所述,实数a的取值范围为.【点评】本题考查函数单调性的证明及二次函数的零点分布问题,考查推理论证及运算求解能力,属于中档题.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值【分析】(Ⅰ)利用对数函数的性质可得,解出即可;(Ⅱ)根据题意,求得,依题意,在(0,1)上恒成立,由此得解;(Ⅲ)结合(Ⅱ)可知,,则只需求出的最大值即可.【解答】解:(Ⅰ)依题意,,则,解得﹣a<x<2﹣a,∴所求不等式的解集为(﹣a,2﹣a);(Ⅱ)由题意,2y=log2(3x+a),即f(x)的相关函数为,∵对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,∴当x∈(0,1)时,恒成立,由x+a>0,3x+a>0,a>0得,∴在此条件下,即x∈(0,1)时,恒成立,即(x+a)2<3x+a,即x2+(2a﹣3)x+a2﹣a<0在(0,1)上恒成立,∴,解得0<a≤1,故实数a的取值范围为(0,1].(Ⅲ)当a=1时,由(Ⅱ)知在区间(0,1)上,f(x)<g(x),∴,令,则,令μ=3x+1(1<μ<4),则,∴,当且仅当“”时取等号,∴|F(x)|的最大值为.【点评】本题考查对数函数的图象及性质,考查换元思想的运用,考查逻辑推理能力及运算求解能力,属于中档题.。
北京市朝阳区2018-2019高三数学期末考试(理科)试题(解析版)
北京市朝阳区2018-2019学年度第一学期期末质量检测高三年级数学试卷(理工类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合,,则A. B. C. D.【答案】D【解析】【分析】利用并集定义直接求解.【详解】集合A={x∈N|1≤x≤3}={1,2,3},B={2,3,4,5},∴A∪B={1,2,3,4,5}.故选:D.【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.设复数满足,则=A. B. C. 2 D.【答案】B【解析】【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】由(1﹣i)z=2i,得z,∴|z|.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.执行如图所示的程序框图,若输入的,则输出的=A. B. C. D.【答案】A【解析】【分析】根据框图的流程依次计算程序运行的结果,直到满足条件跳出循环,确定输出S的值【详解】模拟程序的运行,可得S=12,n=1执行循环体,S=10,n=2不满足条件S+n≤0,执行循环体,S=6,n=3不满足条件S+n≤0,执行循环体,S=0,n=4不满足条件S+n≤0,执行循环体,S=﹣8,n=5满足条件S+n≤0,退出循环,输出S的值为﹣8.故选:A.【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.在平面直角坐标系中,过三点的圆被轴截得的弦长为A. B. C. D.【答案】A【解析】【分析】利用待定系数法求出圆的一般方程,令y=0可得:x2﹣4x=0,由此即可得到圆被轴截得的弦长.【详解】根据题意,设过A、B、C的圆为圆M,其方程为x2+y2+Dx+Ey+F=0,又由A(4,4),B(4,0),C(0,4),则有,解可得:D=﹣4,E=﹣4,F=0,即圆M的方程为x2+y2﹣4x﹣4y=0,令y=0可得:x2﹣4x=0,解可得:x1=0,x2=4,即圆与x轴的交点的坐标为(0,0),(4,0),则圆被x轴截得的弦长为4;故选:A.【点睛】本题考查直线与圆的方程的应用,涉及待定系数法求圆的方程,关键是求出圆的方程.5.将函数的图象向右平移个单位后,图象经过点,则的最小值为A. B. C. D.【答案】B【解析】【分析】根据三角函数平移变换的规律得到向右平移φ(φ>0)个单位长度的解析式,将点带入求解即可.【详解】将函数y=sin2x的图象向右平移φ(φ>0)个单位长度,可得y=sin2(x﹣φ)=sin(2x﹣2φ),图象过点,∴sin(2φ),即2φ2kπ,或2kπ,k∈Z,即φ 或,k ∈Z ,∵φ>0,∴φ的最小值为. 故选:B .【点睛】本题主要考查了函数y =A sin (ωx +φ)的图象变换规律,考查计算能力,属于基础题. 6.设为实数,则是 “”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C 【解析】 【分析】 由“x <0”易得“”,反过来,由“”可得出“x <0”,从而得出“x <0”是“”的充分必要条件.【详解】若x <0,﹣x >0,则:;∴“x <0“是““的充分条件;若,则;解得x <0; ∴“x <0“是““的必要条件;综上得,“x <0”是“”的充分必要条件.故选:C .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件. 7.对任意实数,都有(且),则实数的取值范围是A. B. C. D.【答案】B【解析】【分析】由题意可得a>1且a≤e x+3对任意实数x都成立,根据指数函数的性质即可求出.【详解】∵log a(e x+3)≥1=log a a,∴a>1且a≤e x+3对任意实数x都成立,又e x+3>3,∴1<a≤3,故选:B【点睛】本题考查了对数的运算性质和函数恒成立的问题,属于中档题.8.以棱长为1的正方体各面的中心为顶点,构成一个正八面体,再以这个正八面体各面的中心为顶点构成一个小正方体,那么该小正方体的棱长为A. B. C. D.【答案】C【解析】【分析】利用正八面体与大小正方体的关系,即可得到结果.【详解】正方体C1各面中心为顶点的凸多面体C2为正八面体,它的中截面(垂直平分相对顶点连线的界面)是正方形,该正方形对角线长等于正方体的棱长,所以它的棱长a2;以C2各个面的中心为顶点的正方体为图形C3是正方体,正方体C3面对角线长等于C2棱长的,(正三角形中心到对边的距离等于高的),因此对角线为,所以a,3故选:【点睛】本题考查组合体的特征,抓住两个组合体主元素的关系是解题的关键,考查空间想象能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知数列为等差数列,为其前项的和.若,,则_______.【答案】【解析】【分析】运用等差数列的前n项和公式可解决此问题.【详解】根据题意得,2=6,∴=3 又=7,∴2d=7﹣3=4,∴d=2,=1,∴S=55+20=25,5故答案为:25.【点睛】本题考查等差数列的前n项和公式的应用.10.已知四边形的顶点A,B,C,D在边长为1的正方形网格中的位置如图所示,则____________.【答案】【解析】【分析】以A为坐标原点,以AC所在直线为x轴建立平面直角坐标系,分别求出的坐标,由数量积的坐标运算得答案.【详解】如图,以A为坐标原点,以AC所在直线为x轴建立平面直角坐标系,则A(0,0),B(4,2),C(7,0),D(3,﹣2),∴,,∴7×1+0×4=7.故答案为:7.【点睛】本题考查平面向量数量积的性质及其运算,合理构建坐标系是解题的关键,是基础的计算题.11.如图,在边长为1的正方形网格中,粗实线表示一个三棱锥的三视图,则该三棱锥的体积为_______________.【答案】【解析】【分析】由三视图还原几何体,该几何体为三棱锥,底面三角形ACB与侧面三角形APB为全等的等腰直角三角形,侧面PAB⊥侧面ACB,AB=4,PO=OC=2,由此即可得到结果.【详解】由三视图还原原几何体如图,该几何体为三棱锥,底面三角形ACB与侧面三角形APB为全等的等腰直角三角形,侧面PAB⊥侧面ACB,AB=4,PO=OC=2.侧面PAC与PBC为全等的等边三角形.则该三棱锥的体积为V=.故答案为:.【点睛】本题考查由三视图求体积,关键是由三视图还原原几何体,考查空间想象能力及运算能力,是中档题.12.过抛物线焦点的直线交抛物线于两点,分别过作准线的垂线,垂足分别为.若,则__________________.【答案】【解析】【分析】设直线AB的倾斜家为锐角θ,由|AF|=4|BF|,可解出cosθ的值,进而得出sinθ的值,然后利用抛物线的焦点弦长公式计算出线段AB的长,再利用|CD|=|AB|sinθ可计算出答案.【详解】设直线AB的倾斜角为θ,并设θ为锐角,由于|AF|=4|BF|,则有,解得,则,由抛物线的焦点弦长公式可得,因此,.故答案为:5.【点睛】本题考查抛物线的性质,解决本题的关键在于灵活利用抛物线的焦点弦长公式,属于中等题.13.2018年国际象棋奥林匹克团体赛中国男队、女队同时夺冠.国际象棋中骑士的移动规则是沿着3×2格或2×3格的对角移动.在历史上,欧拉、泰勒、哈密尔顿等数学家研究了“骑士巡游”问题:在格的黑白相间的国际象棋棋盘上移动骑士,是否可以让骑士从某方格内出发不重复地走遍棋盘上的每一格?图(一)给出了骑士的一种走法,它从图上标1的方格内出发,依次经过标2,3,4,5,6,,到达标64的方格内,不重复地走遍棋盘上的每一格,又可从标64的方格内直接走回到标1的方格内.如果骑士的出发点在左下角标50的方格内,按照上述走法,_____(填“能”或“不能”)走回到标50的方格内.若骑士限制在图(二)中的3×4=12格内按规则移动,存在唯一一种给方格标数字的方式,使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,,到达右下角标12的方格内,分析图(二)中A处所标的数应为____.【答案】(1). 能(2).【解析】【分析】根据题意,画出路线图,解判断是否能,再根据题意,结合题目中的数字,即可求出A处的数字.【详解】如图所示:如果骑士的出发点在左下角标50的方格内,按照上述走法,能走回到标50的方格内,如图所示:使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,…,到达右下角标12的方格,且路线是唯一的,故A处应该为8,故答案为:能,8【点睛】本题考查了合情推理的问题,考查了转化与化归思想,整体和部分的思想,属于中档题14.如图,以正方形的各边为底可向外作四个腰长为1的等腰三角形,则阴影部分面积的最大值是___________.【答案】【解析】【分析】设等腰三角形底角为,阴影面积为,根据正弦函数的图象与性质即可得到结果.【详解】设等腰三角形底角为,则等腰三角形底边长为高为,阴影面积为:,当时,阴影面积的最大值为故答案为:【点睛】本题考查平面图形的面积问题,考查三角函数的图象与性质,解题关键用等腰三角形底角为表示等腰三角形的底边与高.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在中,已知,(1)求的长;(2)求边上的中线的长.【答案】(1)(2)【解析】【分析】(1)利用同角关系得到,结合正弦定理即可得到的长;(2)在中求出,结合余弦定理即可得到边上的中线的长. 【详解】解:(1)由,,所以.由正弦定理得,,即.(2)在中,.由余弦定理得,,所以.所以.【点睛】本题考查正余弦定理的应用,考查推理及运算能力,属于中档题.16.某日A,B,C三个城市18个销售点的小麦价格如下表:(1)甲以B市5个销售点小麦价格的中位数作为购买价格,乙从C市4个销售点中随机挑选2个了解小麦价格.记乙挑选的2个销售点中小麦价格比甲的购买价格高的个数为,求的分布列及数学期望;(2)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A,B,C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).【答案】(1)分布列见解析,期望为1(2)C,A,B【解析】【分析】(1)由题意可得的可能取值为0,1,2.求出相应的概率值,即可得到的分布列及数学期望;(2)三个城市按照价格差异性从大到小排列为:C,A,B.【详解】解:(1)B市共有5个销售点,其小麦价格从低到高排列为:2450,2460,2500,2500,2500.所以中位数为2500,所以甲的购买价格为2500.C市共有4个销售点,其小麦价格从低到高排列为:2400,2470,2540,2580,故的可能取值为0,1,2.,,.所以分布列为所以数学期望.(2)三个城市按小麦价格差异性从大到小排序为:C,A,B【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.17.如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【答案】(1)见解析(2)(ⅰ)(ⅱ)点在点处时,有【解析】【分析】(1)取中点,证明四边形是平行四边形,可得从而得证;(2)(ⅰ)先证明平面以为原点建立空间直角坐标系,求出平面与平面的法向量,即可得到二面角的大小;(ⅱ)假设在线段上存在点,使得. 设,则.利用垂直关系,建立的方程,解之即可.【详解】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以.又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为.(ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有【点睛】本题考查向量法求二面角大小、线面平行的证明,考查满足线面垂直的点的位置的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想、数形结合思想,考查推理论论能力、空间想象能力,是中档题.18.已知函数.(Ⅰ)当时,求函数的极小值;(Ⅱ)当时,讨论的单调性;(Ⅲ)若函数在区间上有且只有一个零点,求的取值范围.【答案】(Ⅰ)(Ⅱ)详见解析(Ⅲ)【解析】【分析】(Ⅰ)由题意,当时,求得,得出函数的单调性,进而求解函数的极值;(Ⅱ)由,由,得或,分类讨论,即可得到函数的单调区间;(Ⅲ)由(1)和(2),分当和,分类讨论,分别求得函数的单调性和极值,即可得出相应的结论,进而得到结论.【详解】解:(Ⅰ)当时:,令解得,又因为当,,函数为减函数;当,,函数为增函数.所以,的极小值为.(Ⅱ).当时,由,得或.(ⅰ)若,则.故在上单调递增;(ⅱ)若,则.故当时,;当时,.所以在,单调递增,在单调递减.(ⅲ)若,则.故当时,;当时,.所以在,单调递增,在单调递减.(Ⅲ)(1)当时,,令,得.因为当时,,当时,,所以此时在区间上有且只有一个零点.(2)当时:(ⅰ)当时,由(Ⅱ)可知在上单调递增,且,,此时在区间上有且只有一个零点.(ⅱ)当时,由(Ⅱ)的单调性结合,又,只需讨论的符号:当时,,在区间上有且只有一个零点;当时,,函数在区间上无零点.(ⅲ)当时,由(Ⅱ)的单调性结合,,,此时在区间上有且只有一个零点.综上所述,.【点睛】本题主要考查了导数在函数中的综合应用问题,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.19.过椭圆W:的左焦点作直线交椭圆于两点,其中,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.过作轴的垂线分别交直线,于,.(Ⅰ)求点坐标和直线的方程;(Ⅱ)求证:.【答案】(Ⅰ),的方程为(Ⅱ)详见解析【解析】【分析】(Ⅰ)由题意可得直线的方程为.与椭圆方程联立方程组,即可求解B点坐标;(Ⅱ)设,,的方程为,联立方程组,根据根与系数的关系,求得,,进而得出点的纵坐标,化简即可证得,得到证明.【详解】(Ⅰ)由题意可得直线的方程为.与椭圆方程联立,由可求.(Ⅱ)当与轴垂直时,两点与,两点重合,由椭圆的对称性,.当不与轴垂直时,设,,的方程为().由消去,整理得.则,.由已知,,则直线的方程为,令,得点的纵坐标.把代入得.由已知,,则直线的方程为,令,得点的纵坐标.把代入得.把,代入到中,=.即,即..【点睛】本题主要考查了直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知是由正整数组成的无穷数列,对任意,满足如下两个条件:①是的倍数;②.(1)若,,写出满足条件的所有的值;(2)求证:当时,;(3)求所有可能取值中的最大值.【答案】(1)(2)见解析(3)85【解析】【分析】(1)根据满足的两个条件即可得到满足条件的所有的值;(2)由,对于任意的,有. 当时,成立,即成立;若存在使,由反证法可得矛盾;(3)由(2)知,因为且是的倍数,可得所有可能取值中的最大值.【详解】(1)的值可取.(2)由,对于任意的,有.当时,,即,即.则成立.因为是的倍数,所以当时,有成立.若存在使,依以上所证,这样的的个数是有限的,设其中最大的为.则,成立,因为是的倍数,故.由,得.因此当时,.(3)由上问知,因为且是的倍数,所以满足下面的不等式:,. 则,, ,,,,,,,,当时,这个数列符合条件.故所求的最大值为85.【点睛】本题考查了数列的有关知识,考查了逻辑推理能力,综合性较强.。
2020-2021学年北京市朝阳区高一(下)期末数学试卷
2020-2021学年北京市朝阳区高一(下)期末数学试卷试题数:21,总分:150(其中i是虚数单位),则z在复平面内对应的点的坐标1.(单选题,5分)已知复数z=1+ii是()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2.(单选题,5分)如图、在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,若AB=PD=3,AD=2,则该四棱锥的体积为()A.18B.12C.9D.63.(单选题,5分)一个袋子中有大小和质地相同的4个球,其中有2个红色球,2个绿色球,从袋中不放回地依次随机摸出2个球,则两个球颜色相同的概率是()A. 14B. 13C. 12D. 234.(单选题,5分)设α,β是两个不同的平面,n是平面α内的一条直线,则“n⊥β”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(单选题,5分)在△ABC中,√3asinB=3bcosA,则∠A=()A. 5π6B. 2π3C. π3D. π66.(单选题,5分)水稻是世界最重要的食作物之一,也是我国60%以上人口的主粮.以袁隆平院士为首的科学家研制成功的杂交水稻制种技术在世界上被誉为中国的“第五大发明”.育种技术的突破,杂交水稻的推广,不仅让中国人端稳饭碗,也为解决世界粮食短缺问题作出了巨大贡献.某农场种植的甲、乙两种水稻在面积相等的两块稻田中连续6年的产量(单位:kg)如表:品种第1年第2年第3年第4年第5年第6年甲900 920 900 850 910 920乙890 960 950 850 860 890根据以上数据,下面说法正确的是()A.甲种水稻产量的平均数比乙种水稻产量的平均数大B.甲种水稻产量的中位数比乙种水稻产量的中位数小C.甲种水稻产量的极差与乙种水稻产量的极差相等D.甲种水稻的产量比乙种水稻的产量稳定7.(单选题,5分)向量a⃗,b⃗⃗,e⃗,e2⃗⃗⃗⃗在正方形网格中的位置如图所示,若a⃗−b⃗⃗=λ e1⃗⃗⃗⃗+μ=()e2⃗⃗⃗⃗(λ,μ∈R),则λμA.3B. 13C.-3D. −138.(单选题,5分)某中学举办知识竞赛,共50人参加初试,成绩如表:95 90 85 80 75 70 65 60 60以下成绩(分)人数 1 4 6 5 4 6 7 8 9如果有40%的学生可以参加复试,则进入复试的分数线可以为()A.65B.70C.75D.809.(单选题,5分)在棱长为1的正方体ABCD-A 1B 1C 1D 1中,若点E 是棱AB 的中点,点M 是底面ABCD 内的动点,且满足A 1M⊥C 1E ,则线段AM 的长的最小值为( ) A. √55 B.2√55 C.1 D. √5210.(单选题,5分)已知不共线的平面向量 a ⃗ , b ⃗⃗ , c ⃗ 两两的夹角相等,且| a ⃗ |=1,| b ⃗⃗ |=2,| c ⃗ |=3,实数λ1,λ2,λ3∈[-1,1],则|λ1 a ⃗ +λ2 b ⃗⃗ +λ3 c ⃗ |的最大值为( ) A. √3 B.2 √3 C. √21 D.511.(填空题,5分)已知平面向量 a ⃗ =(2,k ), b ⃗⃗ =(3,2),且 a ⃗ ⊥ b ⃗⃗ ,则实数k=___ . 12.(填空题,5分)若复数z=a 2+a-2+(a 2-1)i 为纯虚数,则实数a 的值为 ___ .13.(填空题,5分)某班有42名学生,其中选考物理的学生有21人,选考地理的学生有14人,选考物理或地理的学生有28人,从该班任选一名学生,则该生既选考物理又选考地理的概率为 ___ .14.(填空题,5分)已知一组不全相等的样本数据的平均数为10,方差为2,现再加入一个新数10,则新样本数据的平均数 ___ ,方差 ___ .(填“变大”,“变小”,“不变”)15.(填空题,5分)已知等边△ABC 的边长为2,D 为边BC 的中点,点M 是AC 边上的动点,则 MD⃗⃗⃗⃗⃗⃗⃗•MC ⃗⃗⃗⃗⃗⃗⃗ 的最大值为 ___ ,最小值为 ___ . 16.(填空题,5分)已知△ABC 的三边长为连续的正整数,给出下列四个结论: ① 存在满足条件的三角形,使得三个内角中的最大角等于另外两个角的和; ② 存在满足条件的三角形,使得三个内角中的最大角大于另外两个角的和; ③ 存在满足条件的三角形,使得三个内角中的最大角等于最小角的2倍; ④ 存在满足条件的三角形,使得三个内角中的最大角等于最小角的3倍. 其中所有正确结论的序号是 ___ .17.(问答题,14分)在△ABC 中, b 2+c 2−√62bc =a 2 .(Ⅰ)求cosA 的值;(Ⅱ)若B=2A , b =√6 ,求a 的值.18.(问答题,14分)如图,在正方体ABCD-A1B1C1D1中,点E,F分别是棱BB1,DD1的中点.(Ⅰ)求证:BD || 平面AEF;(Ⅱ)求证:EF⊥平面ACC1A1;(Ⅲ)判断点C1是否在平面AEF内,并说明理由.19.(问答题,14分)某心理教育测评研究院为了解某市市民的心理健康状况,随机抽取了n位市民进行心理健康问卷调查,将所得评分(百分制)按研究院制定的心理测评评价标准整理,得到频率分布直方图.已知调查评分在[70,80)中的市民有200人.心理测评评价标准调查评分[0,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100] 心理等级 E D C B A (Ⅰ)求n的值及频率分布直方图中t的值;(Ⅱ)在抽取的心理等级为D的市民中,按照调查评分的分组,分为2层,通过分层随机抽样抽取3人进行心理疏导.据以往数据统计,经心理疏导后,调查评分在[40,50)的市民的心理等级转为B的概率为14,调查评分在[50,60)的市民的心理等级转为B的概率为13,假设经心理疏导后的等级转化情况相互独立,求在抽取的3人中,经心理疏导后至少有一人的心理等级转为B 的概率;(Ⅲ)该心理教育测评研究院建议该市管理部门设定预案:若市民心理健康指数的平均值不低于0.75,则只需发放心理指导资料,否则需要举办心理健康大讲堂.根据调查数据,判断该市是否需要举办心理健康大讲堂,并说明理由.(每组的每个数据用该组区间的中点值代替,心理健康指数=调查评分÷100)20.(问答题,14分)在锐角△ABC 中, A =π6,BC =√7 ,D ,E 分别是边AB ,AC 上的点.且DE=2.再从条件 ① 、条件 ② 、条件 ③ 中选择两个能解决下面问题的条件作为已知,并求,(Ⅰ)sinC 的值; (Ⅱ)∠BDE 的大小; (Ⅲ)四边形BCED 的面积. 条件 ① : AB =3√3 ; 条件 ② : cosB =√2114; 条件 ③ :EC=3.21.(问答题,14分)将平面直角坐标系中的一列点A 1(1,a 1),A 2(2,a 2),…,A n (n ,a n ),…记为|A n |,设f (n )= A n A n+1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ •j ,其中j 为与y 轴方向相同的单位向量.若对任意的正整数n ,都有f (n+1)>f (n ),则称{A n }为T 点列.(Ⅰ)判断 A 1(1,1),A 2(2,12),A 3(3,13),⋅⋅⋅,A n (n ,1n ),⋅⋅⋅ 是否为T 点列,并说明理由;(Ⅱ)若{A n }为T 点列,且a 2>a 1.任取其中连续三点A k ,A k+1,A k+2,证明△A k A k+1A k+2为钝角三角形;(Ⅲ)若{A n }为T 点列,对于正整数k ,l ,m (k <l <m ),比较 A l A m+k ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ •j 与 A l−k A m ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ •j 的大小,并说明理由.2020-2021学年北京市朝阳区高一(下)期末数学试卷参考答案与试题解析试题数:21,总分:1501.(单选题,5分)已知复数z=1+ii(其中i是虚数单位),则z在复平面内对应的点的坐标是()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)【正确答案】:B【解析】:直接利用复数代数形式的乘除运算化简得答案.【解答】:解:∵ z=1+ii = (1+i)(−i)−i2=1−i,∴z在复平面内对应的点的坐标是(1,-1).故选:B.【点评】:本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.2.(单选题,5分)如图、在四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,若AB=PD=3,AD=2,则该四棱锥的体积为()A.18B.12C.9D.6【正确答案】:D【解析】:根据棱锥的体积公式,计算即可.【解答】:解:四棱锥P-ABCD中,底面矩形ABCD的面积为S矩形ABCD=AB•AD=3×2=6,因为PD⊥底面ABCD,所以四棱锥的高为PD=3,所以该四棱锥的体积为V四棱锥P-ABCD= 13 S矩形ABCD•PD= 13×6×3=6.故选:D.【点评】:本题考查了利用棱锥的体积公式计算四棱锥体积的应用问题,是基础题.3.(单选题,5分)一个袋子中有大小和质地相同的4个球,其中有2个红色球,2个绿色球,从袋中不放回地依次随机摸出2个球,则两个球颜色相同的概率是()A. 14B. 13C. 12D. 23【正确答案】:B【解析】:根据不放回抽取的规则以及古典概型的概率计算公式即可求解.【解答】:解:对2个红色球,2个绿色球依次编号为1,2,a,b,从袋中不放回地依次随机摸出2个球,共有(1,2),(1,a),(1,b),(2,a),(2,b),(a,b),(2,1),(a,1),(b,1),(a,2),(b,2),(b,a)12种,则两个球颜色相同的情况共有(1,2),(2,1),(a,b),(b,a)4种,则两个球颜色相同的概率P= 412=13,故选:B.【点评】:本题考查了古典概型的概率计算公式,涉及到不放回抽取的应用,属于基础题.4.(单选题,5分)设α,β是两个不同的平面,n是平面α内的一条直线,则“n⊥β”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【正确答案】:A【解析】:由空间中直线与平面、平面与平面的位置关系结合充分必要条件的判定方法得答案.【解答】:解:n⊂α,若n⊥β,由平面与平面垂直的判定可得α⊥β,反之,若n⊂α,α⊥β,可得n与β有三种位置关系,即n⊂β或n || β或n与β相交,相交也不一定垂直,∴“n⊥β”是“α⊥β”的充分不必要条件,故选:A.【点评】:本题考查空间中直线与平面、平面与平面位置关系的判定,考查充分必要条件的判定方法,是基础题.5.(单选题,5分)在△ABC中,√3asinB=3bcosA,则∠A=()A. 5π6B. 2π3C. π3D. π6【正确答案】:C【解析】:根据已知条件,运用正弦定理,可得tanA= √3,再结合A角的范围,即可求解.【解答】:解:∵ √3asinB=3bcosA,∴由正弦定理,可得√3sinAsinB=3sinBcosA,∵B∈(0,π),∴sinB≠0,tanA= √3,又∵A∈(0,π),.∴A= π3故选:C.【点评】:本题考查了正弦定理,需要学生熟练掌握公式,属于基础题.6.(单选题,5分)水稻是世界最重要的食作物之一,也是我国60%以上人口的主粮.以袁隆平院士为首的科学家研制成功的杂交水稻制种技术在世界上被誉为中国的“第五大发明”.育种技术的突破,杂交水稻的推广,不仅让中国人端稳饭碗,也为解决世界粮食短缺问题作出了巨大贡献.某农场种植的甲、乙两种水稻在面积相等的两块稻田中连续6年的产量(单位:kg)如表:乙890 960 950 850 860 890根据以上数据,下面说法正确的是()A.甲种水稻产量的平均数比乙种水稻产量的平均数大B.甲种水稻产量的中位数比乙种水稻产量的中位数小C.甲种水稻产量的极差与乙种水稻产量的极差相等D.甲种水稻的产量比乙种水稻的产量稳定【正确答案】:D【解析】:根据已知数据对应各个选项逐个计算判断即可求解.【解答】:解:选项A:甲种水稻产量的平均数为:900+920+900+850+910+9206=900,乙种水稻产量的平均数为:890+960+950+850+860+8906=900,即甲乙种的水稻产量的平均数相等,故A错误,选项B:甲种的水稻产量分别为:850,900,900,910,910,920,中位数为900+9102= 905,乙种的水稻产量分别为:850,860,890,890,950,960,中位数为890<905,故B错误,选项C:甲种的水稻产量的极差为920-850=70,乙种的水稻产量的极差为960-850=110>70,故C错误,选项D:甲种的水稻产量的方差为:16[(850−900)2+(910−900)2+(920−900)2+(920−900)2] = 17003,乙种的水稻产量的方差为:16[(890−900)2+(960−900)2+(950−900)2 +(850-900)2+(860-900)2+(890-900)2]= 52003>17003,因为甲乙种的水稻产量的平均数相等,而甲种的水稻产量的方差小于乙,故甲种的水稻产量稳定,故D正确,故选:D.【点评】:本题考查了根据实际问题建立函数模型的问题,涉及到平均数,中位数以及方差的运算,考查了学生的运算能力,属于中档题.7.(单选题,5分)向量a⃗,b⃗⃗,e⃗,e2⃗⃗⃗⃗在正方形网格中的位置如图所示,若a⃗−b⃗⃗=λ e1⃗⃗⃗⃗+μ e2⃗⃗⃗⃗(λ,μ∈R),则λμ=()A.3B. 13C.-3D. −13【正确答案】:D【解析】:由图可知:a⃗=−e1⃗⃗⃗⃗−4e2⃗⃗⃗⃗,b⃗⃗=−2e1⃗⃗⃗⃗−e2⃗⃗⃗⃗,再利用向量的线性运算性质即可得出.【解答】:解:由图可知:a⃗=−e1⃗⃗⃗⃗−4e2⃗⃗⃗⃗,b⃗⃗=−2e1⃗⃗⃗⃗−e2⃗⃗⃗⃗,∴ a⃗−b⃗⃗ =(- e1⃗⃗⃗⃗−4e2⃗⃗⃗⃗)-(-2 e1⃗⃗⃗⃗−e2⃗⃗⃗⃗)= e1⃗⃗⃗⃗−3e2⃗⃗⃗⃗,则λ=1,μ=-3,所以λμ =- 13.故选:D.【点评】:本题考查了向量的坐标运算及其线性运算性质,考查了推理能力与计算能力,属于基础题.8.(单选题,5分)某中学举办知识竞赛,共50人参加初试,成绩如表:A.65B.70C.75D.80【正确答案】:C【解析】:计算累计频数即可.【解答】:解:因为50×40%=20,且75~95分共有20人,所以进入复试的分数线可以定为75.故选:C.【点评】:本题考查频数表的理解,属于基础题.9.(单选题,5分)在棱长为1的正方体ABCD-A1B1C1D1中,若点E是棱AB的中点,点M 是底面ABCD内的动点,且满足A1M⊥C1E,则线段AM的长的最小值为()A. √55B.2√55C.1D. √52【正确答案】:B【解析】:以点A 为原点建立空间直角坐标系,再由A 1M⊥C 1E 可得M 的轨迹方程,从而由平面知识得到AM 长的最小值.【解答】:解:如图所示,建立空间直角坐标系,设A 1(0,0,1),C 1(1,1,1),E ( 12 ,0,0),M (x ,y ,0),所以 A 1M ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,-1), C 1E ⃗⃗⃗⃗⃗⃗⃗⃗ =(- 12,-1,-1), 因为A 1M⊥C 1E ,所以- 12 x-y+1=0,即点M 的轨迹方程为x+2y-2=0, 所以线段AM 的最小值为 2√12+22=2√55, 故选:B .【点评】:本题考查空间线面关系的应用,涉及空间向量的应用,点到直线距离的最小值求法,属于中档题.10.(单选题,5分)已知不共线的平面向量 a ⃗ , b ⃗⃗ , c ⃗ 两两的夹角相等,且| a ⃗ |=1,| b ⃗⃗ |=2,| c ⃗ |=3,实数λ1,λ2,λ3∈[-1,1],则|λ1 a ⃗ +λ2 b ⃗⃗ +λ3 c ⃗ |的最大值为( ) A. √3 B.2 √3 C. √21 D.5【正确答案】:C【解析】:根据向量之间的夹角和模长求解两两之间的数量积,然后把目标式平方,结合λ1,λ2,λ3的取值范围,即可求解.【解答】:解:∵不共线的平面向量a⃗,b⃗⃗,c⃗两两的夹角相等,∴平面向量a⃗,b⃗⃗,c⃗两两的夹角都为120°,∵| a⃗ |=1,| b⃗⃗ |=2,| c⃗ |=3,,b⃗⃗•c⃗=−3,∴ a⃗•b⃗⃗=−1,a⃗•c⃗=−32|λ1a⃗+λ2b⃗⃗+λ3c⃗|2 = λ12+4λ22+9λ32−2λ1λ2−6λ2λ3−3λ1λ3 = (λ1−λ2)2+(3λ3−λ2)2+2λ22−3λ1λ3,∵λ1,λ2,λ3∈[-1,1],∴当λ1=1,λ2=1,λ3=-1 时,|λ1a⃗+λ2b⃗⃗+λ3c⃗|2取得最大值为21,∴|λ1a⃗+λ2b⃗⃗+λ3c⃗ |的最大值为√21.故选:C.【点评】:本题考查向量的数量积的应用,考查向量的表示以及计算,需要学生熟练掌握公式,属于中档题.11.(填空题,5分)已知平面向量a⃗ =(2,k),b⃗⃗ =(3,2),且a⃗⊥ b⃗⃗,则实数k=___ .【正确答案】:[1]-3【解析】:根据a⃗⊥b⃗⃗可得出a⃗•b⃗⃗=0,然后进行数量积的坐标运算即可求出k的值.【解答】:解:∵ a⃗⊥b⃗⃗,∴ a⃗•b⃗⃗=6+2k=0,解得k=-3.故答案为:-3.【点评】:本题考查了向量垂直的充要条件,向量数量积的坐标运算,考查了计算能力,属于基础题.12.(填空题,5分)若复数z=a2+a-2+(a2-1)i为纯虚数,则实数a的值为 ___ .【正确答案】:[1]-2【解析】:根据已知条件,结合纯虚数的概念,即可求解.【解答】:解:∵复数z=a2+a-2+(a2-1)i为纯虚数,∴ {a2+a−2=0,解得a=-2.a2−1≠0故答案为:-2.【点评】:本题考查了纯虚数的概念,属于基础题13.(填空题,5分)某班有42名学生,其中选考物理的学生有21人,选考地理的学生有14人,选考物理或地理的学生有28人,从该班任选一名学生,则该生既选考物理又选考地理的概率为 ___ .【正确答案】:[1] 16【解析】:设既选考物理又选考地理的学生有x人,然后根据已知条件求出x的值,再根据古典概型的概率计算公式即可求解.【解答】:解:设既选考物理又选考地理的学生有x人,则只选物理的人数为21-x人,只选地理的人数为14-x人,所以选考物理或地理的学生人数为21-x+14-x+x=28,解得x=7,故所求事件的概率为742=16,故答案为:16.【点评】:本题考查了古典概型以及概率计算公式,考查了学生的运算能力,属于基础题.14.(填空题,5分)已知一组不全相等的样本数据的平均数为10,方差为2,现再加入一个新数10,则新样本数据的平均数 ___ ,方差 ___ .(填“变大”,“变小”,“不变”)【正确答案】:[1]不变; [2]变小【解析】:由平均数公式以及方差的计算公式分析即可.【解答】:解:设原来的一组数据有n个,分别为x1,x2,•••,x n,则有x1+x2+•••+x n=10n,方差s2=1n[(x1-10)2+(x2-10)2+•••+(x n-10)2],所以(x1-10)2+(x2-10)2+•••+(x n-10)2=ns2,加入一个新数10后,平均数为1n+1(x1+x2+•••+x n+10)= 10n+10n+1=10,故平均数不变;新的方差s2’= 1n+1[(x1-10)2+(x2-10)2+•••+(x n-10)2+(10-10)2]= 1n+1•ns2= nn+1•s2<s2,故方差变小.故答案为:不变;变小.【点评】:本题考查了平均数与方差的运算,解题的关键是掌握平均数与方差的计算公式,考查了逻辑推理能力与运算能力,属于基础题.15.(填空题,5分)已知等边△ABC 的边长为2,D 为边BC 的中点,点M 是AC 边上的动点,则 MD ⃗⃗⃗⃗⃗⃗⃗•MC ⃗⃗⃗⃗⃗⃗⃗ 的最大值为 ___ ,最小值为 ___ . 【正确答案】:[1]3; [2]- 116【解析】:以AC 所在的直线为x 轴,AC 的中点为坐标原点,建立直角坐标系,再结合平面向量的数量积公式和三角函数的单调性,即可求解.【解答】:解:以AC 所在的直线为x 轴,AC 的中点为坐标原点,建立如图所示直角坐标系, ∵等边△ABC 的边长为2,D 为边BC 的中点, ∴A (-1,0),B (0, √3 ),C (1,0), D (12,√32) , 设点M 的坐标为M (x ,0),-1≤x≤1,∴ MC ⃗⃗⃗⃗⃗⃗⃗=(1−x ,0) , MD ⃗⃗⃗⃗⃗⃗⃗=(12−x ,√32) , ∴ MD ⃗⃗⃗⃗⃗⃗⃗•MC ⃗⃗⃗⃗⃗⃗⃗ = (1−x )(12−x)=x 2−32x +12,设f (x )= x 2−32x +12,-1≤x≤1, ∵函数f (x )的对称轴为 x =34 ,∴f (x )在区间 [−1,34] 单调递减,在区间 [34,1] 单调递增,当x=-1时,f (x )max =f (-1)=3, 当x= 34 时, f (x )min =f (34)=−116 . 故答案为:3, −116.【点评】:本题主要考查了平面向量的数量积公式,建立平面直角坐标系是解本题的关键,属于中档题.16.(填空题,5分)已知△ABC 的三边长为连续的正整数,给出下列四个结论:① 存在满足条件的三角形,使得三个内角中的最大角等于另外两个角的和;② 存在满足条件的三角形,使得三个内角中的最大角大于另外两个角的和; ③ 存在满足条件的三角形,使得三个内角中的最大角等于最小角的2倍; ④ 存在满足条件的三角形,使得三个内角中的最大角等于最小角的3倍. 其中所有正确结论的序号是 ___ . 【正确答案】:[1] ① ② ③【解析】:根据题意,由余弦定理和正弦定理分析四个结论,综合可得答案.【解答】:解:根据题意,设△ABC 的三边长依次为n-1,n ,n+1,设最大角为A ,最小角得B ,对于 ① ,当n=4时,△ABC 的三边长依次为3,4,5,此时△ABC 为直角三角形,三个内角中的最大角等于另外两个角的和, ① 正确;对于 ② ,当n=3时,△ABC 的三边长依次为2,3,4,cosA= 4+9−162×2×3 <0,为钝角三角形,三个内角中的最大角大于另外两个角的和, ② 正确; 对于 ③ ,当n=5时,△ABC 的三边长依次为4,5,6,cosA= 16+25−362×4×5 = 18 ,cosB= 25+36−162×5×6 = 34 ,有cosA=2cos 2B-1=cos2B ,则有A=2B , ③ 正确;对于 ④ ,假设存在符合题意的三角形,则A=3B ,则有 n+1sinA = nsinC = n−1sinB , 又由A=3B ,则sinA=sin3B=3sinB-4sin 3B ,sinC=sin (A+B )=sin4B ,n+1sin3B = n sin4B = n−1sinB ,变形可得:n-1= n 8cos 3B−4cosB = n+14cos 2B−1, 由n-1= n+14cos 2B−1 ,可得2cos 2B= nn−1 , 而n-1= n8cos 3B−4cosB ,联立可得:n 2-n-8=0,无整数解,即不存在使得三个内角中的最大角等于最小角的3倍的三角形, ④ 错误; 故答案为: ① ② ③ .【点评】:本题考查三角形中的几何计算,涉及余弦定理的应用,属于中档题. 17.(问答题,14分)在△ABC 中, b 2+c 2−√62bc =a 2 .(Ⅰ)求cosA 的值;(Ⅱ)若B=2A , b =√6 ,求a 的值.【正确答案】:【解析】:(I)根据已知条件,结合余弦定理,即可求解.(II)由已知条件cosA=√64,运用三角函数的同角公式,可得sinA= √104,再结合正弦定理和二倍角公式,即可求解.【解答】:解:(Ⅰ)∵在△ABC中,b2+c2=a2+√62bc,又∵由余弦定理,可得cosA=b 2+c2−a22bc,∴ cosA=√62bc2bc=√64.(Ⅱ)由(Ⅰ)知,0<A<π2,∴ sinA=√1−cos2A=√104.∵B=2A,∴ sinB=sin2A=2sinAcosA=2×√104×√64=√154又∵ b=√6,asinA =bsinB,∴ a=bsinAsinB =√6×√104√154=2.【点评】:本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用,属于中档题.18.(问答题,14分)如图,在正方体ABCD-A1B1C1D1中,点E,F分别是棱BB1,DD1的中点.(Ⅰ)求证:BD || 平面AEF;(Ⅱ)求证:EF⊥平面ACC1A1;(Ⅲ)判断点C1是否在平面AEF内,并说明理由.【正确答案】:【解析】:(Ⅰ)由已知利用正方体的性质可证BD || EF,根据线面平行的判定即可得解.(Ⅱ)利用线面垂直的性质可证AA1⊥BD,利用正方形的性质可证AC⊥BD,又由(Ⅰ)知BD || EF,可证EF⊥AA1,利用线面垂直的判定即可证明EF⊥平面ACC1A1.(Ⅲ)取CC1中点G,连接GB,FG,EC1,由正方体性质可证DF || CG,DF=CG,通过证明四边形DCGF为平行四边形.可证FG || DC,FG=DC,通过证明四边形ABGF为平行四边形,可证AF || BG,利用正方体的性质可证BE || GC1,BE=GC1,通过证明四边形BGC1E为平行四边形,可证BG || EC1,通过证明EC1 || AF,可得点C1在平面AEF内.【解答】:解:(Ⅰ)因为在正方体ABCD-A1B1C1D1中,点E,F分别是棱BB1,DD1的中点,所以BE || DF,BE=DF,所以四边形BEFD为平行四边形,所以BD || EF,又因为BD⊄平面AEF,EF⊂平面AEF,所以BD || 平面AEF.(Ⅱ)因为在正方体ABCD-A1B1C1D1中,AA1⊥平面ABCD,所以AA1⊥BD,因为四边形ABCD为正方形,所以AC⊥BD,又由(Ⅰ)知BD || EF,所以EF⊥AA1,EF⊥AC,又因为AC∩AA1=A,所以EF⊥平面ACC1A1.(Ⅲ)点C1在平面AEF内,理由如下:取CC1中点G,连接GB,FG,EC1,因为在正方体ABCD-A1B1C1D1中,点G,F分别是棱CC1,DD1的中点,所以DF || CG,DF=CG,所以四边形DCGF为平行四边形.所以FG || DC,FG=DC,又因为AB || DC,AB=DC,所以AB || FG,AB=FG,所以四边形ABGF为平行四边形.所以AF || BG,因为在正方体ABCD-A1B1C1D1中,点E,G分别是棱BB1,CC1的中点,所以BE || GC1,BE=GC1,所以四边形BGC1E为平行四边形.所以BG || EC1,所以EC1 || AF,故点C1在平面AEF内.【点评】:本题主要考查了线面平行的判定,线面垂直的性质和判定,考查了空间想象能力和逻辑推理能力,属于中档题.19.(问答题,14分)某心理教育测评研究院为了解某市市民的心理健康状况,随机抽取了n位市民进行心理健康问卷调查,将所得评分(百分制)按研究院制定的心理测评评价标准整理,得到频率分布直方图.已知调查评分在[70,80)中的市民有200人.心理测评评价标准调查评分[0,40)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100] 心理等级 E D C B A (Ⅰ)求n的值及频率分布直方图中t的值;(Ⅱ)在抽取的心理等级为D的市民中,按照调查评分的分组,分为2层,通过分层随机抽样抽取3人进行心理疏导.据以往数据统计,经心理疏导后,调查评分在[40,50)的市民的心理等级转为B的概率为14,调查评分在[50,60)的市民的心理等级转为B的概率为13,假设经心理疏导后的等级转化情况相互独立,求在抽取的3人中,经心理疏导后至少有一人的心理等级转为B的概率;(Ⅲ)该心理教育测评研究院建议该市管理部门设定预案:若市民心理健康指数的平均值不低于0.75,则只需发放心理指导资料,否则需要举办心理健康大讲堂.根据调查数据,判断该市是否需要举办心理健康大讲堂,并说明理由.(每组的每个数据用该组区间的中点值代替,心理健康指数=调查评分÷100)【正确答案】:【解析】:(1)根据每组的小矩形的面积之和为1可解决此问题;(2)可先计算P(M⃗⃗⃗),然后计算P(M)=1-P(M⃗⃗⃗);(3)先计算市民心理健康调查评分的平均值,再计算市民心理健康指数的平均值,可解决此问题.【解答】:解:(Ⅰ)由已知条件可得n=2000.02×10=1000,又因为每组的小矩形的面积之和为1.所以(0.035+0.025+0.02+0.004+8t)×10=1,解得t=0.002;(Ⅱ)由(Ⅰ)知:t=0.002,所以调查评分在[40,50)中的人数是调查评分在[50,60)中人数的12,若按分层抽样抽取3人,则调查评分在[40,50)中有1人,在[50,60)中有2人,设事件M=“在抽取的3人中,经心理疏导后至少有一人的心理等级转为B”.因为经心理疏导后的等级转化情况相互独立,所以P(M)=34×23×23=13,所以P(M)=1−P(M)=1−13=23,故经心理疏导后至少有一人的心理等级转为B的概率为23;(Ⅲ)由频率分布直方图可得,45×0.02+55×0.04+65×0.14+75×0.2+85×0.35+95×0.25=80.7.估计市民心理健康调查评分的平均值为80.7,所以市民心理健康指数平均值为80.7100=0.807>0.75.所以只需发放心理指导材料,不需要举办心理健康大讲堂活动.【点评】:本题考查频率分布直方图中某个矩形对应纵坐标算法、平均数算法、独立事件概率算法,考查数学运算能力,属于中档题.20.(问答题,14分)在锐角△ABC中,A=π6,BC=√7,D,E分别是边AB,AC上的点.且DE=2.再从条件① 、条件② 、条件③ 中选择两个能解决下面问题的条件作为已知,并求,(Ⅰ)sinC的值;(Ⅱ)∠BDE的大小;(Ⅲ)四边形BCED的面积.条件① :AB=3√3;条件② :cosB=√2114;条件③ :EC=3.【正确答案】:【解析】:选条件① ③ 时,(Ⅰ)直接利用正弦定理的应用求出结果;(Ⅱ)直接利用三角函数的值和余弦定理的应用求出结果;(Ⅲ)利用三角形的面积公式的应用求出结果.选条件② ③ 时,(Ⅰ)直接利用三角函数的关系式的应用求出结果;(Ⅱ)直接利用三角函数的值和正弦定理的应用求出结果;(Ⅲ)利用作差法的应用和三角形的面积公式的应用求出结果.【解答】:解:选条件① ③ 时,(Ⅰ)因为A=π6,BC=√7,AB=3√3,又因为在△ABC中,ABsinC =BCsinA,所以sinC=AB⋅sinABC =3√3×12√7=3√2114.(II)因为△ABC是锐角三角形,由(Ⅰ)知sinC=3√2114,所以cosC=√1−sin2C=√714.在△ABC中,因为AB2=BC2+AC2-2BC⋅AC⋅cosC,所以27=7+AC2−2√7AC×√714,即AC2-AC-20=0,解得AC=5.又因为EC=3,所以AE=2.又因为DE=2,所以∠ADE=A=π6.故∠BDE=5π6.(Ⅲ)因为AB=3√3,A=π6,由(Ⅱ)知AC=5,所以S△ABC=12AB⋅AC•sinA=15√34.又因为∠AED=∠BDE−A=2π3,所以S△ADE=12AE⋅DE⋅sin∠AED=√3.所以四边形BCED的面积为S△ABC−S△ADE=11√34.选条件② ③ 时,(Ⅰ)因为A=π6,cosB=√2114,所以0<B<π2,sinB=√1−cos2B=5√714.所以sinC=sin(B+A)=sinBcosA+cosBsinA 5√714×√32×√2114×12=3√2114.(Ⅱ)由(Ⅰ)及正弦定理:ACsinB =BCsinA,得AC=BC⋅sinBsinA=√7×5√71412=5,又因为EC=3,所以AE=2,又因为DE=2,所以∠ADE=A=π6故∠BDE=5π6.(Ⅲ)因为△ABC是锐角三角形,由(Ⅰ)知sinC=3√2114,所以cosC=√1−sin2C=√714.由余弦定理得:AB2=BC2+AC2−2BC⋅AC⋅cosC=7+25−2×√7×5×√714=27,解得:AB=3√3.所以S△ABC=12AB⋅AC⋅sinA=15√34.又因为∠AED=∠BDE−A=2π3,所以S△ADE=12AE⋅DE⋅sin∠AED=√3.所以四边形BCED的面积为S△ABC−S△ADE=11√34.【点评】:本题考查的知识要点:三角函数的关系式的变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和数学思维能力,属于中档题.21.(问答题,14分)将平面直角坐标系中的一列点A 1(1,a 1),A 2(2,a 2),…,A n (n ,a n ),…记为|A n |,设f (n )= A n A n+1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ •j ,其中j 为与y 轴方向相同的单位向量.若对任意的正整数n ,都有f (n+1)>f (n ),则称{A n }为T 点列.(Ⅰ)判断 A 1(1,1),A 2(2,12),A 3(3,13),⋅⋅⋅,A n (n ,1n ),⋅⋅⋅ 是否为T 点列,并说明理由;(Ⅱ)若{A n }为T 点列,且a 2>a 1.任取其中连续三点A k ,A k+1,A k+2,证明△A k A k+1A k+2为钝角三角形;(Ⅲ)若{A n }为T 点列,对于正整数k ,l ,m (k <l <m ),比较 A l A m+k ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ •j 与 A l−k A m ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ •j 的大小,并说明理由.【正确答案】:【解析】:(Ⅰ)利用T 点列的定义进行判断即可;(Ⅱ)利用{A n }为T 点列,得到对|A n |中连续三点A k ,A k+1,A k+2,都有a k+2-a k+1>a k+1-a k >0,a k+2>a k+1>a k ,分析得出 |A k A k+2|2>|A k+1A k+2|2>|A k A k+1|2 ,∠A k A k+1A k+2为△A k A k+1A k+2的最大内角,然后由余弦定理判断即可;(Ⅲ)利用{A n }为T 点列,a n+2-a n+1>a n+1-a n ,n=1,2,⋅⋅⋅,则列举不等式后,利用不等式的基本性质左右分别相加,可得a m+k -a l >a m -a l-k ,再由 A l A m+k ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⋅j =a m+k −a l ,A l−k A m ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⋅j =a m −a l−k ,即可判断得到答案.【解答】:解:(Ⅰ){A n }为T 点列.理由如下: 由题意可知, A n A n+1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=(1,1n+1−1n ),j =(0,1) ,所以 f (n )=A n A n+1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⋅j =1n+1−1n ,f (n +1)−f (n )=1n+2−1n+1−(1n+1−1n )=2n (n+1)(n+2)>0 , 即f (n+1)>f (n ),n=1,2,…,所以 A 1(1,1),A 2(2,12),A 3(3,13),A n (n ,1n ),⋅⋅⋅ 为T 点列; (Ⅱ)由题意可知, A n A n+1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=(1,a n+1−a n ),j =(0,1) , 所以 f (n )=A n A n+1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⋅j =a n+1−a n , 因为{A n }为T 点列,所以f (n+1)-f (n )=a n+2-a n+1-(a n+1-a n )>0,n=1,2,⋅⋅⋅, 又因为a 2>a 1,所以a 2-a 1>0,所以对|A n |中连续三点A k ,A k+1,A k+2,都有a k+2-a k+1>a k+1-a k >0,a k+2>a k+1>a k , 又 |A k A k+1|2=1+(a k+1−a k )2,|A k A k+2|2=4+(a k+2−a k )2,|A k+1A k+2|2=1+(a k+2−a k+1)2 ,所以 |A k A k+2|2>|A k+1A k+2|2>|A k A k+1|2 , 所以∠A k A k+1A k+2为△A k A k+1A k+2的最大内角, 由余弦定理可得, cos∠A k A k+1A k+2=|A k+1A k+2|2+|A k A k+1|2−|A k A k+2|22|A k+1A k+2|⋅|A k A k+1|= 2a k+12−2a k+1a k −2a k+1a k+2+2a k+2a k −22|A k+1A k+2|⋅|A k A k+1| =2(a k+1−a k )(a k+1−a k+2)−22|A k+1A k+2|⋅|A k A k+1|<0 , 故∠A k A k+1A k+2为钝角,所以△A k A k+1A k+2为钝角三角形; (Ⅲ)由正整数k ,l ,m 满足k <l <m ,则m≥3,因为{A n }为T 点列,由(Ⅱ)知a n+2-a n+1>a n+1-a n ,n=1,2,⋅⋅⋅, 所以a m+k -a m+k-1>a m+k-1-a m+k-2, a m+k-1-a m+k-2>a m+k-2-a m+k-3, ••••••a m+1-a m >a m -a m-1,两边分别相加可得a m+k -a m >a m+k-1-a m-1, 所以a m+k-1-a m-1>a m+k-2-a m-2>a l -a l-k , 则a m+k -a m >a l -a l-k , 所以a m+k -a l >a m -a l-k ,又 A l A m+k ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=(m +k −l ,a m+k −a l ),A l−k A m ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=(m −l +k ,a m −a l−k ) , 所以 A l A m+k ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⋅j =a m+k −a l ,A l−k A m ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⋅j =a m −a l−k , 所以 A l A m+k ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⋅j >A l−k A m ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⋅j .【点评】:本题考查了新定义问题,解决此类问题,关键是读懂题意,理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答即可,属于难题.。
北京市高一上学期数学期中考试试卷含答案(共5套)
北京师大附中2018-2019学年上学期高中一年级期中考试数学试卷说明:本试卷共150分,考试时间120分钟。
一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合}2,1,0{},01|{2=≤-=B x x A ,则A ∩B = A. {0}B. {0,1}C. {1,2}D. {0,1,2}2. 已知d c b a >>>,0,下列不等式中必成立的一个是( ) A.dbc a > B. bc ad <C. d b c a +>+D. d b c a ->-3. “1-=a ”是“函数12)(2-+=x ax x f 只有一个零点”的( ) A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件 4. 在下列区间中,函数x xx f 2log 6)(-=的零点所在的区间为( ) A. )1,21(B. (1,2)C. (3,4)D. (4,5)5. 已知函数xx x f ⎪⎭⎫⎝⎛-=313)(,则)(x f ( )A. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数 6. 已知313232,31⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=b a ,3232⎪⎭⎫ ⎝⎛=c ,则 A. b c a << B. c b a <<C. a c b <<D. c a b <<7. 若函数⎩⎨⎧>≤--=-7,7,3)3()(6x ax x a x f x 在R 上单调递增,则实数a 的取值范围是( )A. )3,49(B. )3,49[C. (1,3)D. (2,3)8. 函数||ln 1)(x xx f +=的图象大致为9. 已知函数f (x )是定义在R 上的偶函数,且在区问[0,+∞)上单调递增,若实数a 满足)1(2log )(log 212f a f a f ≤⎪⎪⎭⎫ ⎝⎛+,则a 的取值范围是 A. ]2,1[B. ]21,0(C. ]2,21[D. ]2,0(10. 设D 是函数)(x f y =定义域内的一个区间,若存在D x ∈0,使00)(kx x f =)0(≠k ,则称0x 是)(x f y =在区间D 上的一个“k 阶不动点”,若函数25)(2+-+=a x ax x f 在区间]4,1[上存在“3阶不动点”,则实数a 的取值范围是A. ]21,(-∞ B. )21,0(C. ),21[+∞D. ]0,(-∞二、填空题:共6小题,每小题5分,共30分。
2018-2019学年第二学期期末考试高一年级数学试卷(含答案)
2018-2019学年第二学期期末考试高一年级数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的人数为20000人,其中持各种态度的人数如表所示:电视台为了了解观众的具体想法和意见,打算从中抽选出100人进行更为详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中各应抽选出的人数为()A.25,25,25,25 B.48,72,64,16 C.20,40,30,10 D.24,36,32,82.某校为了解学生学习的情况,采用分层抽样的方法从高一1000人、高二1200人、高三n人中,抽取81人进行问卷调查.已知高二被抽取的人数为30,那么n=()A.860 B.720 C.1020 D.10403. 在中,,,则等于()A. 3B.C. 1D. 24.(1+tan20°)(1+tan25°)=()A.2 B.1 C.﹣1 D.﹣25.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A.i<99 B.i≤99 C.i>99 D.i≥997. 已知直线平面,直线平面,则下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则8.已知过点P(0,2)的直线l与圆(x﹣1)2+y2=5相切,且与直线ax﹣2y+1=0垂直,则a=()A.2 B.4 C.﹣4 D.19.《数学九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂减上,余四约之,为实.一为从隔,开平方得积.”若把以上这段文字写成公式,即S=.现有周长为2+的△ABC满足sinA:sinB:sinC=(﹣1)::( +1),试用以上给出的公式求得△ABC的面积为()A. B. C. D.10.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为()A.0.35 B.0.25 C.0.20 D.0.1511.在区间(0,3]上随机取一个数x,则事件“0≤log2x≤1”发生的概率为()A.B.C.D.12.已知函数f(x)=sin2x向左平移个单位后,得到函数y=g(x),下列关于y=g(x)的说法正确的是()A.图象关于点(﹣,0)中心对称B.图象关于x=﹣轴对称C.在区间[﹣,﹣]单调递增D.在[﹣,]单调递减二、填空题(共4小题,每小题5分,满分20分)13.函数f(x)=Asin(ωx+φ)+b的图象如图所示,则f(x)的解析式为.14.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA﹣acosB=0,则A+C= .15. 已知直线的倾斜角为,则直线的斜率为__________.16.已知正实数x,y满足x+2y﹣xy=0,则x+2y的最小值为8y的取值范围是.三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.某同学用“五点法”画函数f (x )=Asin (ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f (x )的解析式;(2)将y=f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g (x )的图象.若y=g (x )图象的一个对称中心为(,0),求θ的最小值.18. 在中,内角所对的边分别为,且.(1)求;(2)若,且的面积为,求的值.19.设函数f (x )=mx 2﹣mx ﹣1.若对一切实数x ,f (x )<0恒成立,求实数m 的取值范围.20.已知函数f (x )=cosx (sinx+cosx )﹣. (1)若0<α<,且sin α=,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.21.根据国家环保部新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米.我市环保局随机抽取了一居民区2016年20天PM2.5的24小时平均浓度(单位:微克/立方米)的监测数据,数据统计如表(1)从样本中PM2.5的24小时平均浓度超过50微克/立方米的天数中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;(2)将这20天的测量结果按上表中分组方法绘制成的样本频率分布直方图如图.①求图中a的值;②求样本平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境质量是否需要改善?并说明理由.22.(12分)(2016秋•德化县校级期末)已知f(x)=sin2(2x﹣)﹣2t•sin(2x﹣)+t2﹣6t+1(x∈[,])其最小值为g(t).(1)求g(t)的表达式;(2)当﹣≤t≤1时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.参考答案:一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.D2.D3.D4.A5.C6.B7. B8.C9.A10.B11.C12.C二、填空题(共4小题,每小题5分,满分20分)13..14.120°. 15. 16. 8;(1,+∞).三、解答题(本大题共6小题,共70分.第17题10分,其它均12分)17.(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.18. (1) ;(2). 19.(﹣4,0].20.(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣=×(+)﹣=;(2)∵函数f(x)=cosx(sinx+cosx)﹣=sinxcosx+cos2x﹣=sin2x+﹣=(sin2x+cos2x)=sin(2x+),∴f(x)的最小正周期为T==π;令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z;∴f(x)的单调增区间为[kπ﹣,kπ+],k∈Z..21.1) P==.(2)a=0.00422.(1)∵x∈[,],∴sin(2x﹣)∈[﹣,1],∴f(x)=[sin(2x﹣﹣t]2﹣6t+1,当t<﹣时,则当sinx=﹣时,f(x)min=;当﹣≤t≤1时,当sinx=t时,f(x)min=﹣6t+1;当t>1时,当sinx=1时,f(x)min=t2﹣8t+2;∴g(t)=(2)k≤﹣8或k≥﹣5.。
人教版数学高三期末测试精选(含答案)3
【答案】A
15.设 Sn 为等差数列an 的前 n 项和,若 3S3 S2 S4 , a1 2 ,则 a5
A. 12
B. 10
C.10
D.12
【来源】2018 年全国普通高等学校招生统一考试理科数学(新课标 I 卷)
【答案】B
16.若圆的半径为 4,a、b、c 为圆的内接三角形的三边,若 abc=16 2 ,则三角形的
b
c
a
A.都大于 2
B.都小于 2
C.至少有一个不大于 2
D.至少有一个不小于 2
【来源】2015-2016 湖南常德石门一中高二下第一次月考文科数学卷(带解析)
【答案】D
5. ABC 中, A 、 B 、 C 的对边的长分别为 a 、 b 、 c ,给出下列四个结论: ①以 1 、 1 、 1 为边长的三角形一定存在;
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中, a 2 3 0°或150
B. 60 或120
A.等腰直角三角形 B.直角三角形
C.等腰三角形
D.等边三角形
【来源】2013-2014 学年河南省郑州一中高二上学期期中考试文科数学试卷(带解析)
【答案】C
21.在△ABC 中,如果 sin A : sin B : sin C 2 : 3 : 4 ,那么 cosC 等于 ( )
2
A.
3
B. 2 3
【答案】D
10.在锐角 ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,a b cosC 3 c sin B , 3
2019-2020学年人教A版北京市朝阳区高一第一学期期末数学试卷 及答案
2019-2020学年高一(上)期末数学试卷一、选择题(本题共10个小题)1.已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1} B.{0,1} C.{0,1,2} D.{﹣1,0,1,2} 2.已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1 B.∀x≥﹣1,x2>1 C.∀x<﹣1,x2>1 D.∃x≤﹣1,x2≤1 3.下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则4.函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π5.已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=6.已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E28.已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3} B.{a|a>﹣3} C.{a|a=﹣3} D.{a|﹣3<a<4}9.已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c10.已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19 B.20 C.21 D.22二.填空题:本大题共6小题,每空5分,共30分.11.计算sin330°=.12.若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是.13.已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的.(横线上填“上方”或者“下方”)14.给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是.15.已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是.若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a的取值范围是.16.在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是,从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y与时间t的函数关系式为.三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值参考答案一、选择题1.已知集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0},那么A∪B等于()A.{﹣1} B.{0,1} C.{0,1,2} D.{﹣1,0,1,2} 【分析】先分别求出集合A,B,再由并集定义能求出A∪B.解:∵集合A={﹣1,0,1},集合B={x∈Z|x2﹣2x≤0}={x∈Z|0≤x≤2}={0,1,2},∴A∪B={﹣1,0,1,2}.故选:D.2.已知命题p:∀x<﹣1,x2>1,则¬p是()A.∃x<﹣1,x2≤1 B.∀x≥﹣1,x2>1 C.∀x<﹣1,x2>1 D.∃x≤﹣1,x2≤1 【分析】根据全称命题的否定是特称命题进行判断.解:命题是全称命题,则命题的否定为:∃x<﹣1,x2≤1,故选:A.3.下列命题是真命题的是()A.若a>b>0,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则【分析】利用不等式的基本性质,判断选项的正误即可.解:对于A,若a>b>0,则ac2>bc2,c=0时,A不成立;对于B,若a>b,则a2>b2,反例a=0,b=﹣2,所以B不成立;对于C,若a<b<0,则a2<ab<b2,反例a=﹣4,b=﹣1,所以C不成立;对于D,若a<b<0,则,成立;故选:D.4.函数f(x)=cos2x﹣sin2x的最小正周期是()A.B.πC.2πD.4π【分析】利用二倍角的余弦公式求得y=cos2x,再根据y=A cos(ωx+φ)的周期等于T=,可得结论.解:∵函数y=cos2x﹣sin2x=cos2x,∴函数的周期为T==π,故选:B.5.已知函数f(x)在区间(0,+∞)上的函数值不恒为正,则在下列函数中,f(x)只可能是()A.f(x)=xB.f(x)=sin x+2C.f(x)=ln(x2﹣x+1)D.f(x)=【分析】结合基本初等函数的性质分别求解选项中函数的值域即可判断.解:∵x>0,根据幂函数的性质可知,y=>0,不符合题意,∵﹣1≤sin x≤1,∴2+sin x>0恒成立,故选项B不符合题意,C:∵x2﹣x+1=,而f(x)=ln(x2﹣x+1),故值域中不恒为正数,符合题意,D:当x>0时,f(x)=2x﹣1>0恒成立,不符合题意,故选:C.6.已知a,b,c∈R,则“a=b=c”是“a2+b2+c2>ab+ac+bc”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】先化简命题,再讨论充要性.解:由a,b,c∈R,知:∵a2+b2+c2﹣ab﹣ac﹣bc=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(b﹣c)2+(a﹣c)2],∴“a=b=c”⇒“a2+b2+c2=ab+ac+bc”,“a2+b2+c2>ab+ac+bc”⇒“a,b,c不全相等”.“a=b=c”是“a2+b2+c2>ab+ac+bc”的既不充分也不必要条件.故选:D.7.通过科学研究发现:地震时释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知2011年甲地发生里氏9级地震,2019年乙地发生里氏7级地震,若甲、乙两地地震释放能量分别为E1,E2,则E1和E2的关系为()A.E1=32E2B.E1=64E2C.E1=1000E2D.E1=1024E2【分析】先把数据代入已知解析式,再利用对数的运算性质即可得出.解:根据题意得:lgE1=4.8+1.5×9 ①,lgE2=4.8+1.5×7 ②,①﹣②得lgE1﹣lgE2=3,lg()=3,所以,即E1=1000E2,故选:C.8.已知函数f(x)=x+﹣a(a∈R),g(x)=﹣x2+4x+3,在同一平面直角坐标系里,函数f(x)与g(x)的图象在y轴右侧有两个交点,则实数a的取值范围是()A.{a|a<﹣3} B.{a|a>﹣3} C.{a|a=﹣3} D.{a|﹣3<a<4} 【分析】作出函数f(x)与函数g(x)的图象,数形结合即可判断出a的取值范围解:在同一坐标系中作出函数f(x)与g(x)的示意图如图:因为f(x)=x+﹣a≥2﹣a=4﹣a(x>0),当且仅当x=2时取等号,而g(x)的对称轴为x=2,最大值为7,根据条件可知0<4﹣a<7,解得﹣3<a<4,故选:D.9.已知大于1的三个实数a,b,c满足(lga)2﹣2lgalgb+lgblgc=0,则a,b,c的大小关系不可能是()A.a=b=c B.a>b>c C.b>c>a D.b>a>c【分析】因为三个实数a,b,c都大于1,所以lga>0,lgb>0,lgc>0,原等式可化为lgalg+lgblg=0,分别分析选项的a,b,c的大小关系即可判断出结果.解:∵三个实数a,b,c都大于1,∴lga>0,lgb>0,lgc>0,∵(lga)2﹣2lgalgb+lgblgc=0,∴(lga)2﹣lgalgb+lgblgc﹣lgalgb=0,∴lga(lga﹣lgb)+lgb(lgc﹣lga)=0,∴lgalg+lgblg=0,对于A选项:若a=b=c,则lg=0,lg=0,满足题意;对于B选项:若a>b>c,则,0<<1,∴lg>0,lg<0,满足题意;对于C选项:若b>c>a,则0<<1,>1,∴lg<0,lg>0,满足题意;对于D选项:若b>a>c,则0<<1,0<<1,∴lg<0,lg<0,∴lgalg+lgblg <0,不满足题意;故选:D.10.已知正整数x1,x2,…,x10满足当i<j(i,j∈N*)时,x i<x j,且x12+x22+…+x102≤2020,则x9﹣(x1+x2+x3+x4)的最大值为()A.19 B.20 C.21 D.22【分析】要使x9﹣(x1+x2+x3+x4)取得最大值,结合题意,则需前8项最小,第9项最大,则第10项为第9项加1,由此建立不等式,求出第9项的最大值,进而得解.解:依题意,要使x9﹣(x1+x2+x3+x4)取得最大值,则x i=i(i=1,2,3,4,5,6,7,8),且x10=x9+1,故,即,又2×292+2×29﹣1815=﹣75<0,2×302+2×30﹣1815=45>0,故x9的最大值为29,∴x9﹣(x1+x2+x3+x4)的最大值为29﹣(1+2+3+4)=19.故选:A.二.填空题:本大题共6小题,每空5分,共30分.11.计算sin330°=﹣.【分析】所求式子中的角变形后,利用诱导公式化简即可得到结果.解:sin330°=sin(360°﹣30°)=﹣sin30°=﹣.故答案为:﹣12.若集合A={x|x2﹣ax+2<0}=∅,则实数a的取值范围是[﹣2,2] .【分析】根据集合A的意义,利用△≤0求出实数a的取值范围.解:集合A={x|x2﹣ax+2<0}=∅,则不等式x2﹣ax+2<0无解,所以△=(﹣a)2﹣4×1×2≤0,解得﹣2≤a≤2,所以实数a的取值范围是[﹣2,2].故答案为:[﹣2,2].13.已知函数f(x)=log2x,在x轴上取两点A(x1,0),B(x2,0)(0<x1<x2),设线段AB的中点为C,过A,B,C作x轴的垂线,与函数f(x)的图象分别交于A1,B1,C1,则点C1在线段A1B1中点M的上方.(横线上填“上方”或者“下方”)【分析】求出点C1,M的纵坐标,作差后利用基本不等式即可比较大小,进而得出结论.解:依题意,A1(x1,log2x1),B1(x2,log2x2),则,则=,故点C1在线段A1B1中点M的上方.故答案为:上方.14.给出下列命题:①函数是偶函数;②函数f(x)=tan2x在上单调递增;③直线x=是函数图象的一条对称轴;④将函数的图象向左平移单位,得到函数y=cos2x的图象.其中所有正确的命题的序号是①②③.【分析】利用三函数的奇偶性、单调性、对称轴、图象的平移等性质直接求解.解:在①中,函数=cos2x是偶函数,故①正确;在②中,∵y=tan x在(﹣,)上单调递增,∴函数f(x)=tan2x在上单调递增,故②正确;在③中,函数图象的对称轴方程为:2x+=kπ+,k∈Z,即x=,k=0时,x=,∴直线x=是函数图象的一条对称轴,故③正确;在④中,将函数的图象向左平移单位,得到函数y=cos(2x+)的图象,故④错误.故答案为:①②③.15.已知在平面直角坐标系xOy中,点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1).若A和A'中至多有一个点的横纵坐标满足不等式组,则实数a的取值范围是{a|a≥0或a≤﹣1} .【分析】先求出对称点的坐标,再求出第二问的对立面,即可求解.解:因为点A(1,1)关于y轴的对称点A'的坐标是(﹣1,1);A和A'中至多有一个点的横纵坐标满足不等式组,其对立面是A和A'中两个点的横纵坐标都满足不等式组,可得:且⇒a<0且﹣1<a<2⇒﹣1<a<0故满足条件的a的取值范围是{a|a≥0或a≤﹣1}.故答案为:(﹣1,1),{a|a≥0或a≤﹣1}.16.在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=A sin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.如图,平面直角坐标系xOy中,以原点O为圆心,r为半径作圆,A为圆周上的一点,以Ox为始边,OA为终边的角为α,则点A的坐标是A(r cosα,r sinα),从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),动点B在y轴上的投影C作简谐运动,则点C的纵坐标y 与时间t的函数关系式为y=r sin(ωt+α).【分析】由任意角三角函数的定义,A(r cosα,r sinα),根据题意∠BOx=ωt+α,进而可得点C的纵坐标y与时间t的函数关系式.解:由任意角三角函数的定义,A(r cosα,r sinα),若从A点出发,以恒定的角速度ω转动,经过t秒转动到点B(x,y),则∠BOx=ωt+α,点C的纵坐标y与时间t的函数关系式为y=r sin(ωt+α).故答案为:A(r cosα,r sinα),y=r sin(ωt+α).三.解答题:本大题共4小题,共70分.解答应写出文字说明,演算步骤或证明过程. 17.已知集合A={x|x2﹣5x﹣6≤0},B={x|m+1≤x≤2m﹣1,m∈R}.(Ⅰ)求集合∁R A;(Ⅱ)若A∪B=A,求实数m的取值范围;【分析】(Ⅰ)容易求出A={x|﹣1≤x≤6},然后进行补集的运算即可;(Ⅱ)根据A∪B=A可得出B⊆A,从而可讨论B是否为空集:B=∅时,m+1>2m﹣1;B ≠∅时,,解出m的范围即可.解:(Ⅰ)A={x|﹣1≤x≤6},∴∁R A={x|x<﹣1或x>6},(Ⅱ)∵A∪B=A,∴B⊆A,∴①B=∅时,m+1>2m﹣1,解得m<2;②B≠∅时,,解得,∴实数m的取值范围为.18.(18分)已知函数f(x)=sin2x﹣2.(Ⅰ)若点在角α的终边上,求tan2α和f(α)的值;(Ⅱ)求函数f(x)的最小正周期;(Ⅲ)若,求函数f(x)的最小值.【分析】(Ⅰ)直接利用三角函数的定义的应用和函数的关系式的应用求出结果.(Ⅱ)利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(Ⅲ)利用函数的定义域的应用求出函数的值域和最小值.解:(Ⅰ)若点在角α的终边上,所以,,故,所以tan2α===.f(α)==2.(Ⅱ)由于函数f(x)=sin2x﹣2=.所以函数的最小正周期为.(Ⅲ)由于,所以,所以当x=时,函数的最小值为.19.(18分)已知函数f(x)=(x≠a).(Ⅰ)若2f(1)=﹣f(﹣1),求a的值;(Ⅱ)若a=2,用函数单调性定义证明f(x)在(2,+∞)上单调递减;(Ⅲ)设g(x)=xf(x)﹣3,若函数g(x)在(0,1)上有唯一零点,求实数a的取值范围.【分析】(Ⅰ)由已知,建立关于a的方程,解出即可;(Ⅱ)将a=2代入,利用取值,作差,变形,判号,作结论的步骤证明即可;(Ⅲ)问题转化为h(x)=2x2﹣3x+3a在(0,1)上有唯一零点,由二次函数的零点分布问题解决.解:(Ⅰ)由2f(1)=﹣f(﹣1)得,,解得a=﹣3;(Ⅱ)当a=2时,,设x1,x2∈(2,+∞),且x1<x2,则,∵x1,x2∈(2,+∞),且x1<x2,∴x2﹣x1>0,(x1﹣2)(x2﹣2)>0,∴f(x1)>f(x2),∴f(x)在(2,+∞)上单调递减;(Ⅲ),若函数g(x)在(0,1)上有唯一零点,即h(x)=2x2﹣3x+3a在(0,1)上有唯一零点(x=a不是函数h(x)的零点),且二次函数h(x)=2x2﹣3x+3a的对称轴为,若函数h(x)在(0,1)上有唯一零点,依题意,①当h(0)h(1)<0时,3a(3a﹣1)<0,解得;②当△=0时,9﹣24a=0,解得,则方程h(x)=0的根为,符合题意;③当h(1)=0时,解得,则此时h(x)=2x2﹣3x+1的两个零点为,符合题意.综上所述,实数a的取值范围为.20.(20分)已知函数f(x)=log2(x+a)(a>0).当点M(x,y)在函数y=g(x)图象上运动时,对应的点M'(3x,2y)在函数y=f(x)图象上运动,则称函数y=g(x)是函数y=f(x)的相关函数.(Ⅰ)解关于x的不等式f(x)<1;(Ⅱ)对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,求a的取值范围;(Ⅲ)设函数F(x)=f(x)﹣g(x),x∈(0,1).当a=1时,求|F(x)|的最大值【分析】(Ⅰ)利用对数函数的性质可得,解出即可;(Ⅱ)根据题意,求得,依题意,在(0,1)上恒成立,由此得解;(Ⅲ)结合(Ⅱ)可知,,则只需求出的最大值即可.解:(Ⅰ)依题意,,则,解得﹣a<x<2﹣a,∴所求不等式的解集为(﹣a,2﹣a);(Ⅱ)由题意,2y=log2(3x+a),即f(x)的相关函数为,∵对任意的x∈(0,1),f(x)的图象总在其相关函数图象的下方,∴当x∈(0,1)时,恒成立,由x+a>0,3x+a>0,a>0得,∴在此条件下,即x∈(0,1)时,恒成立,即(x+a)2<3x+a,即x2+(2a﹣3)x+a2﹣a<0在(0,1)上恒成立,∴,解得0<a≤1,故实数a的取值范围为(0,1].(Ⅲ)当a=1时,由(Ⅱ)知在区间(0,1)上,f(x)<g(x),∴,令,则,令μ=3x+1(1<μ<4),则,∴,当且仅当“”时取等号,∴|F(x)|的最大值为.。
北京市朝阳区2018-2019学年度第一学期期末质量检测高三年级数学试卷(理工类)
15.(本小题满分13分)
在 中,已知 ,
(Ⅰ)求 的长;
(Ⅱ)求 边上的中线 的长.
16.(本小题满分13分)
某日A,B,C三个城市18个销售点的小麦价格如下表:
销售点序号
所属城市
小麦价格(元/吨)
销售点序号
所属城市
小麦价格(元/吨)
所以 ,且 .
所以四边形 是平行四边形.
所以 .
又因为 平面 , 平面 ,
所以 平面 .…………………4分
(Ⅱ)因为侧面 是正方形,所以 .
又因为平面 平面 ,且平面 平面 ,
所以 平面 .所以 .
又因为 ,以 为原点建立空间直角坐标系 ,如图所示.
设 ,则 ,
.
(ⅰ)设平面 的一个法向量为 .
由 得 即 令 ,所以 .
1.已知集合 , ,则
A. B. C. D.
2.设复数 满足 ,则 =
A. B. C.2D.
3.执行如图所示的程序框图,若输入的 ,则输出的 =
A. B. C. D.
4.在平面直角坐标系 中,过 三点的圆被 轴
截得的弦长为
A. B. C. D.
5.将函数 的图象向右平移 个单位后,图象经过
点 ,则 的最小值为
(Ⅰ)求 点坐标和直线 的方程;
(Ⅱ)求证: .
20.(本小题满分13分)
已知 是由正整数组成的无穷数列,对任意 , 满足如下两个条件:
① 是 的倍数;
② .
(Ⅰ)若 , ,写出满足条件的所有 的值;
(Ⅱ)求证:当 时, ;
(Ⅲ)求 所有可能取值中的最大值.
2018-2019学年高二(下)期末数学试卷(含答案)
高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.()A. 5B. 5iC. 6D. 6i2.( )B.3.某校有高一学生n名,其中男生数与女生数之比为6:5,为了解学生的视力情况,若样本中男生比女生多12人,则n=()A. 990B. 1320C. 1430D. 15604.(2,k(6,4是()A. (1,8)B. (-16,-2)C. (1,-8)D. (-16,2)5.某几何体的三视图如图所示,则该几何体的体积为()A. 3πB. 4πC. 6πD. 8π6.若函数f(x)a的取值范围为()A. (-5,+∞)B. [-5,+∞)C. (-∞,-5)D. (-∞,-5]7.设x,y z=x+y的最大值与最小值的比值为()A. -1B.C. -28.x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为()A. 2B. 1 D. 49.等比数列{a n}的前n项和为S n,若S10=10,S30=30,则S20=()A. 20B. 10C. 20或-10D. -20或1010.当的数学期望取得最大值时,的数学期望为()A. 211.若实轴长为2的双曲线C:4个不同的点则双曲线C的虚轴长的取值范围为( )12.已知函数f(x)=2x3+ax+a.过点M(-1,0)引曲线C:y=f(x)的两条切线,这两条切线与y轴分别交于A,B两点,若|MA|=|MB|,则f(x)的极大值点为()二、填空题(本大题共4小题,共20.0分)13.(x7的展开式的第3项为______.14.已知tan(α+β)=1,tan(α-β)=5,则tan2β=______.15.287212,也是著名的数学家,他最早利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆C面积则椭圆C的标准方程为______.16.已知高为H R的球O的球面上,若二面4三、解答题(本大题共6小题,共70.0分)17.nn的通项公式.18.2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如表格:(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.19.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b sin A cos C+a sin C cos B A.(1)求tan A的值;(2)若b=1,c=2,AD⊥BC,D为垂足,求AD的长.20.已知B(1,2)是抛物线M:y2=2px(p>0)上一点,F为M的焦点.(1,M上的两点,证明:|FA|,|FB|,|FC|依次成等比数列.(2)若直线y=kx-3(k≠0)与M交于P(x1,y1),Q(x2,y2)两点,且y1+y2+y1y2=-4,求线段PQ的垂直平分线在x轴上的截距.21.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PB=PC,E为线段BC的中点,F为线段PA上的一点.(1)证明:平面PAE⊥平面BCP.(2)若PA=AB,二面角A-BD=F求PD与平面BDF所成角的正弦值.22.已知函数f(x)=(x-a)e x(a∈R).(1)讨论f(x)的单调性;(2)当a=2时,F(x)=f(x)-x+ln x,记函数y=F(x1)上的最大值为m,证明:-4<m<-3.答案和解析1.【答案】A【解析】故选:A.直接利用复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.2.【答案】C【解析】【分析】本题考查元素与集合的关系,子集与真子集,并集及其运算,属于基础题.先分别求出集合A与集合B,再判别集合A与B的关系,以及元素和集合之间的关系,以及并集运算得出结果.【解答】解:A={x|x2-4x<5}={x|-1<x<5},B={2}={x|0≤x<4},∴∉A,B,B⊆A,A∪B={x|-1<x<5}.故选C.3.【答案】B【解析】解:某校有高一学生n名,其中男生数与女生数之比为6:5,样本中男生比女生多12人,设男生数为6k,女生数为5k,解得k=12,n=1320.∴n=1320.故选:B.设男生数为6k,女生数为5k,利用分层抽样列出方程组,由此能求出结果.本题考查高一学生数的求法,考查分层抽样等基础知识,考查运算求解能力,是基础题.4.【答案】B【解析】解:∴k=-3;∴(-16,-2)与共线.k=-3考查向量垂直的充要条件,向量坐标的加法和数量积的运算,共线向量基本定理.5.【答案】A【解析】解:由三视图知,几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,∴,故选:A.几何体是一个简单组合体,左侧是一个半圆柱,底面的半径是1,高为:4,右侧是一个半圆柱,底面半径为1,高是2,根据体积公式得到结果.本题考查由三视图求几何体的体积,考查由三视图还原直观图,本题是一个基础题,题目的运算量比较小,若出现是一个送分题目.6.【答案】B【解析】解:函数f(x)x≤1时,函数是增函数,x>1时,函数是减函数,由题意可得:f(1)=a+4≥,解得a≥-5.故选:B.利用分段函数的表达式,以及函数的单调性求解最值即可.本题考查分段函数的应用,函数的单调性以及函数的最值的求法,考查计算能力.7.【答案】C【解析】解:作出不等式组对应的平面区域如图:A(2,5),B-2)由z=-x+y,得y=x+z表示,斜率为1纵截距为Z的一组平行直线,平移直线y=x+z,当直线y=x+z经过点A时,直线y=x+z的截距最大,此时z最大值为7,经过B时则z=x+y的最大值与最小值的比值为:.故选:C.作出不等式对应的平面区域,利用z的几何意义,利用直线平移法进行求解即可.本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.【解析】解:由题意,对任意的∈R,都有f(x1)≤f(x)≤f(x2)成立,∴f(x1)=f(x)min=-3,f(x2)=f(x)max=3.∴|x1-x2|min∵T=4.∴|x1-x2|min=.故选:A.本题由题意可得f(x1)=f(x)min,f(x2)=f(x)max,然后根据余弦函数的最大最小值及周期性可知|x1-x2|min本题主要考查余弦函数的周期性及最大最小的取值问题,本题属中档题.9.【答案】A【解析】解:由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,(30-S20),解得S20=20,或S20=-10,∵S20-S10=q10S10>0,∴S20>0,∴S20=20,故选:A.由等比数列的性质可得:S10,S20-S10,S30-S20成等比数列,列式求解.本题考查了等比数列的通项公式和前n项和及其性质,考查了推理能力与计算能力,属于中档题.10.【答案】D【解析】解:∴EX取得最大值.此时故选:D.利用数学期望结合二次函数的性质求解期望的最值,然后求解Y的数学期望.本题考查数学期望以及分布列的求法,考查计算能力.11.【答案】C【解析】【分析】本题考查了双曲线的性质,动点的轨迹问题,考查了转化思想,属于中档题.设P i(x,y)⇒x2+y2(x2。
2022-2023学年北京市朝阳区北京中学高一上学期期中数学试卷含详解
北京中学2022—2023学年度第一学期期中统练试卷高一年级数学试卷班级姓名成绩本试卷共8页,满分150分.考试时长120分钟.考生务必将条形码贴在答题卡规定处,并将答案写在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回.一、选择题,共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.点()3,2P 到直线30x y --=的距离为()A.1B.C. D.132.若点()1,0,2A -,()1,4,10B 在直线l 上,则直线l 的一个方向向量为()A.()1,2,4 B.()1,4,2 C.()0,2,1- D.()0,4,123.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A.a 2=2b 2B.3a 2=4b 2C.a =2bD.3a =4b4.“12m =”是“直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=垂直”的A.充分必要条件 B.充分非必要条件C.必要不充分条件D.既不充分也不必要条件5.圆221:20x y x O +-=和圆222:40O x y y +-=的位置关系是()A.内含B.内切C.外切D.相交6.已知()1,0,1a = ,(),1,2b x =r ,且3a b ⋅=,则向量a 与b 的夹角为()A.30B.60C.120D.1507.已知直线0x y m -+=与圆O :221x y +=相交于,A B 两点,且AOB 为等边三角形,则实数m 的值为()A.32B.2C.32±D.62±8.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.79.如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与i 1B D 的交点,若AB a =,AD b =,1AA c = ,则BM = ()A.1122a b c-+ B.1122a b c ++C.1122a b c --+D.1122-++a b c 10.在平面直角坐标系中,已知点()0,1A ,()1,1B ,P 为直线AB 上的动点,A 关于直线OP 的对称点为Q ,则线段BQ 的长度的最大值为()A.1B.2C.1D.2+二、填空题,共5小题,每小题5分,共25分.11.若P ,Q 是圆222440x y x y +-++=上的两个动点,则PQ 的最大值为____________.12.写出一条与圆221x y +=相切的直线l 的方程:________________________.13.已知空间中单位向量a 、b ,且,60a b =,则|3|a b - 的值为________.14.已知椭圆22192x y +=的焦点为1F 、2F ,点P 在椭圆上,若1||4PF =,则2||PF =________,12F PF ∠的大小为________.15.2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”.如图,在平面直角坐标系中半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点()0,2F ,椭圆的短轴与半圆的直径重合,下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则下列说法正确的有____________.①椭圆的长轴长为;②线段AB 长度的取值范围是4,2+⎡⎣;③ABF △面积的最小值是4;④AFG 的周长为4+.三、解答题.共6个大题,共85分.16.已知圆C 经过两点()30A -,,()1,2B -,且圆心在直线410x y --=上.(1)求线段AB 的垂直平分线的方程;(2)求圆C 的标准方程;(3)求圆C 被直线:l 3450x y ++=截得的弦长.17.如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ;(Ⅱ)求二面角F–AE–P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.18.如图1,在矩形ABCD 中,2AB =,4BC =,E 为AD 的中点,O 为BE 中点.将ABE ∆沿BE 折起到A BE ',使得平面A BE '⊥平面BCDE (如图2).(1)求证:A O CD '⊥;(2)求直线A C '与平面A DE ¢所成角的正弦值;(3)在线段A C '上是否存在点P ,使得//OP 平面A DE ¢?若存在,求出A PA C''的值;若不存在,请说明理由.19.设椭圆()222210x y a b a b +=>>的离心率为33,上、下顶点分别为A ,B ,AB 4=.过点()0,1E ,且斜率为k 的直线l 与x 轴相交于点F ,与椭圆相交于C ,D 两点.(1)求椭圆的方程;(2)若FC DE =,求k 的值;(3)是否存在实数k ,使//AC BD ?若存在,请求出k 的值;若不存在,请说明理由.20.已知椭圆2222:1x y C a b+=过点()()2,0,0,1A B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.21.已知集合{}12,,,(2)k A a a a k =≥ ,其中(1,2,,)i a i k ∈=Z ,由A 中的元素构成两个相应的集合:{}(,)|,,S a b a A b A a b A =∈∈+∈,{}(,),,T a b a A b A a b A =∈∈-∈.其中(,)a b 是有序数对,集合S 和T 中的元素个数分别为m 和n .若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(Ⅰ)检验集合{}0,1,2,3与{}1,2,3-是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T .(Ⅱ)对任何具有性质P 的集合A ,证明(1)2k k n -≤.(Ⅲ)判断m 和n 的大小关系,并证明你的结论.北京中学2022—2023学年度第一学期期中统练试卷高一年级数学试卷班级姓名成绩本试卷共8页,满分150分.考试时长120分钟.考生务必将条形码贴在答题卡规定处,并将答案写在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回.一、选择题,共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.点()3,2P 到直线30x y --=的距离为()A.1B.C.D.13【答案】B【分析】根据点到直线的距离公式可直接求出答案.【详解】点()3,2P 到直线30x y --=的距离为d ==故选:B .2.若点()1,0,2A -,()1,4,10B 在直线l 上,则直线l 的一个方向向量为()A.()1,2,4 B.()1,4,2 C.()0,2,1- D.()0,4,12【答案】A【分析】由方向向量的概念求解,【详解】由(2,4,8)AB = ,l 的方向向量与AB平行,只有选项A 满足题意,故选:A3.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A.a 2=2b 2B.3a 2=4b 2C.a =2bD.3a =4b【答案】B【分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式.【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.4.“12m =”是“直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=垂直”的A.充分必要条件 B.充分非必要条件C.必要不充分条件 D.既不充分也不必要条件【答案】B【分析】先由两直线垂直求出m 的值,再由充分条件与必要条件的概念,即可得出结果.【详解】因为直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=垂直,则(2)(2)3(2)0+-++=m m m m ,即(2)(42)0+-=m m ,解得2m =-或12m =;因此由“12m =”能推出“直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=垂直”,反之不能推出,所以“12m =”是“直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=垂直”的充分非必要条件.故选B【点睛】本题主要考查命题充分不必要条件的判定,熟记充分条件与必要条件的概念,以及两直线垂直的判定条件即可,属于常考题型.5.圆221:20x y x O +-=和圆222:40O x y y +-=的位置关系是()A.内含B.内切C.外切D.相交【答案】D【分析】根据圆的一般方程分别求出两圆的圆心坐标和半径,进而求出两圆心的距离,结合211212r r O O r r -<<+即可得出结果.【详解】由题意可知圆1O 的圆心()110O ,,半径11r =,圆2O 的圆心()202O ,,半径12r =,所以12O O =,又211212r r O O r r -<<+,所以圆1O 和圆2O 的位置关系是相交,故选:D .6.已知()1,0,1a = ,(),1,2b x =r ,且3a b ⋅=,则向量a 与b 的夹角为()A.30 B.60C.120D.150【答案】A【分析】利用空间向量数量积的坐标运算可得出x 的值,再利用空间向量数量积可求得a 与b的夹角.【详解】由已知可得23a b x ⋅=+=,可得1x =,a ∴= ,b == ,所以,cos,2a ba ba b⋅<>==⋅,0,180a b≤<>≤,因此,,30a b<>=.故选:A.7.已知直线0x y m-+=与圆O:221x y+=相交于,A B两点,且AOB为等边三角形,则实数m的值为()A.2B.2C.32± D.62±【答案】D【分析】根据圆的标准方程及等边三角形的性质,结合勾股定理及点到直线的距离公式即可求解.【详解】由题意可知,圆O:221x y+=的圆心坐标为()0,0O,半径为1r=,因为直线0x y m-+=与圆O:221x y+=相交于,A B两点,且AOB为等边三角形,所以AOB的边长为1,则圆心()0,0O到直线0x y m-+=2=,即32d==,解得2m=±.所以实数m 的值为62±.故选:D.8.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为().A.4B.5C.6D.7【答案】A【分析】求出圆心C的轨迹方程后,根据圆心M到原点O的距离减去半径1可得答案.【详解】设圆心(),C x y1=,化简得()()22341x y-+-=,所以圆心C的轨迹是以(3,4)M为圆心,1为半径的圆,所以||1||OC OM +≥22345=+=,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.9.如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与i 1B D 的交点,若AB a =,AD b =,1AA c = ,则BM =()A.1122a b c-+ B.1122a b c ++C.1122a b c--+D.1122-++a b c【答案】D【分析】根据空间向量基本定理,用1,,AB AD AA 表示出BM即可.【详解】由题意,因为M 为11A C 与11B D 的交点,所以M 也为11A C 与11B D 的中点,因此()111111111222=-=++=-++BM B M B B B A B C c AB AD c 1212=-++ a b c .故选:D.10.在平面直角坐标系中,已知点()0,1A ,()1,1B ,P 为直线AB 上的动点,A 关于直线OP 的对称点为Q ,则线段BQ 的长度的最大值为()A.1B.2C.12D.22+【答案】C【分析】转化条件得Q 点轨迹为以O 为圆心,OA 为半径的圆(不包括点F ),由max BQ OB OA =+即可得解.【详解】解: A 关于直线OP 的对称点记为Q ,P 为直线AB 上的动点,∴OQ OA =,∴Q 点轨迹为以O 为圆心,OA 为半径的圆(不包括点F ),如图,又OB ==,∴max1BQ OA =+=.故选:C.二、填空题,共5小题,每小题5分,共25分.11.若P ,Q 是圆222440x y x y +-++=上的两个动点,则PQ 的最大值为____________.【答案】2【分析】当P ,Q 在直径两端时,PQ 最大.【详解】圆的标准方程为22(1)(2)1x y -++=,圆心为(1,2)-,半径为1,当P ,Q 在直径两端时,PQ 最大,所以PQ 的最大值为22r =.故答案为:212.写出一条与圆221x y +=相切的直线l 的方程:________________________.【答案】1y =(答案不唯一)【分析】由直线与圆的位置关系求解,【详解】由题意得直线1y =与圆221x y +=相切,故答案为:1y =(答案不唯一)13.已知空间中单位向量a 、b ,且,60a b =,则|3|a b - 的值为________.【分析】根据向量的运算法则计算2|3|7a b -=,得到答案.【详解】222|3|96196cos 601937a b a b a b -=+-⋅=+-⨯︒=+-= ,故|3|a b -= ..14.已知椭圆22192x y +=的焦点为1F 、2F ,点P 在椭圆上,若1||4PF =,则2||PF =________,12F PF ∠的大小为________.【答案】①.2②.120【分析】由椭圆方程,结合椭圆的定义求2||PF ,在焦点三角形中应用余弦定理求12F PF ∠的余弦值,进而确定其大小.【详解】∵29a =,22b =,∴c ===,∴12F F =,又1||4PF =,12||||26PF PF a +==,∴2||2PF =,由余弦定理,得22212241cos 2242F PF +-∠==-⨯⨯,∴12120F PF ∠=.故答案为:2,12015.2022年4月16日9时56分,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆组成的“曲圆”.如图,在平面直角坐标系中半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点()0,2F ,椭圆的短轴与半圆的直径重合,下半圆与y 轴交于点G .若过原点O 的直线与上半椭圆交于点A ,与下半圆交于点B ,则下列说法正确的有____________.①椭圆的长轴长为42;②线段AB 长度的取值范围是4,22+⎡⎣;③ABF △面积的最小值是4;④AFG 的周长为442+.【答案】①②④【分析】由题意可得b 、c ,然后可得a ,可判断①;由椭圆性质可判断②;取特值,结合OA 长度的取值范围可判断③;由椭圆定义可判断④.【详解】解:由题知,椭圆中的几何量2b c ==,所以222a c b =+=,则242a =,故①正确;因为2AB OB OA OA =+=+,由椭圆性质可知22OA ≤≤,所以422AB ≤≤+记AOF θ∠=,则11sin sin()22ABF AOF OBF S S S OA OF OB OF θπθ=+=⋅+⋅- sin 2sin (2)sin OA OA θθθ=+=+取6πθ=,则11112422ABF S OA =+≤+⨯ ,故③错误;由椭圆定义知,22AF AG a +==,所以AFG 的周长242AFG C FG =+=+ .故答案为:①②④三、解答题.共6个大题,共85分.16.已知圆C 经过两点()30A -,,()1,2B -,且圆心在直线410x y --=上.(1)求线段AB 的垂直平分线的方程;(2)求圆C 的标准方程;(3)求圆C 被直线:l 3450x y ++=截得的弦长.【答案】(1)210x y -+=;(2)()()221325x y -+-=;(3)6.【分析】(1)由题可得线段AB 的中点坐标及斜率,然后利用点斜式即得;(2)由210410x y x y -+=⎧⎨--=⎩可得圆心坐标,进而即得;(3)利用弦长公式即得.【小问1详解】由()30A -,,()1,2B -,可得其中点为()1,1--,12AB k =-,所以线段AB 的垂直平分线的斜率为2,故线段AB 的垂直平分线的方程为()121y x +=+,即210x y -+=;【小问2详解】由210410x y x y -+=⎧⎨--=⎩,可得13x y =⎧⎨=⎩,所以圆心()1,3C,圆C 的半径为5AC==,所以圆C 的标准方程为()()221325x y -+-=;【小问3详解】因为圆心()1,3C ,圆C 的半径为5,所以圆心()1,3C到直线:l 3450x y ++=的距离为4d ==,所以圆C 被直线:l 3450x y ++=截得的弦长为6=.17.如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ;(Ⅱ)求二面角F–AE–P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(Ⅰ)见解析;(Ⅱ)3;(Ⅲ)见解析.【分析】(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F -AE -P 的余弦值;(Ⅲ)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量可判断直线是否在平面内.【详解】(Ⅰ)由于PA ⊥平面ABCD ,CD ⊂平面ABCD ,则PA ⊥CD ,由题意可知AD ⊥CD ,且PA ∩AD =A ,由线面垂直的判定定理可得CD ⊥平面PAD .(Ⅱ)以点A 为坐标原点,平面ABCD 内与AD 垂直的直线为x 轴,AD ,AP 方向为y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,易知:()()()()0,0,0,0,0,2,2,2,0,0,2,0A P C D ,由13PF PC = 可得点F 的坐标为224,,333F ⎛⎫ ⎪⎝⎭,由12PE PD =可得()0,1,1E ,设平面AEF 的法向量为:(),,m x y z =,则()()()224224,,,,0333333,,0,1,10m AF x y z x y z m AE x y z y z ⎧⎛⎫⋅=⋅=++=⎪ ⎪⎝⎭⎨⎪⋅=⋅=+=⎩,据此可得平面AEF 的一个法向量为:()1,1,1m =-,很明显平面AEP 的一个法向量为()1,0,0n =r,cos ,3m n m n m n⋅<>==⨯,二面角F -AE -P 的平面角为锐角,故二面角F -AE -P 的余弦值为33.(Ⅲ)易知()()0,0,2,2,1,0P B -,由23PG PB = 可得422,,333G ⎛⎫- ⎪⎝⎭,则422,,333AG ⎛⎫=- ⎪⎝⎭,注意到平面AEF 的一个法向量为:()1,1,1m =-,其0m AG ⋅=且点A 在平面AEF 内,故直线AG 在平面AEF 内.18.如图1,在矩形ABCD 中,2AB =,4BC =,E 为AD 的中点,O 为BE 中点.将ABE ∆沿BE 折起到A BE ',使得平面A BE '⊥平面BCDE (如图2).(1)求证:A O CD '⊥;(2)求直线A C '与平面A DE ¢所成角的正弦值;(3)在线段A C '上是否存在点P ,使得//OP 平面A DE ¢?若存在,求出A PA C''的值;若不存在,请说明理由.【答案】(1)见解析;(2)3;(3)见解析【分析】(1)先证明A O '⊥平面BCDE .再证明A O CD '⊥.(2)以O 为原点,,,OF OG OA '所在直线分别为,,x y z 轴建立空间直角坐标系(如图),利用向量法求直线A C '与平面A DE '所成角的正弦值2sin 3θ为.(3)假设在线段A C '上存在点P ,使得//OP 平面A DE '.设()000,,P x y z ,且()01A PA Cλλ=≤'≤',根据//OP 平面A DE '求得[]10,12λ=∈,所以当12A P A C =''时,//OP 平面A DE '.【详解】(1)由已知2AB AE ==,因为O 为BE 中点,所以A O BE '⊥.因为平面A BE '⊥平面BCDE ,且平面A BE '⋂平面BCDE BE =,A O '⊂平面A BE ',所以A O '⊥平面BCDE .又因为CD ⊂平面BCDE ,所以A O CD '⊥.(2)设F 为线段BC 上靠近B 点的四等分点,G 为CD 中点.由已知易得OF OG ⊥.由(1)可知,A O '⊥平面BCDE ,所以A O OF '⊥,A O OG '⊥.以O 为原点,,,OF OG OA '所在直线分别为,,x y z 轴建立空间直角坐标系(如图).因为2A B '=,4BC =,所以(()()()()00,1,10,130,130,110A B C D E ---',,,,,,,.设平面A DE '的一个法向量为()111,,m x y z =,因为(()13,020A D DE '=-=-,,,,,所以0,0,m A D m DE ⎧⋅=⋅=⎩'⎨即111130,20.x y y ⎧-+=⎪⎨-=⎪⎩取11z =-,得)1m =-.而A C ='(1,3,.所以直线A C '与平面A DE '所成角的正弦值2sin 3θ==(3)在线段A C '上存在点P ,使得//OP 平面A DE '.设()000,,P x y z ,且()01A PA Cλλ=≤'≤',则A P A C λ''= ,[]0,1λ∈.因为(()00,130A C ',,,所以(()000,,,3,x y z λλ-=,所以000,3,x y z λλ===,所以(),3P λλ,(),3OP λλ=.若//OP 平面A DE ',则OP m ⊥ .即0OP m ⋅=.由(2)可知,平面A DE '的一个法向量)1m =-,0+=,解得[]10,12λ=∈,所以当12A P A C =''时,//OP 平面A DE '.【点睛】(1)本题主要考查空间直线平面位置关系的证明,考查二面角的求法和直线和平面所成的角的求法,意在考查学生对这些知识的掌握水平和空间想象分析推理转化能力.(2)直线和平面所成的角的求法方法一:(几何法)找→作(定义法)→证(定义)→指→求(解三角形),其关键是找到直线在平面内的射影作出直线和平面所成的角和解三角形.方法二:(向量法)•sin AB n AB nα=,其中AB是直线l 的方向向量,n是平面的法向量,α是直线和平面所成的角.19.设椭圆()222210x y a b a b +=>>的离心率为33,上、下顶点分别为A ,B ,AB 4=.过点()0,1E ,且斜率为k 的直线l 与x 轴相交于点F ,与椭圆相交于C ,D 两点.(1)求椭圆的方程;(2)若FC DE =,求k 的值;(3)是否存在实数k ,使//AC BD ?若存在,请求出k 的值;若不存在,请说明理由.【答案】(1)22164x y +=(2)63k =±(3)不存在实数k ,使直线AC 平行于直线BD ,证明见解析.【分析】(1)直接由离心率和顶点坐标求解即可;(2)由FC DE =得到,CD EF 的中点重合,联立直线和椭圆方程,分别求出,CD EF 的中点坐标,解方程即可;(3)假设存在,利用AC BD∥建立等式,解方程得k 不存在即可.【小问1详解】由题意2222433b c e a a b c =⎧⎪⎪==⎨⎪-=⎪⎩,解得2a b ⎧=⎪⎨=⎪⎩22164x y +=;【小问2详解】由题意知,0k ≠,直线l 的方程为1y kx =+,则1(,0)F k -,联立221641x y y kx ⎧+=⎪⎨⎪=+⎩,可得()2223690k x kx ++-=,()223636230k k ∆=++>,设1122(,),(,)C x y D x y ,有12122269,2323k x x x x k k --+==++,则CD 中点横坐标为1223223x x kk+-=+,又,(0,1),1(0)F k E -,则EF 中点横坐标为12k-,又因为FC DE = ,且,,,C E F D 四点共线,取EF 中点H ,则FH HE = ,所以H F HE C DE F =-- ,即HC DH =,所以H 是CD 的中点,即,CD EF 的中点重合,即231232k k k-=-+,解得63k =±.【小问3详解】不存在实数k ,使直线AC 平行于直线BD ,证明如下:由题意,(0,2),(0,2)A B -,则()()1122,2,,2AC x y BD x y =-=+,若AC BD ∥,则AC BD∥,所以()()122122x y x y +=-,即()12211220x y x y x x -++=,即()()()1221121120x kx x kx x x +-+++=,化简得()121220x x x x -++=,213x x =-,由(2)得,12112266,32323k k x x x x k k --+=-=++,解得12323kx k=+,()12112299,32323x x x x k k --=⋅-=++解得212323x k =+,所以222332323k k k ⎛⎫= ⎪++⎝⎭,整理得22233k k +=,无解,所以不存在实数k ,使直线AC 平行于直线BD .20.已知椭圆2222:1x y C a b+=过点()()2,0,0,1A B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.【答案】(Ⅰ)2214x y +=;32e =(Ⅱ)见解析.【详解】试卷分析:(Ⅰ)根据两顶点坐标可知a ,b 的值,则亦知椭圆方程,根据椭圆性质及离心率公式求解;(Ⅱ)四边形ABNM 的面积等于对角线乘积的一半,分别求出对角线AN ,BM 的值求乘积为定值即可.试卷解析:(Ⅰ)由题意得,21a b ==,.所以椭圆C 的方程2214x y +=.又c ==,所以离心率32c e a ==.(Ⅱ)设()()000000P x y x y <<,,,则220044x y +=.又()20A ,,()01B ,,所以,直线PA 的方程为()0022y y x x =--.令0x =,得0022M y y x =--,从而002112My BM y x =-=+-.直线PB 的方程为0011y y x x -=+.令0y =,得001N x x y =-,从而00221Nx AN x y =-=+-所以四边形ABNM 的面积12S AB BM =⋅00002121212x y y x ⎛⎫⎛⎫=++ ⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x y x y x y ++--+=--+00000000224422x y x y x y x y --+=--+2=.从而四边形ABNM 的面积为定值.考点:1、椭圆方程;2、直线和椭圆的关系.【方法点晴】本题考查椭圆的方程与几何性质、直线与椭圆的位置关系,以及考查逻辑思维能力、分析与解决问题的综合能力、运算求解能力、方程思想与分类讨论的思想.第一小题根据两顶点坐标可知a ,b 的值,则亦知椭圆方程,根据椭圆性质及离心率公式求解;第二小题四边形ABNM 的面积等于对角线乘积的一半,分别求出对角线AN ,BM 的值求乘积为定值即可.21.已知集合{}12,,,(2)k A a a a k =≥ ,其中(1,2,,)i a i k ∈=Z ,由A 中的元素构成两个相应的集合:{}(,)|,,S a b a A b A a b A =∈∈+∈,{}(,),,T a b a A b A a b A =∈∈-∈.其中(,)a b 是有序数对,集合S 和T 中的元素个数分别为m 和n .若对于任意的a A ∈,总有a A -∉,则称集合A 具有性质P .(Ⅰ)检验集合{}0,1,2,3与{}1,2,3-是否具有性质P 并对其中具有性质P 的集合,写出相应的集合S 和T .(Ⅱ)对任何具有性质P 的集合A ,证明(1)2k k n -≤.(Ⅲ)判断m 和n 的大小关系,并证明你的结论.【答案】(Ⅰ)集合{}0,1,2,3不具有性质P ,集合{}1,2,3-具有性质P ,相应集合(1,3)S =-,(3,1)-,集合(2,1)T =-,(2,3)(Ⅱ)见解析(Ⅲ)m n=【详解】解:集合{}0123,,,不具有性质P .集合{}123-,,具有性质P ,其相应的集合S 和T 是{}(13)(31)S =--,,,,{}(21)(23)T =-,,,.(II )证明:首先,由A 中元素构成的有序数对()i j a a ,共有2k 个.因为0A ∉,所以()(12)i i a a T i k ∉= ,,,,;又因为当a A ∈时,a A -∉时,a A -∉,所以当()i j a a T ∈,时,()(12)j i a a T i j k ∉= ,,,,,.从而,集合T 中元素的个数最多为21(1)()22k k k k --=,即(1)2k k n -≤.(III )解:m n =,证明如下:(1)对于()a b S ∈,,根据定义,a A ∈,b A ∈,且a b A +∈,从而()a b b T +∈,.如果()a b ,与()c d ,是S 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d +=+与b d =中也至少有一个不成立.故()a b b +,与()c d d +,也是T 的不同元素.可见,S 中元素的个数不多于T 中元素的个数,即m n ≤,(2)对于()a b T ∈,,根据定义,a A ∈,b A ∈,且a b A -∈,从而()a b b S -∈,.如果()a b ,与()c d ,是T 的不同元素,那么a c =与b d =中至少有一个不成立,从而a b c d -=-与b d =中也不至少有一个不成立,故()a b b -,与()c d d -,也是S 的不同元素.可见,T 中元素的个数不多于S 中元素的个数,即n m ≤,由(1)(2)可知,m n =.。
2018~2019学年北京朝阳区高二上学期期末数学试卷
,
,则 为
.
12. 双曲线
的渐近线的方程为
.
13. 设数列 的前 项和为 ,如果
,
为
.,那么 , ຫໍສະໝຸດ , 中最小的14. 若 , ,且
,则 的最大值为
.
15. 已知数列 中,
,前 项和
通项公式为
.
,那么 的值为
,数列 的
16. 已知 是坐标原点, , 是抛物线
上不同于 的两点,
①
;
②
;
③直线 过抛物线
2018~2019学年北京朝阳区高二上学期期末数学试卷
一、选择题(共10小题,每小题5分,共50分)
1. 若 , , , A. C.
,且 , ,则下列结论正确的是( ). B. D.
2. 抛物线
的准线方程为( ).
A.
B.
C.
D.
3. 在等比数列 中,
,
,则 的前 项和是( ).
A.
B.
C.
D.
4. 在正方体 A.
的解集.
( 2 ) 对于任意
,不等式
恒成立,求 的取值范围.
( 3 ) 求关于 的不等式
的解集.
19. 已知椭圆
,其右焦点为
,离心率为 .
( 1 ) 求椭圆 的方程.
( 2 ) 过点 作倾斜角为 的直线 ,与椭圆 交于 , 两点.
1当
时,求
( 为坐标原点)的面积.
2 随着 的变化,试猜想 的取值范围,并证明你的猜想.
第一步:构造数列 , , , , , .①
第二步:将数列①的各项乘以 ,得到数列(记为) , , , , .则
( ).
A.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年北京市朝阳区高一(下)期末数学试卷
一、选择题:本大题共10小题每小题5分,共50分在每小题给出的四个选项中,选出符合题目要求的一项.
1.(510y -+=的倾斜角为( ) A .
6
π
B .
3
π C .
23
π D .
56
π
2.(5分)在ABC ∆中,a =4b =,3
A π
=,则(B = )
A .
6
π
B .
3
π C .
2
π D .
23
π 3.(5分)已知直线1:1l y kx =+,2:(2)l y k x =-,若12l l ⊥,则实数k 的值是( ) A .0
B .1
C .1-
D .0或1-
4.(5分)在正方体1111ABCD A B C D -中,E ,F 分别是棱1AA ,AB 的中点,则异面直线EF 和1C D 所成角的大小是( ) A .
6
π
B .
4
π C .
3
π D .
2
π 5.(5分)已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是
( )
A .若//l α,l m ⊥,则m α⊥
B .若//l α,//l β,则//αβ
C .若l α⊥,αβ⊥,则//l β
D .若l α⊥,l β⊥,则//αβ
6.(5分)从某小学随视抽取100名学生,将他们的身高数据(单位:厘米)按[100,110),[110,120),[120,130),[130.140),[140,150]分组,绘制成频率分布直方图(如图)
从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为( )
A .3
B .4
C .5
D .6
7.(5分)如图,设A ,B 两点在河的两岸,某测量者在A 同侧的河岸边选定一点C ,测出AC 的距离为50米,45ACB ∠=︒,105CAB ∠=︒,则A ,B 两点的距离为( )
A .502 米
B .50
3米
C .252 米
D .
506
米 8.(5分)如图,在正方体1111ABCD A B C D -中,F 是棱11A D 上的动点,下列说法正确的是(
)
A .对任意动点F ,在平面11ADD A 内不存在与平面CBF 平行的直线
B .对任意动点F ,在平面ABCD 内存在与平面CBF 垂直的直线
C .当点F 从1A 运动到1
D 的过程中,二面角F BC A --的大小不变
D .当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变大
9.(5分)2018年科学家在研究皮肤细胞时发现了一种特殊的凸多面体,称之为“扭曲棱柱”对于空向中的凸多面体,数学家欧拉发现了它的点数,棱数与面数存在一定的数量关系.
凸多面体
顶点数
棱数
面数
三棱柱 6 9 5 四棱柱 8 12 6 五棱锥 6 10 6 六棱锥
7
12
7
根据如表所体现的数量关系可得有12个顶点,8个面的扭曲棱柱的棱数是( ) A .14
B .16
C .18
D .20
10.(5分)已知二次函数22(0)y x x m m =-+≠交x 轴于A ,B 两点(A ,B 不重合),交y 轴于C 点,圆M 过A ,B ,C 三点下列说法正确的是( ) ①圆心M 在直线1x =上; ②m 的取值范围是(0,1); ③圆M 半径的最小值为1; ④存在定点N ,使得圆M 恒过点N A .①②③
B .①③④
C .②③
D .①④
二、填空题:本大题共6小题,每小题5分,共30分
11.(5分)某学校甲、乙两个班各15名学生参加环保知识竞赛,成绩的茎叶图如图:则这30名学生的最高成绩是 ;由图中数据可得 班的平均成绩较高.
12.(5分)在ABC ∆中,已知7a =2c =,60A =︒,则b = .
13.(5分)某几何体是由一个正方体去掉一个三棱柱所得,其三视图如图所示,如果网格纸上小正方形的边长为1,那么该几何体的体积是 .。