精品-二元一次方程组单元测试题及答案

合集下载

(完整版)二元一次方程组试题及答案

(完整版)二元一次方程组试题及答案

第八章二元一次方程组单元知识检测题(时间:90分钟满分:100分)一、选择题(每小题3分,共24分)1.方程2x-1y=0,3x+y=0,2x+xy=1,3x+y-2x=0,x2-x+1=0中,二元一次方程的个数是()A.1个B.2个C.3个D.4个2.二元一次方程组32325x yx y-=⎧⎨+=⎩的解是()A.3217...230122xx xxB C Dy yyy=⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩3.关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k的值是(• )A.k=-34B.k=34C.k=43D.k=-434.如果方程组1x yax by c+=⎧⎨+=⎩有唯一的一组解,那么a,b,c的值应当满足()A.a=1,c=1 B.a≠b C.a=b=1,c≠1 D.a=1,c≠1 5.方程3x+y=7的正整数解的个数是()A.1个B.2个C.3个D.4个6.已知x,y满足方程组45x my m+=⎧⎨-=⎩,则无论m取何值,x,y恒有关系式是()A.x+y=1 B.x+y=-1 C.x+y=9 D.x+y=97.如果│x+y-1│和2(2x+y-3)2互为相反数,那么x,y的值为()A.1122 ...2211 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩8.若2,117x ax byy bx by=-+=⎧⎧⎨⎨=+=⎩⎩是方程组的解,则(a+b)·(a-b)的值为()A.-353B.353C.-16 D.16二、填空题(每小题3分,共24分)9.若2x2a-5b+y a-3b=0是二元一次方程,则a=______,b=______.10.若12ab=⎧⎨=-⎩是关于a,b的二元一次方程ax+ay-b=7的一个解,则代数式x2+2xy+y2-1•的值是_________.11.写出一个解为12x y =-⎧⎨=⎩的二元一次方程组__________.12.a -b=2,a -c=12,则(b -c )3-3(b -c )+94=________. 13.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______. 14.若2x 5a y b+4与-x 1-2b y 2a 是同类项,则b=________.15.方程mx -2y=x+5是二元一次方程时,则m________.16.方程组2332s t s t +-==4的解为________. 三、解答题17.解方程组(每小题4分,共8分)(1)257320x y x y -=⎧⎨-=⎩ 33(2)255(2)4x y x y +⎧=⎪⎨⎪-=-⎩18.已知y=3xy+x ,求代数式2322x xy y x xy y +---的值.(本小题5分)19.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同.求(2a+b )2004的值本小题5分) 20.已知x=1是关于x 的一元一次方程ax -1=2(x -b )的解,y=1是关于y 的一元一次方程b (y -3)=2(1-a )的解.在y=ax 2+bx -3中,求当x=-3时y 值.(本小题5分)21.甲、乙两人同解方程组54ax y x by +⎧⎨=⎩ 时,甲看错了方程①中的a ,解得31x y =-⎧⎨=-⎩,乙看错了②中的b ,200620075(410x a y =⎧+-⎨=⎩试求的值.(本小题5分)22.某商场按定价销售某种电器时,每台可获利48元,•按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、•定价各是多少元?(本小题6分)23.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50•个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,•多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.(本小题6分)24.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.(•本小题6分)25.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45•座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人?原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?(本小题6分)答案:一、选择题1.B 解析:②④是2.C 解析:用加减法,直接相加即可消去y,求得x的值.3.B 解析:解方程组可得x=7k,y=-2k,然后把x,y代入二元一次方程2x+3y=6,即2×7k+3×(-2k)=6,解得k=34,故选B.4.B5.B 解析:正整数解为:1241 x xy y==⎧⎧⎨⎨==⎩⎩6.C 解析:由方程组消去m,得到一个关于x,y的方程,化简这个方程即可.7.C 解析:根据两个非负数互为相反数,判断两个非负数必定都是0,所以有122 2301 x y xx y y+-==⎧⎧⎨⎨+-==-⎩⎩解得8.C 解析:把x=-2,y=1代入原方程组得213 275a b ab a b-+==-⎧⎧⎨⎨-+==-⎩⎩解得,∴(a+b)(a-b)=-16.二、填空题9.-2,-1 解析:根据二元一次方程的定义可得x,y的指数都是1,•由二元一次方程定义,得2512311 a b aa b b-==-⎧⎧⎨⎨-==-⎩⎩解得.10.24 解析:把a=1,b=-2代入原方程可得x+y的值,把a=1,b=-2代入ax+ay-b=•7得x+y=5,因为x2+2xy+y2-1=(x+y)2-1,所以原式=24.11.2024x yx y+=⎧⎨-=-⎩(答案不唯一).12.278解析:由a-b=2,a-c=12可得b-c=-32,再代入(b-c)3-3(b-c)+94=278.13.2 1 解析:本题既考查了二元一次方程的解的概念又考查了二元一次方程组的解法.分别将两组解法代入二元一次方程,可得372 21171a b aa b b+==⎧⎧⎨⎨-+==⎩⎩解这个方程组得.14.-2 解析:本题涉及同类项的概念:所含字母相同,相同字母的指数也相同,• 由此可得5a=1-2b;b+4=2a,将两式联立组成方程组,解出a,b的值,分别为a=1,b=-2,•故b a=-2.15.≠116. 24434342s t s t s t +⎧=⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩解析:解方程组即可. 三、解答题17.解:(1)257320x y x y -=⎧⎨-=⎩①×3得,6x -3y=15 ③ ②-③,得x=5.将x=5代入①,得y=5,所以原方程组的解为55x y =⎧⎨=⎩. (2)原方程组变为51565104x y x y +=⎧⎨-=-⎩①-②,得y=25.将y=25代入①,得5x+15×25=6,x=0, 所以原方程组的解为025x y =⎧⎪⎨=⎪⎩. 18.解:因为y=3xy+x ,所以x -y=-3xy . 当x -y=-3xy 时,2322()32(3)332()2325x xy y x y xy xy xy x xy y x y xy xy xy +--+-+===------. 解析:首先根据已知条件得到x -y=-3xy ,再把要求的代数式化简成含有x -y 的式子,然后整体代入,使代数式中只含有xy ,约分后得解.19.解:因为两个方程组的解相同,所以解方程组25623562x y x x y y +=-=⎧⎧⎨⎨-==-⎩⎩解得 代入另两个方程得2143a b a a b b +=-=⎧⎧⎨⎨-+=-=-⎩⎩解得,∴原式=(2×1-3)2004=1. 20.解:将x=1,y=1分别代入方程得512(1)3(13)2(1)23a a b b a b ⎧=⎪-=-⎧⎪⎨⎨-=-⎩⎪=⎪⎩解方程组得 所以原式=53x 2+23x -3.当x=-3时,• 原式=53×(-3)2+23×(-3)-3=15-2-3=10. 21.解:把31x y =-⎧⎨=-⎩代入方程②,得4×(-3)=b ·(-1)-2,解得b=10.把54x y =⎧⎨=⎩ 代入方程①,得5a+5×4=15,解得a=-1,所以a 2006+20072006200710()(1)()1010b -=-+-=1+(-1)=0. 22.解:设该电器每台的进价为x 元,定价为y 元.由题意得48,162,6(0.9)9(30)210.y x x y x y x y -==⎧⎧⎨⎨-=--=⎩⎩解得. 答:•该电器每台的进价是162元,定价是210元.解析:打九折是按定价的90%销售,利润=售价-进价.23.解:设用xm 3木料做桌面,ym 3木料做桌腿.由题意,得106,450300 4.x y x x y y +==⎧⎧⎨⎨⨯==⎩⎩解得 (2)6×50=300(张).答:用6m 3木料做桌面,4m 3木料做桌腿恰好能配成方桌,能配成300张方桌.解析:问题中有两个条件:①做桌面用的木料+做桌腿用的木料=10;②4×桌面个数=桌腿个数.24.解:设A 、B 两地相距xkm ,乙每小时走ykm ,则甲每小时走(y+2)km .根据题意,•得2(2)361084(2)3617y y x x y y x y ++=-=⎧⎧⎨⎨++=+=⎩⎩解这个方程组得.答:略. 25.解:(1)设参加春游的学生共x 人,原计划租用45座客车y 辆.根据题意,得451524060(1)5y x x y x y +==⎧⎧⎨⎨-==⎩⎩解这个方程组,得 . 答:春游学生共240人,原计划租45座客车5辆.(2)租45座客车:240÷45≈5.3,所以需租6辆,租金为220×6=1320(元);租60•座客车:240÷60=4,所以需租4辆,租金为300×4=1200(元).所以租用4辆60座客车更合算.解析:租车时最后一辆不管几个人都要用一辆,所以在计算车的辆数时用“收尾法”,而不是“四舍五入”.。

中考数学第八章 二元一次方程组单元测试含答案

中考数学第八章 二元一次方程组单元测试含答案

中考数学第八章 二元一次方程组单元测试含答案一、选择题1.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g2.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a cax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩B .32x y =⎧⎨=⎩C .52x y =⎧⎨=⎩D .51x y =⎧⎨=⎩3.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( ) A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩4.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A .8374y x y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374y x y x -=-⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩5.对于实数x ,y ,定义新运算1x y ax by *=++,其中a ,b 为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=( ) A .40 B .41 C .45 D .46 6.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( )A .1.B .2.C .3.D .4.7.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩8.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm9.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( ) A . 4.512x yy xB . 4.512x y yxC .4.512xy x yD .4.512xyy x10.由方程组71x m y m+⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-8二、填空题11.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____. 12.商场购进A 、B 、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C 的标价为80元,为了促销,商场举行优惠活动:如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..13.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.14.甲乙两人共同解方程组515(1)42(2)ax y x by +=⎧⎨-=-⎩,由于甲看错了方程(1)中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程(2)中的b ,得到方程组的解为54x y =⎧⎨=⎩;计算20192018110ab ⎛⎫+-= ⎪⎝⎭________.15.方程组1111121132x y x z y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.16.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y+的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)17.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.18.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共315元;若购买甲4件、乙10件、丙1件,共420元,现在购买甲、乙、丙各1件,共需_____元. 19.有一水池,池底有泉水不断涌出.用10台抽水机20时可以把水抽干;用15台同样的抽水机,10时可以把水抽干.那么,用25台这样的抽水机__________小时可以把水抽干. 20.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包.三、解答题21.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题: 若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.22.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.23.平面直角坐标系中,点A 坐标为(a ,0),点B 坐标为(b ,2),点C 坐标为(c ,m ),其中a 、b 、c 满足方程组211322a b c a b c +-=⎧⎨--=-⎩.(1)若a =2,则三角形AOB 的面积为 ;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围.24.已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值.25.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少? 26.a 取何值时(a 为整数),方程组2420x ay x y +=⎧⎨-=⎩的解是正整数,并求这个方程组的解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设每块巧克力的质量为x 克,每块果冻的质量为y 克,根据每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,列出方程组即可解答 【详解】设每块巧克力的质量为x 克,每块果冻的质量为y 克,由题意得3250x yx y =+=⎧⎨⎩ , 解得2030x y ==⎧⎨⎩ , 即一块巧克力的质量是20g. 故选A. 【点睛】此题考查二元一次方程组的应用,列出方程组是解题关键2.B解析:B 【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by cax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,∴142x y +=⎧⎨=⎩,即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B. 【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a cax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 3.A解析:A 【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答 【详解】设这所学校现初中在校生x 人,小学在校生y 人, 则30008%11%300010%x y x y +=⎧⎨+=⨯⎩故选A 【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程4.B解析:B 【分析】设该物品的价格是x 钱,共同购买该商品的由y 人,根据题意每人出8钱,则多3钱;每人出7钱,则差4钱列出二元一次方程组.【详解】设该物品的价格是x 钱,共同购买该商品的由y 人,依题意可得8374y x y x -=⎧⎨-=-⎩故选:B 【点睛】本题考查由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组.5.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=, ∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.6.C解析:C 【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35, 整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数, 所以y=4或8或12, 所以有3种装法, 故选C.7.A解析:A 【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组. 【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩.故选:A . 【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.8.C解析:C 【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解. 【详解】设一个小长方形的长为xcm ,宽为ycm , 由图形可知,2524x y x x y +=⎧⎨=+⎩,解得:205x y =⎧⎨=⎩, 所以一个小长方形的面积为205100⨯=(cm 2) . 故选:C . 【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.9.A解析:A 【分析】用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长4.5尺得: 4.5x y ;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:12yx ;组成方程组即可.【详解】解:如果设木条长x 尺,绳子长y 尺, 根据题意得: 4.512x yy x .故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,理解题意,找出等量关系是解题的关键.10.A解析:A 【分析】将第二个方程代入第一个方程消去m 即可得. 【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题11.【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①,解得:n=6m , ②,可得: 解析:3:5【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①()1429315m n m n +=+,解得:n=6m , ②23a b n +=,可得:a+b=4m , ③1349(2)113m a m b m n m n m +++=+-+=, ④(3m+a ):(4m+b )=9:13,93135342222m a m a m m b m b m +==+==,,,,∴a :b=3:5,答:该商场还需购买的广式月饼总价与苏式月饼的总价之比是3:5. 故答案为:3:5. 【点睛】本题考查多次方程问题,解题的关键是根据题意列出多个方程得出其关系式解答.12.31800 【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800 【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值. 【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元). 设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.13.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于解析:【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩, 即25217251942a b c b c ++=⎧⎨+=⎩, 其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∵a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a+60b+40c=150×5+60×4+40×6=1230.故答案为:1230.另解:由上9b+c=42,得知b=1,2,3,4.列举符合题意的解即可.【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a,b,c,均为正整数.14.0【分析】根据题意,将代入方程(2)可得出b的值,代入方程(1)可得出a的值,将a与b的值代入所求式子即可得出结果.【详解】解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2解析:0【分析】根据题意,将31xy=-⎧⎨=-⎩代入方程(2)可得出b的值,54xy=⎧⎨=⎩代入方程(1)可得出a的值,将a与b的值代入所求式子即可得出结果.【详解】解:根据题意,将31xy=-⎧⎨=-⎩代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将54xy=⎧⎨=⎩代入方程组中的ax+5y=15得:5a+20=15,即a=-1,∴20192018110a b⎛⎫+-⎪⎝⎭=1-1=0.故答案为:0.【点睛】此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.15.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.16.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩, 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④.【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.17.m >﹣【分析】利用方程组中两个式子加减可得到和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m+2,将两个方程相减解析:m >﹣23【分析】利用方程组中两个式子加减可得到5x y -和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m +2,将两个方程相减可得x ﹣3y =﹣m ﹣4, 由题意得32040m m +>⎧⎨--<⎩, 解得:m >23-, 故答案为:m >23-. 【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换18.105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:3×(1)-2×(2)得:x+y+z=105解析:105【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设甲每件x 元,乙每件y 元,丙每件z 元,依题意得:37315(1)410420(2)x y z x y z ++=⎧⎨++=⎩3×(1)-2×(2)得:x+y+z=105,∴购买甲、乙、丙各1件,共需105元.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 19.5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组解析:5【解析】【分析】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,根据等量关系:用10台抽水机20时可以把水抽干;用15台同样的抽水机10时可以把水抽干,列出方程组进行求解即可得.【详解】设一台抽水机1小时的抽水量为1份,泉水每小时涌进的量为x 份,原有泉水量为y 份,由题意得201020101510y x y x +=⨯⎧⎨+=⨯⎩, 解得:5100x y =⎧⎨=⎩, 所以,用25台这样的抽水机去抽水时,泉水每小时涌出量用5台抽水机去抽,剩下的就抽原有的泉水了,100÷(25-5)=5(小时),故答案为:5.【点睛】本题考查了二元一次方程组的应用,弄清题意,找到等量关系列出方程组是解题的关键,这里要注意的是泉水是不断涌出的.20.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.三、解答题21.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩;(3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.22.(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论.【详解】解:(1)∵AB BC ⊥∴90B ∠=︒∵//AB CD∴18090C B ∠=︒-∠=︒∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒;(2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG证明: ∵AF 平分DAE ∠,EG 平分BEA ∠ ∴12EAF DAE ∠=∠,12AEG BEA ∠=∠ ∵//DG BF∴DAE BEA ∠=∠∴EAF AEG ∠=∠ ∴AF //EG ;(3)在(2)问的条件下,连接AC ,如图:∵AF //EG ,//DG BF∴180AFB GEF ∠+∠=︒,DAF AFB ∠=∠∴180GEF DAF ∠+∠=︒∵GEF k DAF ∠=∠∴1801DAF EAF k ︒∠=∠=+ ∵BAE x ∠=︒ ∴1801809011x k k ︒︒︒++=︒++ ∴360901x k ︒︒=︒-+ ∵AC 恰好平分BAD ∠,由(1)可知90BAD ∠=︒ ∴1452BAC DAC BAD ∠=∠=∠=︒ ∵E 为射线BC 上一任意一点∴45BAE x ∠=︒>︒∵k 为不超过10的正整数∴当8k 时,50BAE x ∠=︒=︒;当9k =时,54BAE x ∠=︒=︒;当10k =时,35711BAE x ⎛⎫∠=︒=︒ ⎪⎝⎭∴存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数);50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭. 【点睛】本题考查了垂直的定义、平行线的判定和性质、四边形的内角和、角的和差、根据要求画图、代入消元法、根据参数的取值范围求角的度数等知识点,熟练掌握相关知识点世界解决问题的关键.23.(1)2;(2)a=11或a=53;(3)﹣281033m≤≤且m≠﹣83.【分析】(1)求出A点坐标,可求出答案;(2)由题意得出b=a+3,c=a-4,则B(a+3,2),C(a-4,m),则|a+3|=2|a-4|,解方程即可得出答案;(3)过点C作y轴的平行线l,延长BA交l于M,过点B作x轴的平行线交直线l于点D,直线l交x轴于点E,由面积法得M(a﹣4,﹣83),根据S△BCM-S△ACM≤9,可得出关于a的不等式组,则可得出答案.【详解】(1)∵点A坐标为(a,0),点B坐标为(b,2),a=2,∴A(2,0),∴三角形AOB的面积为12×2×2=2;故答案为:2;(2)∵a、b、c满足方程组211 322 a b ca b c+-=⎧⎨--=-⎩.∴b=a+3,c=a﹣4,∴B(a+3,2),C(a﹣4,m),∵点B到y轴的距离是点C到y轴距离的2倍,∴|a+3|=2|a﹣4|,∴a=11或a=53;(2)过点C作y轴的平行线l,延长BA交l于M,过点B作x轴的平行线交直线l于点D,直线l交x轴于点E,设EM=n,则BD=7,DE=2,AE=4,∵S△BDM=S△AEM+S梯形BDEA,∴12×7×(2+n)=12×4×n+12×2×(4+7),解得:n=83,∴M (a ﹣4,﹣83),∵S △ABC ≤9,∴S △BCM ﹣S △ACM ≤9, ∴181********m m ⨯⨯+-⨯⨯+≤|,83m +|≤6, ∴281033m -≤≤, ∵m ≠﹣83, ∴281033m -≤≤且m ≠﹣83. 【点睛】 此题是三角形综合题,主要考查了解三元一次方程组,坐标与图形的性质,几何图形面积的计算方法,解本题的关键是得出b=a+3,c=a-4.24.(1)214342k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)k <﹣52;(3)m 的值为1或2. 【分析】(1)把k 当成一个已知得常数,解出二元一次方程组即可;(2)将(1)中得,x y 的值代入+x y >5 ,即可求出k 的取值范围;(3)将(1)中得,x y 的值代入23m x y =-得m=7k ﹣5.由于m >0,得出7k ﹣5>0,及1k ≤得出解集517<k ≤ 进而得出m 的值为1或2 【详解】(1)2x 322x+y=1-k?y k -=-⎧⎨⎩①② ②+①,得4x =2k ﹣1, 即214k x -=; ②﹣①,得2y =﹣4k +3 即342k y -= 所以原方程组的解为214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩(2)方程组的解x 、y 满足x +y >5,所以21345 42k k--+>,整理得﹣6k >15,所以52k<﹣;(3)m=2x﹣3y=2134 2342k k--⨯-⨯=7k﹣5由于m为正整数,所以m>0即7k﹣5>0,k>5 7所以57<k≤1当k=67时,m=7k﹣5=1;当k=1时,m=7k﹣5=2.答:m的值为1或2.【点睛】本题主要考查了二元一次方程组的解法,熟练掌握解二元一次方程组的方法是解题的关键. 25.应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z,再利用共花费346元,分别得出x,y,z的取值范围,进而得出z的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有5x+7y+10z=346,y=2z.易知0<x≤69,0<y≤49,0<z≤34,∴5x+14z+10z=346,5x+24z=346,即346245z x-=.∵x,y,z均为正整数,346-24z≥0,即0<z≤14∴z只能取14,9和4.①当z为14时,346242,228.44 5zx y z x y z-====++=。

二元一次方程组单元测试题(含答案)

二元一次方程组单元测试题(含答案)

二元一次方程组单元测试题(测试时间:100分钟,总分100分)班级 姓名:一、选择题(本大题共10小题,每小题2分,共20分)1.下列方程组中,是二元一次方程组的是( )A.⎩⎨⎧=-+=64312z x y xB.⎩⎨⎧=-=+-431y x xy y xC.⎩⎨⎧=+=+5522y x y xD.⎪⎪⎩⎪⎪⎨⎧==+x y y y x 32222 2.如果5x 3m -2n -2y n -m +11=0是二元一次方程,则( )A.m=1,n=2B.m=2,n=1C.m=-1,n=2D.m=3,n=43.二元一次方程组⎩⎨⎧=+-=+522y x y x 的解是( ).⎩⎨⎧==⎩⎨⎧=-=⎩⎨⎧=-=⎩⎨⎧==2y 3x D. 2y 3x C. 4y 1x B. 6y 1x A. 4.方程组⎩⎨⎧=--=82352y x x y 消去y 后所得的方程是( ) A.3x -4x -10=8 B.3x -4x+5=8 C.3x -4x -5=8 D.3x -4x+10=85.已知⎩⎨⎧=-=+31y x y x ,则2xy 的值是( ) A.4B.2C.-2D.-4 6.用加减法解方程组⎩⎨⎧=-=+823132y x y x 时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①⎩⎨⎧=-=+846196y x y x ②⎩⎨⎧=-=+869164y x y x ③⎩⎨⎧-=+-=+1646396y x y x ④⎩⎨⎧=-=+2469264y x y x 其中变形正确的是( )A.①②B.③④C.①③D.②④7.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排(C )A .4辆B .5辆C .6辆D .7辆8.某足球联赛一个赛季共进行26轮比赛(即每队均需赛2 6场).其中胜一场得3分,平一场得1分,负一场得O 分.某队在这个赛季中平局的场数比负的场数多7场,结果共得34分,则这个队在这一赛季中胜、平、负的场数依次是( )(A)7,l 3,6. (B)6.13,7. (C)9,1 2,5. (D)5,12,9.9x 、y 的方程组⎩⎨⎧+=+=+25332k y x k y x 的解x 、y 的和为12,则k 的值为( )A .14B .10C .0D .-1410.西部山区某县响应国家“退耕还林”号召,将该县一部分耕地改还为林地。

第八章 二元一次方程组 (单元测试)【解析版】

第八章 二元一次方程组 (单元测试)【解析版】

第八章二元一次方程组章节测试一、单选题:1.下列方程组中是二元一次方程组的是()A .141y xx v ⎧+=⎪⎨⎪-=⎩B .43624x y y z +=⎧⎨+=⎩C .41x y x y +=⎧⎨-=⎩D .22513x y x y +=⎧⎨+=⎩2.已知方程237x y =+,用含y 的代数式表示x 的是()A .237x y =+B .237x y =-+C .372x y =+D .3722=+x y 3.将13x y -=-代入21x y -=的可得()A .1213x x --⨯=B .()2113x x --=C .2213x x ++=D .2213x x -+=4.将三元一次方程组5x 4y z 03x y 4z 11x y z 2++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是()A .4x 3y 27x 5y 3+=⎧⎨+=⎩B .4x 3y 223x 17y 11+=⎧⎨+=⎩C .3x 4y 223x 17y 11+=⎧⎨+=⎩D .3x 4y 27x 5y 3+=⎧⎨+=⎩【答案】A【分析】根据题意先得出①-③后的方程,再得到③×4+②的方程,从而得出二元一次方程组.【详解】解:根据题意得:①-③得:4x+3y=2,③×4+②得:7x+5y=3,则三元一次方程组54034112x y z x y z x y z ++=⎧⎪+-=⎨⎪++=-⎩①②③,经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是432753x y x y +=⎧⎨+=⎩;故选:A .【点睛】本题主要考查了三元一次方程组的解,解题的关键是掌握加减消元法消去未知数项,从而得到二元一次方程组.5.若324432a b a b x y ++--=是关于x ,y 的二元一次方程,则23a b +的值为()A .0B .3-C .3D .6【答案】A【分析】根据二元一次方程的定义,得=1a b +,324=1+-a b ,即可得到关于a 、b 的方程组,从而解出a ,b .【详解】解:∵324432a b a b x y ++--=是一个关于x ,y 的二元一次方程,∴=1324=1a b a b +⎧⎨+-⎩,解得:=3=2a b ⎧⎨-⎩,∴23=660+-=a b ,故选:A .【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.6.已知x ,y 满足方程组45x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式().A .1x y +=B .1x y +=-C .9x y +=D .9x y -=【答案】C【分析】方程组中的两个方程相加得出x +y +m -5=4+m ,整理后即可得出答案.【详解】解:45x m y m +⎧⎨-⎩=①=②,①+②得:x +y +m -5=4+m ,即x +y =9,故选:C .【点睛】本题考查了二元一次方程组的解和解二元一次方程组,能理解二元一次方程组的解的定义是解此题的关键.7.对于非零的两个实数a ,b ,规定a b am bn ⊗=-,若3⊗(-5)=-15,4⊗(-7)=-28,则(-1)⊗2的值为()A .-13B .13C .2D .-2【答案】B【分析】根据已知规定及两式,确定出m 、n 的值,再利用新规定化简原式即可得到结果.【详解】根据题意得:3⊗(-5)3515m n =+=-,4⊗(-7)4728m n =+=-,∴35154728m n m n +=-⎧⎨+=-⎩,解得:3524m n =⎧⎨=-⎩,∴(-1)⊗22354813m n =--=-+=,故选:B .【点睛】本题考查了新定义运算,涉及了解二元一次方程组等知识,要求学生能理解题目规则,正确列出等式.解决本题时,求出m 、n 是关键.8.如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为()A .2400cmB .2500cmC .2600cmD .24000cm 【答案】A【分析】设小长方形的宽为x cm ,长为y cm ,根据题意列方程组求解即可.【详解】设小长方形的宽为x cm ,长为y cm ,根据题意得504x y y x +=⎧⎨=⎩,解得1040x y =⎧⎨=⎩,∴一个小长方形的面积为21040400cm ⨯=,故选:A .【点睛】本题考查了二元一次方程组的实际应用,能够根据题意列出方程组并准确求解是解题的关键.9.已知关于,x y 的方程组212ax y x by +=⎧⎨-=⎩,甲看错a 得到的解为12x y =⎧⎨=-⎩,乙看错了b 得到的解为11x y =⎧⎨=⎩,他们分别把a b 、错看成的值为()A .5,1a b ==-B .15,2a b ==C .11,2a b =-=D .1,1a b =-=【答案】A【分析】把甲的结果代入第一个方程求出a 的值,把乙的结果代入第二个方程求出b 的值,求解即可.【详解】解:把12x y =⎧⎨=-⎩代入21ax y +=得:41a -=,把11x y =⎧⎨=⎩代入2x by -=得:12b -=,解得:a=5,b=-1,故选A .【点睛】此题主要考查了二元一次方程组的解和解二元一次方程的知识点,解题关键点是看清题意再得出a 、b 的值.10.关于x ,y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2x +3y =﹣6的解,则k 的值是()A .﹣34B .34C .43D .﹣43二、填空题:11.请写出一个以21x y =⎧⎨=-⎩为解的二元一次方程:______.【答案】1x y +=(答案不唯一)【分析】根据二元一次方程定义:ax by c +=,令,,a b c 为常数,把21x y =⎧⎨=-⎩代入,解出c 即可.【详解】∵本题答案不唯一,只要写出的二元一次方程的解为21x y =⎧⎨=-⎩即可∴令1a =,1b =,得x y c +=∴把21x y =⎧⎨=-⎩代入方程x y c+=解出1c =∴1x y +=故答案是:1x y +=.【点睛】本题考查解二元一次方程的逆过程、不定方程的定义,灵活掌握二元一次方程定义是解题的关键.12.若11x y =⎧⎨=-⎩是方程组2421ax y bx by a +=⎧⎨-=-⎩的解,则a =_______,b =_______.【答案】3, 1.【分析】所谓方程组的解,指的是该数值满足方程组中的每一方程.把x 、y 的值代入原方程组可转化成关于a 、b 的二元一次方程组,解方程组即可求出a 、b 的值.【详解】把x ,y 的值代入方程组,得2421a b b a -=⎧⎨+=-⎩解得a=3,b=1,故答案为3, 1.【点睛】一要注意方程组的解的定义;二要熟练解方程组的基本方法:代入消元法和加减消元法.13.若()235230x y x y ,-++-+=则x y +的值为______.【答案】-3【分析】根据已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出x+y 的值.【详解】∵(3x-y+5)2+|2x-y+3|=0,∴3x-y+5=0,2x-y+3=0,∴x=-2,y=-1.∴x+y=-3.【点睛】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.14.在y=ax 2+bx+c 中,当x=1时,y=0;当x=2时,y=4;当x=3时,y=10,则当x=4时,y=___.【答案】18【分析】先把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c ,求出a ,b ,c 的值,从而得出等式y=x 2+x-2,再把x=4代入,即可求出y 的值.【详解】把x=1时,y=0;x=2时,y=4;x=3时,y=10分别代入y=ax 2+bx+c 得:04249310a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:112a b c =⎧⎪=⎨⎪=-⎩,则等式y=x 2+x-2,把x=4代入上式得:y=18.【点睛】本题考查了三元一次方程组的解法,掌握解三元一次方程组的步骤是本题的关键15.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____.【答案】-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=⎧⎨++=⎩;解得:33x y =-⎧⎨=-⎩,∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.16.若二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,则可通过解方程组_____求得这个解.【答案】23151x y x y -=⎧⎨+=⎩【分析】联立两方程组中不含a 与b 的方程重新组成新的方程组即可.【详解】解:∵二元一次方程组23151x y ax by -=⎧⎨+=⎩和51cx dy x y -=⎧⎨+=⎩同解,∴可通过解方程组23151x y x y -=⎧⎨+=⎩求得这个解,故答案为:23151x y x y -=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组同解的问题,解题的关键在于能够熟练掌握相关知识进行求解.17.已知关于x ,y 的二元一次方程组224x y mx y +=⎧⎨+=⎩的解满足x ﹣y =3,则m 的值为_____【答案】1【分析】②−①得到x−y =4−m ,代入x−y =3中计算即可求出m 的值.【详解】解:224x y m x y +=⎧⎨+=⎩①②,②−①得:x−y =4−m ,∵x−y =3,∴4−m =3,解得:m =1,故答案为1【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.19.《九章算术》是我国古代一部著名的算书,它的出现标志着中国古代数学形成了完整的体系其中卷八方程[七]中记载:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.牛、羊各直金几何?”题目大意是:5头牛、2只羊共值金10两.2头牛、5只羊共值金8两.每头牛、每只羊各值金多少两?设1头牛值金x 两,1只羊值金y 两,则可列方程组为_________.【答案】5210258x y x y +=⎧⎨+=⎩【分析】设1头牛值金x 两,1只羊值金y 两,根据等量关系“①5头牛,2只羊共值10两金;②2头牛,5只羊共价值8两金”,分别列出方程即可求解.【详解】设1头牛值金x 两,1只羊值金y 两,由题意可得,5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩.【点睛】本题主要考查了二元一次方程组的应用,根据题意得出正确的等量关系是解题关键.20.为鼓励居民节约用气,某省决定对天然气收费实行阶梯气价,阶梯气价划分为两个档级:(1)第一档气量为每户每月30立方米(含30立方米)以内,执行基准价格;(2)第二档气量为每户每月超出30立方米以上部分,执行市场调节价格.小明家5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,若小明7月份用气29立方米,则他家应交费________元.【答案】87【分析】根据5月份用气35立方米,交费112.5元;6月份用气41立方米,交费139.5元,列出方程组求得气价,再进一步根据7月份用气29立方米选择气价计算即可.【详解】设基准价格为x 元,市场调节价格为y 元,由题意得305112.5,3011139.5,x y x y +=⎧⎨+=⎩解得3,4.5.x y =⎧⎨=⎩7月份用气29立方米,则他家应交费29×3=87元.故答案为87.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意列出方程组.三、解答题:21.解方程:(1)32339x y x y +=⎧⎨-=⎩(用代入消元法)(2)734831x y x y -=⎧⎨-=-⎩(用加减消元法)(3)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩(4)281223x y z x y x z y ++=⎧⎪-=-⎨⎪+=+⎩【答案】(1)56x y =⎧⎨=⎩;(2)513x y =-⎧⎨=-⎩;(3)22x y =⎧⎨=⎩;(4)123x y z =⎧⎪=⎨⎪=⎩【分析】(1)由方程②变形得39y x =-,并代入方程①,解方程即可求得x 的值,再将求得的x 值代入39y x =-中,可求得y 的值,从而得方程组的解;(2)考虑两方程中y 的系数相同,两式相减即可消去未知数y ,求得x ,再将x 的值代入第一个方程即可求得y 的值,从而得方程组的解;(3)先化简方程组中的每一个方程,再用加减法解方程组即可;(4)先消去未知数z ,转化为二元一次方程组,解二元一次方程组求得x 与y 的值,最后求得z 的值即可.【详解】(1)32339x y x y +=⎧⎨-=⎩①②,方程②变形得:39y x =-③,把③代入①,得:()33923x x +-=,解得:5x =,把5x =代入③得:6y =,所以方程组的解为:56x y =⎧⎨=⎩;(2)734831x y x y -=⎧⎨-=-⎩①②,②-①得:5x =-,把5x =-代入①得:3534y --=解得:13y =-所以方程组的解为:513x y =-⎧⎨=-⎩;(3)方程组化简得:432342x y x y -=⎧⎨-=-⎩①②①+②得:770x y -=,即y x =,把y x =代入①得:2x =,∴2y x ==,所以原方程组的解为:22x y ==⎧⎨⎩;(4)原方程组化为:281223x y z x y x y z ++=⎧⎪-=-⎨⎪-+=⎩①②③①×2-③得:613x y +=④,④-②得:714y =,解得:2y =,把2y =代入②得:1x =,把2y =,1x =代入①得:3z =,所以原方程组的解为:123x y z =⎧⎪=⎨⎪=⎩.【点睛】题目主要考查解二元一次方程组和三元一次方程组,解法有代入消元法和加减消元法两种,能够根据方程组的特点,灵活选取适当的方法,熟练而准确地掌握解方程组方法是本题的关键.22.一个两位数,个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18,则原两位数是多少?【答案】原两位数是53.【分析】设原两位数的个位数字为x ,十位数字为y ,根据“个位数字与十位数字的和为8,个位数字与十位数字互换位置后,所得的两位数比原两位数小18”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入10y +x 即可得出结论.【详解】解:设原两位数的个位数字为x ,十位数字为y ,根据题意得:()8101018x y y x x y +=⎧⎨+-+=⎩解得:35x y =⎧⎨=⎩∴10y+x =53.答:原两位数是53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.23.初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车.问一共多少名学生、多少辆汽车.【答案】240名学生,5辆车.【分析】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==即可解.【详解】设车数是x ,学生是y 人,依据题意列方程组:()4515601x y x y ⎧⎨-⎩+==,解方程组可得:5240x y ⎧⎨⎩==.所以一共有学生240人,车5辆.故答案为一共有学生240人,车5辆.【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.24.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.【答案】41m n =⎧⎨=-⎩【分析】先解不含m 、n 的方程组,解得x 、y 的值,再代入含有m 、n 的方程组求解即可.【详解】解:∵3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,∴32453x y y x -=⎧⎨-=⎩和23197-=⎧⎨+=⎩mx ny mx ny 也有相同的解,∴解方程组324{53x y y x -=-=,得21x y =⎧⎨=⎩,代入23197-=⎧⎨+=⎩mx ny mx ny 中得431927m n m n -=⎧⎨+=⎩,∴解方程组得41m n =⎧⎨=-⎩.故答案为41m n =⎧⎨=-⎩.【点睛】本题主要考查了与二元一次方程组的解有关的知识点,解题的关键是准确理解方程组有相同解的情况,组成新的二元一次方程组求解.25.材料:解方程组()1045x y x y y --=⎧⎨--=⎩时,可由①得1x y -=③,然后再将③代入②得415y ⨯-=,求得1y =-,从而进一步求得01x y =⎧⎨=-⎩这种方法被称为“整体代入法”请用这样的方法解方程组()()423324x y x y x y -=⎧⎨--=⎩26.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时间内把一批抗洪物质从物资局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物资局仓库离水库有多远?27.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?当m=5,n=3时,支付租金:100×5+120×3=860元当m=1,n=6时,支付租金:100×1+120×6=820元.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量.点睛:本题考查了二元一次方程组的应用.解决问题的关键是读懂题意,依题意列出等式(或不等式)进行求解.。

人教版七年级数学下册-第8章-二元一次方程组--单元提优测试题(Word版附答案)

人教版七年级数学下册-第8章-二元一次方程组--单元提优测试题(Word版附答案)

人教版七年级数学 第8章《二元一次方程组》单元提优测试题完成时间:120分钟 满分:150分姓名 成绩10小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( ) A. ⎩⎨⎧20x +30y =11010x +5y =85 B. ⎩⎨⎧20x +10y =11030x +5y =85 C. ⎩⎨⎧20x +5y =11030x +10y =85 D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100 C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( ) A. 50人,40人 B. 30人,60人 C. 40人,50人 D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= ,◆= .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;②16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知 购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔 方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?22.(12分)某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元. (1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱?23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.人教版七年级数学 第8章《二元一次方程组》单元提优测试题参 考 答 案1.已知x2m-1+3y4-2n=-7是关于x ,y 的二元一次方程,则m ,n 的值是( D )A. ⎩⎨⎧m =2n =1 B. ⎩⎪⎨⎪⎧m =1n =-32 C. ⎩⎪⎨⎪⎧m =1n =52 D. ⎩⎪⎨⎪⎧m =1n =322.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,购买30支铅笔和5本笔记本共需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( B )A. ⎩⎨⎧20x +30y =11010x +5y =85B. ⎩⎨⎧20x +10y =11030x +5y =85C. ⎩⎨⎧20x +5y =11030x +10y =85D. ⎩⎨⎧5x +20y =11010x +30y =85 3.若34x 2a+b y 3及34x 6y a-b的和是单项式,则a +b =( C ) A. -3 B. 0 C. 3 D. 6 4.已知|a +b -1|+2a +b -2=0,则(a -b)2 017的值为( A )A. 1B. -1C. 2 017D. -2 017 5.若方程mx +ny =6的两个解是⎩⎨⎧x =1,y =1,⎩⎨⎧x =2,y =-1,则m ,n 的值为( A ) A. 4,2 B. 2,4 C. -4,-2 D. -2,-46.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马拉1片瓦,问有多少匹大马,多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( C ) A. ⎩⎨⎧x +y =1003x +3y =100 B. ⎩⎪⎨⎪⎧x +y =100x +13y =100C. ⎩⎪⎨⎪⎧x +y =1003x +13y =100 D. ⎩⎨⎧x +y =1003x +y =100 7.父子二人并排垂直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身身高的17,父子二人的身高之和为3.2米.若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组为( D ) A. ⎩⎪⎨⎪⎧x +y =3.2(1+17)x =(1+13)y B. ⎩⎪⎨⎪⎧x +y =3.2(1-17)x =(1-13)y C. ⎩⎪⎨⎪⎧x +y =3.213x =17y D. ⎩⎪⎨⎪⎧x +y =3.2(1-13)x =(1-17)y 8.端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组正确的是( B )A. ⎩⎨⎧x +y =6036x +24y =1 680B. ⎩⎨⎧x +y =6024x +36y =1 680C. ⎩⎨⎧36x +24y =60x +y =1 680D. ⎩⎨⎧24x +36y =60x +y =1 6809.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( C )A. 50人,40人B. 30人,60人C. 40人,50人D. 60人,30人10.通讯员要在规定时间内到达某地,若每小时走15千米,则可提前24分钟到达某地;若每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( D ) A. ⎩⎨⎧x 15-15=y x 12+12=y B. ⎩⎨⎧x 15+15=y x 12-12=y C. ⎩⎨⎧x 15-2460=y x 12-1560=y D. ⎩⎨⎧x 15+2460=y x 12-1560=y二、填空题(每题5分,共20分)11.小刚解出了方程组⎩⎨⎧3x -y =3,2x +y =▲,解为⎩⎨⎧x =4,y =◆,因不小心滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲= 17 ,◆= 9 .12.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ⎩⎪⎨⎪⎧y -x =4.5y 2=x -1 .13.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是 21 分.14.一个两位数的十位数字及个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字及个位数字对调后所组成的新两位数,则原来的两位数为 35. 三、解答题(共90分)15.(8分)解下列二元一次方程组:(1)⎩⎨⎧3x +2y =19,①2x -y =1.② (2)⎩⎨⎧4x +3y =14,①3x +2y =22;② 解:由②,得y =2x -1.③ 将③代入①,得3x +4x -2=19. 解得x =3.将x =3代入③,得y =5. ∴原方程组的解为⎩⎨⎧x =3,y =5.16.(8分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,求1套文具和1套图书各需多少元? 解:设1套文具的价格为x 元,一套图书的价格为y 元,根据题意,得⎩⎨⎧x +3y =104,3x +2y =116, 解得⎩⎨⎧x =20,y =28.答:1套文具和1套图书各需20元、28元.17.(8分)已知⎩⎨⎧x =2,y =-1是方程组⎩⎨⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.解:把⎩⎨⎧x =2,y =-1代入⎩⎨⎧ax +y =b ,4x -by =a +5得⎩⎨⎧2a -1=b ,①8+b =a +5.②把①代入②,得8+(2a -1)=a +5. 解得a =-2.把a =-2代入①,得2×(-2)-1=b. 解得b =-5. ∴a =-2,b =-5.18.(8分)甲、乙两人共同解方程组⎩⎨⎧ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧x =-3,y =-1;乙看错了方程②中的b ,得到方程组的解为⎩⎨⎧x =5,y =4.试计算a2017+(-110b)2 018的值. 解:把⎩⎨⎧x =-3,y =-1代入方程②中,得4×(-3)-b×(-1)=-2,解得b =10. 把⎩⎨⎧x =5,y =4代入方程①中,得 5a +5×4=15,解得a =-1. ∴a2 017+(-110b)2 018=(-1)2 017+(-110×10)2 018=(-1)+1=0. 19.(10分)甲、乙两位同学一起解方程组⎩⎨⎧ax +by =2,cx -3y =-2,甲正确地解得⎩⎨⎧x =1,y =-1,乙仅因抄错了题中的c ,解得⎩⎨⎧x =2,y =-6,求原方程组中a ,b ,c 的值.解:把⎩⎨⎧x =1,y =-1代入⎩⎨⎧ax +by =2,cx -3y =2中,得⎩⎨⎧a -b =2,c +3=-2,∴⎩⎨⎧a -b =2,c =-5.由题意知:⎩⎨⎧x =2,y =-6是方程ax +by =2的解,∴2a -6b =2,即a -3b =1. 联立⎩⎨⎧a -b =2,a -3b =1,解得⎩⎨⎧a =52,b =12.故a =52,b =12,c =-5. 20.(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/公里计算,耗时费按q 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数及车速如表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少? 解:(1)由题意,得⎩⎨⎧8p +8q =12,10p +12q =16. 解得⎩⎪⎨⎪⎧p =1,q =12.(2)小华的里程数是11 km ,时间为12 min. 则总费用是:11p +12q =17(元).答:总费用是17元.21.(12分)学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方 和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同. (1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个. 某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种 魔方多少个时,两种活动费用相同?解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意,得⎩⎨⎧2x +6y =130,3x =4y , 解得⎩⎨⎧x =20,y =15.答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个. (2)设购进A 种魔方m 个,则购进B 种魔方(100-m)个,根据题意,得0.8×20m +0.4×15(100-m)=20m +15(100-m -m),解得m =45. 答:购进A 种魔方45个时,两种活动费用相同. 22.(12分)某景点的门票价格如下表:购票人数/人 1~50 51~100 100以上 每人门票价/元12108某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,那么一共支付 1 118元,如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生?(2)团体购票及单独购票相比较,两个班各节约了多少钱? 解:(1)设七年级(1)班有x 名学生,七年级(2)班有y 名学生. ①若两班人数多于50人且少于100人,则⎩⎨⎧12x +10y =1 118,10(x +y )=816.解得⎩⎨⎧x =151,y =-69.4.不合题意,舍去;②若两班人数多于100人,则⎩⎨⎧12x +10y =1 118,8(x +y )=816. 解得⎩⎨⎧x =49,y =53.答:七年级(1)班有49名学生,七年级(2)班有53名学生. (2)∵49×(12-8)=196,53×(10-8)=106,∴团体购票及单独购票相比较,七年级(1)班节约了196元,七年级(2)班节约了106元. 23.(14分)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7 000 分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮 亮妈妈的兑换方法.礼品表兑换礼品 积分 榨汁机一个 3 000分 电茶壶一个 2 000分 书包一个1 000分解:①设亮亮妈妈兑换了x 个电茶壶和y 个书包,由题意,得⎩⎨⎧2 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =2,y =3.②设亮亮妈妈兑换了x 个榨汁机和y 个书包,由题意,得⎩⎨⎧3 000x +1 000y =7 000,x +y =5, 解得⎩⎨⎧x =1,y =4.③设亮亮妈妈兑换x 个榨汁机和y 个电茶壶,由题意,得⎩⎨⎧3 000x +2 000y =7 000,x +y =5,解得⎩⎨⎧x =-3,y =8.不合题意,舍去.答:亮亮妈妈兑换了2个电茶壶和3个书包或1个榨汁机和4个书包.。

初中数学第八章 二元一次方程组单元测试含答案

初中数学第八章 二元一次方程组单元测试含答案

初中数学第八章 二元一次方程组单元测试含答案一、选择题1.若关于x ,y 的方程组()348217x y mx m y +=⎧⎨+-=⎩的解也是二元一次方程x -2y =1的解,则m的值为( ) A .52B .32C .12D .12.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( ) A .23-B .23 C .16-D .163.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( )小月:您好,我要买5支签字笔和3本笔记本 售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A .10元B .11元C .12元D .13元4.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( )A .2-B .2C .6-D .65.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如,323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为x y D x DD y D⎧=⎪⎪⎨⎪=⎪⎩,其中1122a D a b b =,1122x b a D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组3137x y x y -=⎧⎨+=⎩时,下面的说法错误..的是( ). A .311013D -==B .10x D =C.方程组的解为12xy=⎧⎨=⎩D.20yD=-6.已知甲乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x元,年支出为y元,可列出方程组为()A.40027400 34x yx y-=⎧⎪⎨+=⎪⎩B.4003440027x yx y=+⎧⎪⎨-=⎪⎩C.4002440037x yx y-=⎧⎪⎨-=⎪⎩D.4003740024x yx y-=⎧⎪⎨-=⎪⎩7.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为()A.2114322x yx y+=⎧⎨+=⎩B.2114327x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.264327x yx y+=⎧⎨+=⎩8.甲、乙两人同求方程ax-by=7的整数解,甲正确地求出一个解为11xy=⎧⎨=-⎩,乙把ax-by=7看成ax-by=1,求得一个解为12xy=⎧⎨=⎩,则a,b的值分别为( )A.25ab=⎧⎨=⎩B.52ab=⎧⎨=⎩C.35ab=⎧⎨=⎩D.53ab=⎧⎨=⎩9.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A、B、C、D表示的数分别是整数a、b、c、d,且满足2319a d,则b c+的值为()A.3-B.2-C.1-D.010.如果2x3n y m+4与-3x9y2n是同类项,那么m、n的值分别为()A.m=-2,n=3 B.m=2,n=3 C.m=-3,n=2 D.m=3,n=2二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有种.12.某餐厅以A、B两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A、200克B;乙产品每份含200克A、100克B.甲、乙两种产品每份的成本价分别为A、B两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A、B两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元.13.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.14.已知点C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ . 15.在平面直角坐标系中,当点M(x,y)不在坐标轴上时,定义点M的影子点为M/(,)y xx y-.已知点P的坐标为(a,b),且a、b满足方程组3401416a cb c⎧++-=⎪⎨-=-⎪⎩(c为常数).若点P的影子点是点P/,则点P/的坐标为___.16.若3x-5y-z=8,请用含x,y的代数式表示z,则z=________.17.已知三个方程构成的方程组230xy y x--=,350yz z y--=,520xz x z--=,恰有一组非零解x a=,y b=,z c=,则222a b c++=________.18.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.19.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm,小红所搭的“小树”的高度为22 cm,设每块A型积木的高为x cm,每块B型积木的高为y cm,则x=__________,y=__________.20.如图,在长方形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=12cm,FG=4cm,则图中阴影部分的总面积是 __________2cm.三、解答题21.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B 型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.22.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.23.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.25.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解; (3)已知,m n 是实数,27n =,若)P n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.26.问题:有甲、乙、丙三种商品,①购甲3件、乙5件、丙7件共需490元钱;②购甲4件、乙7件、丙10件共需690元钱;③购甲2件,乙3件,丙1件共需170元钱. 求购甲、乙、丙三种商品各一件共需多少元?小明说:“可以根据3个条件列出三元一次方程组,分别求出购甲、乙、丙一件需多少钱,再相加即可求得答案.”小丽经过一番思考后,说:“本题可以去掉条件③,只用①②两个条件,仍能求出答案.” 针对小丽的发言,同学们进行了热烈地讨论. (1)请你按小明的思路解决问题.(2)小丽的说法正确吗?如果正确,请完成解答过程;如果不正确,请说明理由. (3)请根据上述解决问题中积累的经验,解决下面的问题:学校购买四种教学用具A 、B 、C 、D ,第一次购A 教具1件、B 教具3件、 C 教具4件、D 教具5件共花2018元;第二次购A 教具1件、B 教具5件、 C 教具7件、D 教具9件共花3036元. 求购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A 【分析】联立不含m 的方程求出x 与y 的值,进而求出m 的值即可. 【详解】解:联立得:34821x y x y +=⎧⎨-=⎩①②,①+②2⨯得:510x =, 解得:2x =, 把2x =代入①得:12y =, 把2x =,12y =代入得:12(21)72m m +-=, 解得:52m =. 故选:A . 【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.2.A解析:A 【分析】根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案. 【详解】 解:由题意,得 6×(-3)k-2×2=8,解得k=-23, 故选A . 【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k 方程是解题关键.3.C解析:C 【分析】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意可得5x+3y=52和3x+5y=44,进而求出x+y 的值. 【详解】设购买1支签字笔应付x 元,1本笔记本应付y 元,根据题意得53523544x y x y +⎧⎨+⎩==,解得8x+8y=96, 即x+y=12,所以在单价没有弄反的情况下,购买1支签字笔和1本笔记本应付12元, 故选C . 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.4.C解析:C 【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值. 【详解】2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-, ∴()39336x y x y +=+=-, 故选:C . 【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键.5.D解析:D 【分析】分别根据行列式的定义计算可得结论. 【详解】 A 、3113D -==3×3-(-1)×1=10,计算正确,不符合题意;B 、D x =1×3-(-1)×7=10,计算正确,不符合题意;C 、方程组的解:x=102011010y ==,=2,计算正确,不符合题意. D 、D y =3×7-1×1=20,计算错误,符合题意; 故选:D . 【点睛】此题考查二元一次方程组的解,理解题意,直接运用公式计算是解题的关键.6.C解析:C【分析】由甲、乙两人的年收入之比为3:2,年支出之比为7:4,得到乙的收入为23x ,乙的支出为47y ,根据题意找出等量关系,列出方程中选出正确选项即可. 【详解】设甲的年收入为x 元,年支出为y 元,∵甲、乙两人的年收入之比为3:2,年支出之比为7:4, ∴乙的收入为23x ,乙的支出为47y , 根据题意列出方程组得:4002440037x y x y -=⎧⎪⎨-=⎪⎩. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,根据题意找出等量关系是解答本题的关键.7.B解析:B 【分析】类比图1所示的算筹的表示方法解答即可. 【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.8.B解析:B 【解析】把甲的解代入ax -by =7可得a +b =7,把乙的解代入可得a -2b =1,由它们构成方程组可得721a b a b +=⎧⎨-=⎩,解方程组得52a b =⎧⎨=⎩,故选B . 9.C解析:C 【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可. 【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1, 代入b+c=-1. 故选:C . 【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.10.B解析:B 【分析】根据同类项的定义可得关于m 、n 的方程组,解方程组即可求出答案. 【详解】解:由题意得:3942n m n =⎧⎨+=⎩,解得:23m n =⎧⎨=⎩.故选:B . 【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题型,熟练掌握基本知识是解题的关键.二、填空题 11.6 【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】 解:设8解析:6 【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x 得3202x y =-,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案. 【详解】解:设80分的邮票购买x 张,120分的邮票购买y 张, 0.8x+1.2y=16,解得3202x y =-, ∵x 、y 都是正整数,∴当y=2、4、6、8、10、12时, x=17、14、11、8、5、2, ∴共有6种购买方案, 故答案为:6. 【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题.12.824 【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为元,生产甲产品x 份,乙产品y 份,根据题意列方程求出 【详解】 解:∵甲产品每解析:824 【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出 【详解】解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元 ∴100克A 原料和100克B 原料的成本为8元设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:[]4312016(28)162(8)688x y x m m y x m m y +≤⎧⎨++-=+-++⎩整理得出:4344my y =+∴餐厅每天实际成本16(8)1612344W x m y x y =++=++ ∵43120x y +≤ ∴1612480x y +≤∴餐厅每天实际成本的最大值为:480344824+=(元).故答案为:824.【点睛】本题考查的知识点是二元一次方程组的应用,读懂题意,理清题目中的各关系量是解此题的关键.13.24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃解析:24【分析】设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.【详解】解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:969620606030a b x a b x +⎧⎨+⎩== 解得:b=103x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则 a+yb=70xy ,把b=103x ,a=1600x 代入得:y=24(天). 故答案为:24.【点睛】本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键.14.8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利解析:8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC 、CD 、DB ,AD 、BC 、AB ,然后根据所有线段的和为29可得关于AB 、CD 的等式,继而根据所有线段的长都是正整数以及AB>CD 利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∴AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.15.()【解析】【分析】由方程组变形可得,由非负数性质可求c=4,a=-3,b=1,再依据影子点定义即可求出点P/的坐标.【详解】解:∵方程组(c为常数),∴,∵,,∴,∴c=4,∴解析:(1,3 3 -)【解析】【分析】由方程组变形可得3=-(4)14(4)a cb c⎧+-⎪-=-,由非负数性质可求c=4,a=-3,b=1,再依据影子点定义即可求出点P/的坐标.【详解】解:∵方程组3401416a cb c⎧++-=⎪-=-(c为常数),∴3=-(4)4(4)a c c ⎧+-⎪=-, ∵30a +≥0,∴-(4)04(4)0c c -≥⎧⎨-≥⎩, ∴c =4,∴31a b =-⎧⎨=⎩, ∴P 坐标为(-3,1),根据定义可知点P 的影子点P /为(13(,)31--- ,即为P /(1,33-). 故答案为(1,33-).【点睛】本题考查了非负数性质和新定义运算.解题关键是利用方程变形和非负数性质得出c -4=0. 16.3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.17.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6, ∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.18.﹣2 ﹣2 ﹣2【解析】分析:先把x=3y=-2代入ax+by=-2cx-7y=8得3a-2b=-23c+14=8 ,由方程组中第二个式子可得:c=-2,然后把解x=-2y=解析:﹣2 ﹣2 ﹣2【解析】分析:先把代入得 ,由方程组中第二个式子可得:c=-2,然后把解代入ax+by=-2即可得出答案.解答:解:把代入,得,解得,c=-2.再把代入ax+by=-2,得,解得:,所以a=-2,b=-2,c=-2.故答案为-2,-2,-2.点评:本题考查了二元一次方程组的解,难度适中,关键是对题中已知条件的正确理解与把握.19.5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A 的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组23233222x yx y+=⎧⎨+=⎩,再求解45xy=⎧⎨=⎩.故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.20.48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得3124x yx y+=⎧⎨-=⎩,①,②①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=482cm .故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键.三、解答题21.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)只,费用为w 元, 5720021400w a a a +-+=()=-,3200a a ≤-(),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.22.(1)C (a+h ,b-1),D (m+h ,n-1);(2)①见解析;②相等,理由见解析【分析】(1)根据平移规律解决问题即可..(2)①证明A ,D 的纵坐标相等即可解决问题;②如图,设AD 交直线l 于J ,首先证明BJ=DJ=1,推出D (m+1,n-1),再证明p=q ,即可解决问题.【详解】解:(1)由题意,C (a+h ,b-1),D (m+h ,n-1);(2)①∵b=n-1,∴A (a ,b ),D (m+h ,n-1),∴点A ,D 的纵坐标相等,∴AD ∥x 轴,∵直线l⊥AD,∴直线l⊥x轴;②相等,理由是:如图,设AD交直线l于J,∵DE的最小值为1,∴DJ=1,∵BJ=1,∴D(m+1,n-1),∴二元一次方程px+qy=k(pq≠0)的图象经过点B,D,∴mp+nq=k,(m+1)p+(n-1)q=k,∴p-q=0,∴p=q,∴m+n=kp,∵tp+sp=k,∴t+s=kp,∴m+n=t+s.【点睛】本题考查坐标与图形的变化-平移,二元一次方程等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.(1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.【分析】(1)设制作甲x个,乙y个,则需要A,B型号的纸板如下表:A B甲2x3x乙y4y(2)设制作甲m 个,乙k 个,则需要A ,B 型号的纸板如下表:(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.【详解】解:(1)设制作甲x 个,乙y 个,则34160270x y x y +=⎧⎨+=⎩, 解得:2422x y =⎧⎨=⎩ , 即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数, 所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.【点睛】此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.24.(1)x1y3=⎧⎨=⎩,x3y2=⎧⎨=⎩,x5y1=⎧⎨=⎩;(2)x3y7=⎧⎨=⎩;(3)63,73,83【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0{7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k4{559k4+->>,即-1<k<559,∴当k=3时,x=5,y=7,∴方程组x y k15{x5y10k70++=++=有“好解“,∴“好解”为x3 {y7==;(3)由33x 23y 2019{x y m +=+=,解得201923m x 10{33m 2019y 10-=-=, ∵201923m 010{33m 2019010-->>,即201933<m <201923, ∴当m=63时,x=57,y=6;m=73时,x=38,y=39;m=83时,x=11,y=72;∴所有m 的值为63,73,83.【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.25.(1)B ;(2),x y 的最小整数解为104x y =⎧⎨=⎩;(3)隐线中s 的最大值和最小值的和为72【分析】(1)将A,B,C 三点坐标代入方程,方程成立的点即为所求,(2)将P,Q 代入方程,组成方程组求解即可,(3)将P 代入隐线方程,27n +=组成方程组,求解方程组的解,再由()2723147s n n n =--=-即可求解.【详解】解:(1)将A,B,C 三点坐标代入方程,只有B 点符合,∴隐线326x y +=的亮点的是B.(2)将()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭代入隐线方程 得:226163h t h -=⎧⎪⎨-=⎪⎩解得253t h ⎧=⎨=-⎩代入方程得:5626x y -=,x y ∴的最小整数解为104x y =⎧⎨=⎩(3)由题意可得273n n s==⎪⎩72n =-n ∴= ()2723147s n n n ∴=--=-2122s ∴=- s ∴的最大值为14,最小值为212- 隐线中s 的最大值和最小值的和为2171422-= 【点睛】本题考查了二元一次方程的新定义,二元一次方程与直线的关系,运用了数形结合的思想,理解题意是解题关键.26.(1) 购甲、乙、丙三种商品各一件共需90元.(2) 小丽的说法正确. (3) 购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.【解析】分析:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列三元一次方程组求解即可;(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列方程组,变形后用整体思想解答即可;(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,根据题意列方程组,变形后用整体思想解答即可.详解:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得: 357490471069023170x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.解得: 203040x y z =⎧⎪=⎨⎪=⎩.∴ 90x y z ++=.答:购甲、乙、丙三种商品各一件共需90元.(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得:3574904710690x y z x y z ++=⎧⎨++=⎩. 变形得:()()()()322490432690x y z y z x y z y z ①②⎧++++=⎪⎨++++=⎪⎩解得:①×3-②×2得:∴x +y +z =90答:购甲、乙、丙三种商品各一件共需90元.(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,由题意得: 34520185793036a b c d a b c d +++=⎧⎨+++=⎩①②①×11-②×6得:5a +3b +2c +d =3982答:购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.点睛:本题考查了二元一次方程组的应用以及利用换元法解方程组,解题的关键是:(1)用加减消元法解三元一次方程组;(2)(3)运用了整体思想解决问题.解决该题型题目时,整体替换部分是关键.。

七年级初一数学 第八章 二元一次方程组单元测试及答案

七年级初一数学 第八章 二元一次方程组单元测试及答案

七年级初一数学 第八章 二元一次方程组单元测试及答案一、选择题1.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是( ) A .①②③B .①③C .②③D .①②2.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( )A .329557230x y x y +=⎧⎨+=⎩B .239557230x y x y +=⎧⎨+=⎩C .329575230x y x y +=⎧⎨+=⎩D .239575230x y x y +=⎧⎨+=⎩3.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( ) A .1个B .2个C .3个D .4个4.下列方程组是三元一次方程组的是( )A .123x y y z z x +=⎧⎪+=⎨⎪-=⎩B .02310x y z x yz y z ++=⎧⎪-=⎨⎪-=⎩C .22154x y y z x z ⎧+=⎪+=⎨⎪-=⎩D .563x y w z z x +=⎧⎪+=⎨⎪+=⎩5.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④6.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x 和分成的组数y ,可列方程组为( )A .7385y x y x =-⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385x yx y +=⎧⎨-=⎩D .7385y x y x =+⎧⎨=+⎩7.如果2x 3n y m+4与-3x 9y 2n 是同类项,那么m 、n 的值分别为( )A .m=-2,n=3B .m=2,n=3C .m=-3,n=2D .m=3,n=28.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112l B .116l C .516l D .118l 9.由方程组71x m y m+⎧⎨-⎩==可得出x 与y 的关系式是( )A .x+y=8B .x+y=1C .x+y=-1D .x+y=-810.已知关于x ,y 的方程组232x y ax y a-=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②2x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x﹣y =1﹣a 的解;其中正确的是( ) A .①②B .①③C .②③D .①②③二、填空题11.若m 35223x y m x y m +--+-199199x y x y =---+m =________.12.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 13.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)14.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.15.若关于x,y的方程组322x yx y a+=⎧⎨-=-⎩的解是正整数,则整数a的值是_____.16.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包.17.对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b=__________.18.若方程组2313{3530.9a ba b-=+=的解是8.3{1.2,ab==则方程组的解为________19.若方程123x y-=的解中,x、y互为相反数,则32x y-=_________20.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.三、解答题21.对于数轴上的点A,给出如下定义:点A在数轴上移动,沿负方向移动a个单位长度(a是正数)后所在位置点表示的数是x,沿正方向移动2a个单位长度(a是正数)后所在位置点表示的数是y,x与y这两个数叫做“点A的a关联数”,记作G(A,a)={x,y},其中x<y.例如:原点O表示0,原点O的1关联数是G(0,1)={-1,+2}(1)若点A表示-3,a=3,直接写出点A的3关联数.(2)①若点A表示-1,G(A,a)={-5,y},求y的值.②若G(A,a)={-2,7},求a的值和点A表示的数.(3)已知G(A,3)={x,y},G(B,2)={m,n},若点A、点B从原点同时同向出发,且点A的速度是点B速度的3倍.当|y-m|=6时,直接写出点A表示的数.22.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况. 24.先阅读材料再回答问题. 对三个数x ,y ,z ,规定{},,3x y zM x y z ++=;{}min ,,x y z 表示x,y,z 这三个数中最小的数,如{}12341,2,333M -++-==,{}min 1,2,31-=- 请用以上材料解决下列问题:(1)若{}min 2,22,422x x +-=,求x 的取值范围; (2)①若{}{}21,2min 2,1,2M x x x x ,+=+,求x 的值;②猜想:若{}{},,min ,,M a b c a b c =,那么a ,b ,c 大小关系如何?请直接写出结论; ③问:是否存在非负整数a ,b ,c 使{}{}27,321,41min 27,321,41M a b a b c a b a b c -++++=-++++等式成立?若存在,请求出a ,b ,c 的值;若不存在,请说明理由.25.方程组1327x y x y +=-⎧-=⎨⎩的解满足210(x ky k -=是常数),()1求k 的值.()2直接写出关于x ,y 的方程()1213k x y -+=的正整数解26.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A 、B 两种原料,生产甲产品需要A 种原料4吨/件,B 种原料2吨/件,生产乙产品需要A 种原料3吨/件,B 种原料1吨/件,每个季节该厂能获得A 种原料120吨,B 种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元? (2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A ,B 两种原料还剩下多少吨?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据二元一次方程组的解法逐个判断即可. 【详解】当5k =时,方程组为3563510x y x y +=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x y x y +=⎧⎨+=⎩得:2345x y ⎧=⎪⎪⎨⎪=⎪⎩把23x =,45y =代入310x ky +=得2431035k ⨯+=解得10k =,则结论②正确解方程组356310x y x ky +=⎧⎨+=⎩得:20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩又k 为整数x 、y 不能均为整数∴结论③正确综上,正确的结论是①②③ 故选:A . 【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.解析:B【解析】分析:根据题意,确定等量关系为:若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,根据所设未知数列方程,构成方程组即可.详解:设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得:2395 57230x yx y+=⎧⎨+=⎩,故选B.点睛:此题主要考查了二元一次方程组的应用,关键是确定问题中的等量关系,列方程组. 3.B解析:B【详解】解:把①22xy==⎧⎨⎩代入得左边=10=右边;把②2{1xy==代入得左边=9≠10;把③2{2xy==-代入得左边=6≠10;把④1{6xy==代入得左边=10=右边;所以方程4x+y=10的解有①④2个.故选B.4.A解析:A【分析】根据三元一次方程组的定义来求解,对A、B、C、D四个选项进行一一验证.【详解】A、满足三元一次方程组的定义,故A选项正确;B、含未知数项的次数为2次,∴不是三元一次方程,故B选项错误;C、未知数的次数为2次,∴不是三元一次方程,故C选项错误;D、含有四个未知数,不满足三元一次方程组的定义,故D选项错误;故选:A.【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.5.D解析:D根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.6.A解析:A【解析】分析:根据题意确定等量关系为:若每组7人,则余3人;若每组8人,则少5人,列方程组求解即可.详解:根据题意可得:73 85y xy x=-⎧⎨=+⎩.故选:A.点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是确定问题的等量关系.解析:B 【分析】根据同类项的定义可得关于m 、n 的方程组,解方程组即可求出答案. 【详解】解:由题意得:3942n m n =⎧⎨+=⎩,解得:23m n =⎧⎨=⎩.故选:B . 【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题型,熟练掌握基本知识是解题的关键.8.B解析:B 【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可. 【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=.3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-, 91644y x l ∴+=,116x l ∴=.∴标号为①的正方形的边长116l . 故选:B . 【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.9.A解析:A 【分析】将第二个方程代入第一个方程消去m 即可得. 【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.10.B解析:B 【分析】把a =0代入方程组,可求得方程组的解,把20x y =⎧⎨=⎩代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案. 【详解】解:①当a =0时,原方程组为230x y x y -=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩,②把2x y =⎧⎨=⎩代入方程组得到a =1,不符合题意. ③当a =﹣1时,原方程组为242x y x y -=⎧⎨+=-⎩,解得02x y =⎧⎨=-⎩,当02x y =⎧⎨=-⎩时,代入方程组可求得a =﹣1, 把02x y =⎧⎨=-⎩与a =﹣1代入方程2x ﹣y =1﹣a 得,方程的左右两边成立, 综上可知正确的为①③. 故选:B . 【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.二、填空题 11.201 【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201 【分析】根据能开平方的数一定是非负数,得199-x-y ≥0,x-199+y ≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m 的值. 【详解】解:由题意可得,199-x-y ≥0,x-199+y ≥0, ∴199-x-y=x-199+y=0,∴x+y=199①.=0, ∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520230x y x y m x y m +=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m , 将y=4-m 代入③,解得x=2m-6,将x=2m-6,y=4-m 代入①得,2m-6+4-m=199,解得m=201. 故答案为:201. 【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.12.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答. 【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本, 设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答. 【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.13.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a=+⎧⎨=--⎩ ,则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④.【点睛】 本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.14.m >﹣【分析】利用方程组中两个式子加减可得到和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m+2,将两个方程相减解析:m >﹣23 【分析】利用方程组中两个式子加减可得到5x y -和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m +2,将两个方程相减可得x ﹣3y =﹣m ﹣4,由题意得32040m m +>⎧⎨--<⎩, 解得:m >23-, 故答案为:m >23-. 【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换15.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键. 16.3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题解析:3,20,77.【解析】先设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包,再根据题中的相等关系列出方程组,并根据实际意义找出满足题意的解即可.解:设油菜籽、西红柿、萝卜籽各买了x 、y 、z 包根据题意可列方程组,100341007x y x z x y ++=⎧⎪⎨++=⎪⎩①② ②-3×①,得77020z y =+ 要使x 、y 、z 均为正整数,则3,20,77x y z ===故答案为3、20、77点睛:本题主要考查学生利用方程思想建模解决实际问题的能力.解题的技巧在于要利用题中的相等关系建立方程组,并用含一个未知数的式子表示另一个未知数,再根据实际情况得出满足题意的解.17.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合 解析:613【解析】由题意得:227{3393a b a b ++=-+-=, 解得:a=13,b=133, 则13※b=13a+b²+13=116913619993++=, 故答案为613. 点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a 、b 的值.18.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .19.【解析】试题分析:根据x、y互为相反数,可得x+y=0,然后和方程构成方程组,解得,所以3x-2y=.20.100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,解析:100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.三、解答题21.(1){-6,+3};(2)①y=7,②a=3,点A表示的数1;(3)-3或-21【分析】(1)直接根据关联数的定义解题即可;(2)①首先根据关联数的定义求出a的值,然后即可求解;②通过关联数的定义建立方程组求解即可;(3)通过关联数的定义建立关于A,B的方程组,然后通过A,B的速度的关系找到A,B 之间的关系,最后通过解方程即可得出答案.【详解】(1)∵点A表示-3,a=3,∴=--=-=-+⨯=+,x y336,3233∴点A的3关联数G(-3,3)={-6,+3};(2)①点A 表示-1,G (A ,a )={-5,y},51a ∴-=--解得4a =,1247y ∴=-+⨯=;②∵G (A ,a )={-2,7},272A a A a -=-⎧∴⎨=+⎩解得13A a =⎧⎨=⎩; (3)∵G (A ,3)={x ,y},G (B ,2)={m ,n},323x A y A =-⎧∴⎨=+⨯⎩,222m B n B =-⎧⎨=+⨯⎩. ∵点A 的速度是点B 速度的3倍,3A B ∴=,13B A ∴=. 6y m -=,()626A B ∴+--=,即16263A A ⎛⎫+--= ⎪⎝⎭, 解得3A =-或21A =-.【点睛】本题主要考查定义新运算,掌握关联数的定义是解题的关键.22.(1)12x y =⎧⎨=⎩;(2)41m n =-⎧⎨=-⎩;(3)a =3,b =2. 【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x ,n+3=y ,则方程组化为(1)中的方程组,可求得x ,y 的值进一步可求出原方程组的解;(3)把am 和bn 当成一个整体利用已知条件可求出am 和bn ,再把bn 代入2m-bn=-2中求出m 的值,然后把m 的值代入3m+n=5可求出n 的值,继而可求出a 、b 的值.【详解】解:(1)两个方程相加得66x =,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩;故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.23.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.24.(1)0≤x≤1;(2)①x=1;②a=b=c ;③存在 063a b c =⎧⎪=⎨⎪=⎩使等式成立 . 【解析】【分析】(1)根据题意可得关于x 的不等式组,解不等式组即可求得答案;(2)①先求出{}21,21M x x x +=+,,继而根据题意可得{}min 2,1,21x x x +=+,由此可得关于x 的不等式组,求解即可得;②M{a ,b ,c}=3a b c ++,如果min{a ,b ,c}=c ,则a ≥c ,b ≥c ,即3a b c ++=c ,由此可推导得出a=b=c ,其他情况同理可证,故a=b=c ;③由②的结果可得关于a 、b 、c 的方程组,由此进行求解即可得.【详解】(1)由题意得2224-22x x +≥⎧⎨≥⎩, 解得0≤x≤1;(2)①{}21221,213x x M x x x ++++==+, {}{}21,2min 2,1,2M x x x x ,+=+所以{}min 2,1,21x x x +=+则有1212x x x +≤⎧⎨+≤⎩ 即11x x ≤⎧⎨≥⎩所以x=1 ②∵M{a ,b ,c}=3a b c ++, 如果min{a ,b ,c}=c ,则a ≥c ,b ≥c , 则有3a b c ++=c , 即a+b-2c=0,∴(a-c)+(b-c)=0,又a-c ≥0,b-c ≥0,∴a-c=0且b-c=0,∴a=b=c , 其他情况同理可证,故a=b=c ;③存在,理由如下:由题意得:()()273212741a b a b a b c ⎧-+=++⎪⎨-+=+⎪⎩ⅠⅡ, 由(Ⅰ)得 a+3b=6,即23a b =-, 因为a ,b ,c 是非负整数 ,所以a=0,3,6 ,b=2,1,0,即06a b =⎧⎨=⎩,代入(Ⅱ)得c=3, 或31a b =⎧⎨=⎩,代入(Ⅱ)得c=114,不符合题意,舍去, 或60a b =⎧⎨=⎩ ,代入(Ⅱ)得c=92,不符合题意,舍去, 综上所述: 存在063a b c =⎧⎪=⎨⎪=⎩使等式成立.【点睛】本题考查了一元一次不等式组的应用,方程组的应用,读懂题意,正确进行分析得出相应的不等式组或方程组是解题的关键.25.(1)4k =;(2){15x y ==,{32x y ==【解析】【分析】(1)先求出方程组的解,再代入方程210x ky -=,即可求出k 值;(2)把k 的值代入方程(k-1)x+2y=13,再求出正整数解即可.【详解】() 1方程组1327x y x y +=-⎧-=⎨⎩的解为:{12x y ==-, 将{12x y ==-代入210x ky -=得:2210k +=,解得:4k =; ()2把4k =代入方程()1213k x y -+=得:3213x y +=, 即1332x y -=, 所以关于x ,y 的方程()1213k x y -+=的正整数解为{15x y ==,{32x y ==.【点睛】本题考查了解二元一次方程组、解一元一次方程和解二元一次方程,能求出k 的值是解此题的关键.26.(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A 种原料还剩下20吨,B 种原料正好用完,还剩下0吨.【解析】分析:(1)可设生产甲种产品x 件,生产乙种产品y 件,根据等量关系:①生产甲种产品需要的A 种原料的吨数+生产乙种产品需要的A 种原料的吨数=A 种原料120吨,②生产甲种产品需要的B 种原料的吨数+生产乙种产品需要的B 种原料的吨数=B 种原料50吨;依此列出方程求解即可;(2)可设乙种产品生产z 件,则生产甲种产品(z +25)件,根据等量关系:甲种产品的产值+乙种产品的产值=总产值1375千元,列出方程求解即可.详解:(1)设生产甲种产品x 件,生产乙种产品y 件,依题意有: 43120250x y x y +=⎧⎨+=⎩,解得1520x y =⎧⎨=⎩:, 15×50+30×20=750+600=1350(千元),1350千元=135万元.答:生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)设乙种产品生产z件,则生产甲种产品(z+25)件,依题意有:(1+10%)×50(z+25)+(1﹣10%)×30z=1375,解得:z=0,z+25=25,120﹣25×4=120﹣100 =20(吨),50﹣25×2 =50﹣50 =0(吨).答:安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨,B种原料正好用完,还剩下0吨.点睛:考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列二元一次方程组解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程组:挖掘题目中的关系,找出两个等量关系,列出方程组.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.。

二元一次方程组练习题及答案

二元一次方程组练习题及答案

第八章 二元一次方程组单元测试题一、选择题:(每题3分,共36分)1.下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x +4y=6D .4x=24y -2.下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y xx y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解 4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(y+3)2=0,则 x+y 的值是( ) A .-1 B .-2 C .-3 D .326.方程组43235x y kx y -=⎧⎨+=⎩的解,x 与y 的值相等,则k 等于( )A .-1B .-2C .-3D .17.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ;⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.七年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( )A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 9.方程2x+y=9在正整数范围内的解有( )A 、1个B 、2个C 、3个D 、4个10.若是m y x 25与2214-++n m n y x 同类项,则n m -2的值为 ( )A 、1B 、-1C 、-3D 、以上答案都不对⎨⎧=2xA 、⎩⎨⎧=+=-5253y x y xB 、⎩⎨⎧=--=523x y x yC 、⎩⎨⎧=+=-152y x y xD 、⎩⎨⎧+==132y x y x12.若方程组 ⎩⎨⎧=+=+16156653y x y x 的解也是方程3x+ky=10的解,则k的值是( )A、k=6 B、k=10 C、k=9 D、k=101二、填空题(每题3分,共18分)13.已知方程2x+3y -4=0,用含x 的代数式表示y 为:______________;用含y 的代数式表示x 为_____ ________.14.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=___ ___. 15.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____. 16.二元一次方程x+y=5的正整数解有______________. 17.以57x y =⎧⎨=⎩为解的一个二元一次方程组是_________. 18.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______. 三、解答题(共46分)19.用适当的方法解下列方程组(12分)(1)、⎩⎨⎧=-=+-6430524m n n m ( 2)、⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x (3)、⎩⎨⎧=-=+110117.03.04.0y x y x20.(6分)二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.21.(6分)七年级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。

二元一次方程组单元测试卷及答案

二元一次方程组单元测试卷及答案

二元一次方程组单元测试卷学校:___________姓名:___________班级:___________一、选择题(本大题共12小题,共36.0分)1. 方程ax −4y =x −1是二元一次方程,则a 的取值为( )A. a ≠0B. a ≠−1C. a ≠1D. a ≠2 2. 下列方程组不是二元一次方程组的是( )A. {x −y =41x+y=4B. {4x +3y =62x +y =2 C. {x −y =4x +y =2D. {12(y −1)=212(x−1)=13. 方程组{3x +2y =7, ①4x −y =13, ②下列变形正确的是( )A. ①×2−②消去xB. ①−②×2消去yC. ①×2+②消去xD. ①+②×2消去y 4. 方程组{ax −y =12x +by =2的解为{x =1y =1,则a ,b 的值为( )A. a =2,b =0B. a =−2,b =0C. a =−2,b =2D. a =2,b =25. 二元一次方程2x +y =5的正整数解对数为( )A. 1对B. 2对C. 3对D. 4对 6. 已知|3x +2y −4|与9(5x +7y −3)2互为相反数,则x 、y 的值是( )A. {x =1y =1B. {x =2y =−1C. {x =−1y =2D. 无法确定7. 小明用17元买了1支笔和某种笔记本3个,已知笔记本的单价比笔的单价的2倍还多1元,设笔每支x 元,笔记本每本y 元,则所列方程组为( )A. {x +3y =17x =2y +1B. {x +3y =17y =2x +1C. {y +3x =17x =2y +1D. {y +3x =17y =2x +18. 用“●”“■”“●”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A. 5个B. 4个C. 3个D. 2个9. 用四个完全一样的长方形和一个小正方形拼成如图所示的大长方形的长和宽,已知大正方形的面积是121,小正方形的面积是9,若用x ,y(x >y)表示长方形的长和宽,则下列关系中不正确的是( ) A. x +y =11 B. x 2+y 2=180 C. x −y =3 D. x ⋅y =2810. 如果二元一次方程ax +by +2=0有两个解{x =2y =2与{x =1y =−1,那么下列各组中仍是这个方程的解的是( )A. {x =3y =5 B. {x =6y =2 C. {x =5y =3 D. {x =2y =6 11. 已知x =2m +1,y =2m −1,用含x 的式子表示y 的结果是( ) A. y =x +2B. y =x −2C. y =−x +2D. y =−x −212. 已知{x =1y =2z =3是方程组{ax +by =2by +cz =3cx +az =7的解,则a +b +c 的值是( )A. 3B. 2C. 1D. 无法确定二、填空题(本大题共6小题,共18.0分)13. 已知二元一次方程x +2y =2,用含x 的代数式表示y ,则y = ______ . 14. 已知{x =1y =−1是方程3mx −y =m 的一个解,则m =______.15. 已知{x =2y =3是方程4x +ky =2的解,则k =______.16. 甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了______张. 17. 在一本书上写着方程组{x +py =2x +y =1的解是{x =0.5y =♦,其中y 的值被墨渍盖住了,不过,我们可解得出p = ______ .18. 对于X 、Y 定义一种新运算“∗”:X ∗Y =aX +bY ,其中a 、b 为常数,等式右边是通常的加法和乘法的运算.已知:3∗5=15,4∗7=28,那么2∗3=_____. 三、解答题(本大题共6小题,共46.0分) 19. (8分)解方程组(1){y =2x 3y +2x =8(2){x +y =2x+15−y−12=−1.20. (6分)在等式y =ax 2+bx +c 中,当x =O 时y =0;当x =1时,y =−1;当x =−1时,y =2,求a ,b ,c 的值. 21. (8分)若关于x 、y 的二元一次方程组的解x ,y 互为相反数,求m 的值.22. (8分)已知方程组{ax +5y =15①4x −by =−2②,由于甲看错了方程①中的a 得到方程组的解为{x =−13y =−1,乙看错了方程②中的b 得到方程组的解为{x =5y =4,(1)求a 、b 的值. (2)求原方程组的解.23. (8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A 、B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A 、B 两种饮料各多少瓶?24. (8分)某服装店用6000元购进A ,B 两种新式服装,按标价售出后可获得毛利润A 型B 型 进价(元/件) 60 100 标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?二元一次方程组单元测试卷【答案】 1. C 2. A 3. D4. A5. B6. B7. B8. A 9. B10. A 11. B12. A13.2−x 214. −12 15. −2 16. 20 17.3 18. 219. 解:(1){y =2x ①3y +2x =8 ②,把①代入②得:6x +2x =8,即x =1, 把x =1代入①得:y =2,则方程组的解为{x =1y =2;(2)方程组整理得:{2x −5y =−17 ①x +y =2 ②,①+②×5得:7x =−7,即x =−1, 把x =−1代入②得:y =3, 则方程组的解为{x =−1y =3.20. 解:根据题意得{c =0①a +b +c =−1②a −b +c =2③ ,②+③得2a +2c =1④, 把①代入④得2a =1, 解得a =12,把a =12,c =0代入②得12+b +0=−1, 解得b =−32,所以方程组的解为{a =12b =−32c =0.21. 解:将x =−y 代入二元一次方程租{3x +5y =22x +7y =m −18可得关于y ,m 的二元一次方程组{−3y +5y =2−2y +7y =m −18,解得m =23.22. 解:(1)将{x =−13y =−1,代入方程组中的第二个方程得:−52+b =−2, 解得:b =50,将{x =5y =4代入方程组中的第一个方程得:5a +20=15, 解得:a =−1.故a 的值是−1,b 的值是50. (2)把a =−1,b =50代入方程组得{−x +5y =15①4x −50y =−2②,①×10+②得:−6x =148, 解得:x =−743,将x =−743代入①得:y =−2915. 则原方程组的解为{x =−743y =−2915.23. 解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意,得:{x +y =1002x +3y =270,解得:{x =30y =70,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶.24. 解:(1)设A 种服装购进x 件,B 种服装购进y 件,由题意,得 {60x +100y =600040x +60y =3800, 解得:{x =50y =30.答:A 种服装购进50件,B 种服装购进30件;(2)由题意,得3800−50(100×0.8−60)−30(160×0.7−100)=3800−1000−360 =2440(元). 答:服装店比按标价售出少收入2440元.1. 【解答】解:方程ax −4y =x −1变形得(a −1)x −4y =−1, 根据二元一次方程的概念,方程中必须含有两个未知数, 所以a −1≠0,即a ≠1. 故选C .2. 解:A 、第一个方程不是整式方程,则方程组不是二元一次方程组; B 、C 、D 、正确. 故选A .组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.3. 解:方程组{3x +2y =7, ①4x −y =13, ②,变形得:①+②×2消去y . 故选D方程组中第二个方程两边乘以2,与第一个方程相加消去y 即可.4. 解:把{x =1y =1代入{ax −y =12x +by =2得{a −1=1 ①2+b =2 ②解得{a =2b =0,故选:A .根据方程组的解满足方程,把解代入方程组,可得关于a 、b 的方程组,解方程组,可得答案.5. 解:2x +y =5, 解得:y =−2x +5,当x =1时,y =3;当x =2时,y =1, 则方程的正整数解为2对. 故选B将x 看做已知数求出y ,即可确定出方程的正整数解.6. 【解答】解:根据题意得:|3x +2y −4|+9(5x +7y −3)2=0, 可得{3x +2y =4①5x +7y =3②,②×3−①×5得:11y =−11,即y =−1, 将y =−1代入①得:x =2, 则方程组的解为{x =2y =−1,故选B7. 解:设笔每支x 元,笔记本每本y 元,由题意得,{x +3y =17y =2x +1.故选B .设笔每支x 元,笔记本每本y 元,根据用17元买了1支笔和某种笔记本3个,笔记本的单价比笔的单价的2倍还多1元,列方程组即可.8. 解:设“●”“■”“●”分别为x 、y 、z ,由图可知, {2x =y +z z =x +y,解得x =2y ,z =3y , 所以x +z =2y +3y =5y ,即“■”的个数为5, 故选A .设“●”“■”“●”分别为x 、y 、z ,由图列出方程组解答即可解决问题. 解决此题的关键列出方程组,求解时用其中的一个数表示其他两个数,从而使问题解决. 9. 解:由题意得,大正方形的边长为14,小正方形的边长为2 ∴x +y =11,x −y =3, 则{x +y =11x −y =3, 解得:{x =7y =4.故可得B 选项的关系式不正确. 故选:B .根据大正方形及小正方形的面积,分别求出大正方形及小正方形的边长,然后解出x 、y 的值,即可判断各选项.10. 解:把{x =2y =2与{x =1y =−1代入方程ax +by +2=0有{2a +2b +2=0a −b +2=0,解得{a =−32b =12,所以二元一次方程为−32x +12y +2=0,把A {x =3y =5代入方程得,左边=−32×3+12×5+2=0,右边=0,左边=右边,则是该方程的解. 故选A .把二元一次方程ax +by +2=0的两个解{x =2y =2与{x =1y =−1分别代入方程得到{2a +2b +2=0a −b +2=0,解方程组得到{a =−32b =12,所以二元一次方程为−32x +12y +2=0;然后把四个选项代入方程检验,能使方程的左右两边相等的x ,y 的值即是方程的解. 注意掌握二元一次方程的求解及二元一次方程组的求解方法.11. 【解答】解:由x =2m +1,y =2m −1, 得到x −y =2, 解得:y =x −2, 故选B .12. 解:由题意将{x =1y =2z =3代入方程组得:{a +2b =2①2b +3c =3②c +3a =7③,①+②+③得:a +2b +2b +3c +c +3a =2+3+7, 即4a +4b +4c =4(a +b +c)=12, 则a +b +c =3. 故选A .由题意,可将x ,y 及z 的值代入方程组得到关于a ,b ,c 的方程组,将方程组中三个方程左右两边相加,变形后即可求出a +b +c 的值.此题考查了三元一次方程组的解,以及解三元一次方程组,方程组的解为能使方程组中每一个方程左右两边相等的未知数的值,本题的技巧性比较强,求a +b +c 不要求出a ,b 及c 的值,而是整体求出. 13. 解:方程x +2y =2, 解得:y =2−x 2, 故答案为:2−x 2.把x 看做已知数求出y 即可.此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14. 解:把{x =1y =−1代入方程得:3m +1=m ,解得:m =−12. 故答案是:−12.把{x =1y =−1代入方程,即可得到一个关于m 的方程,解方程即可求解. 本题考查二元一次方程的解的定义,要求理解把x ,y 的值代入原方程后,方程左右两边一定相等.15. 解:把{x =2y =3代入方程4x +ky =2,得4×2+3k =2, 解得k =−2. 故答案为−2.知道了方程的解,可以把这对数值代入方程,得到一个含有未知数k 的一元一次方程,从而可以求出k 的值.本题考查二元一次方程的解的定义,解题关键是把方程的解代入原方程,使原方程转化为以系数k 为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.16. 解:设购买甲电影票x 张,乙电影票y 张, 由题意得,{x +y =4020x +15y =700,解得:{x =20y =20,即甲电影票买了20张.故答案为:20.设购买甲电影票x 张,乙电影票y 张,则根据总共买票40张,花了700元可得出方程组,解出即可得出答案.此题考查了二元一次方程组的应用,属于基础题,解答本题的关键是根据题意等量关系得出方程组.17. 解:将x =0.5代入x +y =1,得0.5+y =1, 则y =0.5,将x =0.5,y =0.5代入x +py =2,有0.5+0.5p =2, 解得p =3.根据方程组解的定义,把x =0.5代入x +y =1求出y 的值,再将x 、y 的值代入x +py =2即可求出p 的值.此题考查了对方程解的理解,直接代入方程求值即可. 18. 解:∵X ∗Y =aX +bY ,3∗5=15,4∗7=28, ∴3a +5b =15 ①,4a +7b =28 ②, ∴②−①得:a +2b =13 ③, ①−③得:2a +3b =2, 而2∗3=2a +3b =2.本题是一种新定义运算题目.首先要根据运算的新规律,得出3a +5b =15①,4a +7b =28②,2∗3=2a +3b .本题考查有理数运算在实际生活中的应用,利用所学知识解答实际问题是我们应具备的能力.认真审题,准确的列出式子是解题的关键. 19. (1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20. 先根据题意得到三元一次方程组{c =0①a +b +c =−1②a −b +c =2③ ,再把②与③相加可计算出a ,然后把a 与c 的值代入②可计算出b .本题考查了解三元一次方程组:利用代入法或加减法,把三元一次方程组的问题转化为解二元一次方程组的问题.21. 考查了解二元一次方程的能力和对方程解的概念的理解.利用x ,y 的关系代入方程组消元,从而求得m 的值.22. 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.(1)将甲得到的方程组的解代入第二个方程求出b 的值,将乙得到方程组的解代入第一个方程求出a的值,从而求解;(2)先确定出正确的方程组,求出方程组的解即可得到原方程组的解.23. 设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.24. (1)设A种服装购进x件,B种服装购进y件,由总价=单价×数量,利润=售价−进价建立方程组求出其解即可;(2)分别求出打折后的价格,再根据总利润=A种服装的利润+B中服装的利润,求出其解即可.本题考查了销售问题的数量关系的运用,列二元一次方程组解实际问题的运用,解答时由销售问题的数量关系建立二元一次方程组是关键.。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1;(D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( ) (A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14 (B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;□x +5y =13 ①4x -□y =-2 ② 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。

(完整版)二元一次方程组测试题及答案

(完整版)二元一次方程组测试题及答案

二元一次方程组(时间:45分钟 满分:100分) 姓名一、选择题(每小题5分,共20分)1. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩ D .35251025x y x y +=⎧⎨+=⎩2.由132x y-=,可以得到用x 表示y 的式子是( )A .223x y -=B .2133x y =-C .223x y =-D .223xy =-3.方程组327413x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩4.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩二、填空题(每小题6分,共24分)5.在349x y +=中,如果2y = 6,那么x = 。

6.已知18x y =⎧⎨=-⎩是方程31mx y -=-的解,则m = 。

7.若方程m x + n y = 6的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则m = ,n = 。

8.如果2150x y x y -+=+-=,那么x = ,y = 。

三、解下列方程组(每小题8分,共16分)9.1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩10.()()344126x y x y x y x y⎧+--=⎪⎨+-+=⎪⎩四、综合运用(每小题10分,共40分)11.用16元买了60分、80分两种邮票共22枚。

60分与80分的邮票各买了多少枚?12.已知梯形的面积是42cm2,高是6cm,它的下底比上底的2倍少1cm,求梯形的上下底。

13.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13,若从树上飞下去一只,则树上、树下的鸽子就一样多了。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道二元一次方程组练题100道(卷一)1、判断1、方程组xy526的解是()。

解:这不是一个完整的方程组,缺少另一个方程,无法判断解。

2、方程组1是方程组yx3 2的解是方程3x-2y=13的一个解()。

解:将方程组代入3x-2y=13中,得到3x-2(-x/3-1/2)=13,化简得到x=5,y=-4,代入方程组可验证是解,因此选(√)。

3、由两个二元一次方程组成方程组一定是二元一次方程组()。

解:不一定,例如x+y=1和2x+2y=2就不是二元一次方程组。

4、方程组x3y 573x2y12235 3可以转化为方程组解:将第一个方程移项得到x+3y=2,代入第二个方程中消去x得到-7y=-18,解得y=18/7,代入第一个方程得到x=-41/7,因此可以转化为方程组5x-6y=-27和2y-3x+4=2,选(√)。

5、若(a-1)x+(a-1)x+(2a-3)y=0是二元一次方程,则a的值为±1()。

解:将XXX提取出来得到(a-1)(x+y)+(2a-3)y=0,因此x+y=-2a+3y/y-2,这是一个关于a的一次函数,当a=±1时,x+y=±1,此时方程组化为x+y=±1和-2x-2y=0,是二元一次方程组,因此选(√)。

6、若x+y=0,且|x|=2,则y的值为2()。

解:由x+y=0得到y=-x,代入|x|=2中得到|x|=|x+y|=|-x+y|=2,解得x=±1,因此y=±1,不等于2,选(×)。

7、方程组mx my m3x4x10y8有唯一的解,那么m的值为m≠-5()。

解:将第一个方程移项得到(m+3)x+my=m,代入第二个方程中消去x得到(3m+2)y=8-m,因为有唯一解,所以3m+2≠0,即m≠-2/3,代入方程组中验证,当m≠-5时,有唯一解,因此选(√)。

8、方程组1x y 233有无数多个解()。

二元一次方程组单元检测题(附参考答案)

二元一次方程组单元检测题(附参考答案)

第七章二元一次方程组单元检测题(附参考答案)(时间90分钟,满分120分)班级____________________ 姓名___________ 学号______一、选择题(每小题3分,共30分)1.在(1)2,3,1,1,(2)(3)(4)1;1;7;7 x x x xy y y y====-=-===-⎧⎧⎧⎧⎨⎨⎨⎨⎩⎩⎩⎩各组数中,是方程2x-y=5的解是() A.(2)(3) B.(1)(3) C.(3)(4) D.(1)(2)(4)2.若x+4y=-15和3x-5y=6有相同的解,则相同的解是().A.33,33...3333 x x x xB C Dy y y y=-===-⎧⎧⎧⎧⎨⎨⎨⎨=-=-==⎩⎩⎩⎩3.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣14.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.25.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×26.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.7.笼中有鸡和兔,它们的头共有20个,脚共有56只,笼中鸡的数目x•和兔的数目y分别是().A.8101112...121098 x x x xB C Dy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩8.有一根7米长的钢条,要把它锯成两段,使得每一段的长度都是整数,有()种锯法.A.3 B.4 C.5 D.69.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了( )(A)2场 (B)5场 (C)7场 (D)9场10.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B. 3 C.2 D. 111.下列方程:①;②;③;④;⑤;⑥.其中是二元一次方程的是()。

新七年级数学下学期 二元一次方程组测试题及答案(共五套) 百度文库

新七年级数学下学期 二元一次方程组测试题及答案(共五套) 百度文库

新七年级数学下学期 二元一次方程组测试题及答案(共五套) 百度文库一、选择题1.方程组5213310x y x y +=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩2.二元一次方程2x+3y=15的正整数解的个数是( ) A .1个B .2个C .3个D .4个3.下列方程组是三元一次方程组的是( )A .123x y y z z x +=⎧⎪+=⎨⎪-=⎩B .02310x y z x yz y z ++=⎧⎪-=⎨⎪-=⎩C .22154x y y z x z ⎧+=⎪+=⎨⎪-=⎩D .563x y w z z x +=⎧⎪+=⎨⎪+=⎩4.某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( )A .2212100x y x y +=⎧⎨-=⎩B .226100x y x y +=⎧⎨-=⎩C .2224100x y x y +=⎧⎨-=⎩D .2212200x y x y +=⎧⎨-=⎩5.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( ) A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩ B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩ C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩ D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩6.甲、乙两人共同解关于x ,y 的方程组,甲正确地解得乙看错了方程②中的系数c ,解得,则的值为( ) A .16B .25C .36D .497.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩8.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( ) A .; B .; C .; D .9.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( )A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =210.下列方程中是二元一次方程的是( )A .(2)(3)0x y +-=B .-1x y =C .132x y=+D .5xy =11.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种12.若二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则a +b 的值是( )A .9B .6C .3D .1二、填空题13.为了应对疫情对经济的冲击,增加就业岗位,某区在5月份的时候开设了一个夜市,分为餐饮区、百货区和杂项区三个区域,三者摊位数量之比5:4:3,市场管理处对每个摊位收取50元/月的管理费,到了6月份,市场管理处扩大夜市规模,并将新增摊位数量的12用于餐饮,结果餐饮区的摊位数量占到了夜市总摊位数量的920,同时将餐饮区、百货区和杂项区每个摊位每月的管理费分别下调了10元、20元和30元,结果市场管理处6月份收到的管理费比5月份增加了112,则百货区新增的摊位数量与该夜市总摊位数量之比是______.14.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.15.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A 有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B 有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C 有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A 、B 、C 三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.16.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 17.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 18.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 19.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次. 20.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)21.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____.22.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本. 23.若关于x 、y 的二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,则关于x 、y 的二元一次方程组3()()162()()15x y m x y x y n x y ++-=⎧⎨++-=⎩的解是__.24.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 三、解答题25.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值; 丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.26.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?27.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?28.我国古代的“河图”是由33⨯的方格构成,每个方格内均有数目不同的点图,每一行、每一列以及每一条对角线上的三个点图的点数之和均相等.如图1,根据给出的“河图”的部分点图,可以得到:1515P ++=⎧⎨++=⎩●●●●●●●●●●●●●●●●●●●●●●●●如图2,已知33⨯框图中每一行、每一列以及每一条对角线上的三个数的和均为3,求x y ,的值并在图3中填出剩余的数字.29.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7的所有“好解”; (2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值. 30.已知关于x 、y 的二元一次方程组23221x y k x y k-=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值.31.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x 元,销售每件服装奖励y 元: (1)求x y 、的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件? (3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件、乙2件、丙1件,共需315元;如果购买甲1件,乙2件,丙3件,共需285元,某顾客想购买甲、乙、丙各一件共需多少元?32.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其 正整数解.例:由2312x y +=,得:1222433x xy -==-,(x 、y 为正整数) ∴01220x x >⎧⎨->⎩,则有06x <<.又243x y =-为正整数,则23x为正整数.由2与3互质,可知:x 为3的倍数,从而x=3,代入2423xy =-=∴2x+3y=12的正整数解为32x y =⎧⎨=⎩问题:(1)请你写出方程25x y +=的一组正整数解: . (2)若62x -为自然数,则满足条件的x 值为 . (3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案? 33.(1)阅读下列材料并填空:对于二元一次方程组4354{336x y x y +=+=,我们可以将x ,y 的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x a y b== ,用数表可表示为10)01ab (.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程. 34.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息: (说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元. (1)求 a 、 b 的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?自来水销售价格 污水处理价格 每户每月用水量 单价:元/吨 单价:元/吨 17吨以下a 0.80 超过17吨但不超过30吨部分b 0.80 超过30吨的部分6.000.8035.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b ,得到方程组的54x y =⎧⎨=⎩,试计算a 2017+(110-b)2018的值. 36.善于思考的小军在解方程组2534115x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4105x y y ++=,即()2255x y y ③++=把方程①代入③,得2351y y ⨯+=∴=-,把1y =-代入①,得4x =,∴原方程组的解为41x y =⎧⎨=-⎩请你解决以下问题:模仿小军的“整体代换法”解方程组3259419x y x y ;-=⎧⎨-=⎩(2)已知x y 、满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩①,②求224x y +与xy 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用代入消元法即可求解. 【详解】 解:5213310x y x y +=⎧⎨-=⎩①②,由②得:310y x =-③,把③代入②可得:()5231013x x +-=, 解得3x =,把3x =代入③得1y =-, 故方程组的解为31x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.2.B解析:B 【详解】 解:2x+3y=15, 解得:x=3152y -+, 当y=1时,x=6;当y=3时,x=3,则方程的正整数解有2对. 故选:B3.A解析:A 【分析】根据三元一次方程组的定义来求解,对A 、B 、C 、D 四个选项进行一一验证. 【详解】A 、满足三元一次方程组的定义,故A 选项正确;B 、含未知数项的次数为2次,∴不是三元一次方程,故B 选项错误;C 、未知数的次数为2次,∴不是三元一次方程,故C 选项错误;D 、含有四个未知数,不满足三元一次方程组的定义,故D 选项错误; 故选:A . 【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.4.A解析:A 【分析】设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可. 【详解】解:设安排x 个工人加工桌子,y 个工人加工椅子, 由题意得:2212100x y x y +=⎧⎨-=⎩故选A . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子.5.A解析:A 【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .6.B解析:B 【解析】 【分析】将x =2,y =﹣1代入方程组中,得到关于a 与b 的二元一次方程与c 的值,将x =3,y =1代入方程组中的第一个方程中得到关于a 与b 的二元一次方程,联立组成关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可确定出a ,b 及c 的值. 【详解】 把代入得:,解得:c =4,把代入得:3a +b =5,联立得:,解得:,则(a +b +c )2=(2﹣1+4)2=25.故选B . 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.D解析:D 【解析】 ∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.8.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= . 故选:C 点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.9.C解析:C【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:10a b =⎧⎨=⎩. 故选:C .【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.10.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误; -1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键.11.A解析:A【解析】试题解析:设兑换成10元x 张,20元的零钱y 元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩. 因此兑换方案有6种,故选A .考点:二元一次方程的应用.12.C解析:C【分析】根据二元一次方程组的解及解二元一次方程组即可解答.【详解】解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩解得:1 2a b =⎧⎨=⎩ ∴a +b =1+2=3.故选:C .【点睛】此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.二、填空题13.【分析】由题意设月份的餐饮区、百货区和杂项区三者摊位数量分别为,再假设新增摊位数量为,则餐饮区新增摊位数量为,进而根据条件得出n 和m 的关系,利用市场管理处月份收到的管理费比月份增加了建立关系式,解析:3:20【分析】由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n ,再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m ,进而根据条件得出n 和m 的关系,利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析即可得出答案.【详解】 解:由题意设5月份的餐饮区、百货区和杂项区三者摊位数量分别为5,4,3n n n , 则5月份的管理费为:(543)50600n n n n ++⨯=(元),6月份的管理费为:1(1)60065012n n +⨯=(元),再假设新增摊位数量为m ,则餐饮区新增摊位数量为12m , 由餐饮区的摊位数量占到了夜市总摊位数量的920,可得: 91(12)5202n m n m +⨯=+,化简后可得:8m n =, 即有新增摊位数量为8n ,餐饮区新增摊位数量为4n ,且6月份下调后的餐饮区、百货区和杂项区每个摊位每月的管理费分别为:40元、30元、20元,由此可得百货区和杂项区6月份的管理费为:650(54)40290n n n n -+⨯=(元), 百货区和杂项区没新增摊位数量时管理费为:430320180n n n ⨯+⨯=(元), 则百货区和杂项区新增的摊位数量管理费为:290180110n n n -=(元),当百货区新增3n ,杂项区新增n 时,满足条件,所以百货区新增的摊位数量与该夜市总摊位数量之比是3:(128)3:203:20n n n n n +==.故答案为:3:20.【点睛】本题考查不定方程的应用,注意掌握根据条件得出n 和m 的关系以及利用市场管理处6月份收到的管理费比5月份增加了112建立关系式,进行代入分析是解答本题的关键. 14.100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,解析:100或85.【分析】设所购商品的标价是x 元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x 元,则①所购商品的标价小于90元,x ﹣20+x =150,解得x =85;②所购商品的标价大于90元,x ﹣20+x ﹣30=150,解得x =100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键. 15.12312【分析】设超市去年销售蛋黄粽的数量销售分别为3x 个,设销售了A 、B 、C 三种礼盒的数量分别为a 盒,b 盒,c 盒,根据题意列出方程组,用x 表示a 、b 、c ,再根据“礼盒A 和C 的总数不超过200解析:12312【分析】设超市去年销售蛋黄粽的数量销售分别为3x 个,设销售了A 、B 、C 三种礼盒的数量分别为a 盒,b 盒,c 盒,根据题意列出方程组,用x 表示a 、b 、c ,再根据“礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒,列出x 的不等式组,求得x 的取值范围,再根据礼盒数与粽子数量为整数,求得x 的值,进而便可求得结果.【详解】解:设超市去年销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x 个,5x 个,2x 个,则今年该超市销售蛋黄粽、肉粽、豆沙粽的数量销售分别为3x 个,(1+20%)×5x =6x 个,(1﹣10%)×2x =1.8x 个,设销售了A 、B 、C 三种礼盒的数量分别为a 盒,b 盒,c 盒,根据题意得,2323435622 1.8a b c x a b c x a b c x ++=⎧⎪++=⎨⎪++=⎩,解得,0.150.30.9a x b x c x =⎧⎪=⎨⎪=⎩,∵礼盒A 和C 的总数不超过200盒,礼盒B 和C 的总数超过210盒,∴0.150.92000.30.9210x x x x +≤⎧⎨+>⎩, ∴1017519021x <≤, ∵a =0.15x 、b =0.3x 、c =0.9x 、1.8x 都为整数,∴x 必为20的倍数,∴x =180,∴a =27,b =54,c =162,∴这些礼盒全部售出的销售额为:(2×6+4×5+2×4+10)a+(3×6+3×5+2×4+12)b+(2×6+5×5+1×4)c =50a+53b+50c =50×27+53×54+50×162=12312,故答案为:12312.【点睛】本题主要考查了三元一次方程组的应用,不等式组的应用,列代数式,关键是根据题意正确列出方程组与不等式组.16.【分析】将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为,将解方程组变形为,∴关于,的方程组的解为,解得,故答案为:.【点睛】本题考查了二元一次方程组的解法 解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】 将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可. 【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩, 将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩,故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.17.【分析】先设1个进口1小时开进辆车,1个出口1小时开出辆车,车位总数是根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程根据已知条件如果开放3个进口和2个出口,4小时车库 解析:358【分析】先设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a 根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程7(23)80%x y a -=根据已知条件如果开放3个进口和2个出口,4小时车库恰好停满,可列出方程4(32)80%x y a -=方程组可求得x 、y 关于a 的关系式题中所求空置率变为60%,只能开放2个进口和1个出口时,几个小时停满,60%(2)a x y ÷-将x 、y 关于a 的关系式代入即可求解.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a7(23)80%4(32)80%x y a x y a -=⎧⎨-=⎩解得:131752175a x a y ⎧=⎪⎪⎨⎪=⎪⎩ 1323560%(2)0.6(2)1751758a a a x y a ÷-=÷⨯-=(小时) 故答案为:358【点睛】本题解题关键是可以设出1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a ,根据已知条件便可列出方程组,得出x 、y 关于a 的关系式,求解的问题同列方程组思路相同. 18.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x 本,乙班的人均捐书数量为(x +5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.19.30【分析】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得可列方程k=9a+7=7b+4=5c+2(k ,a ,b ,c 都是正整数),然后根据整除的性质解答即可.【详解】设每框解析:30【分析】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得可列方程k =9a +7=7b +4=5c +2(k ,a ,b ,c 都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得:k =9a +7=7b +4=5c +2(k ,a ,b ,c 都是正整数)∴9a +7=5c +2,∴9a =5(c -1),∴a 是5的倍数.不妨设a =5m (m 为正整数),∴k =45m +7=7b +4,∴b =4533(1)677m m m ++=+, ∵b 和m 都是正整数,∴m 的最小值为6.∴a =5m =30.故答案为:30.【点睛】 本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.20.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a=+⎧⎨=--⎩ , 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④.【点睛】 本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.21.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得: ,①+②得:3m+n =4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x y x y -=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入方程组得: 20234m n m n -=⎧⎨+=⎩①② , ①+②得:3m +n =4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.22.311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元,A 、B 一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x 元/本,则甲为(7+x )元/本解析:311【分析】根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A 、B 一共用去6138元组成方程组,整理方程组即可解题.【详解】解:设乙的单价为x 元/本,则甲为(7+x )元/本,甲购买了a 本,乙买了b 本, ∴A 的单价为x 元/本,B 为(7+x )元/本, A 购买了a 本,B 买了b 本,依题意得:①-②得:7a-7b=2177,∴a-b=311,即甲种书籍比乙种书籍多买了311本.【点睛】本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 23.【解析】分析:令x+y=a ,x-y=b ,根据已知,比较后得出a ,b 的值,从而得出结论. .详解:令x+y=a ,x-y=b ,则关于x 、y 的二元一次方程组变为:.∵二元一次方程组的解是,解析:52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论..详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.∵二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,∴73a b =⎧⎨=⎩,∴73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩.。

二元一次方程组及其应用单元测试题4套(含答案)

二元一次方程组及其应用单元测试题4套(含答案)

⼆元⼀次⽅程组及其应⽤单元测试题4套(含答案)⼆元⼀次⽅程组单元检测1姓名:时间:成绩:⼀、选择题(共12题每题3分共36分)⼀、根据图1所⽰的计算程序计算y 的值,若输⼊2=x ,则输出的y 值是() A .0 B .2- C .2 D .4 ⼆、将⽅程121=+-y x 中含的系数化为整数,下列结果正确的是() A .442-=-y x B .442=-y x C .442-=+y x D .442=+y x 三、如果==21y x 是⼆元⼀次⽅程组?=+=+21ay bx by ax 的解,那么a ,b 的值是() A .??=-=01b a B .==01b a C .==10b a D .?-==10b a 四、如果⼆元⼀次⽅程组?=+=-a y x ay x 3的解是⼆元⼀次⽅程0753=--y x 的⼀个解,那么a 的值是( )A .3B .5C .7D .9五、如果3251b a 与y x x b a ++-141是同类项,则x ,y 的值是( )A .??==31y x B .==22y x C .==21y x D .==32y x六、若2a 2s b 3s -2t 与-3a 3t b 5是同类项,则( ) A .s =3,t =-2 B .s =-3,t =2 C .s =-3,t =-2 D .s =3,t =2 七、⽅程3y +5x =27与下列的⽅程________所组成的⽅程组的解是??==43y x ( )A .4x +6y =-6B .4x +7y -40=0C .2x -3y =13D .以上答案都不对⼋、⼆元⼀次⽅程组??=-=+ky x k y x 7252的解满⾜⽅程31x -2y =5,那么k 的值为( )A .53B .35C .-5D .1九、甲、⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺流⽤18⼩时,逆流⽤24⼩时,若设船在静⽔中的速度为x 千⽶/时,⽔流速度为y 千⽶/时,在下列⽅程组中正确的是 ( )A .=-=+360)(24360)(18y x y xB .??=+=+360)(24360)(18y x y xC .=-=-360)(24360)(18y x y xD .=+=-360)(24360)(18y x y x⼗、在等式b kx y +=中,当x=0时,y=1-;当x=1-时,y=0,则这个等式是( )A .1--=x yB .x y -=C .1+-=x yD .1+=x y ⼗⼀、如果??=+-=-+0532082z y x z y x ,其中xyz≠0,那么x :y :z=( )A .1:2:3B .2:3:4C .2:3:1D .3:2:1 ⼗⼆、如果⽅程组??=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等,那么a 的值是( )A .1B .2C .3D .4 ⼆、填空题(共4题每题3分共12分)⼗三、已知42+=a x ,32+=a y ,如果⽤x 表⽰y ,则y = .⼗四、在等式5×⼝+3×Δ=4的⼝和Δ处分别填⼊⼀个数,使这两个数互为相反数.⼗五、如果2006200520044321=+-+-+n m n m y x 是⼆元⼀次⽅程,那么32n m +的值是.⼗六、如图,点A 的坐标可以看成是⽅程组的解.三、解答题(共7题 6+6+7+7+8+8+10 共52分)⼗七、(1)??-==+73825x y y x (2)?=-=+423732y x y x⼗⼋、若⽅程组??=+=-31y x y x 的解满⾜⽅程组?=+=-84by ax by ax ,求a ,b 的值.⼗九、定义“*”:(1)(1)x yA B x A BA B *=++++,已知321=*,432=*,求43*的值.⼆⼗、某⽔果批发市场⾹蕉的价格如下表购买⾹蕉数(千克) 不超过20千克 20千克以上但不超过40千克 40千克以上每千克的价格6元5元4元张强两次共购买⾹蕉50千克,已知第⼆次购买的数量多于第⼀次购买的数量,共付出264元,请问张强第⼀次,第⼆次分别购买⾹蕉多少千克?⼆⼗⼀、为保护学⽣视⼒,课桌椅的⾼度都是按⼀定的关系配套设计的,研究表明:假设课桌的⾼度y (cm)是椅⼦的⾼度x (cm )的⼀次函数,下表列出两套符合条件的课桌椅的⾼度:第⼀套第⼆套椅⼦的⾼度X(cm) 40.0 37.0 桌⼦⾼度y(cm)75.070.2(1)请确定x y 与的函数关系式;(2)现有⼀把⾼39cm 的椅⼦和⼀张⾼为78.2cm 的课桌,它们是否配套?为什么?⼆⼗⼆、(1)求⼀次函数的坐标的交点的图象与的图象P l x y l x y 2112122-=-=. (2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三⾓形的⾯积.⼆⼗三、阅读下列解题过程,借鉴其中⼀种⽅法解答后⾯给出的试题:问题:某⼈买13个鸡蛋,5个鸭蛋、9个鹅蛋共⽤去了9.25元;买2个鸡蛋,4个鸭蛋、3个鹅蛋共⽤去了3.20元.试问只买鸡蛋、鸭蛋、鹅蛋各⼀个共需多少元.分析:设买鸡蛋,鸭蛋、鹅蛋各⼀个分别需x 、y 、z 元,则需要求x+y+z 的值.由题意,知----=++---=++)2(20.3342)1(25.99513z y x z y x ;视x 为常数,将上述⽅程组看成是关于y 、z 的⼆元⼀次⽅程组,化“三元”为“⼆元”、化“⼆元”为“⼀元”从⽽获解.解法1:视x 为常数,依题意得?-----=+----=+)4(220.334)3(1325.995x z y x z y解这个关于y 、z 的⼆元⼀次⽅程组得??-=+=xz xy 2105.0于是05.12105.0=-+++=++x x x z y x .评注:也可以视z 为常数,将上述⽅程组看成是关于x 、y 的⼆元⼀次⽅程组,解答⽅法同上,你不妨试试.分析:视z y x ++为整体,由(1)、(2)恒等变形得 25.9)2(4)(5=++++z x z y x , 20.3)2()(4=+-++z x z y x .解法2:设a z y x =++,b z x =+2,代⼊(1)、(2)可以得到如下关于a 、b 的⼆元⼀次⽅程组??----=----=+)6(20.34)5(25.945b a b a由⑤+4×⑥,得05.2221+a ,05.1=a .评注:运⽤整体的思想⽅法指导解题.视z y x ++,z x +2为整体,令z y x a ++=,z x b +=2,代⼈①、②将原⽅程组转化为关于a 、b 的⼆元⼀次⽅程组从⽽获解.请你运⽤以上介绍的任意⼀种⽅法解答如下数学竞赛试题:购买五种教学⽤具A 1、A 2、A 3、A 4、A 5的件数和⽤钱总数列成下表:那么,购买每种教学⽤具各⼀件共需多少元?品名次数 A 1 A 2 A 3 A 4 A 5 总钱数第⼀次购买件数 l 3 4 5 6 1992 第⼆次购买件数l 5 7 9 11 2984参考答案⼀、选择题1.D2.A3.B4.C5.C6.D7.B8.B9.A10.A11.C12.B ⼆、填空题 13.x -1 14.2,-2 15.9 16.??+--=512x y x y 三、解答题17、(1){21=-=x y (2){21==x y 18、解:解⽅程组??=+=-31y x y x 得:{21==x y将{21==x y 分别代⼊⽅程组=+=-84by ax by ax 得{8242=+=-b a b a 解这个⽅程组得{32==a b所以3=a 、2=b 19.?-==13275Y X ,351442013277543=-=*.20.解:设张强第⼀次购买了⾹蕉x 千克, 第⼆次购买了⾹蕉y 千克,由题意可知025x <<, ①当02040x y <≤,≤时,由题意可得,=+=+5026456y x y x 解得{1436==x y②当02040x y <≤,>时,由题意可得?=+=+5026446y x y x 解得{3218==x y (不合题意,舍去)③当025x <<时,则2530y <<,则张强花的钱数为5X+5Y=5×50=250<264(不合题意,舍去) 所以张强第⼀次买14千克⾹蕉,第⼆次买36千克⾹蕉. 21.解:(1)设y kx b =+,根据题意得{750.402.700.37=+=+b k b k 解得{6.111==k b 所以116.1+=k y(2)不配套,因为:当X=39时,由116.1+=k y 得y=1.6×39+11=73.4≠78 所以不配套.22、解:(1)由-=-=22121x y x y 解得:??=-=3232x y 所以点P 的坐标为-32,32,(2)当X=0时,由Y=2×0-2=-2,所以点A 坐标是(0,-2). 当Y=0时,由0=-21X-1,得X=2,所以点B 坐标是(2,0). (3)如图112222222233PAB S =??-=△23、1000元⼆元⼀次⽅程单元检测2姓名:时间:成绩:⼆⼗四、选择题(共12题每题3分共36分) 1. 已知下列⽅程组:(1)-==23y y x ,(2)=-=+423z y y x ,(3)=-=+0131y x y x ,(4)=-=+0131y x y x ,其中属于⼆元⼀次⽅程组的个数为() A.1 B.2 C.3 D.42. 已知532b a x y +与2244a b x y --是同类项,则a b 的值为()A.2B.-2C.1D.-13. 已知⽅程组-=-=+1242m ny x ny mx 的解是-==11y x ,那么m 、n 的值为()A.?-==11n m B.==12n m C.==23n m D.==13n m4. 三元⼀次⽅程组??=+=+=+651x z z y y x 的解是()A.??===501z y x B. 015x y z ?=?=??=?C.===401z y xD.===014z y x5. 若⽅程组=+=-+14346)1(y x y a ax 的解x 、y 的值相等,则a 的值为()A.-4B.4C.2D.16. 若关于x 、y 的⽅程组?=-=+k y x ky x 73的解满⾜⽅程2x +3y =6,那么k 的值为()A.-23B.23C.-32D.-237. 若⽅程y =kx +b 当x 与y 互为相反数时,b ⽐k 少1,且x =21,则k 、b 的值分别是() A.2,1 B.32,35 C.-2,1 D.31,-328. 某班学⽣分组搞活动,若每组7⼈,则余下4⼈;若每组8⼈,则有⼀组少3⼈.设全班有学⽣x ⼈,分成y 个⼩组,则可得⽅程组()A.=-=+y x y x 3847B.=++=x y x y 3847C.+=-=3847x y x yD.+=+=3847x y x y9. 某车间56名⼯⼈,每⼈每天能⽣产螺栓16个或螺母24个,设有名⼯⼈⽣产螺栓,其它⼯⼈⽣产螺母,每天⽣产的螺栓和螺母按1:2配套,所列⽅程正确的是()A.=?=+y x y x 2416256B.=?=+y x y x 1624256C.==+y x y x 241628D.?==+y x y x 16245610. 某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、⼄两种奖品共 30件,其中甲种奖品每件16元,⼄种奖品每件12元,求甲⼄两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,⼄种奖品y 件,则⽅程组正确的是()A.301216400x y x y +=??+=?B.301612400x y x y +=??+=?C. 121630400x y x y +=??+=?D. 161230400x y x y +=??+=?11. 灾后重建,四川从悲壮⾛向豪迈.灾民发扬伟⼤的抗震救灾精神,桂花村派男⼥村民共15 ⼈到⼭外采购建房所需的⽔泥,已知男村民⼀⼈挑两包,⼥村民两⼈抬⼀包,共购回15 包.请问这次采购派男⼥村民各多少⼈?A .男村民3⼈,⼥村民12⼈B .男村民5⼈,⼥村民10⼈C .男村民6⼈,⼥村民9⼈D .男村民7⼈,⼥村民8⼈12. 在早餐店⾥,王伯伯买5颗馒头,3颗包⼦,⽼板少拿2元,只要50元.李太太买了 11颗馒头,5颗包⼦,⽼板以售价的九折优待,只要90元.若馒头每颗x 元,包⼦每颗y 元,则下列哪⼀个⼆元⼀次联⽴⽅程式可表⽰题⽬中的数量关系?A .=++=+9.09051125035y x y xB .÷=++=+9.09051125035y x y xC .=+-=+9.09051125035y x y xD .÷=+-=+9.09051125035y x y x⼆⼗五、填空题(共4题每题3分共12分)13. 已知⼆元⼀次⽅程1213-+y x =0,⽤含y 的代数式表⽰x ,则x =_________;当y =-2时,x =.14. 在(1)-==23y x ,(2)-==354y x ,(3)1472x y ?==??这三组数值中,_____是⽅程组 x -3y =9的解,______是⽅程2 x +y =4的解,______是⽅程组?=+=-4293y x y x 的解.15. 已知=-=54y x ,是⽅程41x +2 my +7=0的解,则m =_______.16. 若⽅程组=-=+137by ax by ax 的解是-=-=12y x ,则a =_________,b =_______.⼆⼗六、解答题(共7题 6+6+7+7+8+8+10 共52分(此处分值可以根据具体情况来定))17. -=-=-.557832y x y x18. =+=+.15765545.04332y x y x19. 已知⽅程组?+=+=+25332n y x ny x 的解x 、y 的和为12,求n 的值.20. 已知⽅程组-=+=-1332by ax y x 与=+=+3321123by ax y x 的解相同,求a 2+2ab +b 2 的值.21. 已知代数式x 2+ax +b 当x =1和x =-3时的值分别为0和14,求当x =3时代数式的值.22.某校去年⼀年级男⽣⽐⼥⽣多80⼈,今年⼥⽣增加20%,男⽣减少25%,结果⼥⽣⼜⽐男⽣多30⼈,求去年⼀年级男⽣、⼥⽣各多少⼈.23.B两地相距20千⽶,甲、⼄两⼈分别从A、B 两地同时相向⽽⾏,两⼩时后在途中相遇,然后甲返回A地,⼄继续前进,当甲回到A地时,⼄离A地还有2千⽶,求甲、⼄两⼈的速度.参考答案⼀、选择题1.B2.C3.D4.A5.C6.B7.D8.C9.A 10.B 11.B 12. B ⼆、填空题13.x =62y -;x =32.14.(1),(2);(1),(3);(1).15.-53.16.a =-5,b =3.三、解答题17.【答案】-=-=.65y x 【答案】=-=.223y x19.【提⽰】解已知⽅程组,⽤n 的代数式表⽰x 、y ,再代⼊ x +y =12.【答案】n =14.20.【提⽰】先解⽅程组=+=-1123332y x y x 求得x 、y ,再代⼊⽅程组?=+-=+3321by ax by ax 求a 、b .【答案】=-=52b a .21.【提⽰】由题意得关于a 、b 的⽅程组.求出a 、b 写出这个代数式,再求当x =3时它的值.【答案】5. 22.【提⽰】设去年⼀年级男⽣、⼥⽣分别有x ⼈、y ⼈,可得⽅程组=--+=-.30)100251()100201(80x y y x 【答案】x =280,y =200. 23.【提⽰】由题意,相遇前甲⾛了2⼩时,及“当甲回到A 地时,⼄离A 地还有2千⽶”,可得列⽅程组的另⼀个相等关系:甲、⼄同向⾏2⼩时,相差2千⽶.设甲、⼄两⼈的速度分别为x 千⽶/时,y 千⽶/时,则=-=+.2)(220)(2y x y x 【答案】甲的速度为5.5千⽶/时,⼄的速度为4.5千⽶/时.⼆元⼀次⽅程组单元检测3姓名:时间:成绩:⼀、选择题(共12题每题3分共36分)1. 下列是⼆元⼀次⽅程的是()A .x x =-63B .y x 23=C .132=+y x D .xy y x =-32 2. 在⽅程组=+=-1253by x y ax 中,如果-==121y x 是它的⼀个解,那么a 、b 的值为( )A .a =1,b =2B .不能惟⼀确定C .a =4,b =0D .a =21,b =-1 3. ⽅程41ax y x -=-是⼆元⼀次⽅程,则a 的取值为()A 、a ≠0B 、a ≠-1C 、a ≠1D 、a ≠24. 已知57x y =??=?满⾜⽅程kx ﹣2y =1,则k 等于()A .3B .4C .5D .65. ⼆元⼀次⽅程32325x y x y -=??+=?的解是()A 、10x y =??=?B 、322x y ?==?C 、232x y =??= D 、71x y =??=-? 6. ⽼师问⼀⼥⽣有⼏个兄弟姐妹,她答:“有⼏个兄弟就有⼏个姐妹”,⽼师⼜问她的哥哥有⼏个兄弟姐妹,他答:“我的姐妹是兄弟的2倍”,则他们的兄弟姐妹中,男孩、⼥孩的⼈数各是()A 、4、3B 、2、5C 、3、4D 、5、27. 在等式b kx y +=中,当1=x 时,5=y ;当2-=x 时,11=y ,则k 、b 的值为A.??-==27b kB.??=-=27b k C.-==72b k D.=-=72b k8. 若352220x y x y +++--=,则223x xy -的值是()A 、14B 、-4C 、-12D 、129. ⼆元⼀次⽅程组327,25x y x y -=??+=?的解是()A .32x y =??=?B .12x y =??=?C .42x y =??=?D .31x y =??=?10. ⼩明在解关于x 、y 的⼆元⼀次⽅程组331x y x y +?=??-?=?时得到了正确结果1x y =⊕=?后来发现“?”、“⊕”处被墨⽔污损了,请你帮他找出“?”、“⊕”处的值分别是()A . ?=1,⊕=1B . ?=2,⊕=1C . ?=1,⊕=2D . ?=2,⊕=211. 为迎接2013年“亚青会”,学校组织了⼀次游戏:每位选⼿朝特制的靶⼦上各投三以飞镖,在同⼀圆环内得分相同.如图所⽰,⼩明、⼩君、⼩红的成绩分别是29分、43分和33分,则⼩华的成绩是()⼩明⼩君⼩红⼩华A .31分B .33分C .36分D .38分12. 下列⽅程中,是⼆元⼀次⽅程的是() A .3x -2y =4z B .6xy +9=0 C .1x +4y =6 D .4x =24y - ⼆、填空题(共4题每题3分共12分)13. 若?==53y x 是⽅程22=-y mx 的⼀个解,则=m 。

第五章 二元一次方程组单元测试卷(含解析)

第五章 二元一次方程组单元测试卷(含解析)

第五章二元一次方程组单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列方程组是二元一次方程组的是()A.B.C.D.2.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4 B.1,4 C.1,4,49 D.无法确定3.用代入法解方程组时,下列说法中,正确的是()A.直接把①代入②,消去y B.直接把①代入②,消去xC.直接把②代入①,消去y D.直接把②代入①,消去x4.若与的和是单项式,则a+b=()A.﹣3 B.0 C.3 D.65.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组的解为()A.B.C.D.6.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.7.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟8.已知等腰三角形的两边长x,y满足方程组,则此等腰三角形的周长为()A.12 B.12或14 C.15 D.15或149.某种商品若按标价的八折出售,可获利20%,若按原标价出售,可获利()A.25% B.40% C.50% D.66.7%10.小林购买一部手机想入网,中国联通130网收费标准是月租费30元,每月来电显示6元,本地电话费每分钟0.4元;中国电信“神州行”储值卡收费标准是本地电话费每分钟0.6元,月租费、来电显示费全免,小林的亲戚朋友都在本地,他想拥有来电显示服务,且估计他每月通话时间都在3h以上,则小林应选择()更省钱.A.中国联通B.“神州行”储值卡C.一样D.无法确定二.填空题(共8小题,满分24分,每小题3分)11.写出一个关于x,y的二元一次方程组,这个方程组的解为,那么你所写的方程组12.在y=kx+b中,当x=﹣1时,y=0;当x=1时,y=5,则k=,b=.13.知一次函数y=﹣x+m和y=x+n的图象都经过A(﹣2,0),则A点可看作方程组的解.14.甲乙两地相距50千米,星期天上午8:00小明同学骑山地自行车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小明行驶的时间x(小时)之间的函数关系如图所示,则小明父亲出发小时后,行进中的两车相距24千米.15.某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机多少部?每天有多少部新申请装机的电话?16.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=分钟.17.方程组:的解是.18.若方程组无解,则y=kx+3图象不经过第象限.三.解答题(共7小题,满分66分)19.(12分)解方程组:(1)(2)(3).20.(8分)如图,过点A(3,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=5.(1)求点B的坐标;(2)若△ABC的面积为9,求直线l2的解析式.21.(8分)若方程组和方程组有相同的解,求a,b的值.22.(8分)目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?23.(8分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?24.(10分)阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.25.(12分)全世界每年都有大量的土地被沙漠吞没,改造沙漠,保护土地资源已称为一项十分紧迫的任务.某地元有沙漠100万公顷,为了了解该地区沙漠面积的变化情况,有关部门进行了连续3年的观察,并将每年年底的观察结果坐了记录(如下表所示),然后根据这些数据描点、连线,绘成曲线图如图所示,发现其连续且成直线状.预计该地区的沙漠面积将继续按此趋势扩大.观察时间x该地区沙漠面积比原有面积增加的数量y第一年底0.2万公顷第二年底0.4万公顷第三年底0.6万公顷(1)如果不采取任何措施,那么到第m年底,该地区的沙漠面积将变为多少万公顷?(2)如果在第5年底,采取植树造林等措施,每年改造0.8万公顷沙漠,那么到第几年底,该地区的沙漠面积能减少到95万公顷?参考答案与试题解析1.解:A、是二元二次方程组,故A不符合题意;B、是分式方程组,故B不符合题意;C、是二元二次方程组,故C不符合题意;D、是二元一次方程组,故D符合题意;故选:D.2.解:两式相加得:(3+m)x=10,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是10和15的公约数.∴3+m=±1或±5.即m=﹣2或﹣4或2或﹣8.又∵m是正整数,∴m=2,则m2=4.故选:A.3.解:将①代入②,得:3y﹣2y=2,由此可知①代入②可消去x,故选:B.4.解:根据题意得:,①+②得:3a=9,即a=3,把a=3代入②得:b=0,则a+b=3,故选:C.5.解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),∴二元一次方程组的解为,故选:A.6.解:根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.则可列方程组为.故选:C.7.解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x﹣6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以.即18路公交车总站发车间隔的时间是4分钟.故选:B.8.解:x,y满足方程组,解得,当x=3为等腰三角形的腰时,3+3=6,不满足三角形三边条件,三角形不存在,当x=6为等腰三角形的腰时,3+6>6,三角形存在,周长为6+6+3=15,故选:C.9.解:设进价为x,根据题意得(1+20%)x=80%解得x=则按原标价出售,可获利1÷﹣1=50%.故选:C.10.解:设通话时间为x分钟,则联通收费为(0.4x+36)元,神州行收费为0.6x元,3h=180分钟,得通话时间在3小时时联通收费为0.4×180+36=108元,神州行收费为0.6×180=108元,即通话时间在3小时时,收费一样.而在3h以上时0.4x+36<0.6x,故选择联通故选:A.11.解:先围绕列一组算式,如﹣2+1=﹣1,﹣2﹣1=﹣3,然后用x,y代换,得等.答案不唯一,符合题意即可.12.解:∵在y=kx+b中,当x=﹣1时,y=0;当x=1时,y=5,∴,两个方程相减得:k=,两个方程相加,得b=.∴k=,b=.13.解:把A(﹣2,0)分别代入y=﹣x+m和y=x+n得3+m=0,﹣1+n=0,解得m=﹣3,n=1,所以一次函数解析式为y=﹣x﹣3和y=x+1,因为一次函数y=﹣x﹣3和y=x+1的交点坐标为(﹣2,0),所以可看作方程组的解.故答案为.14.解:小明同学行驶的路程y(千米)与小明行驶的时间x(小时)之间的函数关系为y=12x,小明同学的爸爸行驶的路程y(千米)与小明行驶的时间x(小时)之间的函数关系为y=36x ﹣72,由12x﹣(36x﹣72)=24,解得x=2,由36x﹣72﹣12x=24,解得x=4不合题意舍弃,故答案为2.15.解:设每个电话装机小组每天装机x部,每天有y部新申请装机的电话,根据题意得:,解得:,答:每个装机小组每天装机10部,每天有20部新申请装机的电话.16.解:设公共汽车的速度为V1,甲的速度为V2.由题意得由①﹣②得0=5V1﹣25V2,即V1=5V2③将③代入①得s=10(V1﹣V1)∴=8故答案为8.17.解:方程组整理得:,①×2+②得:15y=﹣15,即y=﹣1,把y=﹣1代入①得:x=2,则方程组的解为.故答案为:.18.解:∵方程组无解,∴直线y=kx+3与y=(3k+1)x+2平行,∴k=3k+1,解得k=﹣,在直线y=﹣x+3中,∵﹣<0,3>0,∴直线y=﹣x+3经过第一、二、四象限,不经过第三象限.故答案为三.19.解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.20.解:(1)∵点A(3,0),AB=5∴BO===4∴点B的坐标为(0,4);(2)∵△ABC的面积为9∴×BC×AO=9∴×BC×3=9,即BC=6∵BO=4∴CO=2∴C(0,﹣2)设l2的解析式为y=kx+b,则,解得∴l2的解析式为y=x﹣2.21.解:由题意知,解得:,将代入ax+y=b和x+by=a得:,解得:.22.解:(1)设甲种节能灯有x只,则乙种节能灯有y只,由题意得:,解得:,答:甲种节能灯有80只,则乙种节能灯有40只;(2)根据题意得:80×(30﹣25)+40×(60﹣45)=1000(元),答:全部售完120只节能灯后,该商场获利润1000元.23.解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据题意得:,答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1﹣80%)+100×80×(1﹣75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.24.解:(1)设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=10×6=60.故每个小长方形的面积为60;(2)设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则12x+y=12×1+8=20.即小明把13个纸杯整齐叠放在一起时,它的高度约是20cm.(3)设小长方形的长为x,宽为y,根据题意得,解得,∴S=17×14﹣8×8×3=46.阴影故答案为:20.25.解:(1)设沙漠的面积与时间x的函数关系式为y=kx+b,由题意,得,解得:,解得:y=0.2x+100当x=m时,y=0.2m+100.答:第m年底,该地区的沙漠面积将变为(0.2m+100)万公顷;(2)当x=5时,y=0.2×5+100=101(万公顷).设需要a年,该地区的沙漠面积能减少到95万公顷,由题意,得101﹣0.8a=95,答:需要7.5年,该地区的沙漠面积能减少到95万公顷.。

二元一次方程组单元测试题及答案(2套)

二元一次方程组单元测试题及答案(2套)

二元一次方程组解法练习题一.解答题(共16小题)1.解下列方程组(1) (2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+(4)(5)(6).(7)(8) ⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9) (10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和. (1)求k ,b 的值.(2)当x=2时,y 的值.(3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考解二元一次方程组.点:计算题.专题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.点评:4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.二元一次方程组单元测试题及答案(一)一、选择题(每题3分,共24分)1、表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 2、方程组⎩⎨⎧=-=+.134,723y x y x 的解是( ) A 、⎩⎨⎧=-=;3,1y x B 、⎩⎨⎧-==;1,3y x C 、⎩⎨⎧-=-=;1,3y x D 、⎩⎨⎧-=-=.3,1y x 3、设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=z x ( ) A 、12 B 、121-C 、12-D 、.121 4、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A 、;3,2-B 、;2,3-C 、;3,2-D 、.2,3-5、方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、16、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( )。

(完整版)初一数学二元一次方程组测试题及答案

(完整版)初一数学二元一次方程组测试题及答案

0.《二元一次方程组》单元测试题一、选择题(每题3分,共30分)1.下列方程组中,是二元一次方程组的是().(A)(B)(C)(D)2.二元一次方程组的解是( )(A)(B)(C)(D)3.根据图1所示的计算程序计算的值,若输入,则输出的值是()(A)0 (B)(C)2 (D)44.如果与是同类项,则,的值是( )(A)(B)(C)(D)5.已知是方程组的解,则a+b= ( ).(A)2 (B)-2 (C)4 (D)-46.如图2,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是( )(A)(B)(C)(D)7.如果是方程组的解,则一次函数y=mx+n的解析式为( )(A)y=-x+2 (B)y=x-2 (C)y=-x-2 (D)y=x+28.已知是二元一次方程组的解,则2m-n的算术平方根为()(A)(B)(C)2 (D)49.如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )(A)3 (B)5 (C)7 (D)910.如图3,一次函数和(a≠0,b≠0)在同一坐标系的图象.则的解中()(A)m>0,n>0 (B)m>0,n<0 (C)m<0,n>0 (D)m<0,n<0二、填空题(每小题4分,共20分)11.若关于x,y的二元一次方程组的解满足x+y=1,则k的取值范围是.12.若直线经过一次函数的交点,则a的值是.13.已知2x-3y=1,用含x的代数式表示y,则y =,当x=0时,y=.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为_______.15.如图4,点A的坐标可以看成是方程组的解.三、解答题16.解下列方程组(每小题6分,共12分)(1) (2)17.已知是关于x,y的二元一次方程组的解,求出a+b的值.18.(8分)为了净化空气,美化环境,我市青羊区计划投资1.8万元种银杏和芙蓉树共80棵,已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵,200元/棵,问可种银杏树和芙蓉树各多少棵?19.(10分)已知与的值互为相反数,求:(1)、的值;(2)的值.20.(本题12分)如图5,成都市某化工厂与A,B两地有公路和铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15000元,铁路运费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲、乙两名同学所列方程组,请你分别指出未知数x、y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x表示_____________________,y表示________________________乙:x表示_____________________,y表示________________________(2)甲同学根据他所列方程组解得x=300.请你帮他解出y的值,并解决该实际问题.参考答案一、1-5、DCDCB 6-10、BDCCA二、11.k=2; 12.-6; 13.,; 14. 35; 15.三、16.(1)x=0.5,y=5 (2)x=-3 , y=17.a+b=118.设银杏树为x,芙蓉树为y.由题意可得:解得19.20.解:(1)甲:x表示产品的重量,y表示原料的重量;乙:x表示产品销售额,y表示原料费甲方程组右边方框内的数分别为15000,97200,乙同甲(2)将x=300代入原方程组解得y=400∴产品销售额为300×8000=2400000元原料费为400×1000=400000元又∵运输费为15000+97200=112200元∴这批产品的销售款比原料费和运输费的和多2400000–(400000+112200)=1887800元。

二元一次方程组单元测试(含答案)

二元一次方程组单元测试(含答案)

二元一次方程组单元测试(含答案) 第8章二元一次方程组章末检测一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各方程组中,是二元一次方程组的是A。

{a+b=1.2a=b}B。

{3x-2y=5.2y-z=10}C。

{xy+3=1.xy=1}D。

{x-y=27.x+1.1y=405}2.二元一次方程2x-y=1有无数多个解,下列四组值中是该方程的解的是A。

{x=2.y=-0.5}B。

{x=4.y=7}C。

{x=1.y=-1}D。

{x=3.y=5}3.解方程组{3m-4n=7.9m-10n=-25}的最简单方法是A。

由②得m=(10n-25)/9,代入①中B。

由②得9m=10n-25,代入①中C。

由①得m=7/3-4n/3,代入②中D。

由①得3m=7+4n,代入②中4.下列说法正确的是A。

{x-3y=9.x+2xy=3}是二元一次方程组B。

方程x+3y=6的解是{x=3.y=1}C。

方程2x-y=3的解必是方程组{2x-y=3.3x+y=1}的解D。

{x=3.y=-12}是方程组{x- y=4.3x+3y=3}的解5.若|3x+2y-4|+27(5x+6y)²=0,则x,y的值分别是A。

{x=6.y=-5}B。

{x=5/2.y=-5/3}C。

{x=8.y=10}D。

{x=11/2.y=-11/3}6.七年级两个班植树,一天共植树30棵,已知甲班的植树棵数是乙班植树棵数的2倍,设甲、乙两班分别植树x棵,y棵,那么可列方程组A。

{x+y=30.x=2y}B。

{x+y=30.2x=y}C。

{x+y=30.y=2+x}D。

{x+y=30.x=2+y}7.若关于x,y的二元一次方程组{x-y=4k-5.3x+ay=b}的解满足x+y=9,则k的值是A。

1B。

2C。

3D。

48.已知关于x,y的二元一次方程组{2ax+b=y。

x+by=c}的解为{x=2.y=3},那么{ax+b/2.ay+c/3}的解为A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组单元测试题及答案
一、选择题(每题3分,共24分)
1、表示二元一次方程组的是( )
A 、⎩⎨⎧=+=+;5,3x z y x
B 、⎩⎨⎧==+;4,52y y x
C 、⎩⎨⎧==+;2,3xy y x
D 、⎩⎨⎧+=-+=222,11x
y x x y x 2、方程组⎩
⎨⎧=-=+.134,723y x y x 的解是( ) A 、⎩⎨⎧=-=;3,1y x B 、⎩⎨⎧-==;1,3y x C 、⎩⎨⎧-=-=;1,3y x D 、⎩⎨⎧-=-=.
3,1y x 3、设⎩⎨⎧=+=.
04,3z y y x ()0≠y 则=z x ( ) A 、12 B 、121-
C 、12-
D 、.121 4、设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.
1,1y x 那么b a ,的值分别为( )
A 、;3,2-
B 、;2,3-
C 、;3,2-
D 、.2,3-
5、方程82=+y x 的正整数解的个数是( )
A 、4
B 、3
C 、2
D 、1
6、在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,
=y ( )。

A 、23 B 、-13 C 、-5 D 、13
7、关于关于y x 、的方程组⎩⎨
⎧-=+-=-5m 212y 3x 4m 113y 2x 的解也是二元一次方程2073=++m y x 的解,则m 的值是( )
A 、0
B 、1
C 、2
D 、
21 8、方程组⎩⎨⎧=-=-8
2352y x y x ,消去y 后得到的方程是( )
A 、01043=--x x
B 、8543=+-x x
C 、8)25(23=--x x
D 、81043=+-x x
二、填空题(每题3分,共24分)
1、2
1173+=x y 中,若,213-=x 则=y _______。

2、由==--y y x y x 得表示用,,06911_______,=x x y 得表示,_______。

3、如果⎩⎨⎧=-=+.
232,12y x y x 那么=-+-+3962242y x y x _______。

4、如果1032162312=--+--b a b a y x 是一个二元一次方程,那么数a =___, b =__。

5、购面值各为20分,30分的邮票共27枚,用款6.6元。

购20分邮票_____枚,30分邮票_____枚。

6、已知⎩⎨⎧==⎩⎨⎧=-=3
10y 2x y x 和是方程022=--bx ay x 的两个解,那么a = ,b = 7、如果b a a b y x y x 4222542-+-与是同类项,那么 a = ,b = 。

8、如果63)2(1||=---a x a 是关于x 的一元一次方程,那么a
a 12-
-= 。

三、用适当的方法解下列方程(每题4分,共24分) 1、⎩⎨⎧=-=+-6430524m n n m 2、⎪⎪⎩⎪⎪⎨⎧=--=-323
113121y x y x 3、⎩⎨⎧=-=+110117.03.04.0y x y x 4、⎪⎩⎪⎨⎧=+=+-7
22013152y x y x
5、⎩⎨
⎧-=+=--c y x c y x 72963112(c 为常数) 6、⎩
⎨⎧-=++=--c d y x d c y x 23434(d c 、为常数)
四、列方程解应用题(每题7分,共28分)
1、初一级学生去某处旅游,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出1辆汽车。

问一工多少名学生、多少辆汽车。

2、某校举办数学竞赛,有120人报名参加,竞赛结果:总平均成绩为66分,合格生平均成绩为
76分,不及格生平均成绩为52分,则这次数学竞赛中,及格的学生有多少人,不及格的学生有多少人。

3、有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大18则这个两位数是多少。

(用两种方法求解)
4、甲乙两地相距20千米,A从甲地向乙地方向前进,同时B从乙地向甲地方向前进,两小时后二
人在途中相遇,相遇后A就返回甲地,B仍向甲地前进,A回到甲地时,B离甲地还有2千米,求A、B二人的速度。

答案
一、DBCABDCD
二、1、4 2、
1169,9611+-y x 3、2 4、718 5、15 6、2,3
1- 7、53,115- 8、2-=a 三、1、⎪⎩⎪⎨⎧=-=143y m 2、⎪⎪⎩⎪⎪⎨⎧==11121130y x 3、⎩⎨⎧==11y x 4、⎪⎪⎩⎪⎪⎨⎧==1136225y x 5⎪⎪⎩
⎪⎪⎨⎧-==c y c x 2145 6、⎪⎪⎩
⎪⎪⎨⎧+-=+=1361113115d c y d c x 四 1、240名学生,5辆车 2、及格的70人,不及格的50人 3、原数是68
4、A 的速度5.5千米/时,B 的速度是4.5千米/时。

相关文档
最新文档