DDR及DDR2内存供电电路
内存供电电路工作原理
无复位先测量主板各个供电是否正常,包括内存供电、桥供电、总线供电和CPU 供电。
测量内存电压1.8V正常。
电脑主板内存供电电路分析内存供电电路工作原理SDRAM内存使用3.3V供电,DDR内存使用2.5V供电。
使用SDRAM内存的主板,常见的都是直接由ATX电源供电,只有少数高档主板上才采用独立供电。
如图5-1所示,用万用表测量电源插座的第1脚与SDRAM内存插槽3.3V电源输入脚,它们之间是直通的。
而使用DDR内存的主板,都设计有独立的内存供电电路。
内存供电电路工作原理内存供电电路人多采用集成运算放大器驱动场效应管的方式,其供电原理如图5-2所示,内存供电实际电路如图5-3所示。
图5-2内存供电电路的原理是这样的:从A点取得2.5V的基准电压进入到运算放大器的同相输入端IN+,运算放大器将IN+与IN-的电压相比较,如果IN+的电压大于IN-的电压,那么OUT的电压上升,OUT的电压上升使得Q1场效应管进一步导通,漏极(D)与源极(S)之间的管压降下降,使得B点的电压上升。
通过反馈,IN-的电压也上升,直到IN +=IN-,也就是IN+=B 。
这个过程可以简单地描述为:(IN+>IN-)→(OUT ↑)→(DS ↓)→(B ↑)→(IN-↑),直到IN+=IN-。
同理,当IN+<IN-时,它的稳压过程是这样的:(IN+<IN-)→(OUT↓)→(DS↑)→(B↓)→(IN-↓),直到IN+=IN-。
这个电路通过反馈比较,间接地控制B点的电压与基准电压相等,因此有时也称运算放大器为比较放大器。
要使B点的电压稳定,必须保证A点的电压稳定,也就是要求基准电压要稳定。
在图5-2的电路中,根据串联电路分压的原理,电阻两端的电压与其阻值的大小成正比,可以算出A点对地的电压为:3.3V×(3.24K/(IK+3.24K》≈2.5V这是使用最简单的串联分压方法取得2.5V的基准电压。
【主板内存供电电路分析】主板内存供电电路分析方法,主板内存供电电路知识
【主板内存供电电路分析】主板内存供电电路分析方法,主板内
存供电电路知识
本文关键词:
主板内存供电电路分析:
一、主板内存供电电路的功能
内存供电电路主要是向内存提供其所需的3. 3V电压、2.5V、1 .8V. 1.25V上拉电压、0.9V上拉电压等,如
果内存供电电路过于简单或设计不合理就会出现内存供电不足的现象,继而影响主板的稳定性。
二、主板内存供电电路的组成分类
1.内存供电电路主要包括两种供电方式,一种为开关电源组成的供电方式,采用这种方式的供电电路主要由
专业电源管理芯片、电感、场效应管、滤波电容等部件组成,如图上所示。
这种供电电路的工作原理和CPU供
电电路的原理比较相似。
2.另一种供电方式为采用低压差线性调压芯片组成的调压电路进行供电的方式,调压电路组成的内存供电电
路主要由运算放大器(如LM358)、精密稳压器(如TL431)、场效应管、电阻和电容等组成。
如图所示为采
用调压方式的内存供电电路。
三星DDR2内存电路资料
DDR2 Unbuffered SODIMM200pin Unbuffered SODIMM based on 1Gb Q-die64-bit Non-ECC60FBGA & 84FBGA with Lead-Free and Halogen-Free(RoHS compliant)INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHER-WISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOL-OGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.1. For updates or additional information about Samsung products, contact your nearest Samsung office.2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similarapplications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.* Samsung Electronics reserves the right to change products or specification without notice.Table of Contents1.0 DDR2 Unbuffered SODIMM Ordering Information (4)2.0 Features (4)3.0 Address Configuration (4)4.0 Pin Configurations (Front side/Back side) (5)5.0 Pin Description (5)6.0 Input/Output Function Description (6)7.0 Functional Block Diagram : (7)7.1 2GB, 256Mx64 Module - M470T5663QZ(H)3 (7)7.2 1GB, 128Mx64 Module - M470T2864QZ(H)3 (8)7.3 512MB, 64Mx64 Module - M470T6464QZ(H)3 (9)8.0 Absolute Maximum DC Ratings (10)9.0 AC & DC Operating Conditions (10)9.1 Recommended DC Operating Conditions (SSTL - 1.8) (10)9.2 Operating Temperature Condition (11)9.3 Input DC Logic Level (11)9.4 Input AC Logic Level (11)9.5 AC Input Test Conditions (11)10.0 IDD Specification Parameters Definition (12)11.0 Operating Current Table : (13)11.1 M470T5663QZ(H)3 : 256Mx64 2GB Module (13)11.2 M470T2864QZ(H)3 : 128Mx64 1GB Module (13)11.3 M470T6464QZ(H)3 : 64Mx64 512MB Module (13)12.0 Input/Output Capacitance (14)13.0 Electrical Characteristics & AC Timing for DDR2-800/667 (14)13.1 Refresh Parameters by Device Density (14)13.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin (14)13.3 Timing Parameters by Speed Grade (15)14.0 Physical Dimensions : (17)14.1 128Mbx8 based 256Mx64 Module (2 Rank) (17)14.2 64Mbx16 based 128Mx64 Module (2 Rank) (18)14.3 64Mbx16 based 64Mx64 Module (1 Rank) (19)Revision HistoryRevision Month Year History1.0September2007 - Initial Release1.01April2008 - Typo Correction1.1July2008 - Applied JEDEC update(JESD79-2E) on AC timing table1.0 DDR2 Unbuffered SODIMM Ordering InformationPart Number Density Organization Component Composition Number of Rank Height M470T5663QZ(H)3-C(L)E7/F7/E62GB256Mx64128Mx8(K4T1G084QQ-HC(L)E7/F7/E6)*16230mm M470T2864QZ(H)3-C(L)E7/F7/E61GB128Mx6464Mx16(K4T1G164QQ-HC(L)E7/F7/E6)*8230mm M470T6464QZ(H)3-C(L)E7/F7/E6512MB64Mx6464Mx16(K4T1G164QQ-HC(L)E7/F7/E6)*4130mm Note :1. “Z” of Part number(12th digit) stands for Lead-Free products.2. “H” of Part number(12th digit) stands for Lead-Free, Halogen-Free, and RoHS compliant products.3. “3” of Part number(13th digit) stands for Dummy Pad PCB products.2.0 Features•Performance rangeE7 (DDR2-800)F7 (DDR2-800)E6 (DDR2-667)UnitSpeed@CL3400-400MbpsSpeed@CL4533533533MbpsSpeed@CL5800667667MbpsSpeed@CL6-800-MbpsCL-tRCD-tRP5-5-56-6-65-5-5CK•JEDEC standard V DD = 1.8V ± 0.1V Power Supply•V DDQ = 1.8V ± 0.1V•333MHz f CK for 667Mb/sec/pin, 400MHz f CK for 800Mb/sec/pin•8 Banks•Posted CAS•Programmable CAS Latency: 3, 4, 5, 6•Programmable Additive Latency: 0, 1 , 2 , 3, 4, 5•Write Latency(WL) = Read Latency(RL) -1•Burst Length: 4 , 8(Interleave/Nibble sequential)•Programmable Sequential / Interleave Burst Mode•Bi-directional Differential Data-Strobe (Single-ended data-strobe is an optional feature)•Off-Chip Driver(OCD) Impedance Adjustment•On Die Termination with selectable values(50/75/150 ohms or disable)•Average Refresh Period 7.8us at lower than a T CASE 85°C, 3.9us at 85°C < T CASE < 95 °C- Support High Temperature Self-Refresh rate enable feature•Package: 60ball FBGA - 128Mx8 and 84ball FBGA - 64Mx16•All of base components are Lead-Free, Halogen-Free, and RoHS compliantNote : For detailed DDR2 SDRAM operation, please refer to Samsung’s Device operation & Timing diagram.3.0 Address ConfigurationOrganization Row Address Column Address Bank Address Auto Precharge 128Mx8(1Gb) based Module A0-A13A0-A9BA0-BA2A1064Mx16(1Gb) based Module A0-A12A0-A9BA0-BA2A10Note : NC = No Connect; NC, TEST(pin 163)is for bus analysis tool and is not connected on normal memory modules.Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back 1V REF 2V SS 51DQS252DM2101A1102A0151DQ42152DQ463V SS 4DQ453V SS 54V SS 103V DD 104V DD 153DQ43154DQ475DQ06DQ555DQ1856DQ22105A10/AP 106BA1155V SS 156V SS 7DQ18V SS 57DQ1958DQ23107BA0108RAS 157DQ48158DQ529V SS 10DM059V SS 60V SS 109WE 110S0159DQ49160DQ5311DQS012V SS 61DQ2462DQ28111V DD 112V DD 161V SS 162V SS 13DQS014DQ663DQ2564DQ29113CAS 114ODT0163NC, TEST 164CK115V SS 16DQ765V SS 66V SS 115NC/S1116A13165V SS 166CK117DQ218V SS 67DM368DQS3117V DD 118V DD 167DQS6168V SS 19DQ320DQ1269NC 70DQS3119NC/ODT1120NC 169DQS6170DM621V SS 22DQ1371V SS 72V SS 121V SS 122V SS 171V SS 172V SS 23DQ824V SS 73DQ2674DQ30123DQ32124DQ36173DQ50174DQ5425DQ926DM175DQ2776DQ31125DQ33126DQ37175DQ51176DQ5527V SS 28V SS 77V SS 78V SS 127V SS 128V SS 177V SS 178V SS 29DQS130CK079CKE080NC/CKE1129DQS4130DM4179DQ56180DQ6031DQS132CK081V DD 82V DD131DQS4132V SS 181DQ57182DQ6133V SS 34V SS 83NC 84NC 133V SS 134DQ38183V SS 184V SS 35DQ1036DQ1485BA286NC 135DQ34136DQ39185DM7186DQS737DQ1138DQ1587V DD 88V DD 137DQ35138V SS 187V SS 188DQS739V SS 40V SS 89A1290A11139V SS 140DQ44189DQ58190V SS 41V SS 42V SS 91A992A7141DQ40142DQ45191DQ59192DQ6243DQ1644DQ2093A894A6143DQ41144V SS 193V SS 194DQ6345DQ1746DQ2195V DD 96V DD 145V SS 146DQS5195SDA 196V SS 47V SS 48V SS 97A598A4147DM5148DQS5197SCL 198SA049DQS250NC99A3100A2149V SS150V SS199V DDSPD200SA15.0 Pin Description*The V DD and V DDQ pins are tied to the single power-plane on PCB.Pin Name DescriptionPin Name DescriptionCK0,CK1Clock Inputs, positive line SDA SPD Data Input/OutputCK0,CK1Clock Inputs, negative line SA1,SA0SPD address CKE0,CKE1Clock Enables DQ0~DQ63Data Input/Output RAS Row Address Strobe DM0~DM7Data Masks CAS Column Address Strobe DQS0~DQS7Data strobesWE Write Enable DQS0~DQS7Data strobes complement S0,S1Chip Selects TEST Logic Analyzer specific test pin (No connect on So-DIMM)A0~A9, A11~A13Address InputsV DD Core and I/O Power A10/AP Address Input/Autoprecharge V SS GroundBA0~BA2SDRAM Bank Address V REF Input/Output Reference ODT0,ODT1On-die termination controlV DDSPD SPD PowerSCL Serial Presence Detect(SPD) Clock Input NC Spare pins, No connect CK0,CK1Clock Inputs, positive lineSDASPD Data Input/Output4.0 Pin Configurations (Front side/Back side)Symbol Type DescriptionCK0-CK1CK0-CK1Input The system clock inputs. All address and command lines are sampled on the cross point of the rising edge of CK and falling edge of CK . A Delay Locked Loop (DLL) circuit is driven from the clock input and output timing for read operations is synchronized to the input clock.CKE0-CKE1Input Activates the DDR2 SDRAM CK signal when high and deactivates the CK signal when low, By deactivating the clocks, CKE low initiates the Power Down mode or the Self Refesh mode.S0-S1Input Enables the associated DDR2 SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. Rank 0 is selected by S0, Rank 1 is selected by S1. Ranks are also called “Physical banks”.RAS, CAS, WE Input When sampled at the cross point of the rising edge of CK and falling edge of CK, CAS, RAS, and WE define the operation to be executed by the SDRAM.BA0~BA2Input Selects which DDR2 SDRAM internal bank is activated.ODT0~ODT1Input Asserts on-die termination for DQ, DM, DQS, and DQS signals if enabled via the DDR2 SDRAM Extended Mode Register Set (EMRS).A0~A9, A10/AP, A11~A13InputDuring a Bank Activate command cycle, defines the row address when sampled at the cross point of the rising edge of CK and falling edge of CK. During a Read or Write command cycle, defines the column address when sampled at the cross point of the rising edge of CK and falling edge of CK. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0-BAn defines the bank to be precharged. If AP is low, auto-precharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0-BAn to con-trol which bank(s) to precharge. If AP is high, all banks will be pecharged regardiess of the state of BA0-BAn inputs. If AP is low, then BA0-BAn are used to define which bank to precharge.DQ0~DQ63In/Out Data Input/Output pins.DM0~DM7Input The data write masks, associated with one data byte. In Write mode, DM operates as a byte mask by allowing input data to be written if it is low but blocks the write operation if it is high. In Read mode, DM lines have no effect.DQS0~DQS7 DQS0~DQS7In/OutThe data strobes, associated with one data byte, sourced with data transfers. In Write mode, the datastrobe is sourced by the controller and is centered in the data window. In Read mode, the data strobe issourced by the DDR2 SDRAMs and is sent at the leading edge of the data window. DQS signals are com-plements, and timing is relative to the crosspoint of respective DQS and DQS If the module is to be oper-ated in single ended strobe mode, all DQS signals must be tied on the system board to V SS and DDR2SDRAM mode registers programmed appropriately.V DD,V DDSPD,V SS Supply Power supplies for core, I/O, Serial Presence Detect, and ground for the module.SDA In/Out This is a bidirectional pin used to transfer data into or out of the SPD EEPROM. A resistor must be con-nected to V DD to act as a pull up.SCL Input This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from SCL to V DD to act as a pull up.SA0~SA1Input Address pins used to select the Serial Presence Detect base address.TEST In/Out The TEST pin is reserved for bus analysis tools and is not connected on normal memory modules(SO-DIMMs).6.0 Input/Output Function DescriptionNote : There is no specific device V DD supply voltage requirement for SSTL-1.8 compliance. However under all conditions V DDQ must be less than or equalto V DD .1. The value of V REF may be selected by the user to provide optimum noise margin in the system. Typically the value of V REF is expected to be about 0.5 x V DDQ of the transmitting device and V REF is expected to track variations in V DDQ .2. Peak to peak AC noise on V REF may not exceed +/-2% V REF (DC).3. V TT of transmitting device must track V REF of receiving device.4. AC parameters are measured with V DD , V DDQ and V DDL tied together.5. SODIMMs that include an optional temperature sensor may require a restricted V DDSPD operating voltage range for proper operation of the temperature sensor. Refer to the thermal sensor specification for details regarding the supported voltage range. All other functions of the SODIMM SPD are supported across the full V DDSPD range.Symbol ParameterRatingUnits NotesMin.Typ. Max.V DD Supply Voltage 1.7 1.8 1.9V V DDL Supply Voltage for DLL 1.7 1.8 1.9V 4V DDQ Supply Voltage for Output 1.7 1.8 1.9V 4V REF Input Reference Voltage 0.49*V DDQ 0.50*V DDQ0.51*V DDQ mV 1,2V TTTermination VoltageV REF -0.04V REFV REF +0.04V3Symbol ParameterRatingUnits Notes Min.Max.V DDSPDCore Supply Voltage1.73.6V5Note :1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.Symbol ParameterRating Units Notes V DD Voltage on V DD pin relative to V SS - 1.0 V ~ 2.3 V V 1V DDQ Voltage on V DDQ pin relative to V SS - 0.5 V ~ 2.3 V V 1V DDL Voltage on V DDL pin relative to V SS - 0.5 V ~ 2.3 V V 1V IN, V OUT Voltage on any pin relative to V SS- 0.5 V ~ 2.3 V V1T STGStorage Temperature-55 to +100°C 1, 29.0 AC & DC Operating Conditions9.1 Recommended DC Operating Conditions (SSTL - 1.8)8.0 Absolute Maximum DC RatingsNote:1. Input waveform timing is referenced to the input signal crossing through the V IH/IL (AC) level applied to the device under test.2. The input signal minimum slew rate is to be maintained over the range from V REF to V IH (AC) min for rising edges and the range from V REF to V IL (AC)max for falling edges as shown in the below figure.3. AC timings are referenced with input waveforms switching from V IL (AC) to V IH (AC) on the positive transitions and V IH (AC) to V IL (AC) on the negative transitions.Symbol ConditionValue Units Notes V REF Input reference voltage0.5 * V DDQV 1V SWING(MAX)Input signal maximum peak to peak swing 1.0V 1SLEWInput signal minimum slew rate1.0V/ns2, 3V DDQ V IH (AC) minV IH (DC) min V REFV IL (DC) max V IL (AC) maxV SS< AC Input Test Signal Waveform >V SWING(MAX)delta TRdelta TFV REF - V IL (AC) maxdelta TFFalling Slew =Rising Slew =V IH (AC) min - V REFdelta TRNote :1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51.2 standard.2. At 85 - 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to self refresh mode at this temperature range, an EMRS command is required to change internal refresh rate.Symbol Parameter Rating UnitsNotesT OPEROperating Temperature0 to 95°C 1, 29.3 Input DC Logic LevelSymbol Parameter Min.Max.Units NotesV IH (DC)DC input logic high V REF + 0.125V DDQ + 0.3V V IL (DC)DC input logic low- 0.3V REF - 0.125V9.4 Input AC Logic LevelSymbol Parameter DDR2-667, DDR2-800Units Min.Max.V IH (AC)AC input logic high V REF + 0.200V V IL (AC)AC input logic lowV REF - 0.200V9.5 AC Input Test Conditions 9.2 Operating Temperature Condition(IDD values are for full operating range of Voltage and Temperature)Symbol Proposed Conditions Units NoteIDD0Operating one bank active-precharge current;tCK = tCK(IDD), tRC = tRC(IDD), tRAS = tRASmin(IDD); CKE is HIGH, CS is HIGH between valid commands;Address bus inputs are SWITCHING; Data bus inputs are SWITCHINGmAIDD1Operating one bank active-read-precharge current;IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD =tRCD(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data patternis same as IDD4WmAIDD2P Precharge power-down current;All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATINGmAIDD2Q Precharge quiet standby current;All banks idle; tCK = tCK(IDD); CKE is HIGH, CS is HIGH; Other control and address bus inputs are STABLE; Databus inputs are FLOATINGmAIDD2N Precharge standby current;All banks idle; tCK = tCK(IDD); CKE is HIGH, CS is HIGH; Other control and address bus inputs are SWITCHING;Data bus inputs are SWITCHINGmAIDD3P Active power-down current;All banks open; tCK = tCK(IDD); CKE is LOW; Other control and addressbus inputs are STABLE; Data bus inputs are FLOATINGFast PDN Exit MRS(12) = 0mASlow PDN Exit MRS(12) = 1mAIDD3N Active standby current;All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHINGmAIDD4W Operating burst write current;All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP= tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCHING; Data businputs are SWITCHINGmAIDD4R Operating burst read current;All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRAS-max(IDD), tRP = tRP(IDD); CKE is HIGH, CS is HIGH between valid commands; Address bus inputs are SWITCH-ING; Data pattern is same as IDD4WmAIDD5B Burst auto refresh current;tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, CS is HIGH between valid commands;Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHINGmAIDD6Self refresh current;CK and CK at 0V; CKE ≤ 0.2V; Other control and address bus inputs areFLOATING; Data bus inputs are FLOATINGNormal mALow Power mAIDD7Operating bank interleave read current;All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = tRCD(IDD)-1*tCK(IDD); tCK = tCK(IDD), tRC =tRC(IDD), tRRD = tRRD(IDD), tFAW = tFAW(IDD), tRCD = 1*tCK(IDD); CKE is HIGH, CS is HIGH between valid com-mands; Address bus inputs are STABLE during DESELECTs; Data pattern is same as IDD4R; Refer to the followingpage for detailed timing conditionsmA10.0 IDD Specification Parameters Definition11.2 M470T2864QZ(H)3 : 128Mx64 1GB Module11.3 M470T6464QZ(H)3: 64Mx64 512MB Module(T A =0o C, V DD = 1.9V)* Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.Symbol 800@CL=5800@CL=6667@CL=5Units NotesCE7LE7CF7LF7CE6LE6IDD0500500480mA IDD1540540520mA IDD2P 120641206412064mA IDD2Q 240240240mA IDD2N 280280280mA IDD3P-F 280280280mA IDD3P-S 144144144mA IDD3N 360360340mA IDD4W 660660600mA IDD4R 840840760mA IDD5720720700mA IDD6120641206412064mA IDD71,2001,2001,120mA(T A =0o C, V DD = 1.9V)* Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.Symbol 800@CL=5800@CL=6667@CL=5Units NotesCE7LE7CF7LF7CE6LE6IDD0360360340mA IDD1400400380mA IDD2P 603260326032mA IDD2Q 120120120mA IDD2N 140140140mA IDD3P-F 140140140mA IDD3P-S 727272mA IDD3N 220220200mA IDD4W 520520460mA IDD4R 700700620mA IDD5580580560mA IDD6603260326032mA IDD71,0601,060980mA11.0 Operating Current Table :11.1 M470T5663QZ(H)3 : 256Mx64 2GB Module(T A =0o C, V DD = 1.9V)* Module IDD was calculated on the basis of component IDD and can be differently measured according to DQ loading cap.Symbol800@CL=5800@CL=6667@CL=5Units NotesCE7LE7CF7LF7CE6LE6IDD0880880840mA IDD1960960920mA IDD2P 240128240128240128mA IDD2Q 480480480mA IDD2N 560560560mA IDD3P-F 560560560mA IDD3P-S 288288288mA IDD3N 720720680mA IDD4W 1,2001,2001,120mA IDD4R 1,3601,3601,240mA IDD51,4401,4401,400mA IDD6240128240128240128mA IDD72,2802,2802,120mA(V DD =1.8V, V DDQ =1.8V, TA=25o C)* DM is internally loaded to match DQ and DQS identically.Parameter Symbol Min Max Min Max Min Max UnitsNon-ECCM470T5663QZ(H)3M470T2864QZ(H)3M470T6464QZ(H)3Input capacitance, CK and CKCCK -48-32-24pF Input capacitance, CKE , CS, Addr, RAS, CAS, WE CI -42-34-34Input/output capacitance, DQ, DM, DQS, DQSCIO-9-9- 5.5ParameterSymbol256Mb 512Mb 1Gb 2Gb 4Gb Units Refresh to active/Refresh command time tRFC 75105127.5195327.5ns Average periodic refresh intervaltREFI0 °C ≤ T CASE ≤ 85°C 7.87.87.87.87.8µs 85 °C < T CASE ≤ 95°C 3.93.93.93.93.9µs(0 °C < T OPER < 95 °C; V DDQ = 1.8V + 0.1V; V DD = 1.8V + 0.1V)13.1 Refresh Parameters by Device DensitySpeedDDR2-800(E7)DDR2-800(F7)DDR2-667(E6)UnitsBin (CL - tRCD - tRP) 5 - 5 - 56 - 6- 6 5 - 5 - 5Parameter min max min max min max tCK, CL=358--58ns tCK, CL=4 3.758 3.758 3.758ns tCK, CL=5 2.583838ns tCK, CL=6-- 2.58--ns tRCD 12.5-15-15-ns tRP 12.5-15-15-ns tRC 57.5-60-60-ns tRAS457000045700004570000ns13.2 Speed Bins and CL, tRCD, tRP , tRC and tRAS for Corresponding Bin13.0 Electrical Characteristics & AC Timing for DDR2-800/66712.0 Input/Output Capacitance(Refer to notes for informations related to this table at the component datasheet)Parameter SymbolDDR2-800DDR2-667Units Notes min max min maxDQ output access time from CK/CK tAC-400400- 450450ps40 DQS output access time from CK/CK tDQSCK-350350- 400400ps40 Average clock HIGH pulse width tCH(avg)0.480.520.480.52tCK(avg)35,36 Average clock LOW pulse width tCL(avg)0.480.520.480.52tCK(avg)35,36CK half pulse period tHP Min(tCL(abs),tCH(abs))xMin(tCL(abs),tCH(abs))x ps37Average clock period tCK(avg)2500800030008000ps35,36DQ and DM input hold time tDH(base)125x175x ps6,7,8,21,28,31 DQ and DM input setup time tDS(base)50x100x ps6,7,8,20,28,31 Control & Address input pulse width for each input tIPW0.6x0.6x tCK(avg)DQ and DM input pulse width for each input tDIPW0.35x0.35x tCK(avg)Data-out high-impedance time from CK/CK tHZ x tAC(max)x tAC(max)ps18,40 DQS/DQS low-impedance time from CK/CK tLZ(DQS)tAC(min)tAC(max)tAC(min)tAC(max)ps18,40DQ low-impedance time from CK/CK tLZ(DQ)2*tAC(min)tAC(max)2*tAC(min)tAC(max)ps18,40 DQS-DQ skew for DQS and associated DQ signals tDQSQ x200x240ps13DQ hold skew factor tQHS x300x340ps38DQ/DQS output hold time from DQS tQH tHP - tQHS x tHP - tQHS x ps39 DQS latching rising transitions to associated clock edges tDQSS- 0.250.25-0.250.25tCK(avg)30 DQS input HIGH pulse width tDQSH0.35x0.35x tCK(avg)DQS input LOW pulse width tDQSL0.35x0.35x tCK(avg)DQS falling edge to CK setup time tDSS0.2x0.2x tCK(avg)30 DQS falling edge hold time from CK tDSH0.2x0.2x tCK(avg)30 Mode register set command cycle time tMRD2x2x nCKMRS command to ODT update delay tMOD012012ns32 Write postamble tWPST0.40.60.40.6tCK(avg)10 Write preamble tWPRE0.35x0.35x tCK(avg)Address and control input hold time tIH(base)250x275x ps5,7,9,23,29 Address and control input setup time tIS(base)175x200x ps5,7,9,22,29 Read preamble tRPRE0.9 1.10.9 1.1tCK(avg)19,41 Read postamble tRPST0.40.60.40.6tCK(avg)19,42 Activate to activate command period for 1KB page size products tRRD7.5x7.5x ns4,32 Activate to activate command period for 2KB page size products tRRD10x10x ns4,32 13.3 Timing Parameters by Speed GradeParameter SymbolDDR2-800DDR2-667Units Notes min max min maxFour Activate Window for 1KB page size products tFAW35x37.5x ns32 Four Activate Window for 2KB page size products tFAW45x50x ns32 CAS to CAS command delay tCCD2x2x nCKWrite recovery time tWR15x15x ns32 Auto precharge write recovery + precharge time tDAL WR + tnRP x WR + tnRP x nCK33 Internal write to read command delay tWTR7.5x7.5x ns24,32 Internal read to precharge command delay tRTP7.5x7.5x ns3,32 Exit self refresh to a non-read command tXSNR tRFC + 10x tRFC + 10x ns32 Exit self refresh to a read command tXSRD200x200x nCKExit precharge power down to any command tXP2x2x nCKExit active power down to read command tXARD2x2x nCK1 Exit active power down to read command(slow exit, lower power)tXARDS8 - AL x7 - AL x nCK1,2 CKE minimum pulse width (HIGH and LOW pulse width)tCKE3x3x nCK27 ODT turn-on delay tAOND2222nCK16 ODT turn-on tAON tAC(min)tAC(max)+0.7tAC(min)tAC(max)+0.7ns6,16,40ODT turn-on (Power-Down mode)tAONPD tAC(min)+22*tCK(avg)+tAC(max)+1tAC(min)+22*tCK(avg)+tAC(max)+1nsODT turn-off delay tAOFD 2.5 2.5 2.5 2.5nCK17,45 ODT turn-off tAOF tAC(min)tAC(max)+0.6tAC(min)tAC(max)+0.6ns17,43,45ODT turn-off (Power-Down mode)tAOFPD tAC(min)+22.5*tCK(avg)+tAC(max)+1tAC(min)+22.5*tCK(avg)+tAC(max)+1nsODT to power down entry latency tANPD3x3x nCKODT power down exit latency tAXPD8x8x nCKOCD drive mode output delay tOIT012012ns32Minimum time clocks remains ON after CKE asynchronously drops LOW tDelaytIS+tCK(avg)+tIHxtIS+tCK(avg)+tIHx ns1514.1 128Mbx8 based 256Mx64 Module (2 Rank)The used device is 128M x8 DDR2 SDRAM, FBGA.DDR2 SDRAM Part NO : K4T1G084QQUnits : Millimeters14.0 Physical Dimensions :- M470T5663QZ(H)33.8 mm 1.1mm maxmax67.60 ± 0.15 mm4.00 ± 0.1020.00 ± 0.15 m m30.00 ± 0.15 m m119911.40 ± 0.15 mm 47.40 ± 0.15 mm6.00 ± 0.15 m m63.00 ± 0.15 mm16.25 ± 0.15 mmmin 2.0067.60 ± 0.15 mm30.00 ± 0.15 m m2200SPDaba4.20 ± 0.152.70 ± 0.104.00 ± 0.101.0 ± 0.051.50 ± 0.10FRONT SIDE 4.20 ± 0.151.80 ± 0.104.00 ± 0.101.0 ± 0.052.40 ± 0.10BACK SIDE0.60 ± 0.150.45 ± 0.032.55 ± 0.150.20 ± 0.15DETAIL a DETAIL bThe used device is 64M x16 DDR2 SDRAM, FBGA.DDR2 SDRAM Part NO : K4T1G164QQUnits : Millimeters67.60 ± 0.15 mm4.00 ± 0.1020.00 ± 0.15 m m30.00 ± 0.15 m m119911.40 ± 0.15 mm 47.40 ± 0.15 mm6.00 ± 0.15 m mS P D3.8 mmMax1.1 mmMaxa 63.00 ± 0.15 mm16.25 ± 0.15 mmmin 2.0067.60 ± 0.15 mm30.00 ± 0.15 m m22004.20 ± 0.152.70 ± 0.104.00 ± 0.101.0 ± 0.051.50 ± 0.10FRONT SIDE 4.20 ± 0.151.80 ± 0.104.00 ± 0.101.0 ± 0.052.40 ± 0.10BACK SIDE0.60 ± 0.150.45 ± 0.032.55 ± 0.150.20 ± 0.15DETAIL a DETAIL bab- M470T2864QZ(H)314.2 64Mbx16 based 128Mx64 Module (2 Rank)The used device is 64M x16 DDR2 SDRAM, FBGA.DDR2 SDRAM Part NO : K4T1G164QQUnits : Millimeters67.60 ± 0.15 mm4.00 ± 0.1020.00 ± 0.15 m m30.00 ± 0.15 m m119911.40 ± 0.15 mm 47.40 ± 0.15 mm6.00 ± 0.15 m mS P Da 63.00 ± 0.15 mm16.25 ± 0.15 mmmin 2.0067.60 ± 0.15 mm30.00 ± 0.15 m m2200a b4.20 ± 0.152.70 ± 0.104.00 ± 0.101.0 ± 0.051.50 ± 0.10FRONT SIDE 4.20 ± 0.151.80 ± 0.104.00 ± 0.101.0 ± 0.052.40 ± 0.10BACK SIDE0.60 ± 0.150.45 ± 0.032.55 ± 0.150.20 ± 0.15DETAIL a DETAIL b3.8 mm Max1.1 mm Max- M470T6464QZ(H)314.3 64Mbx16 based 64Mx64 Module (1 Rank)。
DDR电源芯片文档
DDR再谈--DDR的几个要点2011-10-26 09:08:22| 分类:Memorizer | 标签:|字号大中小订阅1. 电源DDR的电源可以分为三类:a>主电源VDD和VDDQ,主电源的要求是VDDQ=VDD,VDDQ是给IO buffer供电的电源,VDD是给但是一般的使用中都是把VDDQ 和VDD合成一个电源使用。
有的芯片还有VDDL,是给DLL供电的,也和VDD使用同一电源即可。
电源设计时,需要考虑电压,电流是否满足要求,电源的上电顺序和电源的上电时间,单调性等。
电源电压的要求一般在±5%以内。
电流需要根据使用的不同芯片,及芯片个数等进行计算。
由于DDR的电流一般都比较大,所以PCB设计时,如果有一个完整的电源平面铺到管脚上,是最理想的状态,并且在电源入口加大电容储能,每个管脚上加一个100nF~10nF的小电容滤波。
b>参考电源Vref,参考电源Vref要求跟随VDDQ,并且Vref=VDDQ/2,所以可以使用电源芯片提供,也可以采用电阻分压的方式得到。
由于Vref一般电流较小,在几个mA~几十mA的数量级,所以用电阻分压的方式,即节约成本,又能在布局上比较灵活,放置的离Vref管脚比较近,紧密的跟随VDDQ电压,所以建议使用此种方式。
需要注意分压用的电阻在100~10K均可,需要使用1%精度的电阻。
Vref参考电压的每个管脚上需要加10nF的点容滤波,并且每个分压电阻上也并联一个电容较好。
c>用于匹配的电压VTT(Tracking Termination Voltage)VTT为匹配电阻上拉到的电源,VTT=VDDQ/2。
DDR的设计中,根据拓扑结构的不同,有的设计使用不到VTT,如控制器带的DDR器件比较少的情况下。
如果使用VTT,则VTT的电流要求是比较大的,所以需要走线使用铜皮铺过去。
并且VTT要求电源即可以吸电流,又可以灌电流才可以。
一般情况下可以使用专门为DDR设计的产生VTT的电源芯片来满足要求。
精英主板DDR内存供电分析
s l —C P u停止工作 ,也称为 P O S( P o w e r o n S u s p e n d ) ,这时除了通过 C P U时钟控制器将 C P U关
闭之 外 ,其 他 的部件 仍 然正 常工作 ,这 时 的功耗 一般 在 3 0 W 以下 ; s 2 一C P u 关 闭 ,这 时 C P U 处于 停止 运作 状态 ,总线 时钟 也被关 闭 ,但其 余 的设备 仍 然运转 ,S 2 状 态一般 未 被 实现 ;
关键词
精英 ( E C S )主板 是 我校 原 2 3 8机房 海 尔快龙 电脑主板 ,C P U是 I n t e l P e n t i u m I V 1 . 5 G Hz ,北/ 南桥
芯片组是 S I S 6 5 0 / S I S 9 6 1 ,支持 A C P I 1 . 0规范 ,内存采用 D D R内存, D D R内存需要 2 . 5 V工作电压和
内存 总线 终 结 电路 1 . 2 5 V上 拉 电压 ,下面 以该 主板 为例 ,分 析兼 容 AC P I 规 范 的 DD R 内存供 电特 征 。
l AC P I 睡 眠 状 态 定 义
AC P I 是高 级配 置与 电源 接 口规 范 ( Ad v a n c e d C o n i f g u r a t i o n a n d P o we r I n t e r f a c e S p e c i i f c a t i o n ) ,在 AC P I电源 管理 方式 下, 根据 C P U、 内存 、二 级缓 存 、主控 芯 片 、硬 盘等 设备 挂起 时所 处 的状态 不 同, 它 可 以支持 五种 睡 眠状 态 s l 、s 2 、S 3 、S 4和 S 5 。
内存供电产生原理
内存供电产生原理:
在静态时:sc486即获得了供电+5valw送给第20PIN和第5pin,此时SC486从第8pin生成参考电压dimm-vref0.9V供给内存作为内存的参考电压,同时从第14,15PIN产生+0.9VSUS供给内存和北桥的传输线,作为传输信号线的载体电压。
当EC发出SUS-ON3.3v给sc486的第一pin和第十一pin后,此时sc486从第23脚输出高电平给PQ31的G极,PQ31导通,将主供电导通1.8v给电感PL20充电,同时给PC311,PC312充电,当充满后,sc486发出高电平给pq77,pq78的G极,使pq77,pq78导通,pq31截止,此时充得的电通过PQ77,PQ78后给pc308充电,使pc308另一端的电压超过5v送给sc486的24pin,使sc486内部再次启动,依此循环,不断实现将主供电调节成1.8VSUS给内存供电,当供电完成后,SC486从第7pin生成DDR2_PWRGD 3.3v给EC,告诉ec内存供电产生完毕。
ddr2测试规范
DDR2 SDRAM接口硬件测试规范目录DDR2 SDRAM接口硬件测试规范 (I)1 范围 (3)2 术语和定义 (3)3 缩略语 (3)4 测试仪器仪表清单 (4)5 接口说明 (4)5.1 SDRAM接口信号说明 (4)5.2 DDR2 SDRAM接口功能指标 (5)5.2.1 电源完整性需要测试以下指标 (6)5.2.2 信号完整性需要测试以下指标 (7)5.2.3 时序需要测试以下指标 (7)5.2.4 时钟信号需要测试以下指标 (8)5.3 DDR2 SDRAM参数测试说明 (9)5.3.1 DDR2 SDRAM读写区分的方法 (9)5.3.2 单端信号AC输入参数测量 (11)5.3.2.1 VSWING(MAX)的测试方法 (11)5.3.2.2 SlewR参数测量方法 (12)5.3.2.3 SlewF参数的测量方法 (13)5.3.2.4 VIH的测试方法 (14)5.3.2.5 VIL的测试方法 (15)5.3.2.6 tDIPW的测试方法 (15)5.3.2.7 tIPW的测试方法 (15)5.3.3 输入信号过冲欠冲测试 (16)5.3.3.1 信号过冲测试方法 (16)5.3.3.2 信号欠冲测试方法 (17)5.3.4 差分信号AC参数测量 (17)5.3.4.1 SlewR测试方法 (17)5.3.4.2 SlewF测试方法 (18)5.3.4.3 VID测试方法 (19)5.3.4.4 VIX测试方法 (20)5.3.4.5 VOX的测试方法 (21)5.3.4.6 tDQSH的测试方法 (22)5.3.4.7 tDQSL的测试方法 (23)5.3.5 控制和地址信号时序测试 (24)5.3.5.1 tIS(base)测试方法 (24)5.3.5.2 tIH(base)测试方法 (26)5.3.6 数据信号时序测试 (26)5.3.6.1 tDS(base)测试方法 (26)5.3.6.2 tDH(base)测试方法 (27)5.3.6.3 tDS1(base)测试方法 (28)5.3.6.4 tDH1(base)测试方法 (30)5.3.6.5 tAC的测试方法 (32)5.3.6.6 tDQSCK的测试方法 (33)5.3.6.7 tDQSQ的测试方法 (34)5.3.6.8 tQH的测试方法 (35)5.3.6.9 tDQSS的测试方法 (36)5.3.6.10 tDSS的测试方法 (37)5.3.6.11 tDSH的测试方法 (38)5.3.6.12 tHZ的测试方法 (39)5.3.6.13 tLZ的测试方法 (40)5.3.6.14 tRPRE的测试方法 (42)5.3.6.15 tRPST的测试方法 (43)5.3.6.16 tWPRE的测试方法 (44)5.3.6.17 tWPST的测试方法 (45)5.3.7 时钟信号测试 (46)5.3.7.1 tCK(avg)的测试方法 (46)5.3.7.2 tCH(avg)/ tCL(avg)的测试方法 (47)5.3.7.3 Tj、Dj和Rj的测试方法 (47)5.3.7.4 tJIT(per)的测试方法 (48)5.3.7.5 tJIT(cc)的测试方法 (48)5.3.7.6 tJIT(duty)的测试方法 (49)5.3.7.7 tERR(nper)的测试方法 (49)6 测试内容 (50)6.1 电源完整性测试 (50)6.1.1.1 HS-DDR2 SDRAM-P-001 电源精度测试 (50)6.1.1.2 HS-DDR2 SDRAM-P-002 电源纹波测试 (51)6.1.1.3 HS-DDR2 SDRAM-P-003 电源上电波形测试 (53)6.1.1.4 HS-DDR2 SDRAM-P-003 电源上电时序测试 (53)6.2 信号完整性和时序测试 (54)6.2.1.1 HS-DDR2 SDRAM-S-001控制信号完整性测试 (54)6.2.1.2 HS-DDR2 SDRAM-S-002地址信号完整性测试 (55)6.2.1.3 HS-DDR2 SDRAM-S-003读操作数据信号完整性测试 (56)6.2.1.4 HS-DDR2 SDRAM-S-004写操作数据信号完整性测试 (56)6.3 时序测试 (58)6.3.1.1 HS-DDR2 SDRAM-T-001 读操作数据信号时序测试 (58)6.3.1.2 HS-DDR2 SDRAM-T-002 写操作数据信号时序测试 (59)6.3.1.3 HS-DDR2 SDRAM-T-003 控制信号时序测试 (60)6.3.1.4 HS-DDR2 SDRAM-T-004 地址信号时序测试 (60)6.4 时钟信号测试 (61)6.4.1.1 HS-DDR2 SDRAM-C-001 时钟信号波形测试 (61)6.4.1.2 HS-DDR2 SDRAM-C-002 时钟Jitter测试 (62)6.4.1.3 HS-DDR2 SDRAM-C-003 时钟精度测试 (63)7 引用 (63)1 范围本标准规定了DDR2 SDRAM接口的硬件测试方法和相关测试注意事项,并结合测试示例给以说明。
DDR及DDR2内存供电电路
DDR内存供电电路
DDR内存需要两种供电电压:2.5V的主供电压和1.25的基准供电电压(又称参考电压).2.5V 供电电压用来为内存芯片提供工作电压,1.25V供电电压用来为内存总线的数据线和地址线提供上拉工作电压.DDR内存供电电路主要有下面几种形式.
1\单场效应管60N03+基准电压源LM431(可以用XX431代换)+比较器LM358构成的2.5V供电电路.
2\单场效应管Q110+基准电压源Q31(SC431\SOT-23)构成的2.5V供电电路
3\专用芯片(ISL6520\RT9214)构成的2.5V内存供电电路
4\双场效应管Q71(15N03)和Q70(15N03)+比较器U42A(LM358)和U42B(LM358)构成的1.25V供电电路
5\双三极管Q4(HA8050D-D)\Q5(HA8550D-D)+比较器构成的1.25V供电电路
6\多端稳压器(RT9173或RT9173B)构成的1.25V供电电中路
7\专用芯片LP2995构成的1.25V供电电路
8\专用芯片ISL6537构成的混合型内存供电电路
DDR2内存需要两种供电电压:1.8V的主供电电压和0.9V的基准电电压(又称参考电压),1.8V 供电电压来为内存芯片提供工作电压,0.9V供电电压用来为内存总线的数据线和地址线提供上拉工作电压.
常用DDR2内存供电芯片有NCP5201\ISL6537等型号。
台式机主板供电电路指南
[指南]台式机主板供电电路主板供电电路当主板开机后,PS-ON 变为低电平,从而电源电源开头输出 +3.3V、+5V、+12V 等各路电压为主板供电,主板上常见的供电电路有:内存供电电路,北桥芯片供电电路,南桥芯片供电电路,显卡供电电路,CPU 供电电路,时钟芯片供电电路,共六大电路。
主板供电电路有两种设计方式:一种是调压方式,一种是开关电源把握方式,这两种方式都是为负载供给稳定的直流电和负载所需的足够电流。
主板上的供电都是低压大电流,因此需要专用的供电电路来把握。
主板供电时序:内存供电(VDD-DDR)->北桥芯片供电(VCC-GMCH)->北桥总线电压(VTT-GMCH)->CPU 供电(VCORE/VCCP)->显卡供电(VDDQ)->南桥供电->时钟(CLK) 内存供电:3.3V、2.5V、1.8V、1.5V北桥供电:3.3V、2.5V、1.8V、1.5V北桥总线:1.2VCPU 供电:1.75V、1.5V(特别:0.9V)显卡供电:3.3V、1.5V(特别:0.8V)南桥:5VSB、3.3VSB、1.5VSB、1.2VSB时钟:3.3V、2.5V老主板的供电时序:CPU->内存->北桥->显卡->南桥->时钟内存供电电路一、SDR 内存 3.3V 供电电路(由稳压器和场管组成的调压式供电电路),开机后,南桥会输出一个高电平。
SDR 内存供电电路图(3.3V)检修流程:1、测内存槽最终一脚(供电脚)有无 3.3V 电压,假设有则电压正常,假设内存仍检测不过,则考虑电流供给缺乏,一般是铝电解电容或场管老化或虚焊造成,可直接更换电容或加焊场管。
2、假设电压不正常,则测 1117 的 3 脚有无 5V 输入电压,有则更换1117,假设还不行,则测 1117 的两个分压电阻。
3、假设 1117 的 3 脚无输入,则测 MOS 管(集成)的 S 极有无 5VSB 输入,有则测 G 极有无低电平把握信号,有则更换集成 MOS 管,无则测之前的电阻,更换电阻后仍无输入,则加焊或更换南桥。
台式机主板供电电路
主板供电电路当主板开机后,PS-ON变为低电平,从而电源电源开始输出 +3.3V、+5V、+12V 等各路电压为主板供电,主板上常见的供电电路有:内存供电电路,北桥芯片供电电路,南桥芯片供电电路,显卡供电电路,CPU 供电电路,时钟芯片供电电路,共六大电路。
主板供电电路有两种设计方式:一种是调压方式,一种是开关电源控制方式,这两种方式都是为负载提供稳定的直流电和负载所需的足够电流。
主板上的供电都是低压大电流,因此需要专用的供电电路来控制。
主板供电时序:内存供电(VDD-DDR)->北桥芯片供电(VCC-GMCH)->北桥总线电压(VTT-GMCH)->CPU供电(VCORE/VCCP)->显卡供电(VDDQ)->南桥供电->时钟(CLK)内存供电:3.3V、2.5V、1.8V、1.5V北桥供电:3.3V、2.5V、1.8V、1.5V北桥总线:1.2VCPU 供电:1.75V、1.5V(特殊:0.9V)显卡供电:3.3V、1.5V(特殊:0.8V)南桥:5VSB、3.3VSB、1.5VSB、1.2VSB时钟:3.3V、2.5V老主板的供电时序:CPU->内存->北桥->显卡->南桥->时钟内存供电电路一、SDR 内存 3.3V 供电电路(由稳压器和场管组成的调压式供电电路),开机后,南桥会输出一个高电平。
SDR内存供电电路图(3.3V)检修流程:1、测内存槽最后一脚(供电脚)有无 3.3V电压,若有则电压正常,如果内存仍检测不过,则考虑电流供给不足,一般是铝电解电容或场管老化或虚焊造成,可直接更换电容或加焊场管。
2、如果电压不正常,则测 1117 的 3 脚有无 5V 输入电压,有则更换 1117,如果还不行,则测 1117 的两个分压电阻。
3、如果 1117 的 3 脚无输入,则测 MOS 管(集成)的 S 极有无 5VSB 输入,有则测 G 极有无低电平控制信号,有则更换集成 MOS 管,无则测之前的电阻,更换电阻后仍无输入,则加焊或更换南桥。
内存供电电压图解
C0,C1,D0,D3,D4 以上代码都是内存方面故障
更换内存条试机,换内存条不行再修板
快速维修方法
• 测量内存供电电压 --------内存旁边的MOS管S极
• 内存基准电压 ---------内存旁多脚集成块主供电一半
先看SDRAM内存供电
电压为3.3V
• 一般是电源橙色3.3V直供, • 有5V变压过来 • 有供电开关
主板维修----单元电路
内存分类
• SDRAM内存-------工作电压3.3V • DDR1内存 -------工作电压2.5V • DDR2内存 -------工作电压1.8V • DDR3内存 -------工作电压1.5V
• SDRAM插槽有两个缺口 • DDR有一个缺口
快速判断内存问题
有供电开关 的电路
2.5V内 存供电ห้องสมุดไป่ตู้
维修实例
• 今天接了块华硕P4的板子,主板触发开机,诊断 卡代码跑到D4停住,初步判定为内存部分,马上 着手查内存电压(DDR),一量,果然电压偏低 (才1.68v,正常为2.5v),顺着内存槽旁边查找 电压来源,一般都经过MOS管供电,发现经由 9T105L管输出1.68v,量另两端电压分别为3.26, 3.28,紧挨着查还有个9T105L管,不过查它电压, 有12v,3.28v,5.23v,问题好像就出来了,电压 偏低,是不是前一个管子输出不正常导致的?断 电,换二极管档量,一边果然是通了,但也并没 有完全烧掉,坚决换掉,再上电开机,嘿嘿``表 笔一量内存供电2.57v
主板维修单元电路内存分类ddr1内存工作电压25vddr2内存工作电压18vddr3内存工作电压15vddr有一个缺口快速判断内存问题插诊断卡看代码c0c1d0d3d4以上代码都是内存方面故障更换内存条试机换内存条不行再修板快速维修方法测量内存供电电压内存旁边的mos管s极内存基准电压内存旁多脚集成块主供电一半先看sdram内存供电电压为33v有供电开关有供电开关的电路25v内存供电维修实例今天接了块华硕p4的板子主板触发开机诊断卡代码跑到d4停住初步判定为内存部分马上着手查内存电压ddr一量果然电压偏低才168v正常为25v顺着内存槽旁边查找电压来源一般都经过mos管供电发现经由9t105l管输出168v量另两端电压分别为326328紧挨着查还有个9t105l管不过查它电压有12v328v523v问题好像就出来了电压偏低是不是前一个管子输出不正常导致的
DDR内存布线指导(Freescale_观点)
DDR内存布线指导(Freescale_观点)DDR内存布线指导1、Signal Length Matching (Freescale 观点)信号长度匹配是关于时序特性的⼀个关键因素,DDR系统中的长度匹配要求如下图。
Signal Group Minimum Length Maximum Length Data lane to data strobe Strobe length 25 mils Strobe length plus 25 mils Data lane to data lane No more than 1000 mils data among all data lane groups data strobe to clock Meeting the 75%-125% Write DataAddress/command/control to clock Should be determined through simulation在该图中,Data strobe to clock 和 Address/command/control to clock的长度匹配没有给出确切的数值,在设计者⽆法仿真的情况下,具体数值可以参考本⽂在上⾯的描述。
2、Clock Signal Group具体的时钟信号的layout Guide如下表格,可以⼀⽬了然。
Item Recommendation Comment Reference plane GND-referenced Maintain a solid GND reference(nosplits and so on) for all routedclocks,thereby providing alow-impedance path for the returncurrentsSame layer routing Route all clock pairs on the same criticallayer,Avoid switching between layersexcept where required. Ensures all clocks have the same signal integrity.Swap clock pairs an needed so that signal routing is optimizedbetween the controller and thememory.Characteristic impedance阻抗特征 =50-60ohm single-ended=100-120ohm differentialAll pairs must be routed differentiallyfrom the DDR controller to the endpoint(DIMM ot discrete)Trace width Implementation-specific ———— Differential spacing Implementation-specific Correct differential spacing must bemaintained throughout entire signalroute.Pair-to-pair spacing 20 mils Exceptions may be needed at devicebreakoutGroup spacing(clocks to all other signal) 20 mils Exceptions may be needed at devicebreakout Serpentine isolation spacing Maintain at least 20 milsMCK TO /MCK trace matching Matched to within 20 mils ————Clock pair-to-clock pair matching All clock pairs to a gicen memorybank(DIMM or discete)matched towithin 20 mins————Series damping resistor value Range 15-33 Optimal value and location systemdependent and should be determinedby simulations For point-to-pointconnections.placement is optimal at thesource.For point-to-multipoint,placentat the loads(DIMM connector ordiscrete bank)may prove optimal. Optimal-parallel termination to VTT 25-57ohm +/-1% Considered be an optional item basedon intemal simulation runs andapplication notes pulished by MicronNot recommended ————Use of resistor networks for dampingresistorDifferential termination 100-120ohm Required only for discreteimplementaions.DIMM modules providethe differental termination为了更好的理解表格中的⼀些参数,可以参考上⾯的⽰意图,这在实际的layout中长度匹配中常见,即使⽤蛇形⾛线来满⾜长度匹配,注意蛇形⾛线只起到长度匹配的作⽤,除此之外,蛇形⾛线没有任何好处,并且他在⼀定程度上影响信号质量和EMC。
内存供电(DDR_VCC)
内存供电电路形式:1、稳压源+比较器+开关管(N沟道场管);2、IC+双场管(N)+L(线圈电感);一、稳压源+比较器+开关管(N沟道场管)组成:稳压源(TL431)为R,K相连+R2R3分压+比较器+NMOS(D入S出);闭环电路:IN+、IN‐之一来自前级,另一个来自后级反馈作稳压控制,称之闭环比较;此图工作原理:此种电路结构主要是通过IN+的电压,检测IN‐电压(也就是负载电压)是否一致来控制开关管的导通,最终稳定后级电压大小;工作状态:1、加电后:TL431的R,K相连,产生恒定2.5V,经R2,R3分压得到恒定IN+, IN+等于负载所需,此时NMOS未导通,Vout = IN‐ = 0, IN+大于IN‐ ,OUT升至H,NMOS导通,导通程度随比较器OUT升高而扩大,VOUT升高,升至负载所需时,IN+等于IN‐,OUT不变,NMOS稳定;2、负载开始工作:负载开始耗电,导致Vout电压降低,反馈IN‐随之降低,此时IN+大于IN‐,OUT继续上升,NMOS导通扩大,Vout升高至负载所需时,IN+等于IN‐,输出电压不变,场管稳定;3、负载闲置:负载工作减小,而NMOS瞬间仍保持繁忙时的较大导通状态,导致Vout电压升高,IN‐随之升高,此时IN+小于IN‐ ,比较器OUT端降低,NMOS导通程度降低,Vout电压降至负载所需IN+等于IN‐ ;若比较器的工作电压降至低电平,NMOS截止,仅由C持续供电,Vout快速降低,降至负载所需以下(也就是小于IN+电压),IN+重新大于IN‐ , 比较器OUT重新升高重复1至稳定;总结:R2,R3的阻值确定VOUT,由比较器根据负载状态,调节NMOS进行稳压;注:1、反馈断有接地电阻的,;2、内存供电上的转换变化:① 正常D入S出,做降压; ② 先连开关S入D出,在降压D入S出; ③ 先降压D入S出,在开关S入D出;④先降压,在降压;必须有降压场管D入S出接法;二、重点: IC + 双MOS + L (脉宽调制降压电路PWM电路)自举升压引脚,外围串联升压电容,主要提升芯片内部驱动电路的电压高管(HG)的控制信号(与FB进行比较,调节输出方波的大小,稳定输出(方波既电压输出的形状波形)COMP误差放大引脚,将后级产生的波形放大后与芯片内部产生的基准频率做比较,调节脉宽(脉宽:高电平所占宽度)PH 相位检测,电流反馈,检测高低管工作时产生的电流波形OCSET过电流设置,过流保护脉宽周期固定,高电平所占的比例方波来回切换的电平(图形显示)供电电路工作流程:1、加电,首先为IC供电,由BOOT激励振荡电路工作,并将振荡放大生成UG,反相放大生成LG;2、当UG送出高电平时,高管G极得到高电平导通,供电经小电感、高管送出为后级负载供电,同时为大电感、电容及升压电容进行充电、储能;3、当UG送出低电平,LG送出高电平,此时高管截止,低管导通,由于电感有自感电动势的特性,电感正负极互换,电感经低管接地形成回路,放电为负载供电;(低管导通时升压电容开始放电,经低管接地形成回路,与二极管供电叠加为成一路供电给BOOT引脚,保证UG、LG导通完全,截止干脆;4、经高低管通断及电感的充放电,产生稳定的VOUT为负载提供电,同时经电阻分压反馈至FB,与IC内固有的基准电压作比较:① FB电压低于基准电压,IC调宽脉宽,令UG送出高电平时间延长,高管导通时间延长,L 充电时间延长,放电时间缩短,VOUT电压上升;② FB高于基准电压,IC调窄脉宽,令高管导通时间缩短,放电时间延长,几个周期下来,VOUT电压下降;IC+双MOS管+L 跑线:1、内存供电引脚,测大线圈电感(与之联通的为后级电感);2、找大线圈电感附近两个场管,与之相连的场管引脚为D/S极,S极相连的为高管,D极相连的为低管;3、高管D极连接的小电感前级为供电{3.3/5(VCC、VSB、Dual)},低管S极接地;4、IC的UG、LG分别连接高管、低管的G极;5、确定IC的BOOT引脚,先找与其相连的二极管(如没有则集成在内部了)再找到二极管的供电(3.3/5VCC/VSB),然后找到升压电容(与PH脚经升压电容相连);6、确定IC的VCC电压来源(有可能与BOOT的二极管供电来自同一路);7、大电感后级经电阻串联分压至FB引脚(两个电阻其中一个接地);8、COMP与FB经耦合电容相连;简:1、确定大电感与之相连的场管S/D2、确定高管D极相连小电感找到供电来源,低管S接地3、高低管G及连接IC“UG、LG”4、找到BOOT连接的二极管和升压电容5、找到IC供电来源6、找到与FB反馈相连的电阻及连接电感(找到COMP连接FB的线路)内存供电总结:1、内存类型、供电/上拉引脚的识别;2、内存的管理IC;3、供电形式;4、稳压源+比较器+开关管,电路图、原理、变化;5、IC+双MOS+L(PWM脉宽调制降压电路),电路图、原理;6、上拉电压测量点,RT91733B引脚定义;。
ddr电路原理
ddr电路原理小伙伴们!今天咱们来唠唠DDR电路原理,这可超级有趣呢!DDR,也就是双倍数据率(Double Data Rate)啦。
想象一下,就像是一个超级快递员,能在同样的时间里送两倍的包裹。
DDR内存呢,在计算机的世界里可是个大忙人。
咱先从最基础的结构说起。
DDR电路里有好多小单元,就像一个个小房间。
这些小房间是用来存储数据的,每个小房间都有自己的地址,就像每个房子都有个门牌号一样。
当计算机想要找某个数据的时候,就像你去朋友家,按照门牌号就能找到对应的小房间啦。
那数据是怎么在这个DDR电路里跑来跑去的呢?这就涉及到时钟信号啦。
时钟信号就像是一个指挥官,在那喊着“一二一,一二一”。
DDR内存呢,特别聪明,它能在时钟信号的上升沿和下降沿都进行数据的传输。
普通的内存就只能在上升沿或者下降沿其中一个传输数据,DDR就像是开了双倍速的小跑车,蹭蹭地就把数据传得更快啦。
再说说这个数据的存储方式。
它是通过电容来存储的哦。
电容这个小家伙很神奇,它可以充电和放电。
当电容充电的时候,就代表存储了一个“1”,放电的时候呢,就代表“0”。
但是电容也有小脾气,它不能长时间保持电荷,就像你不能让气球一直鼓着气一样。
所以呢,DDR电路还得时不时地给电容充电,这个过程就叫做刷新。
要是不刷新呀,数据可就丢啦,那计算机就会变得晕头转向,不知道该干啥了。
还有这个预取技术呢。
这就像是提前准备好货物一样。
DDR会提前把一些数据准备好,放在一个小缓冲区里。
当计算机需要这些数据的时候,就可以马上拿到,不用再去小房间里慢慢找啦。
这预取技术就大大提高了数据的读取速度。
在DDR电路里,还有好多小线路,就像小血管一样。
这些线路把各个小单元连接起来,让数据能够在它们之间自由穿梭。
而且这些线路的设计也很有讲究呢,要保证数据传输的准确性,就像你在马路上开车,得有清晰的车道线一样。
DDR电路和CPU的配合也超级重要。
它们就像一对好搭档,一个负责生产数据,一个负责存储和快速提供数据。
第十三节 内存供电和桥供电
第十三节内存供电和桥供电
一:内存供电
内存供电主要提供内存颗粒所需要的主供电和内存槽到北桥数据线的上拉电压。
注:上拉电压用于提升内存数据线信号的强度。
(1)SD:3.3V一般是由调压供电方式提供,或有3.3V通过二极管提供,个别有3.3V直接提供。
DDR:多有调压供电方式提供
DDR2:多有开关供电方式提供。
DDR3:由开关供电方式提供
DDR的1.25V和DDR2的0.9V上拉电压,多有:
RT9173,W83310,1250M,RT9173B。
这些稳压器把2.5 V 和1.8V变为1.25V和0.9V后提供。
(2)内存电压检测点
正面
DDR3直接在电感上测。
二:桥供电
(1)桥芯片的工作电压和桥芯片的型号有关不同型号的
桥芯片工作电压也不同。
如:845/865的主板芯片组
供电为1.8V,915以上得为1.5V。
(2)桥供电同样有调压供电方式或开关供电方式提供。
(3)开关供电电路中常用到的电源管理芯片RT9202,RT9214。
1:BOOT:电压自举。
2:UGATE:高端门输出
3:GND:接地
4:LGATE:低端门输入
5:VCC:供电
6:FB:电压反馈。
7:OUSET(OPS)经过电流设置脚。
8:PHASE:用来侦测香味的高低变化过程,防止UGATE 没有关闭时,LGATE导通。
附图:。
主板维修_内存供电电路
区分上下管: 1.下管S极接地。 2.上管S极和下管D极相连。 3.上管D极和电源相通。 4.上下管G极都连接到芯片。
知识回顾 Knowledge Review
内存供电
主板中常见的内存插槽有DDR1,DDR2和DDR3.不同的内存所需要的 工作电压也不同,一般DDR1内存需要2.5V,DDR2需要1.8V,DDR3需 要1.5V。一般在内存槽旁边设计了专门的供电电路为内存供电。
主供电
VTT电压
DDR:2.5V
1.25V
DDR2:1.8V
0.9V
DDR3: 1.5V
内存供电电路的组成
内存供电电路主要有三端稳压管,场效应管(上下管),电感,电 容,电源管理芯片,上拉排阻或电阻,上拉芯片等。
DDR2内存供电
引脚定义
1.BOOT:启动脚,UGATE的动力来源,自举升压端。 2.UGATE:上管驱动。 3.GND:地脚。 4.LGATE:下管驱动。 5.VCC:供电端,LGATE的动力来源。 6.FB:电压反馈端,与内部0.8V基准电压比较。 7.OCSET:过流设定,高电平开启。一般OCSET会连接到一个开关作 用的三极管的C极或场管的D极。如果7脚被三极管拉低了,芯片将 会停止工作。 8.PHASE:相位脚,上管导通的回路。检测上管的导通压降,防止 过流。
采用12V和5V供电的RT9202的工作原理
1:5V给5脚供电,5V给上管供电,12V经过R4给1脚供电,5V经过R1 给7脚供电。 2:2脚UGATE驱动上管导通。 3:上管给电感L2和电容C3充电。 4:当L2和C3成的储能电路电压经过R2和R3分压反馈给FB电压超过 0.8V时,RT9202关闭上管打开下管。 5:下管导通构成储能电路的放电回路,当电路经过分压后反馈给 FB的电压低于0.8V时,RT9202控制关闭下管打开上管,继续供电。 6:2-5循环。 注1:当Q1的G极得到高电平SHND信号后,7脚被拉低,整个芯片停 止工作。 注2:PHASE的作用防止上下管同时打开引起短路。 注3:R2,R3阻值变化会导致输出电压变高或变低,但PWM波形正常。
内存供电电路工作原理
无复位先测量主板各个供电是否正常,包括内存供电、桥供电、总线供电和CPU 供电。
测量内存电压1.8V正常。
电脑主板内存供电电路分析内存供电电路工作原理SDRAM内存使用3.3V供电,DDR内存使用2.5V供电。
使用SDRAM内存的主板,常见的都是直接由ATX电源供电,只有少数高档主板上才采用独立供电。
如图5-1所示,用万用表测量电源插座的第1脚与SDRAM内存插槽3.3V电源输入脚,它们之间是直通的。
而使用DDR内存的主板,都设计有独立的内存供电电路。
内存供电电路工作原理内存供电电路人多采用集成运算放大器驱动场效应管的方式,其供电原理如图5-2所示,内存供电实际电路如图5-3所示。
图5-2内存供电电路的原理是这样的:从A点取得2.5V的基准电压进入到运算放大器的同相输入端IN+,运算放大器将IN+与IN-的电压相比较,如果IN+的电压大于IN-的电压,那么OUT的电压上升,OUT的电压上升使得Q1场效应管进一步导通,漏极(D)与源极(S)之间的管压降下降,使得B点的电压上升。
通过反馈,IN-的电压也上升,直到IN +=IN-,也就是IN+=B 。
这个过程可以简单地描述为:(IN+>IN-)→(OUT ↑)→(DS ↓)→(B ↑)→(IN-↑),直到IN+=IN-。
同理,当IN+<IN-时,它的稳压过程是这样的:(IN+<IN-)→(OUT↓)→(DS↑)→(B↓)→(IN-↓),直到IN+=IN-。
这个电路通过反馈比较,间接地控制B点的电压与基准电压相等,因此有时也称运算放大器为比较放大器。
要使B点的电压稳定,必须保证A点的电压稳定,也就是要求基准电压要稳定。
在图5-2的电路中,根据串联电路分压的原理,电阻两端的电压与其阻值的大小成正比,可以算出A点对地的电压为:3.3V×(3.24K/(IK+3.24K》≈2.5V这是使用最简单的串联分压方法取得2.5V的基准电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DDR内存供电电路
DDR内存需要两种供电电压:2.5V的主供电压和1.25的基准供电电压(又称参考电压).2.5V 供电电压用来为内存芯片提供工作电压,1.25V供电电压用来为内存总线的数据线和地址线提供上拉工作电压.DDR内存供电电路主要有下面几种形式.
1\单场效应管60N03+基准电压源LM431(可以用XX431代换)+比较器LM358构成的2.5V供电电路.
2\单场效应管Q110+基准电压源Q31(SC431\SOT-23)构成的2.5V供电电路
3\专用芯片(ISL6520\RT9214)构成的2.5V内存供电电路
4\双场效应管Q71(15N03)和Q70(15N03)+比较器U42A(LM358)和U42B(LM358)构成的1.25V供电电路
5\双三极管Q4(HA8050D-D)\Q5(HA8550D-D)+比较器构成的1.25V供电电路
6\多端稳压器(RT9173或RT9173B)构成的1.25V供电电中路
7\专用芯片LP2995构成的1.25V供电电路
8\专用芯片ISL6537构成的混合型内存供电电路
DDR2内存需要两种供电电压:1.8V的主供电电压和0.9V的基准电电压(又称参考电压),1.8V 供电电压来为内存芯片提供工作电压,0.9V供电电压用来为内存总线的数据线和地址线提供上拉工作电压.
常用DDR2内存供电芯片有NCP5201\ISL6537等型号。