自动控制原理习题和解答第三章
自动控制原理第三章课后习题答案
⾃动控制原理第三章课后习题答案3-1 设系统的微分⽅程式如下:(1) )(2)(2.0t r t c =&(2) )()()(24.0)(04.0t r t c t c t c =++&&&试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1)因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,⽤其测量容器内的⽔温,1min 才能显⽰出该温度的98%的数值。
若加热容器使⽔温按10oC/min 的速度匀速上升,问温度计的稳态指⽰误差有多⼤?解法⼀依题意,温度计闭环传递函数11)(+=ΦTs s 由⼀阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ===11v TK ⽤静态误差系数法,当t t r ?=10)( 时,C T Ke ss ?===5.21010。
自动控制原理第三章课后习题答案
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
自动控制原理第三章习题解答
tp =
1−ξ 2
= e −π 0.6 /
1−0.62
= e −π 0.6 /
1−0.62
= 9 .5 %
π
1 − ξ ωn
2
=
π
1.6
= 1.96( s )
ts =
3-5
3.5
ξω n
=
3.5 = 2.92( s ) 1.2
设单位反馈系统的开环传递函数为
G ( s) =
0.4 s + 1 s ( s + 0.6)
s5 s4 s3 s2 s1 s0
1 12 35 3 20 25 16 80 3 3 5 25 10 25
有一对虚根,系统不稳定 3-13 已知单位反馈系统的开环传递函数
G ( s) =
K (0.5s + 1) s ( s + 1)(0.5s 2 + s + 1)
试确定系统稳定时的 K 值范围。 解:系统特征方程为
ε 0 ,试问 k1 应满足什么条件?
见习题 3-20 解答 3-2 设系统的微分方程式如下: (1)
&(t ) = 2r (t ) 0.2c
&&(t ) + 0.24c &(t ) + c(t ) = r (t ) (2) 0.04c
试求系统的单位脉冲响应 k(t)和单位阶跃响应 h(t)。已知全部初始条件为零。 解: (1) 因为 0.2 sC ( s ) = 2 R ( s ) 单位脉冲响应: C ( s ) = 10 / s 单位阶跃响应 h(t)
试求系统的超调量σ%、峰值时间tp 和调节时间ts。 解: h(t ) = 1 −
自动控制原理课后习题答案,第三章(西科技大学)
c(t ) 1
1
e
n t
1
2
sin(d t )(t 0)
1.6,
1 2
1.25,n 1.2 1.6 1.25 2, 0.6
n
d
1 2
s% e
1 2
tp 1.96s d
10 K 斜坡输入时: K v lim sG ( s ) s 0 10 1 ess 1 Kv 0.25 得:10 1 2.5K 稳态误差:
与二阶系统的典型形式对比,有
10 1 2n 10K
得:K=1.6,= 0.3,n=4
闭环传递函数为
(2)
则辅助方程的解为
s1.2 1
s3.4 5 j
劳斯表第一列出现了负数,系统不稳定。第一列元素符号变 化一次,可知系统存在一个s右半平面的特征根。系统有一 共轭纯虚根±5 j。
K (0.5s 1) 3-11 已知单位反馈系统的开环传函为G ( s) 2 s(s 1)(0.5s s 1) 试确定系统稳定时的K值范围。
系统稳定的 K 范围为 0 < K < 1.708。
100 3-15 已知单位反馈系统的开环传递函数 G பைடு நூலகம் s ) s ( s 10) 试求:
(1) 位置误差系数Kp,速度误差系数Kv和加速度误差系数Ka; (2) 当参考输入 r(t) = 1+ t + at2 时,系统的稳态误差。
解:(1)
-50
48
0 0 0 8 96 8 48 2 96 8 ( 50 ) 2 0 2 24 50 s 8 8 0 s1 24 96 8 ( 50 ) 112 .7 24 0 s -50
自动控制原理第3章习题解答
(2) k (t ) = 5t + 10 sin( 4t + 45 )
0
(3) k (t ) = 0.1(1 − e 解: (1) Φ ( s ) =
−t / 3
)
0.0125 s + 1.25
1
胡寿松自动控制原理习题解答第三章
(2) k (t ) = 5t + 10 sin 4t cos 45 + 10 cos 4t sin 45
3s 4 + 10s 3 + 5s 2 + s + 2 = 0
试用劳思稳定判据和赫尔维茨判据确定系统的稳定性。 解: 列劳思表如下:
s4 s3 s2 s1 s0
3 5 2 10 1 47 2 10 1530 0 − 47 2
由劳思表可以得到该系统不稳定。 3-12 已知系统特征方程如下,试求系统在 s 右半平面的根数及虚根值。 (1)
2ξω n = 70
ξ=
7 2 6
根据(3-17)
h(t ) = 1 +
e − t / T1 e − t / T12 + T2 / T1 − 1 T1 / T2 − 1
解:根据公式(3-17)
3
胡寿松自动控制原理习题解答第三章
《自动控制原理》习题及解答03
t1
T[ln(
T
T
)
ln
0.9]
则
tr
t2
t1
T
ln
0.9 0.1
2.2T
3) 求 ts
h(ts )
0.95
1
T T
e ts
/T
ts
T[ln
T T
ln 0.05]
T[ln
T T
ln 20]
T[3
ln
T T
]
3-3 一阶系统结构图如题 3-3 图所示。要求系统闭环增益 K 2 ,调节时间 ts 0.4 (s),试确定参数 K1, K 2 的值。
3-15 虚根。
h() lim s (s) 1 2.5
s0
s
已知系统的特征方程,试判别系统的稳定性,并确定在右半 s 平面根的个数及纯
4 1 )(s
1)
T1
T2
T1
T2
1 0.25
C(s) (s)R(s)
4
= C0 C1 C2
s(s 1)(s 4) s s 1 s 4
C0
lim s (s) R(s)
s0
lim
4
s0 (s 1)(s
4)
1
C1
lim (s
s1
1) (s)
R(s)
lim
s0
4 s(s
4)
4 3
考虑初始条件,对微分方程进行拉氏变换
s 2C(s) s c(0) c(0) 5 s C(s) c(0) 62.5C(s) 0 整理得 s 2 5s 62.5 C(s) s 5c(0) c(0)
对单位反馈系统有 e(t) r(t) c(t) , 所以
自动控制原理第3章 习题及解析
自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。
考察一阶系统未知参数对系统动态响应的影响。
解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。
3-2 设用11Ts +描述温度计特性。
现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。
如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。
考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。
由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。
解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。
自动控制原理第三章习题参考答案
Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12
自动控制原理习题及其解答第三章
第三章例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
自动控制原理参考答案-第3章
×100% = 35%
⇒ ξ = 0.32 ,又 t p =
π
ωn 1 − ξ 2 2 ⇒ K = ωn = 1.96 ; a = 2ξωn = 0.896
= 2.36 ⇒ ωn = 1.4 ;
题 3-5:某速度给定控制系统的动态结构图如题 3-5 图所示。在给定输入量为
r(t) = 10v 直流电压时要求期望的转速输出量为 c(t) = 1000r / min 。试问:稳态反馈
π ωn 1 − ξ
3
2
=
2 3 π = 0.73 ; 15
(∆ = 0.05) 或 ts = 4
ξωn
= 1.2
ξωn
= 1.6
(∆ = 0.02)
题 3-3: 题 3-3 图所示为一位置随动控制系统的动态结构图,输出量为电动机拖
动对象的旋转角度。将速度量反馈回输入端比较环节后构成负反馈内环,速度反 馈系数为τ。试计算:
胡尔维茨行列式 D = 0 5 0 1
10 0 6
0 − 10 10
0 0 0
D2 = 30 D3 = −300 D4 = −1800
0 0 5 0 − 10 D5 = 18000 胡尔维茨行列式非正定,系统不稳定. 题 3-7:已知三个控制系统的特征方程式如下,试应用劳斯稳定判据判定系统 的稳定性;对不稳定的系统要求指出不稳定的极点数;对存在不稳定虚根的要求
4 37
12 K − 40 100 K 70 K − 100
164 K − 1080 100 K 劳斯表: 37 11480 K 2 − 228900 K + 108000 1 s 164 K − 1080 0 s 100 K 若系统稳定则: 164 K − 1080 ⎧ >0 ⎪ 37 ⎪ 2 ⎪11480 K − 228900 K + 108000 >0 ⎨ 164 K − 1080 ⎪ 100 K > 0 ⎪ ⎪ ⎩ ⇒ k > 19.46 题 3-10:已知单位负反馈控制系统的开环传递函数为
自动控制理论第三章习题答案
解:系统开环传递函数
图 3-42
飞行控制系统
25K1
G0 (s)
=
1+
s(s + 0.8)
25K1 s(s + 0.8)
Kt
s
=
s(s
+
25K1 0.8) + 25K1Kt s
=
25K1
=
ω
2 n
s(s + 0.8 + 25K1Kt ) s(s + 2ξωn )
ω
2 n
=
36
=
25K1
K1
=
36 25
1
s(s + 1) + 10τ 2s
= 10(1 + τ1s) = 10 =
ω
2 n
s(s + 1) + 10τ 2s s(s + 2) s(s + 2ξωn )
s(s + 1)
ω
2 n
= 10
ωn = 10
2ξωn = 2
ξ= 1 10
σ % = e−ξπ / 1−ξ 2 = 35.1%
5
胡寿松自动控制原理习题解答第三章
单位脉冲响应: C(s) = 10 / s k(t) = 10 t ≥ 0
单位阶跃响应 h(t) C(s) = 10 / s2 h(t) = 10t t ≥ 0
(2) (0.04s2 + 0.24s + 1)C(s) = R(s)
单位脉冲响应: C(s)
=
0.04 s 2
1 + 0.24s
+1
C (s)
(1) s5 + 3s 4 + 12s3 + 24s 2 + 32s + 48 = 0 (2) s 6 + 4s5 − 4s 4 + 4s3 - 7s 2 - 8s + 10 = 0
自动控制原理第三章课后习题 答案(最新)
3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c =&(2) )()()(24.0)(04.0t r t c t c t c =++&&&试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC = 闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
自动控制原理 第3章习题解答
1−ζ 2 = π
ζ
3
2π
tr
=
π −β ωd
=
3 3
=
23 9
π
;t p
=π ωd
=
π 3
=
3π 3
−ζ π
M p = e 1−ζ 2 ×100% = 16.3% ;
t
5% s
=3 ζω n
=
3s,
t
2% s
=4 ζω n
= 4s
3-6 系统结构图如题 3-6 图所示,试求当τ = 0 时,
系统的ζ 和ωn 之值,如要求ζ =0.7,试确定参数τ 。
s2
0.8
1+ K
s1 0.8(2 + K ) − (1 + K ) 0
0.8
s0 1+ K
Q 系统临界稳定
∴ 0.8(2 + K ) − (1 + K ) = 0
即K = 3 即系统的临界增益K = 3
由s 2行构成辅助多项式:0.8s 2 + (1 + K ) = 0
即0.8s 2 + 4 = 0 ∴ s1,2 = ± j 5 = ± j2.24 ∴系统的振荡频率为ωn = 2.24rad / s
= 150.5°
h(t) = 1 − 0.06e−5.76t + 1.07e−0.37t cos(1.27t + 150.5°)
3-4
已知根据主导极点 s1,2 确定的调整时间为 10.82s,考察这一时刻系统单位阶跃响应中
的指数项值 − 0.06e−5.76t |t=10.82 = −5.15 ×10−29 ,可见指数项值在 ts = 10.82 时已经衰减到 微不足道的程度。事实上,在峰值时间 t p = 2.48s ,指数项的值为 − 3.7 ×10−8 ,可见对
自控原理习题解答第三章
Y(s)
3 2(1)k 4; a 6 Y(s) 4 3 2 2 ; n 4, n 2;2 n 6, 1.5 1 X(s) s 6s 1 2 由s 2 6s 1 0,得s1 5.24, s 2 0.76 Y(s) 4 1 4 A B C s 2 6s 1 s s(s 5.24)(s 0.76) s s 5.24 s 0.76
自控原理习题解答(第三章)
3-1 已知二阶系统的传递函数为
n 2 G (s) 2 2 s 2 n s n
1
jω
随着参数ζ 、ω n的 变化,其一对极点 在s平面上有如图335所示的6种布,若 系统输入单位阶跃 号,试画出与这6对 极点相对应的输出 动态响应曲线的形 状和特征。
X(s)
Kp -
0.037 s(30s 1)
Y(s)
[答3 4] 0.037 Kp 0.037K Y(s) s(30s 1) p 30 0.037Kp 1 0.037 X(s) 30s2 s 0.037Kp 2 s s Kp 1 30 30 s(30s 1) 0.037 1 2 n K p rad/s,2 n , 0.90, 则 0.34(查图3 16) 30 30 n 0.048, K p 1.89 tp 0.037Kp
n
6s; 0.02 : t s
n
• [答3-3(3)] • 比较(1)和(2)性能指标得知:增加比 例反馈的作用后,使超调量大大减小,调 整时间大大减小,上升时间和峰值时间有 所增加,控制质量有所提高。
• 3-4设锅炉汽包水位的简单控制系统如图338所示,系统采用比例控制器。为使系统 的阶跃响应衰减率为ψ =0.90,试求控制器 的比例增益Kp,并按求得的Kp值计算系统 的峰值时间、调整时间和超调量。
自动控制原理考试试题第三章习题及答案
第三章 线性系统的时域分析与校正练习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ∙∙+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(=当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; T t T T d -⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt e TT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt e TT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s e TT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
自动控制原理(邹伯敏)第三章答案
自动控制理论第三章作业答案题3-4解:系统的闭环传递函数为2()()1()1()1C s G s R s G s s s ==+++ 由二阶系统的标准形式可以得到11, 2n ωζ==因此,上升时间 2.418r dd t s ππβωω--===峰值时间 3.6276p d t s πω=== 调整时间:35% 642% 8s n s n t s t s ωζωζ∆=≈=∆=≈=超调量:100%16.3%p M e =⨯=题3-5解:22()10()(51)10102510.60.5589n n n C s R s s a s a a ωωζωζ=+++⎧=⎧=⎪⎪⇒⇒⎨⎨=+==⎪⎩⎪⎩⇒=闭环传递函数1.242100%9.45%pdpt sM eπω====⨯=35% 1.58142% 2.108snsnt st sωζωζ∆=≈=∆=≈=题3-7解:0.11.31100%30%1pdptM eπω===-=⨯==上升时间超调量=0.357933.64nζω⎧⇒⎨=⎩221131.9()(2)24.08nnG ss s s sωζω==++开环传递函数题3-8(1)2100()(824)G ss s s=++解:闭环传递函数为2()100()(824)100C sR s s s s=+++特征方程为328241000s s s+++=列出劳斯表:3212408100011.50100ssss第一列都是正数,所以系统稳定(2)10(1)()(1)(5)sG ss s s+=-+解:闭环传递函数()10(1)()(1)(5)10(1)C s s R s s s s s +=-+++ 特征方程为3255100s s s +++=列出劳斯表:32015041002.5010s s ss 第一列都是正数,所以系统稳定 (3)10()(1)(23)G s s s s =-+ 解:闭环传递函数()10()(1)(23)10C s R s s s s =-++ 特征方程为3223100s s s +-+=列出劳斯表:3210230110023010s s ss --劳斯表第一列的数符号变了2次,因此在s 平面的右半部分有两个特征根,系统不稳定。
自动控制原理第三章课后习题答案解析(最新)
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
系统模型为22223)(nn ns s s ωξωωφ++=然后由响应的%p M 、p t 及相应公式,即可换算出ξ、n ω。
%33334)()()(%=-=∞∞-=c c t c M p p1.0=p t (s )1+Ts Kbs4 30 0.1 t图3-34 二阶控制系统的单位阶跃响应 h (t )由公式得%33%21/==--ξπξe M p1.012=-=ξωπn p t换算求解得: 33.0=ξ、 2.33=n ω解毕。
例3-13 设系统如图3-35所示。
如果要求系统的超调量等于%15,峰值时间等于0.8s ,试确定增益K 1和速度反馈系数K t 。
同时,确定在此K 1和K t 数值下系统的延迟时间、上升时间和调节时间。
解 由图示得闭环特征方程为0)1(112=+++K s K K s t即21n K ω=,nnt t K ωωξ212+=由已知条件8.0115.0%21/2=-===--tn p p t e M t t ξωπξπξ解得1588.4,517.0-==s n t ωξ于是05.211=K 178.0211==-K K nt t ωξs t nt t d 297.02.06.012=++=ωξξR (C (图3-35)1(1+s s K1+Ks t tn t tn r 538.01arccos 122=--=--=ξωξπξωβπs t nt s 476.15.3==ωξ解毕。
例3-14 设控制系统如图3-36所示。
试设计反馈通道传递函数H (s ),使系统阻尼比提高到希望的ξ1值,但保持增益K 及自然频率ωn 不变。
解 由图得闭环传递函数)(2)(2222s H K s s K s n n n n ωωξωωφ+++=在题意要求下,应取 s K s H t =)( 此时,闭环特征方程为:0)2(22=+++n n n t s KK s ωωωξ令: 122ξωξ=+n t KK ,解出,n t K K ωξξ/)(21-=故反馈通道传递函数为:nK ss H ωξξ)(2)(1-=解毕。
例3-15 系统特征方程为020510203023456=+++++s s s s s试判断系统的稳定性。
解 特征式各项系数均大于零,是保证系统稳定的必要条件。
上述方程中s 一次项的系数为零,故系统肯定不稳定。
解毕。
例3-16 已知系统特征方程式为R (C (图3-36例3-14 控制系统结构图H (s )2222nn n s s K ωξωω++0516188234=++++s s s s试用劳斯判据判断系统的稳定情况。
解 劳斯表为4s 1 1853s 8 162s168161188=⨯-⨯ 580158=⨯-⨯1s 5.1316581616=⨯-⨯ 00s 55.1301655.13=⨯-⨯由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。
解毕。
例3-17 已知系统特征方程为053222345=+++++s s s s s试判断系统稳定性。
解 本例是应用劳斯判据判断系统稳定性的一种特殊情况。
如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。
劳斯行列式为5s 1 2 3 4s 1 2 5 3s 0≈ε 2-2sεε22+ 51s 225442+---εεε0s 5由劳斯行列表可见,第三行第一列系数为零,可用一个很小的正数ε来代替;第四行第一列系数为(2ε+2/ε,当ε趋于零时为正数;第五行第一列系数为(-4ε-4-5ε2)/(2ε+2),当ε趋于零时为2-。
由于第一列变号两次,故有两个根在右半s 平面,所以系统是不稳定的。
解毕。
例3-18 已知系统特征方程为0161620128223456=++++++s s s s s s试求:(1)在s 右半平面的根的个数;(2)虚根。
解 如果劳斯行列表中某一行所有系数都等于零,则表明在根平面内存在对原点对称的实根,共轭虚根或(和)共轭复数根。
此时,可利用上一行的系数构成辅助多项式,并对辅助多项式求导,将导数的系数构成新行,以代替全部为零的一行,继续计算劳斯行列表。
对原点对称的根可由辅助方程(令辅助多项式等于零)求得。
劳斯行列表为6s 1 8 20 16 5s 2 12 16 4s 2 12 16 3s 0 0由于3s 行中各项系数全为零,于是可利用4s 行中的系数构成辅助多项式,即16122)(24++=s s s P求辅助多项式对s 的导数,得s s ss dP 248)(3+= 原劳斯行列表中s 3行各项,用上述方程式的系数,即8和24代替。
此时,劳斯行列表变为6s 1 8 20 5s 2 12 164s 2 12 16 3s 8 24 2s 6 16 1s 2.670s 16新劳斯行列表中第一列没有变号,所以没有根在右半平面。
对原点对称的根可解辅助方程求得。
令01612224=++s s得到2j s ±=和2j s ±=解毕。
例3-19 单位反馈控制系统的开环传递函数为)1)(1()(2+++=cs bs as s Ks G 试求: (1)位置误差系数,速度误差系数和加速度误差系数;(2)当参考输入为)(1t r ⨯,)(1t rt ⨯和)(12t rt ⨯时系统的稳态误差。
解 根据误差系数公式,有位置误差系数为∞=+++==→→)1)(1(lim)(lim 2cs bs as s Ks G K s s p 速度误差系数为Kcs bs as s Ks s sG K s s v =+++⋅==→→)1)(1(lim )(lim 20加速度误差系数为0)1)(1(lim )(lim 22020=+++⋅==→→cs bs as s Ks s G s K s s a对应于不同的参考输入信号,系统的稳态误差有所不同。
参考输入为)(1t r ⨯,即阶跃函数输入时系统的稳态误差为011=∞+=+=rK r e p ss参考输入为)(1t rt ⨯,即斜坡函数输入时系统的稳态误差为Kr K r e v ss ==参考输入为)(12t rt ⨯,即抛物线函数输入时系统的稳态误差为∞===22r K r e a ss 解毕。
例3-20 单位反馈控制系统的开环传递函数为)1)(1(10)(21s T s T s s G ++=输入信号为r (t )=A+ωt ,A 为常量,ω=0.5弧度/秒。
试求系统的稳态误差。
解 实际系统的输入信号,往往是阶跃函数、斜坡函数和抛物线函数等典型信号的组合。
此时,输入信号的一般形式可表示为221021)(t r t r r t r ++=系统的稳态误差,可应用叠加原理求出,即系统的稳态误差是各部分输入所引起的误差的总和。
所以,系统的稳态误差可按下式计算:av p ss K rK r K r e 2101+++=对于本例,系统的稳态误差为vp ss K K A e ω++=1本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以∞=p K10)1)(1(10lim )(lim 210=++⋅==→→s T s T s s s sG K s s v系统的稳态误差为05.0105.0101011===+∞+=++=ωωωA K K A e v p ss解毕。
例3-21 控制系统的结构图如图3-37所示。
假设输入信号为r (t )=at (a 为任意常数)。
证明:通过适当地调节K i 的值,该系统对斜坡输入的响应的稳态误差能达到零。
解 系统的闭环传递函数为KTs s s K K s R s C i +++=)1()1()()( 即)()1()(2s R Ks Ts s K K s C i ⋅+++=因此)()()(22s R K s Ts s KK s Ts s C s R i ⋅⎥⎦⎤⎢⎣⎡++-+=- 当输入信号为r (t )=at 时,系统的稳态误差为K KK a Ks Ts KK Ts a K s Ts KK Ts a s a K s Ts s KK s Ts s e i i s i s i s ss )1()]1([lim )1(lim lim 20202220-=++-+=++-+=⋅⎥⎦⎤⎢⎣⎡++-+=→→→要使系统对斜坡输入的响应的稳态误差为零,即e ss =0,必须满足01=-i KK所以K K i /1=解毕。
例3-22 设单位负反馈系统开环传递函数为1)(+=Ts K K s G g p。
如果要求系统的位置稳态误差e ss =0,单位阶跃响应的超调量M p %=4.3%,试问K p 、K g 、T ,各参数之间应保持什么关系?解 开环传递函数R (C (图3-37 例3-21控制系统的结构图K i s)1(+Ts s K)2()1(/)1()(2n ng p gp s s Ts s T K K Ts s K K s G ξωω+=+=+=显然TK K gp n =2ω Tn 12=ξω 解得:24/1ξ=T K K g p由于要求%3.4%100%21/≤⨯=--ξξe M p故应有ξ ≥0.707。