盒形件拉深模设计
盒形件拉深模具设计内容知道
目录题目盒型件拉深模设计 (2)前言 (2)第一章审图 (5)第二章拉深工艺性分析 (6)2.1对拉深件形状尺寸的要求 (6)2.2拉深件圆角半径的要求 (6)2.3 形拉深件壁间圆角半径rpy (7)2.4 拉深件的精度等级要求不宜过高 (7)2.5 拉深件的材料 (7)2.6 拉深件工序安排的一般原则 (8)第三章拉深工艺方案的制定 (8)第四章毛坯尺寸的计算 (9)4.1 修边余量 (9)4.2毛坯尺寸 (9)第五章拉深次数确定 (10)第六章冲压力及压力中心计算 (11)6.1 冲压力计算 (11)6.2 压力中心计算 (12)第七章冲压设备选择 (12)第八章凸凹模结构设计 (13)8.1凸模圆角半径 (13)8.2 凸凹模间隙 (13)8.3 凸凹模尺寸及公差 (14)第九章总体结构设计 (14)9.1 模架的选取 (14)9.2 模柄 (15)9.3拉深凸模的通气孔尺寸 (15)9.4导柱和导套 (16)9.5 推杆 (17)9.6卸料螺钉 (17)9.7螺钉和销钉 (17)第十章拉深模装配图绘制和校核 (18)10.1拉深模装配图绘制 (18)10.2 拉深模装配图的校核 (20)第十一章非标准件零件图绘制 (21)11.1冲压凸模 (21)11.2 冲压凹模 (22)11.3 压边圈 (22)11.4 凸模垫板 (23)第十二章结论 (24)参考文献 (25)题目盒型件拉深模设计其目的在于巩固所学知识,熟悉有关资料,树立正确的设计思想,掌握设计方法,培养学生的实际工作能力。
通过模具结构设计,学生在工艺性分析、工艺方案论证、工艺计算、模具零件结构设计、编写技术文件和查阅文献方面受到一次综合训练,增强学生的实际工作能力前言从几何形状特点看,矩形盒状零件可划分成2 个长度为(A-2r) 和2 个长度为(B-2r) 的直边加上4 个半径为r 的1/4 圆筒部分(图4.4.1) 。
若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲。
(工艺技术)拉深盒型件拉深工艺
盒形件盒形件属于非旋转体零件,包括方形盒、矩形盒和椭圆形盒等。
与旋转体零件的拉深相比,盒形件拉深时,毛坯的变形分布要复杂得多。
盒形件拉深变形特点从几何形状的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分组成(图4.4.1)。
若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于弯曲。
但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深复合,有其特有的变形特点,这可通过网格试验进行验证。
图4.4.1 盒形件拉深变形特点拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。
变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图4.4.1所示) 。
这些变化主要表现在:⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中间部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。
纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大,愈靠近盒形件口部增大愈多,即△h1<△h1′<△h2′<△h3′。
可见,此处的变形不同于纯粹的弯曲。
(2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。
同心圆弧的间距不再相等,而是变大,越向口部越大,且同心圆弧不位于同一水平面内。
因此该处的变形不同于纯粹的拉深。
从以上可知,由于有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r相同,高度h相等的圆筒形件比较起来要小。
同时表明圆角部分的变形也是不均匀的,即圆角中心大,相邻直边处变形小。
盒形件拉深模设计
《冲压工艺与模具设计》课程设计说明书设计题目盒形件首次拉深模设计系别机械工程系专业班级机自Y091学生姓名学号200900103017指导教师日期2012年6月目录设计任务零件工艺分析1.材料分析2.结构分析3.精度分析工艺方案的确定零件工艺计算1.拉伸工艺计算(1)确定零件修边余量(2)确定坯料尺寸(3)判断是否采用压边圈(4)确定拉深次数(5)确定各工序件尺寸(6)确定各工序件高度2.首次拉伸模工艺计算(1)首次拉深凸、凹模尺寸计算(2)拉伸力与压边力冲压设备的选用模具零部件结构的确定1.模架的确定2.模座3.凸模固定板4.模柄5.定位圈6.压边圈及卸料装置7.设置反顶装置8.螺钉与销钉拉深模装配图凸凹模零件图设计感想设计任务电器盒技术要求:未标注公差按IT14级精度制造材料为黄铜H62,t = 0.5mm设计任务:设计该零件的首次拉伸模具零件工艺性分析1.材料分析黄铜有很好塑形,拉深成形性能良好,易于冷热压力加工成型2. 结构分析零件为一无凸缘盒形件,结构简单,底部圆角半径为R1.5,壁间圆角半径也为R1.5,由最终拉伸凸模保证,材料厚度t=0.5,较薄,所以,零件具有良好的结构工艺性。
3. 精度分析盒形件外形尺寸公差为IT12级,由最后一道拉伸工序保证,侧壁孔中心距尺寸与定位尺寸公差也为IT12级,由冲孔工序保证工艺方案的确定零件的生产包括落料、拉深(需计算确定拉深次数)、冲孔,切边等工序,为了提高生产效率,可以考虑工序的复合,在此为简化模具设计不考虑工序复合。
毛坯落料后,经多次拉深成形,由机械加工方法切边保证零件高度,最后对盒形件进行冲孔。
零件工艺计算1.拉深工艺计算(1)确定零件修边余量 零件的相对高度23.12227==B H ,查表5-2(167)得修边余量mm h 5.2=∆,所以,修正后拉深件的总高应为H =27+2.5=29.5mm 。
(2)确定坯料尺寸由于盒形件壁间圆角半径与底部圆角相等,边长为B 的高方盒件毛坯直径为:mm62.70mm 5.133.05.295.172.15.143.05.292242213.133.0(72.1)43.0(413.122≈⨯+⨯⨯-⨯-⨯⨯+=+---=)()()r H r r H B B D 所以,高矩形盒椭圆形形毛坯尺寸为:mm B L D Lz 62.82)2234(62.70)(=-+=-+=mmrL B L 14.745.1234)2234()]5.10.43-29.5222 [5.12-(2262.072)(0.43r)]-H 2B [2r -(B D Bz =⨯--⨯⨯⨯++⨯⨯=--⨯⨯++⨯=()()mm D R b 31.35262.702===mmR B R L B L R bz bz z z l 62.4631.35214.7431.3561.82)14.7462.82(0.252)(0.252222=⨯-⨯-+⨯=--+⨯=(3)判断是否采用压边圈 零件的相对厚度压边圈67.010014.742100=⨯=⨯z B t ,经查表5-8(P181),需采用压边圈,防止拉伸起皱。
盒形件拉深设计
华中科技大学材料学院盒形件加工工艺与模具设计班级:XXXXXXX学生姓名:X X X学号:XXXXXXX时间:2015年1月1、零件工艺性分析 02、工艺方案的确定 03、工艺计算 (2)3.1拉深部分工艺计算 (2)3.2落料时冲裁工艺计算 (7)4、冲压设备的选用 (11)5、落料拉深模主要零部件计算 (12)5.1落料凹模设计计算 (12)5.2拉深凸模设计计算 (13)5.3固定板设计计算 (14)5.4卸料结构计算 (15)5.5压边圈设计计算 (16)5.6凸凹模设计计算 (17)5.7其它零件设计和选用 (17)5.8模具闭合高度计算 (22)6、模具总装图的绘制 (23)7、结束语 (23)8、参考文献 (24)1、零件工艺性分析1.1零件结构图示图1.1:加工零件图1.2零件结构分析工件为矩形盒形件,零件形状简单,要求为外形尺寸;尺寸为长、宽、高分别为45mm ,27mm ,20mm ;料后t=0.4mm ,没有厚度方向上不变的要求;底部圆角半径p r =3mm ,矩形四个角处圆角半径为r =4mm ,满足拉深工艺对形状和圆角半径的要求。
1.3材料性能分析零件所用材料为H68M ,拉伸性能好,易于成形。
1.4精度等级分析公等级定为IT14级。
满足普通冲压工艺对精度等级的要求。
2、工艺方案的确定由上分析,该零件为矩形盒形件,可采用拉深成形。
为确定拉深工艺方案,先计算拉深次数与相关工艺尺寸。
2.1修边余量 工件相对高度0h 20==5r 4,则依据下表可知修边余量 0h=~h =0.0420=0.8mm ∆⨯(0.030.05)。
工件相对高度△h 2.5~6 7~17 18~44 45~100工件修边余量h0(0.03~0.05)h0(0.03~0.05)h0 (0.03~0.05)h0 (0.03~0.05)h0表2.1:无凸缘盒形件的修边余量表 2.2相关工艺尺寸计算毛坯相对厚度t 0.4100100 1.48b 27⨯=⨯=; 矩形盒形件相对半径r 4==0.148b 27; 矩形盒形件拉深响度高度0h +h h 20+0.8===0.77b b 27∆;2.3判断拉深次数根据相关工艺尺寸计算结果,由下图可知,应选择一次拉深成形即可。
拉深盒型件拉深工艺
拉深盒型件拉深工艺盒形件属于非扭转体零件,包含方形盒、矩形盒和卵形盒等。
与扭转体零件的拉深比拟,盒形件拉深时,毛坯的变形分布要复杂得多。
盒形件拉深变形特点从几何外形的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分构成(图4.4.1)。
若将圆角部分和直边部分别开推敲,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于曲折。
但实际上圆角部分和直边部分是接洽在一路的整体,是以盒形件的拉深又不完全等同于简单的曲折和拉深复合,有其特有的变形特点,这可经由过程网格实验进行验证。
图4.4.1 盒形件拉深变形特点拉深前,在毛坯的直边部分画出互相垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的齐心圆弧构成的网格。
变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件外面的网格产生了明显的变更(如图4.4.1所示) 。
这些变更重要表示在:⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中心部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。
纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大年夜,愈接近盒形件口部增大年夜愈多,即△h1<△h1′<△h2′<△h3′。
可见,此处的变形不合于纯粹的曲折。
(2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。
齐心圆弧的间距不再相等,而是变大年夜,越向口部越大年夜,且齐心圆弧不位于同一程度面内。
是以该处的变形不合于纯粹的拉深。
从以上可知,因为有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r雷同,高度h相等的圆筒形件比较起来要小。
底部多孔盒形拉深件模具设计解析
参磊 。 加 工 冷 工
WWW r t wor ng7 50 c ne a1 ki 9 . om
21 第 期● 07 2 雀 年
圆
。 。
:
/ D
I
R|
f
罔 3 毛坯尺寸求作 图
首先 ,所确定 的毛坯尺寸即为落料 凹模尺寸 。 其次 ,两次拉 深 的相互关 系 应符合下列条件 ( 见图 4 : )
次拉深 ( 整形 )一冲孔一 车边 。
须两次拉深。第二次拉深近似整形 ,主要 日的是用来减 小角部 和底 部 圆角 ,而其 外形 不 变 ,轮廓 尺寸 稍有 改
变。
因考虑到工件 圆角部分要 两次拉深 ,同时材料 有向 侧壁 挤流现象 ,故将展 开圆角半径 加大 1 % ~ 0 。 0 2% 求作 毛坯相关尺寸
段 ,在公 司得到广泛应用。该模 具结构简 单 、换 刀方便 而且制造周期短。槽钢下料 后断面光 洁 ,毛刺很小 ,完 全能够满足生产要求。作为一种 稳定实用 的模 具 ,值得
() b 下切 刀
借鉴 和推广 。MW
( 稿 日期 :2 10 1 ) 收 0 0 9 3
图 4 上 、下切刀
毛坯 相对厚度 为 lO/ ( 为材料 厚度 ,D为毛坯 O tD t
尺寸 , 图 3 ,一般情况下 ,盒形件在拉深后都需要修 见 )
边 ,所 以在确定其毛坯尺寸和进行工艺计 算之前 ,应在 工件 高度或 凸缘宽度上加修边余量 。无 凸缘 盒形件修边
余量 △日。
下 面介绍此拉深件模具 的设计过程及改进措施。
阿 1 底部多j盒形
径中心不 同。
本文盒形件 r i ,H :1 t o= n o 7 m,则 / =7 m r 。查 表得 △日
拉深工艺和拉深模设计
公差、材料上旳要求,掌握拉深件工序安排旳一般 原则。
教学要求: 根据弯曲件旳构造工艺性要求改善拉深件旳结
构设计;能够根据拉深件旳工艺条件,拟定拉深件 圆角半径,拟定带孔拉深件旳孔旳位置。
4.2.1 对拉深件形状尺寸旳要求
1)拉深件形状应尽量简朴、对称,尽量一次拉 深成形。
1)孔位应与主要构造面(凸缘面)在同一平面, 或孔壁垂直该平面,便于冲孔与修边在同一 道工序中完毕。
2)拉深件侧壁上旳冲孔与底边或凸缘边旳距离 h 2d t
3)拉深件凸缘上旳孔距:
D1 (d1 3t 2r2 d )
4)拉深件底部孔距:
d d1 2r1 t
4.2.3 拉深件旳精度等级 主要指其横断面旳尺寸精度;一般在IT13级
2)叠加各段中间层面积,求出制件中间层面积;
3)根据“等面积原则”求出毛坯直径。
D
4S
4
f
式中
S——毛坯面积(涉及修边余量); f——简朴旋转体拉深件各部分面积; D——毛坯直径。
案例分析: 带凸缘制件
无凸缘制件
将制件分割为: 1)1/4凹球环 2)圆柱
3)1/4凸球环 4)圆板
计算:
1)1/4凹球环
要求:
1)rpg≥t,一般取:rpg≥(35)t 2)rpg<t,增长整形工序,每整形一次,rpg
可减小1/2。
pg
pg
py
3.矩形拉深件壁间圆角半径rpy 矩形拉深件壁间圆角半径rpy:
指矩形拉深件旳四个壁旳转角半径。
要求:rpy≥3t及rpy≥H/5
pg
pg
py
4.2.2 拉深件上旳孔位布置
盒形件的拉深PPT课件
2021年5月17日星期一学习情景4.2:其它形状拉深模设计
第五节 盒形件的拉深
(2)盒形件拉深时,沿周向、高度方向受到的应力是不均匀的; ① 压应力
从圆角中心到直边中心逐渐减小 ② 拉应力
从圆角中心到直边中心逐渐减小 (3)圆角部分的材料有向直边流动的现象; (4)盒形件的拉深与圆筒相比 ① 不易起皱 ② 拉深系数可以更小
第7页/共13页
2021年5月17日星期一学习情景4.2:其它形状拉深模设计
第五节 盒形件的拉深
(1)拉深系数法 (2)相对高度法
第8页/共13页
2021年5月17日星期一学习情景4.2:其它形状拉深模设计
第9页/共13页
2021年5月17日星期一学习情景4.2:其它形状拉深模设计
第10页/共13页
第4页/共13页
2021年5月17日星期一学习情景4.2:其它形状拉深模设计
第五节 盒形件的拉深
直边按弯曲变形,圆角部分按四分之一圆筒拉深变形展开。 (2)修正 2.多次拉深成形的高盒形件坯料确定 ① 多次拉深成形的高正方形件的坯料 a 坯料形状
圆形 b 坯料尺寸
直径计算见书P200 ② 多次拉深成形的高矩形件的坯料 a 坯料形状
第6页/共13页
2021年5月17日星期一学习情景4.2:其它形状拉深模设计
第五节 盒形件的拉深
b t/D或t/B的影响 t/D或t/B ↑,变形程度↑。
② 材料性质 a 塑性
塑性↑,变形程度↑。 b 抗拉强度
抗拉强度↑,变形程度↑。 2.变形程度的两种表示方法
盒形件拉深变形程度可以用拉深系数及相对高度来表示。 3.是否需要多次拉深的判断
第1页/共13页
模具毕业设计44盒形件落料拉深模设计
模具毕业设计44盒形件落料拉深模设计一、引言在现代工业生产中,模具起着非常重要的作用,特别是在金属加工领域中。
本文将介绍我设计的44盒形件落料拉深模具的设计过程。
该模具的主要功能是对44盒形件进行落料和拉深加工,以实现形状的改变和尺寸的精确控制。
二、设计要求该模具的设计要求如下:1.落料加工:能够将原材料切割成相应形状的板材,以便后续的拉深加工。
2.拉深加工:能够将板材拉深成所需的44盒形件,确保形状和尺寸的精确度。
3.高效性:提高生产效率,降低人工成本。
4.安全性:确保操作人员的安全。
5.可靠性:保证模具的可靠性和稳定性。
三、设计方案基于以上的设计要求,我设计了如下的模具结构和工作流程:1.模具结构:a.上模:用于落料加工,具有落料刀具和固定装置。
b.下模:用于拉深加工,具有拉深刀具和固定装置。
c.顶针:用于定位模具和控制深度。
d.螺杆:用于固定上模和下模。
e.润滑系统:用于减少模具与工件之间的摩擦,提高模具寿命和工作效率。
2.工作流程:a.上模将原材料切割成相应形状的板材,并使用固定装置固定在下模上。
b.下模通过拉深刀具将板材拉深成所需的44盒形件,通过顶针进行定位和深度控制。
c.完成拉深后,顶针向上拉起,使得模具和工件分离,下模通过润滑系统排出模具,准备下一次工作。
四、设计计算模具设计中的关键计算有以下几个方面:1.材料选择:根据要求的板材材料和形状,选择适当的材料来制作模具。
常见的模具材料有钢和铝合金等。
2.受力分析:对模具进行受力分析,确保其满足强度和刚度要求。
3.尺寸设计:根据要求的44盒形件的尺寸和形状,设计相应的模具尺寸,确保精确控制形状和尺寸。
4.温度控制:根据材料的热膨胀系数和工作温度,设计合适的温度控制系统,以避免模具变形和尺寸不稳定。
五、结论通过对44盒形件落料拉深模具的设计,可以实现对原材料的快速加工和形状的改变,提高生产效率和产品质量。
模具的设计要求高效、安全、可靠,并发挥其在金属加工中的重要作用。
盒形件的拉深
高盒形件毛坯的形状与尺寸
盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
长圆形毛坯的长 度为:
长圆形毛坯的宽度为:
盒形件的拉深
1.3 盒形件拉深的变形程度
拉深系数 m
盒形件初次拉深的最大相对高度
冲压工艺与模具设计
(3)用光滑曲线
连接直边和
ห้องสมุดไป่ตู้
圆角部分,
即得毛坯的
低
形状和尺寸。
矩
形
盒
毛
坯
作
图
法
盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
所谓高盒形件是指必须用多次拉深才能最后成形的盒形件。 采用圆形毛坯, 其直径 D 为:
ra = rb = r时,则:
盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
方盒形件毛坯的形状与尺寸
盒形件的拉深
1.1 盒形件的拉深变形特点
盒形件拉深时的应力分布
盒形件的拉深
1.1 盒形件的拉深变形特点
盒 形 件 基 本 尺 寸
盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
(1)按弯曲计算直边部分的展开长度 l0,即:
(2)按拉深计算圆角部分的毛坯半径R,即:
盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
冲压工艺与模具设计
盒形件的拉深
1.1 盒形件的拉深变形特点
1.圆角部分应力分布不均匀 。 2.直边部分发生弯曲变形 。 3.圆角部分的平均应力比相同半径的圆筒件的径向拉应力要小得多 。 4.圆角部位易出现拉裂、起皱等现象 。 5.除了在圆角侧壁底部与凸缘圆角相切处容易发生拉裂外,还会因凹模圆
角半径过小等原因,引起凸缘根部(圆角附近侧壁处)产生拉裂 。 6.圆角与直边相互影响的程度取决于相对圆角半径 r/B 和相对高度 H/B 。
机械毕业设计(论文)-浅盒形件拉深工艺及模具设计(拉深冲孔2)(含全套图纸)[管理资料]
目录摘要……………………………………………………………………………………1关键词 (1)前言 (1)2冷冲压工艺方案设计 (2) (2) (2) (3) (3) (4) (4) (4) (5) (8)3冲孔落料复合模具设计 (12) (12)................................................1 2 ...................................................1 2 ...................................................1 5 ......................................................1 5 ......................................................1 6 (17) (18) (18) (19) (20) (21)............................................................2 1 4拉深工艺及拉深模设计 (21) (21) (21) (22) (22).........................................................2 2 、凹模间隙 (22).............................................2 2 .........................................................2 3 .........................................................2 3 5结论 (23)参考文献 (24)致谢 (24)浅盒形件拉深工艺及模具设计学生:钟发明指导老师:陈志亮(湖南农业大学东方科技学院,长沙 410128)摘要:浅盒形件在汽车、电器行业应用广泛,且不同的用途决定了盒形件技术要求的不同。
第四章 拉深工艺与模具设计
t D
Ky (1
m1 )
以后各次拉深中制件不起皱的条件是: 实践证明:
t di1
K
y
(
1 m1
1)
直壁圆筒形件的首次拉深中起皱最易发生的时刻:拉深的初期
(二)拉裂 当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在底部圆角与 筒壁相切处——“危险断面”产生破裂。
为防止拉裂,可以从以下几方面考虑: (1)根据板材成形性能,采用适当的拉深比和压边力; (2)增加凸模表面粗糙度;改善凸缘部分的润滑条件; (3)合理设计模具工作部分形状;选用拉深性能好的材料等。
第四章 拉深工艺与模具设计
拉深变形过程分析
直壁旋转体零件拉深 工艺计算
非直壁旋转体零件拉深 成形方法
盒形件的拉深
拉深工艺设计 拉深模具的类型与结构
其他拉深方法 拉深模工作部分的设计
返回
拉伸:
拉深是利用拉深模具将冲裁好的平板毛坯压制成各种开口的空心工 件,或将已制成的开口空心件加工成其它形状空心件的一种冲压加 工方法。拉深也叫拉延。
(二)筒壁传力区的受力分析
1.压边力Q引起的摩擦力:
m
2Q dt
2.材料流过凹模圆角半径产生弯曲变形的阻力
w
1 4
b
rd
t t
/
2
3.材料流过凹模圆角后又被拉直成筒壁的反向弯曲w 力 仍按上式进行计
算,拉深初期凸模圆角处的弯曲应力也按上式计算
w
w
1 4
b
rd
t t
2)筒底圆角半径rn
筒底圆角半径rn即是本道拉深凸模的圆角半径rp,确定方法如下:
r r 一般情况下,除末道拉深工序外,可取 pi = di。 对于末道拉深工序:
拉深盒型件拉深工艺
拉深盒型件拉深工艺盒形件属于非扭转体零件,包含方形盒、矩形盒和卵形盒等。
与扭转体零件的拉深比拟,盒形件拉深时,毛坯的变形分布要复杂得多。
盒形件拉深变形特点从几何外形的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分构成(图4.4.1)。
若将圆角部分和直边部分别开推敲,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于曲折。
但实际上圆角部分和直边部分是接洽在一路的整体,是以盒形件的拉深又不完全等同于简单的曲折和拉深复合,有其特有的变形特点,这可经由过程网格实验进行验证。
图4.4.1 盒形件拉深变形特点拉深前,在毛坯的直边部分画出互相垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的齐心圆弧构成的网格。
变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件外面的网格产生了明显的变更(如图4.4.1所示) 。
这些变更重要表示在:⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中心部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。
纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大年夜,愈接近盒形件口部增大年夜愈多,即△h1<△h1′<△h2′<△h3′。
可见,此处的变形不合于纯粹的曲折。
(2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。
齐心圆弧的间距不再相等,而是变大年夜,越向口部越大年夜,且齐心圆弧不位于同一程度面内。
是以该处的变形不合于纯粹的拉深。
从以上可知,因为有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r雷同,高度h相等的圆筒形件比较起来要小。
盒形件拉深模设计课件PPT
橡胶垫的高径比在0.5~1.5之间,所以,选用的橡胶垫规 格合理。橡胶的装模高度约为0.85×170mm=144.5mm。
3.其它零部件结构 为降低拉深凸模的高度,模具采用凸模直接固定在下模 座的固定方法。模柄采用压入式模柄,根据设备上模柄孔尺 寸,选用规格A40×100的模柄。
则,取直边部分的间隙等于材料厚度,即1mm;圆角部分
间隙较直边部分增加0.1倍料厚,即1.1mm。因为零件标注
内形尺寸( 520.5mm、670.5mm 、R100.2m 5 )m,所以要先计算凸
模,即
d T ( 1 d m 0 . i 4 Δ n ) 0 T ( 5 0 . 5 2 0 . 4 1 ) 0 0 . 0 m 3 5 . 9 m 0 0 1 . 0 m 0 3 m
3
三、工艺计算
1.拉深工艺计算
(1)判定能否一次成形
计算零件的相对角部圆角半径
r B
10.5 53
0.2,查得盒形件
初次拉深最大相对高度
h r
4
~
6
,计算零件的实际相对高
度 h 35.53.38 ,小于零件允许的最大相对高度,所以零件
r 10.5
一次拉深即可成形。由于零件只需一次拉深,且零件口部质
用压边装置。
4
(3)确定坯料的形状与尺寸 根据一次拉深成形的矩形盒坯料计算方法,其直边部分 按弯曲件求解坯料展开长度。 盒形件圆角部分按筒形件拉深求解坯料展开尺寸
R r22rh0.8r6底 ( r0.1r6底 ) 1.05221.053.550.86 1.051.16 1.05mm 2.73m 1 m
AF压/ p
查得矩形橡胶垫在预压量为10%~15%时的单位压力为 0.6Mpa,所以橡胶面积 A175N 14291m 90m 2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
mm
d A1
(d T1
2Z
)
0
A
(51.90
2)
0.05 0
mm
53.90
0.05 0
mm
dT2
(dmin
0.4Δ)
0 T
(67
0.5
0.4
1)
0 0.03
mm
66.9000.03
mm
d A2
(d T2
2Z
)
0
A
(66.90
2)
0.05 0
mm
68.90
0.05 0
mm
dT3
(dmin
0.4Δ)
计算所得坯料尺寸
简化坯料尺寸
简化后坯料的总长和总宽分别为
L A 2r 2l 67 210 2 41.485 130mm
C B 2r 2l 52 210 2 41.485 115mm
选择规格为1mm×1000mm×3500mm的板料,进行如 下排样计算:
1000 130
2.压边装置中弹性元件的计算 模具采用弹性压边装置,弹性元件选用橡胶,其尺寸计 算如下: (1)确定橡胶垫的自由高度
H 0 (3.5 ~ 4)H工
H 工 h工作 h修磨 h RA 3 (36 8 3)mm 47mm
由上两个公式取 H 0 170 mm 。 (2)确定橡胶垫的横截面积
三、工艺计算
1.拉深工艺计算
(1)判定能否一次成形
计算零件的相对角部圆角半径
r B
10.5 53
0.2
,查得盒形件
初次拉深最大相对高度
h r
4
~
6
,计算零件的实际相对高
度 h 35.5 3.38 ,小于零件允许的最大相对高度,所以零件
r 10.5
一次拉深即可成形。由于零件只需一次拉深,且零件口部质
量要求低,所以不考虑修边余量的增加和切边工序的安排。
(2)判定是否采用压边圈 主要考虑圆角部分,其拉深系数 m r / R 10.5/ 27.31 0.38 , 则 0.045(1 m) 0.045 (1 0.38) 0.0279 ,计算零件的坯料相对厚度 t / d 1/ 2 27.31 0.0183 ,由于 t / d 0.045(1 m) ,所以需要使
0 T
(10
0.25
0.4
0.5)
0 0.02
mm
9.9500.02
mm
d A3
(d T3
2
Z
)
0
A
(9.95
2
1.1)
0.03 0
mm
12
.15
0.03 0
mm
3.拉深力计算 按照拉深力的计算公式
F拉 KLt b 0.7 (4 10 2 47 2 32) 1 400 N 2 61824 N 62kN
计算压边力
F压 Ap 7615 .15 2.3N 17514 N 18kN
总工作力
F总 F拉 F压 (62 18)kN 90kN
根据以上力的计算数值,同时考虑零件的高度,初选设
备为J23—16。
四、模具零部件结构的确定
1.标准模架的选用 取凹模的壁厚为45mm,计算得出凹模的外形尺 寸为159mm×144mm,凹模高度受到拉深件高度 和模具结构的影响暂不能确定,其具体尺寸在绘制 模具装配图时可调整确定。模具采用后置导柱模 架,根据凹模外形尺寸,查得模架规格为: 上模座160mm×160mm×40mm, 下模座160mm×160mm×45mm, 导柱28mm×170mm, 导套28mm×100mm×38mm。
用压边装置。
(3)确定坯料的形状与尺寸 根据一次拉深成形的矩形盒坯料计算方法,其直边部分 按弯曲件求解坯料展开长度。 盒形件圆角部分按筒形件拉深求解坯料展开尺寸
R r 2 2rh 0.86r底(r 0.16r底) 10.52 2 10.5 35.5 0.86 10.5 1.16 10.5mm 27.31mm
依据坯料的做图求解法,坯料最终的形状和尺寸见下左 图。按照该方法确定的坯料尺寸有利于拉深件的成形,所生 产的拉深件口部质量好,但坯料的形状复杂,必须采用落料 的方法获得坯料,而且落料模工作零件制造难度大。
由于拉深件生产批量中等,精度要求较低,所以考虑对 拉深坯料进行简化,省去落料模,直接采用剪板机制坯。其 具体简化过程为:拉深件直边和圆角部分仍按照以上计算公 式展开,过圆弧做45°斜线与直边展开坯料相交,则得到八 角形坯料(见下右图)。
则,取直边部分的间隙等于材料厚度,即1mm;圆角部分
间隙较直边部分增加0.1倍料厚,即1.1mm。因为零件标注
内形尺寸( 52 0.5mm 、67 0.5mm、R10 0.25mm),所以要先计算凸
模,即
dT1
(dmin
0.4
Δ)
0 4
1)
0 0.03
mm
51.9000.03
A F压 / p
查得矩形橡胶垫在预压量为10%~15%时的单位压力为 0.6Mpa,所以橡胶面积 A 17514N 29190mm2 。
0.6MPa
(3)确定橡胶垫的平面尺寸 取橡胶垫外形为圆形,则其直径
二、工艺方案的确定
本例涉及到的加工工序包括落料、拉深(需计算确定拉 深次数)、切边、钻孔。由于零件的生产批量为中等批量, 精度要求较低,若计算得出可一次拉深成形,则可以考虑由 剪板机下料(坯料形状需做一定的近似)和免去修边工序 (需要时个别零件可手工修边)。如果经计算校验,以上所 做的假设可行,则加工路线可简化为下料——拉深——检验 是否需要修边——钻孔。
盒形件拉深模设计实例
材料:10钢 料厚:1mm
一、工艺性分析
1.材料分析 10钢为优质碳素结构钢,属于深拉深级别钢,具有良好 的拉深成形性能。 2. 结构分析 零件为矩形盒拉深件,形状简单,底部和口部圆角半径 都为10mm,满足盒形拉深件底部圆角半径大于一倍料厚、 口部圆角半径大于三倍料厚的要求。对于盒形件侧壁上的 孔,根据孔的位置和其精度要求,决定采用拉深后钻孔加工 的方法。 3. 精度分析 零件上有两个尺寸标注公差,经查表其精度等级都在IT14 以下,所以普通拉深即可达到零件的精度要求。
3500 115
7
30
210
1000 115
3500 130
8
26
208
由上计算可知,应将板料先裁成宽115mm 、长1000mm
的条料,再剪成115mm×130mm的块料,按尺寸切掉四个
角后得到坯料尺寸,即可直接用于拉深。
2.拉深工作零件尺寸计算
首先确定拉深凸、凹模间隙,根据盒形件间隙确定原