七年级数学第二学期期中复习试卷
七年级数学下册期中考试试题含复习资料
A
B
C
E
D
2.D 点拨 : 关于 x 轴对称的两个点 , 横坐标相等 , 纵坐标互为相反数 .
3.B 点拨 : 因为锐角三角形和直角三角形的任何一个外角都比它相邻的内角大或相等
七年级第二学期期中测试卷
(100 分 90 分钟 ) 一、选择题 : ( 每题 3 分, 共 33 分 ) 1. 如图 ,AB∥ ED,∠ B+∠ C+∠ D=( )
A.180 ° B.360 ° C.540 ° D.270 °
A
B
C
E
D
5. 若点 A(m,n) 在第二象限 , 那么点 B(-m, │ n│ ) 在 ( )
AE
D
8.如图, O 是△ ABC 内一点, OD ∥ AB,OE∥ BC,OF∥ AC,∠ B= 45°,
∠ C= 75°,则
∠ DOE =
,∠ EOF =
,∠ FOD =
.
1
B
F
C
北
北18. 如图ຫໍສະໝຸດ , 甲、乙两岸之间要架一座桥梁 , 从甲岸测得桥梁的走向是北偏
东 50?° , 如果甲、 乙两岸同时开工 . 要使桥梁准确连接 , 那么在乙岸
A. 第一象限 B. 第二象限 ; C. 第三象限 D. 第四象限
6. 已知点 P在第三象限 , 且到 x 轴的距离为 3, 到 y 轴的距离为 5, 则点 P 的坐标为 ( ? )
2008~2009学年第二学期期中复习试卷 七年级数学
2008~2009学年第二学期期中复习试卷七年级数学一、选择题(每小题2分,共20分)1.若∠1与∠2是同位角,∠1=40°,则( )A.∠2=40°B.∠2=140°C.∠2=40°或∠2=140°D.∠2的大小不确定 2.若多边形的边数由3增加到n (n 为大于3的整数)则其外角和的度数( ) A.增加 B. 减少 C.不变 D.不能确定 3..通过计算几何图形的面积可表示一些代数恒等式,右图可表示的 代数恒等式是: ( )A .()2222——b ab a b a +=B .()2222b ab a b a ++=+C .()()22——b a b a b a =+D .()ab a b a a 2222+=+4.如图,已知△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )(A)90° (B)135° (C)315° (D)270° 5.如果1593)(b a b b a mn=∙∙,那么( )A. m=9 , n=4B. m=9 , n=-4C. m=3 , n=4 D .m=4 , n=36..若方程组⎩⎨⎧=-=+a y x y x 224中的x 是y 的2倍,则a 等于( )A .-6B .8C .-7D .-97.小兵计算一个二项整式的平方式时,得到正确结果++xy x 2042慎被污染了,这一项应是( ) A.25yB.210yC.225yD.2100y8.下列各多项式中,能用平方差公式分解因式的是( )A .22b a +B .92+yC .216a +-D .22y x --9.若一个三角形的3个外角的度数之比为2:3:4,则与之相应的3个内角的度数之比为( )A 4:3:2B 5:3:1C 3:2:4D 3:1:5 10.已知关x 、y 的方程组2331x y ax by -=⎧⎨+=-⎩和3211233x y ax by +=⎧⎨+=⎩的解相同,求a 、b 的值为( )A .a =1,b=2B .a =-2,b=5C .a =-2,b=4D .a =1,b=5二、填空(每小题2分,共16分)11.如果q a p a n m ==,(m.n 是正整数),那么_____________,233==+n m m a a 。
初一第二学期数学期中复习试卷
初一第二学期数学期中复习试卷学校 班级 姓名一、选择题(每题2分,共20分) 1.计算32-的结果是( ) A.61 B. - 6 C. 81D. -8 2.若∠1与∠2是内错角,∠1=40°,则∠2=( )A .∠2=40° B.∠2=140° C.∠2=40°或∠2=140° D.∠2的大小不确定 3.计算)x y )(y x (---的结果是( ) A. 22y x +- B. 22y x -- C. 22y x - D. 22y x +4. 计算36x x÷的结果是( )A.2xB.3xC.9xD.18x5.已知3,2-==+xy y x .则22y x +等于 ( )A .-2B .-5C .7D .106.如图,直线a 、b 被直线c 所截,若a ∥b ,∠1=135°,则∠2等于( ) A .30° B .45° C .60°D .75°7.已知三角形的三边分别为2,a ,4,那么a 的取值范围是( ) A .51<<aB .62<<aC .73<<aD .64<<a8.下列运算正确的是( ) A.632a a a =⋅ B. 632)(a a = C. 826a a a =+ D. a 3-a 2= a9.甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x 米/秒,乙的速度为y 米/秒,则下列方程组中正确的是 ( ) A.⎩⎨⎧+=+=y y x y x 2441055 B.⎩⎨⎧=-=-y x x y x 4241055 C.⎩⎨⎧=-=+2445105y x y x D.⎩⎨⎧=-=-y x y x 424105510.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是120°,第二次拐的角∠B 是160°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 的大小是( )A .150°B .130°C .140°D .120°12abc(第6题)(第10题)二、填空题(每题2分,共20分)11.某种感冒病毒的直径是0.00 000 012米,用科学记数法表示为___________米.12.计算:mm 412÷= .13.已知⎩⎨⎧==32y x 是方程5x - ky -7 = 0的一个解,则k = .14.若92++mx x是一个完全平方式,则m 的值是 .15.如图,AB CD ∥,EF AB ⊥于E EF ,交CD 于F ,已知160∠=°,则2∠= °. 16.一副三角板放置如下图,则图中∠ABC = °.17.如图,小亮从A 点出发,沿直线前进10米后向左转40°,再沿直线前进10米,又向左转40°,……,照这样走下去,他第一次回到出发地A 点时,一共走了 米. 18.如图边长为4cm 的正方形ABCD 先向上平移2cm ,再向右平移1cm ,得到正方形A′B′C′D′,此时阴影部分的面积为_______cm 2. 19.若212(6)()xmx x x n +-=++,则m 的值为 .20.如图1是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图2,再沿GF 折叠成图3,则图3中的∠CFE 的度数是 °.三、 计算题(每题5分,共10分) 21. 化简:)1)(1()3(2+--+x x x 22. 解方程组:′′(第18题)CD BA EF12图 (第15题)⎩⎨⎧=-=+2283y x yx (第16题)(第17题)AD A C B AE A A AC ACB 图1 图3(第20题) (1) (2)四、作图题(本题6分)23.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移,使点A 变换为点A′,点B ′、C ′分别是B 、C 的对应点. (1)请画出平移后的△A ′B ′C ′.并求△A ′B ′C ′的面积. (2)若连接AA ′,CC ′.则这两条线段之间的关系是________.五、因式分解(每题5分,共20分)24. )()(2a b b a x --- 25. 2732-a26. a 3-2a 2+a 27.x 2(x -y ) +( y -x )六.说理题(每题7分,共14分)28.一个零件的形状如图中的阴影部分,按规定∠A 应等于90°,∠B 、∠C 应分别是29°和21°,检验人员量得∠BDC=139°就断定这个零件不合格,你能说明理由吗?DCBA29.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED 的度数.七.探究活动:(本题10分)30. 阅读材料并回答问题:如图1,有足够多的边长为a的小正方形、边长为b的大正方形以及长为b,宽为a的长方形. (1)取其中的若干个拼成一个长方形如图2,该长方形的面积为(a+b)(a+2b),根据图2回答(a+b)(a+2b)=______________.(2)若取其中的若干个(图1中的三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+n b2,则:①写出所有可能的n的整数值:_____ ____,并在图3处画出其中的一个图形.②根据你所画图形,可将多项式a2+5ab+_ _b2分解因式为________.a(图1)(图2)七年级期中数学练习卷 参考答案及评分标准一、选择题(每题2分,共20分)1. C;2. D;3. A;4. B;5. D;6. B ;7. B;8. B;9. A; 10. C. 二、填空题(每题2分,共20分) 11.7102.1-⨯; 12. m 3; 13. 1; 14. ±6; 15. 30; 16. 165; 17. 90; 18. 6; 19. 4;20.120.三、 计算题(每题5分,共10分) 21.解:原式=22196x x x+-++------3分 22. 解:(1)+(2)得105=x ---2分 =8622++x x -----------5分 即2=x ,2=y ---------4分所以原方程组的解为⎩⎨⎧==.22y x ---5 四、作图题(本题6分)23. (1)画图正确----------------------------2分C B A S '''∆=3.5---------------------------------4分(2)平行且相等--------------------------------6分五、因式分解(每题5分,共20分)24.解:原式= )()(2b a b a x -+- -------2分 25. 解:原式=)9(32-a----2分=)12)((+-x b a -------------------5分 =)3)(3(3-+a a -----5分26. 解:原式=)12(2+-a aa -------2分 27.解:原式=)()(2y x y x x -----1分=2)1(-a a -----5分 =))(1(2y x x-- -----2分=))(1)(1(y x x x --+---5分六.说理题(每题7分,共14分)28. 理由:延长CD 交AB 于E 点.----------------1分 因为∠CDB+∠EDB=180°,∠DEB+∠B+∠DEB=180°所以∠CDB=∠DEB+∠B,同理∠DEB=∠A+∠所以∠CDB=∠DEB+∠B=∠A +∠B +∠C----------------------4分 若零件合格,应有∠CDB=∠A +∠B +∠C=90°+29°+21°=140°-------5分 而检验人员量得∠BDC=139°,所以这个零件不合格.----------7分 29. 解:因为BD 是△ABC 的角平分线,所以∠EBD=∠EDB-------------1分 又因为DE ∥BC 所以∠EDB=∠DBC,所以∠EBD=∠EDB-------------3分 又因为∠EDB+∠BDC=∠A+∠AED, ∠AED=180°-∠BED所以∠EDB+∠BDC=∠A+180°-∠BED------------------------5分 ∠BED=180°-2∠EDB=180°-2(∠A+180°-∠BED-∠BDC)------------6分 因为∠A=45°,∠BDC=60°所以∠BED=150°.-------------------7分 七.探究活动:(本题10分) 30. (1)2223b ab a++-------------------------------------------2分(2)①4和6;--------------------------------------------------6分如图(画出一个正确图形即可)--------------8分②4;)4)((b a b a ++或6;)3)(2(b a b a ++(写出一组正确即可)--------------10分B。
(必考题)初中数学七年级下期中经典复习题(含答案解析)
一、选择题1.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A .B .C .D .2.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm 3.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB=50º,∠ABC=100º,则∠CBE 的度数为( )A .45°B .30°C .20°D .15° 4.点A 在x 轴的下方,y 轴的右侧,到x 轴的距离是3,到y 轴的距离是2,则点A 的坐标是( ) A .()23-, B .()23, C .()32,- D .()32--,5.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°6.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .97.设42-的整数部分为a ,小整数部分为b ,则1a b -的值为( ) A .2- B .2 C .212+ D .212- 8.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠ 9.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个B .3个C .4个D .5个 10.下列现象中是平移的是( )A .将一张纸对折B .电梯的上下移动C .摩天轮的运动D .翻开书的封面 11.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58- 12.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 13.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 14.甲、乙、丙、丁一起研究一道数学题,如图,已知 EF ⊥AB ,CD ⊥AB ,甲说:“如果还知道∠CDG=∠BFE ,则能得到∠AGD=∠ACB .”乙说:“如果还知道∠AGD=∠ACB ,则能得到∠CDG=∠BFE .”丙说:“∠AGD 一定大于∠BFE .”丁说:“如果连接 GF ,则 GF ∥AB .”他们四人中,正确的是( )A .0 个B .1 个C .2 个D .3 个 15.若x y <,则下列不等式中成立的是( ) A .11x y ->-B .22x y -<-C .22x y < D .3232x y -<- 二、填空题16.m 的3倍与n 的差小于10,用不等式表示为______________.17.在平面直角坐标系内,点P (m-3,m-5)在第四象限中,则m 的取值范围是_____18.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.19.已知:m 、n 为两个连续的整数,且m 11<n mn _____.2046________.21.根据不等式的基本性质,可将“mx <2”化为“x >2m”,则m 的取值范围是_____. 229________.23.知a ,b 为两个连续的整数,且5a b <<,则ba =______.24.将命题“对顶角相等”用“如果……那么……”的形式可以改写为______.25.对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数时,若1122n x n -≤<+,则x n =,如0.460=,3.674=,给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是911x ≤<; ④当0x ≥,m 为非负整数时,有20182018m x m x +=+; ⑤x y x y +=+;其中,正确的结论有_________(填写所有正确的序号).三、解答题26.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)求本次接受随机抽样调查的学生人数及图①中m 的值;(2)本次调查获取的样本数据的平均数是 ,众数是 ,中位数是 ; (3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.27.列一元一次不等式(组)解决问题:永安六中学生会准备组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?28.已知方程组71ax by x y +=⎧⎨-=⎩和53ax by x y -=⎧⎨+=⎩的解相同,求a 和b 的值. 29.求不等式()()922312m m ---≥-的所有正整数解. 30.先填空,再完成证明,证明:平行于同一条直线的两条直线平行,已知:如图,直线a 、b 、c 中,求证:_______________.证明:【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.D3.B4.A5.A6.B7.D8.C9.B10.B11.A12.B13.B14.C15.C二、填空题16.3m-n<10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m-n<10故答案为:3m-n<10【点睛】本题考查不等式的书写17.3<m<5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负进而能得到关于m的一元一次不等式组求解即可【详解】解:∵点P(m﹣3m﹣5)在第四象限∴解得:3<m<5故答案为3<m<5【点睛】本18.【解析】【分析】观察分析可得则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式找出题中的规律是解19.【解析】【分析】利用无理数的估算先取出mn的值然后代入计算即可得到答案【详解】解:∵∴∵mn为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn20.6【解析】【分析】求出在哪两个整数之间从而判断的整数部分【详解】∵又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算正确掌握整数的平方数是解题的关键21.m<0【解析】因为mx<2化为x>根据不等式的基本性质3得:m<0故答案为:m<022.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平23.6【解析】【分析】直接利用的取值范围得出ab的值即可得出答案【详解】∵ab为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab的值是解题关键24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个25.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x-1<4+解得:9三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行);B、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D、∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行).故选D.【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.2.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.3.B解析:B【解析】【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE 的度数.【详解】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°(两直线平行,同位角相等),∵∠ABC=100°,∴∠CBE的度数为:180°-50°-100°=30°.故选B.【点睛】此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.4.A解析:A【解析】【分析】根据点A在x轴的下方,y轴的右侧,可知点A在第四象限,根据到x轴的距离是3,到y 轴的距离是2,可确定出点A的横坐标为2,纵坐标为-3,据此即可得.【详解】∵点A在x轴的下方,y轴的右侧,∴点A的横坐标为正,纵坐标为负,∵到x轴的距离是3,到y轴的距离是2,∴点A的横坐标为2,纵坐标为-3,故选A.【点睛】本题考查了点的坐标,熟知点到x轴的距离是点的纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题的关键.5.A解析:A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒ .故选A.6.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.7.D解析:D【解析】【分析】【详解】解:∵1<2<4,∴12<2,∴﹣2<2-<﹣1,∴2<423,∴a=2,b=42222=22-∴1222 22122ab+-===-故选D.【点睛】本题考查估算无理数的大小.8.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B、C内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC,即可得到答案.【详解】解:A.180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意; B. 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意; D. CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.9.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a <b <0,∴ab 不一定小于1,故①错误;②∵a <b <0, ∴1a >b1,故②正确; ③∵a <b <0,ab >0,故③正确;④∵a <b <0,b a<1,故④错误; ⑤∵a <b <0,-a >-b ,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.10.B解析:B【解析】【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A 、将一张纸对折,不符合平移定义,故本选项错误;B 、电梯的上下移动,符合平移的定义,故本选项正确;C 、摩天轮的运动,不符合平移定义,故本选项错误;D 、翻开的封面,不符合平移的定义,故本选项错误.故选B .【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.11.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.12.B解析:B【解析】【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【详解】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.因此,第一次与第二次拐的方向不相同,角度要相同,故只有B选项符合,故选B.【点睛】此题主要考查了平行线的性质,注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.13.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.14.C解析:C【解析】【分析】根据EF⊥AB,CD⊥AB,可得EF//CD,①根据∠CDG=∠BFE结合两直线平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根据两直线平行,同位角相等可得甲的结论;②根据∠AGD=∠ACB可得DG//BC,再根据平行线的性质定理可得乙的结论;③根据已知条件无法判断丙的说法是否正确;④根据已知条件无法判断丁的说法是否正确.【详解】解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠BFE=∠BCD,①∵∠CDG=∠BFE,∴∠CDG=∠BCD,∴DG∥BC,∴∠AGD=∠ACB,∴甲正确;②∵∠AGD=∠ACB ,∴DG ∥BC ,∴∠CDG=∠BCD ,∴∠CDG=∠BFE ,∴乙正确;③DG 不一定平行于BC ,所以∠AGD 不一定大于∠BFE ;④如果连接GF ,则只有GF ⊥EF 时丁的结论才成立;∴丙错误,丁错误;故选:C .【点睛】本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.15.C解析:C【解析】【分析】各项利用不等式的基本性质判断即可得到结果.【详解】由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C .【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题16.3m -n <10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m -n <10故答案为:3m -n <10【点睛】本题考查不等式的书写 解析:3m -n <10.【解析】【分析】根据题意利用不等符号进行连接即可得出答案.【详解】解:由题意可得:3m -n <10故答案为:3m -n <10.【点睛】本题考查不等式的书写. 17.3<m <5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负进而能得到关于m 的一元一次不等式组求解即可【详解】解:∵点P (m ﹣3m ﹣5)在第四象限∴解得:3<m<5故答案为3<m<5【点睛】本解析:3<m<5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负,进而能得到关于m的一元一次不等式组,求解即可.【详解】解:∵点P(m﹣3,m﹣5)在第四象限,∴3050 mm->⎧⎨-<⎩解得:3<m<5.故答案为3<m<5.【点睛】本题考查了点的坐标及一元一次不等式组的解法,解题的关键是根据点所处的位置得到有关m的一元一次不等式组.18.【解析】【分析】观察分析可得则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式找出题中的规律是解(1)n n=+≥【解析】【分析】=(2=+(3=+n(n≥1)的等式表示出来是(1)n n=+≥【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是(1)n n=+≥(1)n n=+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.19.【解析】【分析】利用无理数的估算先取出mn 的值然后代入计算即可得到答案【详解】解:∵∴∵mn 为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn解析:【解析】【分析】利用无理数的估算,先取出m 、n 的值,然后代入计算,即可得到答案.【详解】<<,∴34<<,∵m 、n 为两个连续的整数,∴3m =,4n =,===;故答案为:【点睛】本题考查了无理数的估算,解题的关键是熟练掌握无理数的估算,正确得到m 、n 的值. 20.6【解析】【分析】求出在哪两个整数之间从而判断的整数部分【详解】∵又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算正确掌握整数的平方数是解题的关键解析:6【解析】【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.21.m <0【解析】因为mx <2化为x >根据不等式的基本性质3得:m <0故答案为:m <0解析:m <0【解析】因为mx<2化为x>2m,根据不等式的基本性质3得:m<0,故答案为:m<0.22.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.23.6【解析】【分析】直接利用的取值范围得出ab的值即可得出答案【详解】∵ab为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab的值是解题关键解析:6【解析】【分析】a,b的值,即可得出答案.【详解】∵a,b为两个连续的整数,且a b<<,∴a=2,b=3,∴ba=3×2=6.故答案为:6.【点睛】此题考查估算无理数的大小,正确得出a,b的值是解题关键.24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个解析:如果两个角是对顶角,那么这两个角相等【解析】【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【详解】题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么这两个角相等;【点睛】此题考查命题与定理,“如果”后面是命题的条件,“那么”后面是条件的结论,解题的关键是找到相应的条件和结论,比较简单.25.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x -1<4+解得:9解析:①③④【解析】【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【详解】∵1-12<1.493<1+12, ∴1.4931=,故①正确,当x=0.3时,2x =1,2x =0,故②错误; ∵1142x -=, ∴4-12≤12x-1<4+12, 解得:9≤x <11,故③正确,∵当m 为非负整数时,不影响“四舍五入”, ∴2018m x +=m+2018x ,故④正确,当x=1.4,y=1.3时,1.3 1.4+=3,1.3 1.4+=2,故⑤错误,综上所述:正确的结论为①③④,故答案为:①③④【点睛】本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.三、解答题26.(1)50、32;(2)16,10,15;(3)608人.【解析】【分析】(1)由5元的人数及其所占百分比可得总人数,用10元人数除以总人数可得m的值;(2)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【详解】÷=人,解:(1)本次接受随机抽样调查的学生人数为48%5016⨯=,100%32%∴=,32m故答案为:50、32;⨯=,(2)15元的人数为5024%12本次调查获取的样本数据的平均数是:1(45161012151020830)16(元),50本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;⨯=人.(3)估计该校本次活动捐款金额为10元的学生人数为190032%608【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.27.至少有20名八年级学生参加活动.【解析】【分析】设需要七x个年级学生参加活动,则参加活动的八年级学生为(60-x)个,由收集塑料瓶总数不少于1000个建立不等式求出其解即可.【详解】解:设至少有x名八年级学生参加活动,-名,依题意得:则参加活动的七年级学生有(60)x-+≥x x15(60)201000x≥解得:20答:至少有20名八年级学生参加活动.【点睛】此题考查列一元一次不等式解实际问题,一元一次不等式的解法的运用,解答时由收集塑料瓶总数不少于1000个建立不等式是解题关键.28.31a b =⎧⎨=⎩【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.【详解】解:依题意得13x y x y -=⎧⎨+=⎩:,解得21x y =⎧⎨=⎩:, 将其分别代入7ax by +=和5ax by -=组成一个二元一次方程组2725a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=⎩. 【点睛】本题考查了方程组的解的定义,正确根据定义转化成解方程组的问题是关键,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.29.72m ≤,正整数解123m =、、 【解析】【分析】 去括号、移项、合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的正整数解即可.【详解】解:去括号,得2m-4-3m+3 92≥-移项,得2m-3m ≥4-3-92, 合并同类项,得-m ≥-72, 系数化为1得72m ≤, 则不等式的正整数解为 1,2,3.【点睛】本题考查了一元一次不等式的解法,解不等式的依据是不等式的性质,要注意不等号方向的变化.30.见解析【解析】【分析】写出已知,求证,利用平行线的判定定理证明即可.【详解】已知:如图,直线a 、b 、c 中,//b a ,//c a .求证://b c .证明:作直线a 、b 、c 的截线DF ,交点分别为D 、E 、F ,∵//b a ,∴12∠=∠.又∵//c a ,∴13∠=∠.∴23∠∠=.∴//b c .【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。
2022-2023学年第二学期泰州市姜堰区初一数学期中复习试卷及答案
20 先化简,再求值:(a+b)(b-a)-a(a-2b)+(a-2b)2,其中a=﹣1,b= .
21.如图,在正方形网格中有一个格点三角形ABC(ABC的各顶点都在格点上,小正方形的边长为1).
(1)画出△ABC中边BC上的高线AD;(提醒:别忘了标注字母)
(2)平移△ABC一次,使点A到点A1,画出平移后的△A1B1C1;
1.下列计算正确的是()
A.x2·x3=x6B.a3+a3=2a6C.(-2x3)2=-4x5D.(-m)5÷(-m)3=m2
【答案】D
【解析】
【分析】根据同底数幂的乘法,合并同类项,积的乘方,同底数幂的除法逐项计算判断即可求解.
【解答】解:A.x2·x3=x5,故该选项不正确,不符合题意;
B.a3+a3=2a3,故该选项不正确,不符合题意;
解答】解:0.0000007=7×10-7.
故答案为:7×10-7.
【点评】本题主要考查科学记数法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.解题关键是正确确定a的值以及n的值.
8.计算:42n·( )2n+1=____________(n为正整数).
【答案】
【解析】
【分析】先逆用同底数幂相乘变形为42n·( )2n·( ),再逆用积 乘方法则计算即可.
C.如图,∠1与∠2可能互余.
故该选项正确,符合题意;
D.如图,∠1与∠2不一定相等.
故该选项不正确,不符合题意;
故选C.
【点评】本题考查了同旁内角的定义,掌握定义是解题的关键.两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角.
4.代数式55+55+55+55+55化简的结果是()
华东师大版2020-2021学年七年级下册数学期中复习试卷二(含答案)
华东师大版2020-2021学年七年级下册数学期中复习试卷二一、选择题二、1.不等式293(2)x x ++≥的解集是( )A.3x ≤B.3x -≤C.3x ≥D.3x -≥2.根据等式的性质,下列变形正确的是( )A.若2x a =,则2x a =B.若123x x +=,则321x x += C.若ab bc =,则a c = D.若a b c c =,则a b = 3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A.9B.8C.5D.4 4.若m n >,下列不等式不一定成立的是( )A.33m n ++>B.33m n --<C.33m n >D.22m n >5.不等式组271532x x +⎧⎨-⎩>≥的解集在数轴上表示正确的是( ) A.B. C. D.6.若关于x 的不等式组2(1)20x a x -⎧⎨-⎩><的解集是x a >,则a 的取值范围是( )A.2a <B.2a ≤C.2a >D.2a ≥7.已知232a x y 与214a b x y +-是同类项,则a b 的值为( )A.2B.2-C.1D.1-8.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜。
甲说:“至少15元。
”乙说:“至多12元。
”丙说:“至多10元。
”小明说:“你们三个人都说错了”。
则这本书的价格x (元)所在的范围为( )A.1012x <<B.1215x <<C.1015x <<D.1114x <<9.《九章算术》中有这样一个题:今有甲乙二人持钱不知其数。
甲得乙半而钱五十,乙得甲太半而钱亦五十。
问甲、乙持钱各几何?其意思为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ B.15022503x y x y +=+= C.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ D.15022503x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩10.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是( )A.106 cmB.110 cmC.114 cmD.116 cm二、填空题(每小题3分,共15分)11.若1m +与2-互为相反数,则m 的值为________。
【解析版】初中数学七年级下期中经典复习题(课后培优)
一、选择题1.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .92.汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数,如图描述了A 、B 两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )①消耗1升汽油,A 车最多可行驶5千米;②B 车以40千米/小时的速度行驶1小时,最多消耗4升汽油;③对于A 车而言,行驶速度越快越省油;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B 车比驾驶A 车更省油.A .①④B .②③C .②④D .①③④ 3.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE4.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠5.下列生活中的运动,属于平移的是( )A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子6.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==8.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58-9.把一张50元的人民币换成10元或5元的人民币,共有( )A .4种换法B .5种换法C .6种换法D .7种换法10.如图所示,在ABC 中,点D 、E 、F 分别是AB ,BC ,AC 上,且EF ∥AB ,要使DF ∥BC ,还需添加条件是( )A .∠1=∠2B .∠1=∠3C .∠3=∠4D .∠2=∠411.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45° 12.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50° 13.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°14.下列各组数中互为相反数的是( )A .3和2(3)-B .﹣|﹣2|和﹣(﹣2)C .﹣38和38-D .﹣2和1215.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<< 二、填空题16.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.17.3a ++(b-2)2=0,则a b =______.18.不等式3342x x ->-的最大整数解是__________.19.若x +1是125的立方根,则x 的平方根是_________.20.若一个正数x 的平方根是2a +1和4a -13,则a =____,x =____.21.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________.22.若规定[]a 表示不超过a 的最大整数,例[]4.34=,[]2.13-=-,若[]M a a =-,则M 的取值范围________23.9的算术平方根是________.24.将命题“对顶角相等”用“如果……那么……”的形式可以改写为______.25.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是__________. 三、解答题26.解不等式(组):(1)解不等式5132x x -+>-,并把它的解集表示在数轴上; (2)解不等式组:253(2)1210.35x x x +≥+⎧⎪-⎨+>⎪⎩, 27.如图,AD//BC ,∠A=∠C .求证:AB//DC .28.已知方程组71ax by x y +=⎧⎨-=⎩和53ax by x y -=⎧⎨+=⎩的解相同,求a 和b 的值. 29.“保护环境,人人有责”,为了更好的治理好金水河,郑州市污水处理厂决定购买A 、B 两型号污水处理设备共10台,其信息如下表:单价(万元/台) 每台处理污水量(吨/月)A 型 12 220B 型 10200 (1)设购买A 设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨,试写出W 与x ,y 与x 之间的函数关系式;(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案更省钱,需要多少资金?30.观察下列关于自然数的等式:① 223415-⨯=;② 225429-⨯=;③ 2274313-⨯=;…根据上述规律解决下列问题:(1)请仿照①、②、③,直接写出第4个等式: ;(2)请写出你猜想的第n 个等式(用含n 的式子表示),并证明该等式成立.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.C2.C3.D4.C5.A6.A7.A8.A9.C10.B11.B12.C13.D14.B15.C二、填空题16.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解17.9【解析】【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负18.0【解析】【分析】据解不等式的一般步骤:移项合并系数化为1解答【详解】解:移项得:-3x-4x>-2-3合并同类项得:-7x>-5化系数为1得:故不等式的最大整数解是0【点睛】考查了一元一次不等式的19.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算20.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为22521.±2【解析】【分析】首先估计出a的值进而得出M的值再得出N的值再利用平方根的定义得出答案【详解】解:∵M是满足不等式-的所有整数a的和∴M=-1+0+1+2=2∵N是满足不等式x≤的最大整数∴N=222.【解析】【分析】根据题意列出不等式组解不等式组即可【详解】解:由题意可知∴∴即故答案为:【点睛】本题考查了解一元一次不等式组根据题意得出不等式组是解题的关键23.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个25.【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数然后根据6个组的频数和等于数据总数即可求得第6组的频数【详解】解:∵有50个数据共分成6组第5组的频率是016∴第5组的频数为50×016三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析 【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C.【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.2.C解析:C【解析】【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:①由图象可知,当A车速度超过40km时,燃油效率大于5km/L,所以当速度超过40km时,消耗1升汽油,A车行驶距离大于5千米,故此项错误;②B车以40千米/小时的速度行驶1小时,路程为40km,40km÷10km/L=4L,最多消耗4升汽油,此项正确;③对于A车而言,行驶速度在0﹣80km/h时,越快越省油,故此项错误;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车燃油效率更高,所以更省油,故此项正确.故②④合理,故选:C.【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.3.D解析:D【解析】【分析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角,构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.4.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解:A.180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意; B. 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意; D. CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.5.A解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动; 旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转; 故选A .【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.6.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 7.A解析:A【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.9.C解析:C【解析】【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于10元和5元的数量都是未知量,可设出10元和5元的数量.本题中等量关系为:10元的总面值+5元的总面值=50元.【详解】设10元的数量为x ,5元的数量为y .则1055000x y x y ⎧⎨≥≥⎩+=,, 解得010x y ⎧⎨⎩==,18x y ⎧⎨⎩==,26x y ⎧⎨⎩==,34x y ⎧⎨⎩==,42x y ⎧⎨⎩==,50x y ⎧⎨⎩==. 所以共有6种换法.故选C .【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.10.B解析:B【解析】【分析】根据平行线的性质,两直线平行同位角相等,得出∠1=∠2,再利用要使DF ∥BC ,找出符合要求的答案即可.【详解】解:∵EF ∥AB ,∴∠1=∠2(两直线平行,同位角相等),要使DF ∥BC ,只要∠3=∠2就行,∵∠1=∠2,∴还需要添加条件∠1=∠3即可得到∠3=∠2(等量替换),【点睛】此题主要考查了平行线的性质与判定、等量替换原则,根据已知找出符合要求的答案,是比较典型的开放题型.11.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.12.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.13.D【解析】【分析】【详解】如图所示,过E 作EG ∥AB .∵AB ∥CD ,∴EG ∥CD ,∴∠ABE +∠BEG =180°,∠CDE +∠DEG =180°,∴∠ABE +∠BED +∠CDE =360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线,∴∠FBE +∠FDE =12(∠ABE +∠CDE )=12(360°﹣90°)=135°, ∴∠BFD =360°﹣∠FBE ﹣∠FDE ﹣∠BED =360°﹣135°﹣90°=135°.故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.14.B解析:B【解析】【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A 2(3)-3,32(3)-B 、﹣|2|=﹣222,﹣|2|2)两数互为相反数,故本选项正确;C 38238-23838-D 、﹣2和12两数不互为相反数,故本选项错误. 故选:B .【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.15.C解析:C【解析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C .【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题16.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解解析:105°【解析】【分析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=,3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.17.9【解析】【分析】根据非负数的性质列式求出ab 的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负解析:9【解析】【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b =(-3)2=9.故答案为:9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.0【解析】【分析】据解不等式的一般步骤:移项合并系数化为1解答【详解】解:移项得:-3x-4x>-2-3合并同类项得:-7x>-5化系数为1得:故不等式的最大整数解是0【点睛】考查了一元一次不等式的解析:0【解析】【分析】据解不等式的一般步骤:移项,合并,系数化为1解答.【详解】解:移项得:-3x-4x>-2-3.合并同类项得:-7x>-5.化系数为1得:57x .故不等式的最大整数解是0.【点睛】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.19.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算解析:±2【解析】【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.20.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225解析:25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13,∴2a+1+4a−13=0,解得a =2,∴2a +1=2×2+1=5, ∴m =5²=25. 故答案为2, 25.21.±2【解析】【分析】首先估计出a 的值进而得出M 的值再得出N 的值再利用平方根的定义得出答案【详解】解:∵M 是满足不等式-的所有整数a 的和∴M =-1+0+1+2=2∵N 是满足不等式x≤的最大整数∴N =2解析:±2【解析】【分析】首先估计出a 的值,进而得出M 的值,再得出N 的值,再利用平方根的定义得出答案.【详解】解:∵M a <<a 的和, ∴M =-1+0+1+2=2,∵N 是满足不等式x ∴N =2,∴M +N 2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键. 22.【解析】【分析】根据题意列出不等式组解不等式组即可【详解】解:由题意可知∴∴即故答案为:【点睛】本题考查了解一元一次不等式组根据题意得出不等式组是解题的关键解析:01M ≤<【解析】【分析】根据题意列出不等式组,解不等式组即可.【详解】解:由题意可知[]1a a a -<≤ ∴[]1a a a -≤-<-∴[]01a a ≤-<,即01M ≤< 故答案为:01M ≤<.【点睛】本题考查了解一元一次不等式组,根据题意得出不等式组是解题的关键.23.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个解析:如果两个角是对顶角,那么这两个角相等【解析】【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【详解】题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么这两个角相等;【点睛】此题考查命题与定理,“如果”后面是命题的条件,“那么”后面是条件的结论,解题的关键是找到相应的条件和结论,比较简单.25.【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数然后根据6个组的频数和等于数据总数即可求得第6组的频数【详解】解:∵有50个数据共分成6组第5组的频率是016∴第5组的频数为50×016解析:【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【详解】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为6.【点睛】本题考查频数与频率.三、解答题26.(1)3x <,数轴见解析;(2)1x ≤-【解析】【分析】(1)先去分母再移项,再合并同类项,最后系数化为一即可得到答案;(2)对不等式组的第一个不等式先去括号再移项求解即可得到答案,对第二个不等式先去分母再求解即可得到,最后取两个不等式的公共部分解即可得到答案;【详解】解:(1)5132x x -+>- 去分母,得5226x x -+>-移项,得2652x x ->-+-合并同类项,得3x ->-.两边都除以-1,得3x <.这个不等式的解集在数轴上的表示如图所示:(2)解:253(2)121035x x x +≥+⎧⎪-⎨+>⎪⎩ 化解为:23655(12)30x x x -≥-⎧⎨-+>⎩, 即:145x x ≤⎧⎪⎨<⎪⎩在同一数轴上表示不等式组的两个不等式的解集,如图.所以,原不等式组的解集是1x ≤-;【点睛】本题主要考查了解不等式与解不等式组,熟记解不等式的步骤与解不等式组的步骤是解题的关键,解不等式组的时候注意的最后的结果取公共部分.27.证明见解析.【解析】【分析】根据AD ∥BC 得到∠C=∠CDE ,再根据∠A=∠C ,利用等量替换得到∠A=∠CDE 即可判定;【详解】证明:∵AD ∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB ∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.28.31a b =⎧⎨=⎩【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.【详解】解:依题意得13x y x y -=⎧⎨+=⎩:,解得21x y =⎧⎨=⎩:, 将其分别代入7ax by +=和5ax by -=组成一个二元一次方程组2725a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=⎩. 【点睛】本题考查了方程组的解的定义,正确根据定义转化成解方程组的问题是关键,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.29.(1)2100W x =+;202000y x =+ (2)见解析【解析】【分析】(1)根据所需资金共为W 万元=购买A 型设备x 台的资金+购买B 型设备(10-x)台的资金,可列出W 与x 的关系式;根据每月处理污水总量为=每月A 型设备处理污水量+每月B 型设备处理污水量可列出y 与x 的关系式;(2)根据购买设备的资金不超过106万元,月处理污水量不低于2040吨,列不等式组,求出方程组的整数解,分别计算各方案的资金,比较即可得答案.【详解】(1)购买A 型设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨, 则W 与x 的函数关系式:()1210102100W x x x =+-=+;y 与x 的函数关系式:()22020010202000y x x x =+-=+.(2)由(1)可知:21001062020002040x x +≤⎧⎨+≥⎩, 解得:32x x ≤⎧⎨≥⎩, ∵x 为整数,∴2x =或3,当2x =时,104w =(万元);当3x =时,106w =(万元).∴购买方案有2种:方案一:A 型设备2台,B 型设备8台;方案二:A 型设备2台,B 型设备8台;购买A 型设备2台,B 型设备8台最省钱,需要104万元.【点睛】本题考查一次函数的应用及一元一次不等式组的应用,正确得出等量关系和不等关系是解题关键.30.(1)2294417-⨯=;(2)22(21)441n n n +-=+;证明见解析.【解析】【分析】(1)由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可;(2)根据前面的式子得出一般性的式子,然后根据多项式的乘法计算法则进行证明.【详解】解:(1)故答案为:2294417-⨯=;(2)猜想第n 个等式为:()2221441n n n +-=+,证明如下:∵左式=22441441n n n n ++-=+,右式=41n =+,∴左式=右式,∴该等式成立.【点睛】本题主要考查的就是规律的发现与证明,属于中等难度题型.解答这个问题的时候,关键就是找出各数之间存在的联系,然后得出答案.。
七年级数学(下)期中复习(易错题.)doc
七年级数学(下)期中复习(易错题)班级:姓名:_________ 考号:___________1.下列说法中,①两条相交直线组成的四个角相等,则两直线垂直。
②两条相交直线组成的四个角中若有一个是直角,则四个角相等。
③两条直线相交,一个角的两个邻补角相等,则这两条直线垂直。
④两条直线相交,一个角与其邻补角相等,则这两条直线垂直,其中正确的有:__________。
2.如图,O是正六边形ABCDEF的中心,与各顶点连线组成的三角形均为等边三角形,图形中可以由△OBC平移得到的有__________。
3.如图,AB∥CD的条件是( )A.∠B=∠D B.∠B+∠D=90°C.∠B+∠D=∠E D.∠B+∠D+∠E=180°4.如图,AB∥CD∥EF,则下列各式中正确的是( )A.∠2+∠3-∠1=180° B.∠l+∠2=∠3C.∠2+∠3+∠1=180° D.∠l+∠3=180°5.对于同一平面内的三条直线a,b, c,给出下列四个论断:①a∥b;②b∥c;③a⊥b;④a ⊥c,请你以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题:_______________ 6.写出一个平行线的性质定理___________________________,并指出它的题设是___________________________,结论是___________________________。
7.已知∠α=50°,∠β的两边与∠α的两边分别平行,则∠β=____________。
8.若点P(2-a,3a+6)在第三象限,且P点到两坐标轴的距离相等,则P点坐标为_______________。
9.在直角坐标系中,△ABC的三个顶点坐标分别为A(2,-1),B(4,3),C(1,2)则△ABC的面积为________________。
10.点P(2,-3)关于y轴对称点坐标是________________。
2022-2023学年第二学期宿迁市钟吾国际第一初级中学初一数学期中复习试卷及答案
26.已知:如图, , .
(1)判断GD和CA的位置关系,并说明理由
(2)若DG平分 ,且 ,求 的度数.
27.用几个小的长方形、正方形拼成一个大的正方形,然后利用两种不同的方法计算这个大的正方形的面积,可以得到一个等式,利用这些等式也可以求一些不规则图形的面积.
【解答】∵∠ABC、∠ACB的三等分线交于点E,D.
∴∠FBC=2∠DBC,∠GCB=2∠DCB.
∵∠BFC=132°,∠BGC=118°.
∴∠FBC+∠DCB=180°−∠BFC=180°−132°=48°.
∠DBC+∠GCB=180°−∠BGC=180°−118°=62°
即 .
由①+②可得:3(∠DBC+∠DCB)=110°.
9.研究发现新冠肺炎病毒大小约为0.000000125米,数0.000000125用科学记数法表示为___________.
【答案】1.25×
【解析】
【分析】科学记数法的表示形式为 的形式,其中,n为整数,确定n的值,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n是正数;当原数的绝对值﹤1时,n是负数
12.若二次三项式x2+(2m-1)x+4是一个完全平方式,则m=_____.
【答案】 或
【解析】
【分析】利用完全平方公式的结构特征,根据 即可得到m的值.
B、6+8=14>10,能组成三角形,符合题意;
C、5+5=10,不能组成三角形,不符合题意;
D、4+6=10,不能组成三角形,不符合题意;
故选:B.
精品 七年级数学下册 期中综合复习题
七年级数学期中综合复习题一、选择题:A.图中有4对同位角,4对内错角,4对同旁内角B.图中有4对同位角,4对内错角,2对同旁内角C.图中有6对同位角,4对内错角,4对同旁内角D.图中有6对同位角,4对内错角,2对同旁内角2.下列命题正确的是( )A.内错角相等B.相等的角是对顶角C.三条直线相交,必产生同位角、内错角、同旁内角D.同位角相等,两直线平行3.两平行直线被第三条直线所截,同位角的平分线( )A.互相重合B.互相平行C.互相垂直D.相交4.如图所示,已知AC∥ED,∠C=260,∠CBE=370,则∠BED的度数为()A. 630B. 830C. 730D.5305.若点A(m,n)在第二象限,则点B(-mn,-n)在()A.第一象限B. 第二象限C.第三象限 D .第四象限6.如图,方格纸上有B、A两点,若以点B为原点,建立平面直角坐标系,则点A坐标为(3,4),若以点A为原点建立平面直角坐标系,则点B的坐标为()A.(-3,-4) B.(-3,4) C.(3,-4) D.(3,4)7.已知三角形的三边长分别是3,8,x,若x的值为偶数,则满足条件的x的值有()A.1个B.2个C.3个D.4个8.如图,求∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H +∠I +∠K的度数为()A.720° B.900° C.1080° D.1260°9.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条 B.8条 C.9条 D.10条二、填空题:10. 如图,AB ∥CD,∠1=500,∠2=1100,则∠3=11. 如图所示,∠ABC=800,∠CED=1400,当∠BCD= 时,AB ∥DE. 12.点(41,2a a +-)在坐标轴上,则a =13.如果将直角坐标系中的A 点的横坐标乘以2再加上2,纵坐标减2除以2后,点A 恰好落在原点处,则A 的坐标是14.将一副直角三角尺如图放置,已知AE ∥BC ,那么∠DAF 的度数是15.如图,直角ΔDEF 是由直角ΔABC 平移得到的,如果AB=6cm ,BE=5 cm ,DG=2cm ,那么图中阴影部分四边形 DGCF 的面积是_____________cm 216.如图,天地广告公司为某商品设计的商品图案,图中阴影部分是彩色,若每个小长方形的面积都是1,则彩色的面积为17.如图所示,AB ∥DC,E 是DC 上一点,且DE:EC=2:3,△DBC 的面积等于10,那么△ADE 的面积等于 18.四边形ABCD 中,若∠A +∠B =∠C +∠D ,若∠C =2∠D ,则∠C = 19.若一个n 边形的边数增加一倍,则内角和将增加三、计算证明题:20.已知:AE ∥BD,∠1=3∠2,求∠C 的度数。
初一数学下册期中考试试题与复习资料
722-七年级数学下册期中测试卷 一、选择题.(每空3分,共18分)1. 如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( ) A.130° B.140° C.150° D.160°2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )A .30° B.25° C.20° D.15°3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )A .(-1,1)B .(-2,-1)C .(-3,1)D .(1,-2) 4.下列现象属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B 急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 5.下列各数中,是无理数的为( ) A .39B. 3.14C.4D.6.若a 2=9, 3b=-2,则a+b=( )A. -5B. -11C. -5 或 -11D. ±5或±11 二、填空.(每小题3分,共27分)7.把命题“平行于同一条直线的两条直线平行”改成如果……那么形式:_________________________________________________________8.一大门的栏杆如右图所示,BA ⊥AE ,若CD ∥AE ,则∠ABC+∠BCD=____度. 9.如右图,有下列判断:①∠A 与∠1是同位角;②∠A 与∠B 是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角。
其中正确的是_______(填序号).10.在数轴上,-2对应的点为A,点B 与点A 的距离为7,则点B 表示的数为_________.11.绝对值小于7的所有整数有_____________.12.A 、B 两点的坐标分别为(1,0)、(0,2),若将线段AB 平移至A 1B 1,点A 1B 1的坐标分别为(2,a )、(b ,3),则a+b=____________.13.第二象限内的点P(x,y),满足|x |=9,y 2=4,则点P 的坐标是______. 14.若x 3m-3-2y n-1=5 是二元一次方程,则M n=__________15.平方根节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份最后两位数字的平方根,例如2009年的3月3日,2016年的4月4日,请你写出本世纪内你喜欢的一个平方根节:_______年_____月_____日.(题中所举例子除外) 三、解答题. 16. 解方程组(8分)⎩⎨⎧=-=+152y x y x ⎩⎨⎧=-=+623432y x y x 17.(6分)如右图,先填空后证明. 已知: ∠1+∠2=180°求证:a ∥b证明:∵ ∠1=∠3( ),∠1+∠2=180°( )∴ ∠3+∠2=180°( )∴ a ∥b ( )请你再写出一种证明方法.18.(7分)在平面直角坐标系中, △ABC 三个顶点的位置如图(每个小正方形的边长均为1).(1)请画出△ABC 沿x 轴向平移3个单位长度,再沿y 轴向上平移2个单位长度后的△A ′B ′C ′(其中A ′、B ′、C ′分别是A 、B 、C 的对应点,不写画法)(2)直接写出A ′、B ′、C ′三点的坐标: A ′(_____,______); B ′(_____,______); C ′(_____,______)。
数学期中考试复习题七年级
数学期中考试复习题七年级一、选择题1. 已知一个数的平方是16,这个数是:A. 4B. -4C. 4或-4D. 以上都不是2. 以下哪个数是无理数?A. 3.14B. πC. 0.33333(无限循环小数)D. 1/33. 如果一个三角形的两边长分别为3和4,第三边的长度X满足:A. 1 < X < 7B. 0 < X < 7C. 1 < X < 7 或 X = 7D. 以上都不是4. 一个圆的半径是5,那么它的直径是:A. 10B. 15C. 20D. 255. 以下哪个表达式不能简化为一个整数?A. (-3)^2B. √16C. √(-4)^2D. √(-3)^2二、填空题1. 一个数的平方根是2,那么这个数是_________。
2. 一个数的立方根是-2,那么这个数是_________。
3. 如果一个数的相反数是-5,那么这个数是_________。
4. 一个数的绝对值是5,那么这个数可以是_________或_________。
5. 一个数的算术平方根是√2,那么这个数是_________。
三、解答题1. 证明:如果一个三角形的两边长分别为a和b,那么第三边c的长度满足|a-b| < c < a+b。
2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。
3. 一个圆的半径是7cm,求这个圆的周长和面积。
4. 解一元一次方程:3x + 5 = 14。
5. 一个数的1/3与它的2倍的和是10,求这个数。
四、应用题1. 一辆汽车以每小时60公里的速度行驶,问2小时后汽车行驶了多少公里?2. 一个班级有40名学生,其中1/5是女生,问这个班级有多少名男生?3. 一个长方形的长是10米,宽是5米,求这个长方形的周长和面积。
4. 一个工厂每天生产100个零件,如果每个零件的售价是5元,那么工厂每天的收入是多少?5. 一个水果店有苹果和橙子两种水果,苹果每斤5元,橙子每斤3元。
人教版2020-2021学年七年级下册数学期中复习试卷(含答案)
人教版七年级下册数学期中复习试卷一.选择题(共10小题,满分40分,每小题4分)1.一个数的两个平方根分别是2a﹣1与﹣a+2,则这个数是()A.﹣1B.3C.9D.﹣32.在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这五个数中,无理数的个数共有()A.2个B.3个C.4个D.5个3.下列不等式变形错误的是()A.若a>b,则1﹣a<1﹣b B.若a<b,则ax2≤bx2C.若ac>bc,则a>b D.若m>n,则>4.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限5.不等式组的解集在数轴上表示为()A.B.C.D.6.如图,点Q(m,n)是第二象限内一点,则点Q到y轴的距离是()A.m B.n C.﹣m D.﹣n7.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系()A.将原图向左平移两个单位B.关于原点对称C.将原图向右平移两个单位D.关于y轴对称8.估计的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间9.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0 C.的算术平方根是4D.绝对值是它本身的数只有1和010.如图,数轴上的点A表示的数是1,OB⊥OA,垂足为O,且BO=1,以点A为圆心,AB为半径画弧交数轴于点C,则C点表示的数为()A.﹣0.4 B.﹣C.1﹣D.﹣1二.填空题(共8小题,满分16分,每小题2分)11.的相反数是,绝对值是.12.疫情期间全国“停课不停学”初中生来清网上听课每节课a分钟,每天六节课,每天上网课总时长小于240分钟,可列不等式.13.若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为.14.不等式﹣x+1<0的解集是.15.的值是;的立方根是.16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x轴的距离为3,则P点的坐标为.17.若|a﹣2|+b2+4b+4+=0,则=.18.已知不等式6x+1>5x﹣2的最小整数解是方程2x﹣kx=4﹣2k的解,则k=.三.解答题(共10小题,满分64分)19.解方程:2x2﹣8=0.20.计算:5﹣.21.计算:﹣22+﹣﹣|﹣2|.22.解不等式+1≥.并把此不等式的解表示在数轴上.23.解不等式x﹣4<3(x﹣2),并把解集在数轴上表示出来.24.解不等式组.25.(1)计算:++|1﹣|;(2)解方程组;(3)解不等式组,并写出它的所有整数解..26.如图,三角形ABC的顶点坐标分别为A(﹣2,4),B(﹣3,1),C(0,1),BC 上的一点P的坐标为(﹣2,1),将三角形ABC向右平移4个单位长度,再向上平移1个单位长度,得到三角形A1B1C1,其中点A,B,C,P分别对应点A1,B1,C1,P1.(1)在图中画出三角形A1B1C1和点P1;(2)连接P1A,P1B,直接写出三角形P1AB的面积.27.平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于点B、A.(1)直接写出直线AB关于x轴对称的直线BC的解析式;(2)如图1,直线BC与直线y=﹣x交于E点,点P为y轴上一点,PE=PB,求P点坐标;(3)如图2,点P为y轴上一点,∠OEB=∠PEA,直线EP与直线AB交于点M,求M 点的坐标.28.放假了,学生王东准备利用假期到某工厂打工,该工厂的工作时间:每月25天,每天上午:8:00﹣12:00,下午:14:00﹣18:00.待遇:按件计酬,另每月加奖金100元.生产甲、乙两种产品,规定每月生产甲种产品不少于100件,每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元.下表是生产甲、乙产品件数与所用时间之间的关系:生产甲产品的件数(件)生产乙种产品的件数(件)所用总时间(分)215065190(1)王东每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)王东这个月最多能得多少工资?此时生产甲乙两种产品各多少件?参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:由题意得,2a﹣1﹣a+2=0,解得a=﹣1,所以2a﹣1=﹣3,﹣a+2=3,即一个数的两个平方根分别是3与﹣3,所以这个数是9,故选:C.2.解:在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数有:,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)共2个.故选:A.3.解:A、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,正确,故本题选项不符合题意;B、∵a<b,∴ax2≤bx2,正确,故本题选项不符合题意;C、当c<0时,根据ac>bc不能得出a>b,错误,故本题选项不符合题意;D、∵m>n,∴>,正确,故本题选项不符合题意;故选:C.4.解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.5.解:,由①得,x>1,由②得,x≥2,故此不等式组的解集为:x≥2.在数轴上表示为:.故选:A.6.解:因为Q(m,n)是第二象限内一点,所以m<0,所以点Q到y轴的距离是|m|=﹣m.故选:C.7.解:∵将三角形三个顶点的横坐标都减2,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向左平移两个单位.故选:A.8.解:∵49<63<64,∴7<<8,故选:A.9.解:A、立方根是它本身的数只有1和0、﹣1,故此选项错误;B、算术平方根是它本身的数只有1和0,故此选项正确;C、=4的算术平方根是2,故此选项错误;D、绝对值是它本身的数是非负数,故此选项错误.故选:B.10.解:在Rt△AOB中,AB==,∴AB=AC=,∴OC=AC﹣OA=﹣1,∴点C表示的数为1﹣.故选:C.二.填空题(共8小题,满分16分,每小题2分)11.解:的相反数是﹣;∵>0,∴||=.故答案为:﹣,.12.解:依题意,得6a<240.故答案为:6a<240.13.解:∵点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),∴3+m=﹣3,a﹣2=2,解得:m=﹣6,a=4,则m+a的值为:﹣6+4=﹣2.故答案为:﹣2.14.解:不等式两边同时乘以﹣3得:x﹣3>0,移项得:x>3,即不等式的解集为:x>3.故答案为:x>3.15.解:∵42=16,∴=4,=8,=2,故答案为:4,2.16.解:∵某个“和谐点”到x轴的距离为3,∴y=±3,∵x+y=xy,∴x±3=±3x,解得:x=或x=.则P点的坐标为:(,3)或(,﹣3).故答案为:(,3)或(,﹣3).17.解:根据题意得|a﹣2|+(b+2)2+=0,∴a﹣2=0,b+2=0,c﹣=0,解得a=2,b=﹣2,c=,所以原式=××=2×=2×1=2.故答案为2.18.解:6x+1>5x﹣2,解得:x>﹣3,∵x是不等式5x﹣2<6x+1的最小整数解,∴x=﹣2,把x=﹣2代入方程2x﹣kx=4﹣2k中得:2×(﹣2)﹣(﹣2)×k=4﹣2k,解得:k=2,故答案为:2.三.解答题(共10小题,满分64分)19.解:x2=4,所以x1=2,x2=﹣2.20.解:原式=5﹣2﹣2=1.21.解:原式=﹣4+6+3﹣(﹣2)=﹣4+6+3﹣+2=7﹣.22.解:去分母得:3(x﹣1)+6≥2(2x+1),去括号得:3x﹣3+6≥4x+2,移项合并同类项得:﹣x≥﹣1,故不等式的解集为:x≤1,在数轴上表示不等式的解集,如图所示:.23.解:去分母得:x﹣4<3x﹣6,移项得:x﹣3x<﹣6+4,合并得:﹣2x<﹣2,解得:x>1,表示在数轴上,如图所示:.24.解:,解不等式①得:x≥4,解不等式②得:x>,所以不等式组的解集是x≥4.25.解:(1)原式=3﹣4+﹣1,=﹣2+.(2),①×2﹣②得,﹣9n=﹣18,解得n=2,把n=2代入①得,m=7,∴方程组的解为;(3),解①得:x≤3;解②得:x>﹣1;则不等式组的解集为﹣1<x≤3,∴这个不等式组的整数解为0,1,2,3.26.解:(1)如图所示:△A1B1C1和点P1,即为所求;(2)三角形P1AB的面积为:3×5﹣×2×4﹣×1×3﹣×1×5=7.27.解:(1)∵直线y=2x+4与x轴、y轴分别交于点B、A.∴A(0,4),B(﹣2,0),∵直线AB与直线BC关于x轴对称,∴C(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,;∴直线BC的解析式为y=﹣2x﹣4;故答案为:y=﹣2x﹣4;(2)∵,∴,∴E(﹣4,4),∴AE⊥AO,设OP=a,AP=4﹣a,在Rt△BOP和Rt△EAP中,BP2=4+a2,PE2=16+(4﹣a)2,∵PE=PB,∴4+a2=16+(4﹣a)2,解得a=3.5.∴P(0,3.5).(3)①如图,当点P在点A的下方,∵∠OEB=∠PEA,∠AEO=45°,∴∠PEB=45°,过点B作BN⊥BE交直线EP于点N,过点N作NQ⊥OB于Q,过点E作EH⊥OB于点H,∴△EBN为等腰直角三角形,∴EB=BN,∵∠BEH+∠EBH=90°,∠EBH+∠NBQ=90°,∴∠BEH=∠NBQ,又∵∠EHB=∠BQN=90°,∴△EHB≌△BQN(AAS),∴NQ=BH=2,BQ=EH=4,∴N(2,2),设直线EN的解析式为y=kx+b,∴,解得,∴直线EN的解析式为y=﹣x+,∴,解得,即M(﹣,);②P点在A点的上方,由①知图1中OP=,则AP=,∴OP=,设直线EP的解析式为y=mx+,∵E(﹣4,4),∴﹣4m+=4,解得m=,∴直线EP的解析式为y=x+,∴,解得,∴M(0.8,5.6).综合以上可得点M的坐标为(﹣,)或(0.8,5.6).28.解:(1)设生产一件甲种产品需x分钟,生产一种乙种产品需y分钟,由题意得,解得:x=15,y=20,答:生产一件甲种产品需15分钟,生产一件乙种产品需20分钟;(2)设生产甲种产品a件,工资为w元,w=1.5a+2.8(25×8×60﹣15a)÷20+100,=﹣0.6a+1780,∵a≥100,∴由一次函数性质知,当a=100时,w取最大值为1720元.答:王东该月最多工资为1720元,此时生产甲种产品100件,乙种产品525件.。
七年级数学下册期中测试试卷及复习资料
FE DCBA 七年级数学第二学期期中测试试卷一、选择题(每小题3分,共30分)1.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.180=∠+∠ACD D 2.在一个平面内,任意四条直线相交,交点 的个数最多有( )A. 7个B. 6个C. 5个D. 4个3.在平面直角坐标系中,点 ()1,12+-m 一定在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图所示,AB ∥CD ,则∠A+∠E+∠F+∠C 等于( ) A.180° B.360° C.540° D.720°5.若点P 在x轴的下方,在y轴的左方,到横轴的距离为3,到纵轴的距离为4,则点P 的坐标为( )A.(4,3)B.(-4,-3)C.(3,-4)D.(-3,-4)6.在下列说法中:⑴△ABC 在平移过程中,对应线段一定相等;⑵△ABC 在平移过程中,对应线段一定平行;⑶△ABC 在平移过程中,周长保持不变;⑷△ABC 在平移过程中,对应边中点的连线段的长等于平移的距离;⑸△ABC 在平移过程中,面积不变,其中正确的有A.⑴⑵⑶⑷B.⑴⑵⑶⑷⑸C.⑴⑵⑶⑸D.⑴⑶⑷⑸ 7.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB = 60°,则∠AED ′= ( ) A.50° B.55° C.60° D.65°8.某人到瓷砖商店去购买一种多边形形状的瓷砖,用 来铺设无缝地板,他购买的瓷砖形状不可以是( ) A.正三角形 B.长方形 C.正八边形 D.正六边形9.一个三角形的两边分别是4和9,而第三边的长为奇数,则第三边的长是 ( ) A.3或5或7 B.9或11或13 C.5或7或9 D.7或9或11EDC BA4321AEDBFD ′C′ 60°10.如果一个等腰三角形的两边长分别为2cm 和5cm ,则它的周长是( ) A.9cm B.12cm C.9cm 或12cm D.以上答案都不对二、填空题(每小题3分,共30分)11.把命题“等角的余角相等”写成“如果……,则…….”的形式为 .12.如图,△DEF 是由△ABC 经过平移得到的,若∠C=80°,∠A=33°,则∠DEF= . 13.已知点A (4,3),AB ∥y 轴,且AB=3,则B 点的坐标为 .14.如图,计划把河水引到水池A 中,可以先引AB ⊥CD ,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是________________.15.在△ABC 中,∠A=3∠B ,∠A -∠C=30°,则∠A=____,∠B=____,∠C=______. 16.已知一个多边形的内角和与外角和共2160°,则这个多边形的边数是___________. 17.如果一个三角形的三个外角之比为2 : 3 : 4,则与之对应的三个内角度数分别为 . 18.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是 三角形.19.已知△ABC 的周长是偶数,且a = 2,b = 7,则此三角形的周长是_________. 20.如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是___________.2008-2009年度第二学期期中测试七年级数学答题卷一、选择题(每小题3分,共30分)AB DC EFCD ABxzy二、填空题(每小题3分,共30分)11. . 12. . 13. . 14.________ . 15._____,_____,______. 16.________ . 17. , , . 18. 三角形. 19._________________. 20._________________________.三、解答题(共90分)21.(7分)请把下列解题过程补充完整并在括号中注明理由: 如图,EF ∥AD ,∠1=∠2,∠BAC=70°,求∠AGD . 解:∵EF ∥AD ,∴∠2 = , ( )又∵∠1=∠2, ∴∠1=∠3,∴AB ∥ , ( ) ∴∠BA C + =180°,()∵∠BAC = 70°, ∴∠AGD = .22.(9分)如图,直线AB ∥CD ,直线AB 、CD 被直线EF 所截,EG 平分∠BEF ,FG 平分∠DFE ,请问∠G 等于多少度?写出完整的说理过程.23.(8分)如图,已知CD AB //,40=∠B ,CN 是BCE ∠的平分线,CN CM ⊥,求BCM ∠的度数.NMEDCBA FABCDEG24.(8分)已知,如图,∠1= 40°,∠2 = 65°,AB ∥DC ,求∠ADC 和∠A 的度数.25.(9分)如图,已知CD AB //,CF AE //,求证:DCF BAE ∠=∠.FEDCB A26.(9分)如图所示的直角坐标系中,三角形ABC 的顶点坐标分别是A (0,0)、B (3,0)、C (5,6).求:(1)求三角形ABC 的面积;(2)如果将三角形ABC 向上平移2个单位长度,再向右平移2个单位长度,得到三角形A 1B 1C 1.画出三角形A 1B 1C 1并求出A 1、B 1、C 1的坐标?27.(12分)如图,在△ABC 中,∠ABC 与∠ACB的度数. (1)若∠ABC=50°,∠ACB=80°,则∠BIC=_______________; (2)若∠ABC+∠ACB=116°,则∠BIC=___________________; (3)若∠A=56°,则∠BIC=__________________;(4)若∠BIC=100°,则∠A=_________________; A (5)通过以上计算,探索出您所发现规律:∠A 与∠BIC 之间的 数量关系是_________________________________.IC B28.(12分)如图①,将线段A 1A 2向右平移2个单位到B 1B 2,得到封闭图形A 1A 2B 2B 1(即阴影部分),在图②中,将折线A 1A 2A 3向右平移2个单位到B 1B 2B 3,得到封闭图形A 1A 2A 3 B 3B 2B 1(即阴影部分).图① 图② 图③图④ 图⑤A(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移2个单位,从而得到一个封闭图形,并用阴影表示;(2)请你分别写出上述三个图形中阴影部分的面积(设长方形水平方向长均为a,竖直方向长均为b):S1 =__________________,S2 =__________________,S3 =__________________;(3)如图④,一块长方形草地,长为20米,宽为10米,草地上有一条弯曲的小路(小路任何地方的宽度都是2米),请你写出小路部分所占的面积是___________________米2;(4)如图⑤,若在(3)中的草地又有一条横向的弯曲小路(小路任何地方的宽度都是1米),请你写出小路部分所占的面积是__________________米2.29.(16分)在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌).这显然与正多边形的内角大小有关.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)(4分)请根据下列图形,填写表中空格:正多边形边数 3 4 5 6 …正多边形每个内角的度数…(2)(3分)如果只限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形?(3)(7分)从正三角形、正四边形、正六边形、正八边形中任选两种正多边形镶嵌,请全部写出能够形成镶嵌的两种正多边形组合的所有种类,并从其中任选一种组合,探究这两种正多边形共能镶嵌成几种不同的平面图案?说明你的理由并画出简图.(4)(2分)请你设计出一种由三种正多边形形成镶嵌的组合(正多边形种类可不限于上面四种,不要求写出推理过程).参考答案一、选择题二、填空题11.如果两个角是等角的余角,则这两个角相等.(或如果两个角相等,则这两个角的余角相等)12. 67°.13.(4,0)或(4,6).14.垂线段最短.15. 90°,30°,60°.16. 12.17. 100°,60°,20°.18.钝角.19. 16.20. x = y+z-180°.三、解答题(共90分)21. ∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补; 110°.22. ∠G = 90°23. ∠BCM = 20°24.∠ADC = 40°∠A = 75°25. 证明:(略)26. (1) S△ABC =15;(2)图略,A(2,2)、B(5,2)、C(7,8).27. (1) 115°;(2) 122°;(3) 118°;(4) 20°;(5) ∠BIC = 90°+12∠A.28. (1) 略(2) 2b,2b,2b;(3) 20;(4) 38.29. (1) 60°,90°,108°,120°.(2) 正三角形、正四边形、正六边形(3) 有三种组合:正三角形和正四边形、正三角形和正六边形、正四边形和正八边形(4) 正三角形、正四边形和正八边形组合。
2022-2023学年第二学期淮安市初一数学期中复习试卷及答案
一、选择题(8*3=24分)
1.下面的每组图形中,平移左边图形可以得到右边图形的一组是()
A. B. C. D.
2.肥皂泡的泡壁厚度大约是0.0000007米,数字0.0000007用科学记数法表示为()
A. B. C. D.
3.若一个三角形的三边长分别为2、6、a,则a的值可以是()
【点评】本题主要考查了完全平方式,熟知完全平方式中常项数等于一次项系数一半的平方是解题的关键.
13.如图,直线a b,三角板的直角顶点放在直线b上,若∠1=40°,则∠2=_______°.
【答案】
【解析】
【分析】先由直线a b,根据平行线的性质,得出∠3=∠1=40°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.
三、解答题(8+8+6+5+6+5+7+7+8+12=72分)
17.计算:
(1) ;
(2) .
【答案】(1)
(2)
【解析】
【分析】(1)根据多项式乘以单项式的计算法则求解即可;
(2)根据多项式乘以多项式的计算法则求解即可.
【小问1解答】
解: ;
【小问2解答】
解:
.
【点评】本题主要考查了单项式乘以单项式,多项式乘以多项式,熟知相关计算法则是解题的关键.
10 计算: _______.
11.若一个多边形的内角和是900º,则这个多边形是_____边形.
12.如果关于x的多项式 是完全平方式,则常数k的值为________.
13.如图,直线a b,三角板的直角顶点放在直线b上,若∠1=40°,则∠2=_______°.
人教版七年级下册数学期中复习试卷(pdf版)
二、填空题 11、 用科学记数法表示 9349000(保留 2 个有效数字)为_______.
12、如图 1 直线 AB,CD,EF 相交与点 O,图中 AOE 的对顶角是
角是
。
,COF 的补
A
F
C
E
O
图1
D
A
C
B
D
图2
B
13、如图 2,要把池中的水引到 D 处,可过 C 点引 CD⊥AB 于 D,然后沿 CD 开渠,可使所开
4、 如图 4,下列条件中,不能判断直线 a//b 的是( ) A、∠1=∠3 B、∠2=∠3 C、∠4=∠5 D、∠2+∠4=180°
5、下列图形中有稳定性的是( )
1
B
5c
12
a
4
b
3
A.正方形 B.长方形 C.直角三角形 D.平行四边形
图4
6、一吥透明盒子装有大小一样的球,共有 4 个白球,6 个红球,随机从中拿一个球,拿到
七年级下册数学期中试卷
一、选择题
A
1、两条直线的位置关系有( )
A、相交、垂直 B、相交、平行 C、垂直、平行 D、相交、垂直、平行
D
2、如图所示,是一个“七”字形,与∠1 是同位角的是( ) A、∠2 B、∠3 C、∠4 D、∠5
E 54
23
2题图
C
3、经过一点 A 画已知直线 a 的平行线,能画( ) A、0 条 B、1 条 C、2 条 D、不能确定
19、如图,如果 AB//CD,∠B=37°,∠D=37°,那么 BC 与 DE 平行吗? 为什么?
20、如图 B 点在 A 处的南偏西 45°方向,C 处在 A 处的南偏东 15°方向,C 处在 B 北偏东 80°方向,求∠ACB。
2022-2023学年第二学期宿迁市宿迁青华中学初一数学期中复习试卷及答案
C.三角形任一边的中线把原三角形分成两个面积相等的三角形
D.一个多边形 边数每增加一条,这个多边形的内角和就增加180°
5.边长为 , 的长方形,它的周长为 ,面积为 ,则 的值为()
A. B. C. D.
6.已知关于x、y方程组 的解满足x+y=3,则 的值为( )
13.若 是关于 、 的二元一次方程,则 ______.
14.已知 与 互为相反数,则 的值为___.
15.如图,长方形ABCD的周长为12,分别以BC和CD为边向外作两个正方形,且这两个正方形的面积和为20,则长方形ABCD的面积是______.
16.如图,五边形 是正五边形,若 ,则 __________.
【答案】4或6
【解析】
【分析】根据三角形三边关系,可令第三边为x,则5-3<x<5+3,即2<x<8,又因为第三边长为偶数,所以第三边长是4,6.问题可求.
【解答】解:由题意,令第三边为x,则5-3<x<5+3,即2<x<8.
∵第三边长为偶数.
∴第三边长是4或6.
故答案为:4或6.
【点评】此题主要考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.
A. 折B. 折C. 折D. 折
【答案】A
【解析】
【分析】设打了x折,用售价×折扣-进价得出利润,根据利润率不低于10%,列不等式求解.
【解答】解:设打了x折.
由题意得,1650×0.1x-900≥900×10%.
解得:x≥6.
即最多打6折.
故选:A.
【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于10%,列不等式求解.
七年级下学期数学期中综合复习
综合复习一、选择题1.下列运算中,正确的是( )A .(﹣x 2)3=x 6B .2m 2•3m 3=6m 6C .(﹣xy )3=﹣x 3y 3D .(3a 2b 2)2=6a 4b 42. 如图,在下列给出的条件中,不能判定AB // DF 的是 ( )A. ∠A =∠3B. ∠A +∠2=180°C. ∠1=∠4D. ∠1=∠A3.在一次数学课上,学习了单项式乘多项式,小刘回家后,拿出课堂笔记本复习,发现这样一道题:2x (﹣3x 2﹣3x +1)=﹣6x 3﹣□+2x ,“□”的地方被墨水污染了,你认为“□”内应填写( )A .﹣6x 2B .6x 2C .6xD .﹣6x4.若()()14+-x a x 的展开式中不含有x 的一次项,则常数a 的值是 ( )A. 1B. -4C. 4D. -15.若2449x mx -+是一个完全平方式,则m 的值为( )A .14B .14±C .28D .28±6.如图,我们以前已学过用直尺和三角尺画平行线,在这一过程中,用到的原理是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角相等,两直线平行D .对顶角相等,两直线平行7.如图,某人骑自行车自A 沿正东方向前进,至B 处后,右拐15°行驶,若行驶到C 处再按正西方向行驶,则他在C 处应该( )A .左拐15°B .右拐15°C .左拐165°D .右拐165°8.在以下现象中,属于平移的是( )① 在挡秋千的小朋友;① 水平传送带上的物体① 宇宙中行星的运动;① 打气筒打气时,活塞的运动A .①①B .①①C .①①D .①①9.如图7,AB ①BC ,AE 平分①BAD 交BC 于E ,AE ①DE ,①1+①2=90°,M ,N 分别是BA ,CD 延长线上的点,①EAM 和①EDN 的平分线交于点F .下列结论:①AB ①CD ;①①AEB +①ADC =180°;①DE 平分①ADC ;①①F =135°,其中正确的有( )A .1个B .2个C .3个D .4个二、填空题 10.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,据测定,杨絮纤维的直径约为0.0000105m ,用科学记数法表示该数为 .11. 命题“两直线平行,同位角相等”的逆命题是________________________.12. 一个多边形的每一个外角都等于40°,则该多边形的内角和为 度.13.已知3 ,2==n m a a ,则=-n m a 2__________14.现定义运算a ①b =a (b ﹣1),则(m ﹣1)①(n ﹣1)=___.15.已知22x y -=,则()()3312x x y y x -+--的值是16.在直角三角形ABC 中,①ACB =90°,AC =6.将三角形ABC 沿射线BC 方向平移至三角形DEF处.若AG =2,BE =83,则EC =_____第16题 第17题17. 如图,在△ABC 中,已知点D 、E 、F 分别是边BC 、AD 、CE 上的中点,且S △ABC =4,则S △BFF =18.如图,直线l 1//l 2,①A =125°,①B =85°,则①1+①2=_____.第18题 第19题19. 如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=_______.20..如图,直角△AOB 和△COD ,∠AOB =∠COD =90°,∠B =30°,∠C =50°,点D 在OA 上,将图中的△COD 绕点O 按每秒5°的速度沿顺时针方向旋转一周,在旋转的过程中,在第 秒时,边CD 恰好与边AB 平行.三、解答题21 计算:(1)20170111(3)()2π--+-+ (2)32423()(2)a a a a -⋅+÷22. 分解因式:(1)22242x xy y -+ (2)()()2m m n n m -+-23. 先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.24. 在图中,利用网格点和直尺画图或计算:(1)在给定方格纸中画出平移后的A B C '''∆;(2)画出AB 边上的中线CD ;(3)画出BC 边上的高线AE ;(4)记网格的边长为1,则在平移的过程中线段BC 扫过区域的面积为 .22.阅读下列材料并解答后面的问题:完全平方公式(a ±b )2=a 2±2ab +b 2,通过配方可对a 2+b 2进行适当的变形,如a 2+b 2=(a +b )2﹣2ab 或a 2+b 2=(a ﹣b )2+2ab ,从而使某些问题得到解决.已知a +b =5,ab =3,求a 2+b 2的值.解:a 2+b 2=(a +b )2﹣2ab =52﹣2×3=19.(1)已知a +1a =6.求a 2+21a 的值; (2)已知a ﹣b =2,ab =3,求a 4+b 4的值.23.如果10b =n ,那么b 为n 的“劳格数”,记为b =d (n ).由定义可知:10b =n 与b =d (n )表示b 、n 两个量之间的同一关系.(1)根据“劳格数”的定义,填空:d (10)=__________,d (10﹣2)=__________.(2)“劳格数”有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),d (m n )=d (m )﹣d (n );根据运算性质,填空:3()()d a d a =________,(a 为正数)(3)若d (2)=0.3010,分别计算d (4);d (5);d (0.08).24. 如图,AB // DG, ∠1+∠2=180°.(1)求证:AD // EF ;(2)若DG 是∠ADC 的平分线,∠2=150°,求∠B 的度数.25. 【知识生成】通常情况下,通过用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1,在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >.把余下的部分沿虚线剪开拼成一个长方形(如图2).图1中阴影部分面积可表示为:a 2-b 2,图2中阴影部分面积可表示为(a +b )(a -b ),因为两个图中的阴影部分面积是相同的,所以可得到等式:a 2-b 2=(a +b )(a -b );【拓展探究】图3是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图4的形状拼成一个正方形.(1)用两种不同方法表示图4中阴影部分面积:方法1: ,方法2: ;(2)由(1)可得到一个关于(a +b )2、(a -b )2、ab 的的等量关系式是 ;(3)若a +b =10,ab =5,则(a -b )2= ;【知识迁移】(4)如图5,将左边的几何体上下两部分剖开后正好可拼成如右图的一个长方体.根据不同方法表示它的体积也可写出一个代数恒等式:.26.【概念认识】如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC的“三分线”.其中,BD是“邻AB三分线”,BE是“邻BC三分线”。
七年级数学第二学期期中复习卷3
七年级数学期中模拟考试卷3班级_________姓名_________学号_________一、选择题(本题共6小题,每小题2分,共12分)1.点到直线的距离是指( )A .直线外的一点到这条直线的垂线B .直线外的一点到这条直线的垂线段C .直线外的一点到这条直线的垂线的长D .直线外的一点到这条直线的垂线段的长2.27,0.3,,0,3π - ⎝⎭7个数中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个3.如果∠A 和∠B 互为邻补角,那么∠A 和∠B 有可能( )A .都是锐角B .都是钝角C .一个是直角,一个是锐角D .都是直角4.如图,如果直线m ∥n ,那么△ABC 与△BCD 的形状________相同,面积________相等( )A .不一定 一定不B .一定 一定不C .不一定 一定D .一定 一定5.下列结论正确的是( )A .无限小数是无理数B .带根号的数是无理数C .循环小数是实数D .一个正数的n 次方根有n 个6.如图,已知AB ∥CD ∥EF ,AC 平分∠DAB ,那么图中与∠1相等的角(除∠1外)有( )A .1个B .2个C .3个D .4个二、填空题(本题共12小题,每格1分,共24分)7.16的四次方根是________;10227-的立方根是________8.|的平方根是________91-的整数部分是________,小数部分是________10.如图,点A 到点B 的距离是线段________的长,点A 到直线CD 的距离是线段________的长,直线AD 到直线BC 的距离是线段________的长11=________12.比较大小:;________3-13.1893712精确到千位的近似数是___________,这个近似数有_____个有效数字14.一个正数的两个平方根分别为21a +与3a -,则_______a =15.如图,∠1和∠2是直线________和________被直线________所截得的________角,若∠1=∠2,则________∥________16.如图,已知a ∥b ,∠1=(5x -12)°,∠2=(3x +18)°,则∠1=________17.如图所示的5个角中,内错角有 对,同旁内角有 对. 18.如图BE ∥CD ,∠1=890,∠2=170,则∠CAB = 度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B
O
C D
七年级数学第二学期期中复习试卷
一 、填空(每小题1分,共26分)
1、多项式232
+-xy y x 是 次 项式,其中二次项是
2、计算:(1)_____3
2
=⋅⋅x x x (2)3
3)2(b a -= (3)_____22
2
=--a a
(4))1)(32(-+x x = (5)=--+-)2)(2(x x (6)_____)(2
332=⋅+x x x 3、(1)______22
02
=+- (2) _______101033=⨯- (3)_____2=÷-n n x x
4、(1)2
2
)2(______)2(b a b a -=++ (2)______6____)(2
2
+-=-xy x x
5、(1)(8xy 2
-6x 2
y)÷(-2x)= 。
(2)(3x -4y) ·( ) = 9x 2
-16y 2。
6、有资料表明,被称为“地球之肺”的森林正以每年15000000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为 公顷。
7、 一种电子计算机每秒钟可做108
次运算,它工作1小时可做 次运算。
8、如图(1),当剪子口∠AOB 增大15°时,∠COD 增大 。
9、若∠1=15°32′,则它的余角= ,它的补角= 10、吸管吸易拉罐内的饮料时,如图(2),∠1=110°,则∠2= °(易拉罐的上下底面互相平行)
图(1) 图(2) 图(3) 图(4) 11、已知如图(3):当∠1= 度时,才能使a ∥b , 12、平行的大楼顶部各有一个射灯,当光柱相交时,如图(4),∠1+∠2+∠3=____° 13、∠1与∠2互余,∠2与∠3互补,∠1=63°,那么∠3= 二、选择题(每小题2分,共16分)
14、下列计算正确的是 ( )
(A )4442b b b =⋅(B )632m m m =⋅(C )5
552a a a =+(D )6
3
3)(x x =
15、已知:如图(5)AB ∥CD ,CE 平分∠ACD ,∠A=110°,则∠ECD 等于( )
(A )110° ( B )70° (C )55° (D )35° 16、如果 21=+a
a ,那么 2
21a
a + 的值是( )
图(5) C A
B E D
12
3
1
2
a
b c
150°
A
B D
C 1
2
34A
B C
D E F
(A )2 (B )4 (C )0 (D )-4
17、把一张对面互相平行的纸条折成如图(6)所示那样,EF 是折痕,若∠EFB=32°则下列结论正
确的有 ( )
(1)∠C ′EF=32°(2)∠AEC=116°
(4)∠BGE=64°(3)∠BFD=116°
(图6) (A )1个 (B )2个 (C )3个 (D )4个
18、如图(7): AB ⊥CD ,垂足为D ,ED ⊥DF ,下列结论正确的有 ( ) (1)∠ADE=∠CDF (2)∠EDC=∠FDB
(3)∠ADE 与∠BDF 互余 (4)∠CDF 与∠ADE 互补
(A )1个(B )2个(C )3个(D )4个 图(7) 19、如图(8),长方形的长为a ,宽为b ,横向阴影部分为长方形,另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是………………………. ( )
(A) ab -bc +ac -c 2 (B) ab -bc -ac +c 2
(C) ab - ac -bc (D) ab - ac -bc -c 2
20、如图(9),下列判断中错误的是 ( )
(A ) ∠A+∠ADC=180°—→AB ∥CDB (B ) AB ∥CD —→∠ABC+∠C=180° (C ) ∠1=∠2—→AD ∥BCD (D ) AD ∥BC —→∠3=∠4 21、如图(10),a ∥b ,∠1的度数是∠2的一半,则∠3等于 ( )
A 60°
B 100°
C 120°
D 130°
图(8) 图(9) 图(10)
三、计算题:(每题5分,共25分)
22、(2x+y )(x -y ) 23、 )(2)(2
4334a a a a -+⋅--
24、 2
2
5)13)(13(n m mn mn -+- 25、 )2)(2()32(2
+---x x x
26、)(]45)2)(2[(22xy y x xy xy ÷+--+ ,其中x =10,2
1
-=y A B C
D
F
G a b 1
23
四、解答题(每题6分,共12分)
27、(1)如果a∥b,找出图中各个角之间的等量关系;
(2)如果希望c∥d,那么希望哪两个角相等?(请你尽可能多写)
28、某种液体中每升含有1012个有害细菌,某种杀虫剂1滴可杀死109个此种有害细菌。
现要将这种2升液体中的有害细菌杀死,要用这种杀虫剂多少滴?若10滴这种杀虫剂为
1000
1
升,问:要用多少升杀虫剂?
五、(每题4分,共8 分)
29、如图:A、B为两个港口,甲船从A港沿北偏东50°的航向航行,乙船从B港出发,
(1)乙船应沿什么航向航行才能使航线与甲船的航线平行?
答:
(2)你能画出乙船的航线吗?请试一试。
30、如图,MN、EF是两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,
则∠1=∠2
⑴用尺规作图作出光线BC经镜面EF反射后的反射光线CD;
⑵试判断AB与CD的位置关系;
a
b
c d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
B
C
M N
E F
12
六、(第30题6分,31题7分共13分)
30、如图:一块不规则木料,只有AB一边成直线,木工师傅想在这块木料上截出一块有一组对边平行的木板,用角尺在MN处画了一条直线,然后又用角尺在EF处又画了一条直线;画完后用锯铅MN、EF锯开就截出了一块有一组对边平行的木料,请你所学的几何知识说明这样做的道理。
B
31、“非典”是由一种冠状病毒引起的非典型肺炎,具有极强的危害性及传染性,已引起了国务院及
(2)根据你画的统计图,你能得到哪些信息?(至少从三个侧面说出信息)。