列一元一次方程解应用题的一般步骤
列一元一次方程解应用题的一般步骤
•列一元一次方程解应用题的一般步骤:列方程(组)解应用题是中学数学联系实际的一个重要方面。
其具体步骤是:⑴审题:理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数):找出等量关系:找出能够表示本题含义的相等关系;①直接未知数:设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程;②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答题。
综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。
在这个过程中,列方程起着承前启后的作用。
因此,列方程是解应用题的关键。
•一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,路程=速度×时间。
①相遇问题:快行距+慢行距=原距;②追及问题:快行距-慢行距=原距;③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,逆水(风)速度=静水(风)速度-水流(风)速度例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车先开出1小时,快车再开。
两车相向而行。
问快车开出多少小时后两车相遇?两车同时开出,相背而行多少小时后两车相距600公里?两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?(此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
列一元一次方程解应用题的一般步骤
列一元一次方程解应用题的一般步骤
嘿,咱来说说列一元一次方程解应用题的一般步骤哈!
首先啊,那得仔细审题,就像警察破案一样,不放过任何一个小细节。
比如说,小明天天上学走路,突然有一天走路时间变长了,咱就要搞清楚为啥会这样啊。
然后呢,设未知数,这可太关键啦!就好比给这个问题找个主角一样。
像是上面小明的例子,咱可以设他原来的速度是 x 呀。
接着就是找等量关系啦,这就如同找到了解题的钥匙!好比说他平时走这段路用的时间和现在走这段路用的时间有个关联呀。
随后列出方程,哇塞,这就是把你的思路转化成数学语言啦!
再然后解方程呀,一步步算出答案,就像挖宝藏一样有成就感。
最后一定要检验答案是不是合理,别弄出个荒唐的结果来。
这就像做菜,做好了总得尝尝味道对不对嘛!
比如说商店卖东西,已知进价和利润,让你求售价,那咱就可以按这些步骤来啊!先审题,知道进价和利润的具体数值;设售价为 x;找等量关系就是进价加上利润等于售价呀;列出方程,求解方程,最后检验一下,看看这个售价合不合理。
怎么样,是不是挺有意思的?你也快去试试吧!。
一元一次方程实际问题归纳
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,配套问题,工程问题,调配问题,分配问题,比例问题,和差倍分问题,销售问题,储蓄问题,积分问题,年龄问题,几何问题、数字问题,增长率问题,古代数学问题,分段问题,方案选择问题等。
列一元一次方程解应用题的一般步骤1. 审:审题,分析题目中的数量关系;2. 设:设适当的未知数,并表示未知量;3. 列:根据题目中的数量关系列方程;4. 解:解这个方程求未知数的值;5. 检验:检验是否符合实际;6. 答:作答.(一)行程问题(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行、环形跑道问题、行船问题、火车过隧道(桥)的问题。
(3)解此类题常常借助画草图来分析,理解行程问题。
①相遇问题(同时出发“两段”)1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?分析:快车路程+慢车路程=总路程或 (快车速度+慢车速度)×相遇时间=相遇路程①相遇问题(不同时出发“三段”)2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?分析:慢车先行路程+慢车后行路程+快车路程=总路程②追及问题(同时出发)3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?②追及问题(不同时出发)4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?②追及问题5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?③相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(最新整理)列一元一次方程解实际问题的一般方法
2021/7/26
31
知1-讲
(1)审题:审清题意,找出已知量和未知量; (2)设未知数:设该年级的男生有x人,那么女生有
__(_1_7_0_-__x_)_人; (3)列方程:根据相等关系,列方程为__3_x_=__7_(_1_7_0_-__x_)_; (4)解方程,得x=___1_1_9___,则女生有___5_1__人; (5)检验:将解得的未知数的值放入实际问题中进行验证; (6)作答:答:该年级有男生__1_1_9__人,女生__5_1___人.
当x=3时,130-30 x =2, 20
运费为3×500+2×400=2 300(元)<2 500(元).
故安排3辆甲种货车和2辆乙种货车,运费最省,
需2 300元.
2021/7/26
12
例6 某景点的门票价格如下表:
购票人数/人 1~50 51~100 100以上
每人门票价/元 12
10
8
某校七年级(1)、(2)两班计划去游览该景点,其中(1)班 人数少于50人,(2)班人数多于50人且少于100人,如果 两班都以班为单位单独购票,则一共支付1 118元;如果 两班联合起来作为一个团体购票,则只需花费816元. (1)两个班各有多少名学生? (2)团体购票与单独购票相比较,两个班各节约了多少钱?
(1)这两次各购进电风扇多少台?
(2)商场以250元/台的售价卖完这两批电
风扇,商场获利多少元?
2021/7/26
9
解:(1)设第一次购进电风扇x台, 则第二次购进电风扇(x-10)台. 由题意可得150x=180(x-10),解得x=60. 则x-10=60-10=50. 所以第一次购进电风扇60台,第二次购进电 风扇50台.
一元一次方程应用题(常见类型题)
一、列一元一次方程解应用题的一般步骤:(1)审题:弄清题意;(2)找出等量关系:找出能够表示本题含义的相等关系;(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程;(4)解方程:解所列的方程,求出未知数的值;(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。
二、若干应用题等量关系的规律:类型一:和、差、倍、分问题(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
【典型例题】例1.x 的43与1的和为8,求x ?例2.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数。
例3.甲数比乙数大10,甲数的5倍与乙数的8倍的和是115,求甲、乙两数。
例4.有甲、乙两个数,甲数比乙数的2倍多1,乙数比甲数小4,求这两个数。
类型二:数字问题一般可设个位数字为a ,十位数字为b ,百位数字为c①两位数可表示为:10b a + ②三位数可表示为:10010c b c ++然后抓住数字间或新数、原数之间的关系找等量关系列方程。
【典型例题】例1.一个两位数,十位数字比个位数字的4倍多1.将两个数字调换顺序后所得的数比原数小63,求原数?例2.一个三位数,十位上的数字比个位上的数字大3,而比百位上的数字小l ,且三个数字之和的50倍比这个三位数小2,求这个三位数?例3.一个两位数,十位上的数字与个位上数字的和是8,将十位上的数字与个位上的数字对调,得到的新数比原数的2倍多l0,求原来的两位数?类型三:利润问题出现的量有:进价、售价、标价、利润、成本、利润率、折扣等用到的公式有:①利润=卖的钱—成本 ②利润=成本X 利润率注意打几折是按原价的百分之几十出售。
一般的相等关系:卖的钱—成本=成本X 利润率【典型例题】例1.一件商品的售价是30元,①、如果卖出后盈利25元,那么这件商品的进价是多少?②若卖出后亏损25元,那么进价又是多少?例2.某商品标价110元,八折出售后,仍获利10%, 则该商品的进价为多少元?例3.某商场把进价为80元的商品按标价的八折出售,仍获利10%, 则该商品的标价为多少元?例4.某商场把进价为80元的商品按标价110元折价出售后,仍获利10%, 则商品打了几折?例5.商店对某种商品进行调价,决定按原价的九折出售,此时该商品的利润率是15℅,已知这种商品每件的进货价为1800元,求每件商品的原价。
一元一次方程应用题解题技巧
一元一次方程应用题解题技巧一元一次方程是数学中的一种基本方程,广泛应用于解决实际问题。
掌握一元一次方程的应用,对于提高数学解题能力具有重要意义。
本文将介绍一元一次方程应用题的基本概念、解题步骤和技巧。
一、基本概念一元一次方程是指未知数最高次数为1的方程,其形式为ax+b=0(a≠0)。
在实际应用中,一元一次方程常用来描述简单的一次性量与变量之间的关系,如速度与时间的关系、销售量与价格的关系等。
二、解题步骤1. 审题:仔细阅读题目,理解题意,找出题目中的等量关系。
2. 设未知数:根据题目中的等量关系,设定未知数。
3. 列方程:根据等量关系,列出方程。
4. 解方程:求出方程的解。
5. 检验:将解代入原方程,检验是否符合题意。
三、解题技巧1. 寻找等量关系:在应用题中,等量关系往往隐藏在题目中,需要仔细寻找。
常见的等量关系有速度相等、价格相等、数量相等等。
找到等量关系是解决应用题的关键。
2. 画图辅助:对于较为复杂的应用题,可以借助图形来辅助解题。
如行程问题中的路程图、销售问题中的价格走势图等。
通过图形,可以更加直观地理解题目中的信息。
3. 灵活运用未知数:在一元一次方程中,未知数的个数是有限的,可以通过设定不同的未知数来列出不同的方程,从而得到多个解。
但在实际问题中,有些解是不符合实际情况的,需要加以排除。
因此,在解题时要注意灵活运用未知数,不要盲目求解。
4. 利用公式法求解:对于一些特殊的一元一次方程,可以利用公式法求解。
如利用韦达定理求解一元二次方程的解。
对于一些特定的题目,利用公式法可以更加简便地得到答案。
四、例题解析【例题】某公司生产一种产品,每件成本为20元,售价为30元。
公司每天的人工、电费、设备折旧等固定成本为2000元。
为了降低成本并提高利润,公司决定采用新技术降低每件产品的成本。
如果新技术的成本每件降低5元,则每天的净收入可增加200元。
问是否需要采用新技术?【解析】设采用新技术后每天的生产量为x件,则采用新技术前每天的生产量为(x-1)件。
一元一次方程的应用
一元一次方程的应用一、列方程解应用题的一样步骤:1.认真审题,找出已知量和未知量,以及它们之间的关系;2.设未知数,能够直截了当设未知数,也能够间接设未知数;3.列出方程中的有关的代数式;4.依照题中的相等关系列出方程;5.解方程;6.答题。
二、列方程解应用题的关键是找出题中的等量关系三、常见的应用题类型有:行程问题:1)追击问题:a、两个物体在同一地点不同时刻同向动身最后在同一地点的行程问题等量关系:甲路程=乙路程甲速度×甲时刻=乙速度×(甲时刻+乙先走的时刻)b、两个物体从不同地点同时同向动身最后在同一地点的行程问题等量关系:甲路程-乙路程=原相距路程2)相遇问题:两个物体同时从不同地点动身相向而行最后相遇的行程问题等量关系:甲路程+乙路程=相遇路程甲速度×相遇时刻+乙速度×相遇时刻=原两地的路程3)一样行程问题:等量关系:速度×时刻=路程4)航行问题:等量关系:顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度练习:1.一猎狗发觉在它前方240米处有一以80米/分的速度逃跑的兔子,猎狗迅速以120米/分速度追击,要多久才能追到?2.一部队从军部动身行军,每小时走40千米,3.5小时后一通讯兵传达一军部命令骑摩托车从军部动身追赶,4小时后追上,则通讯兵每小时比部队多行多少千米?3.甲乙两人骑自行车,从相距42千米的两地相向而行,甲每小时走12千米,乙每小时走10千米,如甲走12分钟后乙再动身,问甲动身后几小时与乙相遇?4.学生队伍以每小时5千米的速度外出春游,他们从学校动身走了4小时12分钟后,学校派通讯员骑摩托车以每小时40千米的速度追赶学生队伍,传达紧急通知,求通讯员用了多少时刻赶上学生队伍?5.甲乙两站相距40千米,一列慢车从甲站开出,每小时行使56千米,同时一列快车由乙站开出,每小时行使72千米,两车同向而行,快车在慢车的后面,通过多少小时快车可追上慢车?6.甲乙两人环湖竞走,一周400米,乙每分钟走80米,甲的速度是乙的5/4倍,现在甲在乙的前面100米;多少分钟后两人相遇?7.甲乙两人练习短距离赛跑,甲每秒跑7米,乙每秒跑6.5米,假如甲让乙先跑2秒钟,甲通过几秒能够追上乙?8.敌军和我军相距14千米,敌军以4千米/小时的速度逃跑,我军迅速以7千米/小时的速度追击敌军,需几小时能够追上?9.一般飞机和喷气式飞机从相距600千米的两个机场相向起飞,30分钟后相遇,假如喷气式飞机的速度是一般飞机的3倍,求一般飞机和喷气式飞机的速度?10.一条环行跑道长400米,甲练习自行车,平均每分钟骑550米,乙练习赛跑,平均每分钟跑250米,两人同时同地同向动身,通过多少分钟两人相遇?11.甲乙两站相距245千米,一列慢车由甲站开出,每小时行使50千米,同时,一列快车由乙站开出,每小时行使70千米,两车同向而行,快车在慢车的后面,通过几小时快车能够追上慢车?12.小红和小军两人同时从各自的家里动身去找对方,两家的直线距离为1200米,小红每分走55米,两人最后用1小时在途中某点相遇,则小军每分钟走多少米?613.小明上山的速度是每小时3.5千米,下山的速度是每小时5千米,若小明上山比下山多用了3小时,求小明下山走了几小时,这段山路共有多少千米?14.A、B两地相距80米,甲从A地动身,每秒走1米,乙从B地动身每秒走1.5米,如甲先走15米,求乙动身后多少秒与甲相遇?15.小船的静水速度是27千米/时,顺流航行60千米逆流返回,假如水流速不变,返程所用时刻比顺流多用25%,求水流速度?16.A、B两地间的路程为360km,甲车从A地动身开往B地,每小时72km,甲车动身25分钟后,乙车从B地动身开往A地,每小时行驶48km,两车相遇后,各自仍按原速度原方向连续行驶,那么相遇后两车相距100km时,甲车从动身共行驶了多少小时?17.一艘轮船,航行于甲、乙两地之间,顺水用3小时,逆水比顺水多用30分钟。
人教版九年级数学中考一元一次方程及其应用专项练习及参考答案
人教版九年级数学中考一元一次方程及其应用专项练习专题知识回顾知识点1:一元一次方程的概念1.一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。
2.方程的解:判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等.知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
2.解一元一次方程的一般步骤:(1)去分母在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。
(2)去括号一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。
(3)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。
(4)合并同类项把方程化成ax =b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。
(5)系数化为1在方程两边都除以未知数的系数a ,得到方程的解x =b/a ,依据等式基本性质2,计算要仔细,分子分母勿颠倒。
要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a≠0时,方程有唯一解x =b/a ; ②a=0,b=0时,方程有无数个解; ③a=0,b≠0时,方程无解。
知识点3:列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。
一元一次方程应用题归类汇集超详细解题过程含答案(特级教师整理版)
一元一次方程应用题归类汇集含详细答案整理版本一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列-列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析 ,古典数学,浓度问题等.第一类、行程问题基本的数量关系:(1)路程=速度×时间 ⑵ 速度=路程÷时间 ⑶ 时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴ 将时钟的时针、分针、秒针的尖端看作一个点来研究⑵ 通常将时钟问题看作以整时整分为起点的同向追击问题来分析.常用数据:① 时针的速度是0。
5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
利用一元一次方程解应用题的一般步骤(纯知识点)
课题:一元一次方程的应用——利用一元一次方程解应用题的一般步骤(纯知识点)1. 列方程解应用题的一般步骤:⑴“审”:仔细审题,明确题目中的已知量和未知量.⑵“设”:根据问题的要求,确定适当的未知数;⑶“找”:根据各数量之间的关系,找出题目中的等量关系;⑷“列”:根据等量关系,列出方程.⑸“解”:按照步骤解所列方程.⑹“检验”:将求出的方程的解代入实际情境中检验是否符合实际情况.⑺“答”:最后要对解决的问题做一个综合的回答.2.一元一次方程解决实际应用问题的一般步骤如下:注意:⑴设未知数分为“直接设”和“间接设”两种,一般地求什么就设什么为未知数,若直接设未知数解决有困难的时候,就可以间接的设未知数,有时还要设辅助的未知数.⑵找等量关系时,可采取画线段图、列表、演示等多种方法,这也是提高列方程解应用题的有效方法和手段.⑶列方程的时候要注意单位要统一.3.实际问题常见类型(一)等积变形问题1.相关公式长方体体积=长×宽×高圆柱体体积=底面积×高2.等量关系变形前的体积=变形后的体积3.注意问题(1)注意圆的半径和直径的区分;(2)平面内,“周长不变围长方形”和此问题类似.(二)利息问题1.相关公式本金×期数×处率=利息(未扣税)2.等量关系本息=本金+利息3.注意问题:(1)要会区分年利率和月利率;(2)目前银行,不同存期,年利率也不同.(三)利润问题1.相关公式利润率=利润/进价2.等量关系利润=售价-进价3.注意问题:(1)打折销售,即为售价,n折即为标价的十分之n为售价;(2)总利润=某单个商品的利润×商品总量.(四)行程问题1.相遇问题路程=速度×时间两者路程之和=总路程2.追及问题路程=速度×时间两者路程之差=总路程3.注意问题:(1)注意相遇问题和追及问题的区别;(2)关注出发的时间和地点;(3)画线路图,有助于分析等量关系.(五)工程问题1.相关公式工作量=工作效率×工作时间2.等量关系总工作量=各部分工作量之和3.注意问题:一般把总工作量设为单位1.(六)数字问题若一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数表示为++.10010a c注意问题:等量关系,由已知给定的条件来确定.。
列一元一次方程解应用题的四步法
列一元一次方程解应用题的四步法邓超 (福建省福州市第十八中学 350001)列方程解应用题是初一数学中很重要的内容,上课时老师对此通常会总结出这么五个步骤:找、设、列、解、答。
在这其中,找就是找等量关系,是最关键的一步。
但是找如何找呢,这对于刚刚接触方程不久的同学们来说,还真不是个容易的事。
对此,老师通常会说:要抓住关键字眼,比如和、差、比⋅⋅⋅多(少)、比⋅⋅⋅大(小)等等。
但并不是所有题目都是有这些关键字眼的。
本文中,笔者将提出列方程解应用题的一个通用的思考过程,相信读完此文,同学们会对如何找等量关系有更深的体会。
笔者将列方程解应用题的思考过程分为四步。
第一步,找出题目中所有的未知量。
找齐所有的未知量是不容易的,需要同学们充分理解题意。
一般来说未知量至少有两个,其中最明显的未知量就是题目要我们求的量。
第二步,设其中的一个未知量为x 。
对于不止一个的未知量,究竟设哪个未知量为x 呢?其实那个都可以,那个都能列出方程,只是列方程的难易会有所不同,我们尽量要使方程容易列且容易解,因此选哪个未知量设为x 更好,是要具体问题具体分析的,有时也是要凭一些经验才行的。
第三步,用x 表示出剩下所有的未知量,完成这步要充分利用题目条件。
第四步,确定等量关系。
这可分为三种情况:1、如果题目中还有没用到的条件,那么这个条件就包含了所要用的等量关系;2、如果所有的题目条件都用了,那么就很有可能有一个未知量存在两个表达式,这两个表达式可以划等号,这是一种特殊的等量关系;3、如果还找不出等量关系,那么这题的等量关系就比较隐蔽,这就要求我们再仔细分析题目才行。
下面就让我们来看看这个思维模式的威力吧。
例1、(人教版七年级教科书)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?分析:第一步,我们先找出和题目有关的所有未知量,分别有4个未知量:生产螺钉的工人数,生产螺母的工人数,生产的螺钉数和生产的螺母数。
一元一次方程例题及练习题
知识点1.列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式V=底面积×高=S·h= r2h②长方体的体积V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题×100% 利息=本金×利率×期数利润=每个期数内的利息本金例题1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
6、一元一次方程应用-学生版
1、列方程解应用题的一般步骤是:(1)设未知数(元);(2)列方程;(3)解方程;(4)检验并作答;2、按比例分配问题:此类问题,我们往往设一份量为未知数,即如已知两个量之比为:a b,则设这两个量分别为ax 和bx,再根据“各部分量之和”或“各部分量之差”等等量关系来列方程求解.3、利率问题:利息=本金×利率×期数;本利和=本金+利息=本金×(1+利率×期数);利息税=利息×税率;税后利息=利息-利息税=利息×(1-税率);税后本利和=本金+税后利息.4、折扣问题:利润额=成本价×利润率;售价=成本价+利润额;新售价=原售价×折扣;5、行程问题:解行程问题的关键是抓住时间关系或路程关系,借助草图分析来解决问题.路程=速度×时间;相遇路程=速度和×相遇时间;追及路程=速度差×追及时间.6、工程问题:解工程问题时,常将工作总量当作整体“1”.基本关系为:工作效率×工作时间=1(工作总量)7、浓度问题:理清溶液、溶剂、溶质和浓度的基本关系是:溶液重量=溶质重量+溶剂重量;浓度=溶质重量÷溶液重量×100;8、时钟问题:钟表问题可以转化成行程问题来研究,其中分针的转动速度为每分钟1格,时针的转动速度为每分钟112格,这是研究时钟问题的主要依据;二、例题精讲:例1、某一服装师做成一件衬衣,一条裙子,一件外套所用的时间之比为1:2:3.他用二十个工时能做2件衬衣、3条裤子和4件上衣,那么他做一件衬衣、一条裤子、一件外套分别需要几个工时?练习:六年级学生若干人报名参加足球队,男女生之比为4:3,后来走了12名女生,这时男生人数恰好是女生的2倍.求:报名时男生与女生的人数.例2、某人把若干元按三年期的定期储蓄存入银行,假设年利率为3.69%,到期支取时扣除所得税实得利息1771.2元,求存入银行的本金;(利息税为20%);练习:秦先生三年前将人民币20000元存入银行,今天从银行共取出税后利息2160元,那么这笔存款的年利率是多少?(国家规定存款利息的纳税办法是:利息税=利息×20%)例3、小丽和小明相约去书城买书,请你根据它们的对话内容(如图),求出小明上次所买书籍的原价.(小丽说:听说花20元办一张会员卡,买书时可享受8折优惠;小明说:是的,我上次买了几本书,扣除20元卡的费用,还省了12元)。
一元一次方程的应用(一)--知识讲解(提高)
一元一次方程的应用(一)--知识讲解(提高)撰稿:张晓新 审稿:孙景艳【学习目标】1.熟悉行程、工程、配套、和差倍分、等积变形等问题的解题思路;2.熟练掌握分析解决实际问题的一般方法及步骤. 【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释: (1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系; (2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数; (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一; (4)“解”就是解方程,求出未知数的值; (5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可; (6)“答”就是写出答案,注意单位要写清楚. 要点二、常见列方程解应用题的几种类型 1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等. 2.行程问题(1)三个基本量间的关系: 路程=速度×时间 (2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度, 顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析. 3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式: (1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和. 4.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =πr 2h ②长方体的体积 V =长×宽×高=abc【典型例题】类型一、常见实际应用问题1.甲、已两个团体共120人去某风景区旅游.风景区规定超过80人的团体可购买团体票,已知每张团体比个人票优惠20%,而甲、已两团体人数均不足80人,两团体决定合起来买团体票,共优惠了 480元,则团体票每张多少元? 【答案与解析】解:设个人票每张x 元,那么团体票每张(1-20%)x 元,由题意列方程得:120480120(120%)x x -=-解方程得:x=20 (1-20%)20=16元 答:团体票每张16元.【总结升华】解题过程归纳为:实际问题→列一元一次方程→解方程→检验→写出答案.2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【总结升华】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x名学生,根据题意得:3x+24=4x-26解得:x=50所以3x+24=3×50+24=174(张)答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题3. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度. 【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义. 【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x+-=, 解得:x =300, 所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【总结升华】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度. 举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟? 【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭,解得:x =3答:从第一排上桥到排尾离桥需要3分钟. 2.相遇问题(相向问题)4.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程. 【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+=解得:x =108.答:A 、B 两地间的路程为108千米.【总结升华】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程. 举一反三:【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离. 【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+=解得:x=122答: A 、B 两站间的距离为122km. 3.追及问题(同向问题)5.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯解得:x=24答:卡车的速度为24千米/时.【总结升华】采用“线段示意图”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间. 4.航行问题(顺逆流问题)6.盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游. 【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+-解这个方程得:x =20(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+-解这个方程得:203x =答:A 、B 两地间的距离为20千米或203千米. 【总结升华】这是航行问题,本题需分类讨论,采用“线段示意图”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.类似地,当物体在空中飞翔时,常会遇到顺风逆风问题,解题思路类似顺逆流问题.5.环形问题7.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x千米/时,则最快的人的速度为x 千米/时,由题意得:x×-x ×=20解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【总结升华】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m的正方形行走,按A→B→C→D→A…方向,甲从A以65m/min的速度,乙从B以72m/min的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x分钟,则有:72x-65x=3×902707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m), 此时乙在AD 边上. 类型三、工程问题8.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池? 【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==.答:打开丙管后4213小时可把水放满.【总结升华】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1. 举一反三:【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积. 【答案】解:设这块水稻田的面积为x 亩,由题意得:21331144142x x x =++⨯解得:36x =.答:这块水稻田的面积为36亩.类型四、等积变形问题9.长方体甲的长宽高分别为260mm,150mm,325mm,长方体乙的地底面积为130 ×130mm2.已知甲的体积是乙的体积的2.5倍,求乙的高.【思路点拨】设乙的高为hmm,根据甲的体积=乙的体积×2.5列出方程,求解即可.【答案与解析】解:设乙的高为hmm,根据题意得:260×150×325=130×130×h×2.5,解得:h=300(mm)答:乙的高为300mm.【总结升华】本题考查了一元一次方程的应用及长方体的体积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.。
列一元一次方程解应用题的步骤
列一元一次方程解应用题的步骤
一元一次方程是代数中常见的一种类型的方程,其形式为ax+b=0,其中a和b
是已知数,x是未知数。
解一元一次方程的步骤如下:
1. 理解问题:仔细阅读问题并理解其中给出的条件和要求。
确定问题中未知数
的含义和符号。
2. 设变量:根据问题中给出的条件,设未知数为x,并列出相应的方程。
3. 化简方程:根据方程的形式,进行合并和化简,使方程变为ax + b = 0的标
准形式。
4. 消元:通过一系列代数运算,将方程中的未知数消去,得到解方程的步骤。
5. 解方程:根据方程的标准形式,求得未知数的解x。
这可以通过减法、加法、乘法和除法等运算来实现。
6. 检验解:将求得的解代入原方程中,验证方程的等式成立。
若等式成立,则
解是正确的;若不成立,则需要重新检查步骤。
7. 提出答案:将解写成有意义的句子或符号形式,回答问题所要求的内容。
通过以上步骤,我们可以解决各种应用题,其中包括计算物体运动速度、求解
几何图形的边长或面积、解决货币交换或时间计算问题等。
实践中,我们需要熟悉一元一次方程的基本概念和运算规则,以便准确解答各类应用题。
需要注意的是,解题过程中应仔细审题、灵活运用代数运算法则,并进行适当
的化简和验证,确保所得的解是可信的。
此外,解答过程中应注意单位和符号的一致性,避免因数值计算错误导致解答错误。
通过掌握解一元一次方程的步骤,我们可以更好地应用代数知识解决实际问题,提高数学解题能力。
(完整版)一元一次方程实际问题归纳
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,配套问题,工程问题,调配问题,分配问题,比例问题,和差倍分问题,销售问题,储蓄问题,积分问题,年龄问题,几何问题、数字问题,增长率问题,古代数学问题,分段问题,方案选择问题等。
列一元一次方程解应用题的一般步骤1. 审:审题,分析题目中的数量关系;2. 设:设适当的未知数,并表示未知量;3. 列:根据题目中的数量关系列方程;4. 解:解这个方程求未知数的值;5. 检验:检验是否符合实际;6. 答:作答.(一)行程问题(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行、环形跑道问题、行船问题、火车过隧道(桥)的问题。
(3)解此类题常常借助画草图来分析,理解行程问题。
①相遇问题(同时出发“两段”)1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?分析:快车路程+慢车路程=总路程或(快车速度+慢车速度)×相遇时间=相遇路程①相遇问题(不同时出发“三段”)2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?分析:慢车先行路程+慢车后行路程+快车路程=总路程②追及问题(同时出发)3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?②追及问题(不同时出发)4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?②追及问题5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?③相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。