数值计算方法期末模拟试题二
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,取
,
,取初始值,
近似解的梯形公式是
,则==
=
=
10、设,当时,必有分解式,其中
L为下三角阵,当其对角线元素足条件时,这种分解是唯一的。
二、计算题(共60 分,每题15分)
1、设
在上的三次Hermite插值多项式H(x)使满
(1)试求
足H(x)以升幂形式给出。
(2)写出余项的表达式
2、
已知的满足,试问如何利用构造一
个收敛的简单迭代函数,使0,1…收敛?
3、试确定常数A,B,C和,使得数值积分公式
有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss型的?
4、推导常微分方程的初值问题的数值解公式:
三、证明题
1、设
(1)写出解
的Newton迭代格式
(2)证明此迭代格式是线性收敛的
2、设R=I-CA,如果,证明:
(1)A、C都是非奇异的矩阵
(2)
参考答案:
一、填空题
1、2.3150
2、
3、
4、1.5
5、
6、
7、
8、收敛
9、O(h)
10、
二、计算题
1、1、(1)
(2)
,可得
2、由
因故
故,k=0,1,…收敛。
3、,该数值
求积公式具有5次代数精确度,它是Gauss型的
4、数值积分方法构造该数值解公式:对方程在区间
上积分,得
,记步长为h,对积分
用Simpson求积公式得
所以得数值解公式:
三、证明题
1、证明:(1)因,故,由Newton 迭代公式:
n=0,1,…
得,n=0,1,…
(2)因迭代函数,而,
又,则
故此迭代格式是线性收敛的。
2、证明:(1)因,所以I–R非奇异,因I–R=CA,所以C,A都是非奇异矩阵
(2)(2)故则有
(2.1)
因CA=I–R,所以C=(I–R)A-1,即A-1=(I–R)-1C
又RA-1=A-1–C,故
由(这里用到了教材98页引理的结论)
移项得
(2.2)
结合(2.1)、(2.2)两式,得