模式识别 习题集

合集下载

模式识别练习题

模式识别练习题

模式识别练习(1)主题:1.“基于最小错误率的贝叶斯决策”模式识别练习2.“基于最小风险的贝叶斯决策”模式识别练习3.基于“主成分分析”的贝叶斯决策模式识别练习已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(2,2),(2.2,2.2),(3,3)}。

(1)利用“基于最小错误率的贝叶斯决策”判别测试集为C中的样本的归类;(2)利用“基于最小风险的贝叶斯决策”判别测试集为C中的样本的归类;(3)在进行“主成分分析”的基础上,采用90%的主成分完成前面的(1)、(2),比较结果的异同。

模式识别练习(2)主题:很多情况下,希望样本维数(特征数)越少越好,降维是解决问题的一个有效的方法。

主成分分析希望得到较少的特征数,而Fisher准则方法则将维数直接降到1维。

一、已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(i,i)|i=0:0.005:5}。

分别利用基于最小错误率的贝叶斯决策、基于最小风险的贝叶斯决策、仅使用第一主成分、使用Fisher准则等四种方法(自编函数文件或用书上的函数文件)计算出测试集C中线段(0,0)-(5,5)的临界点;要求:将计算结果自动写入数据文件中二、已知训练样本集为教材上的10类手写数字集。

分别利用基于最小错误率的贝叶斯决策、基于最小风险的贝叶斯决策、仅使用第一主成分、使用Fisher准则等四种方法,统计出各大类的错误率和计算机cpu的计算时间,采用的测试集C依旧是10类手写数字集(虽然分类已知,但用不同的方法实际判别时可能有误判情况!)要求:使用书上的函数文件,并将计算结果自动写入数据文件中模式识别练习(3)一、已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(i,i)|i=0:0.01:5}。

机器视觉与模式识别试题

机器视觉与模式识别试题

机器视觉与模式识别试题一、简答题(每题10分,共10题)1. 请简要解释机器视觉的概念,并举例说明其在实际应用中的作用。

2. 什么是图像分割?请简要介绍常用的图像分割方法。

3. 请解释什么是特征提取,并描述至少两种常用的特征提取方法。

4. 什么是机器学习?简要描述监督学习和无监督学习的区别。

5. 请简要介绍常见的分类器,并说明它们的优缺点。

6. 什么是物体检测?请简要介绍常用的物体检测算法。

7. 请解释什么是模式识别,并举例说明其应用领域。

8. 简要介绍支持向量机(SVM)的原理及其应用。

9. 什么是深度学习?简要解释深度学习与传统机器学习的区别。

10. 简要介绍卷积神经网络(CNN)及其在图像分类中的应用。

二、分析题(共20分)1. 请分析图像分割的难点和挑战,并提出解决方案。

2. 请分析特征提取的关键问题,并探讨如何改进现有的特征提取方法。

3. 请分析支持向量机(SVM)的优势和不足,并提出使用SVM解决模式识别问题的注意事项。

4. 以人脸识别为例,分析深度学习模型相较于传统机器学习模型的优势和局限性。

三、应用题(共30分)1. 设计一个图像分类系统,能够将手写数字图像分为0~9十个类别。

请详细描述你的设计思路并给出实现代码。

2. 以目标检测为任务,设计一个基于卷积神经网络(CNN)的物体检测系统。

请详细描述你的设计思路并给出实现代码。

四、论述题(共40分)请综合所学的机器视觉与模式识别相关知识,自选一个课题进行深入探讨,并撰写一篇论文。

论文应包括问题定义、相关工作综述、解决方案设计和实验结果分析等内容。

请确保论文结构合理,逻辑清晰,表达准确。

以上是机器视觉与模式识别试题,根据题目要求,正文不再重复。

请根据试题内容自行判断和格式化撰写。

模式识别导论习题集

模式识别导论习题集

模式识别导论习题集1、设一幅256×256大小的图像,如表示成向量,其维数是多少?如按行串接成一维,则第3行第4个象素在向量表示中的序号。

解:其维数为2;序号为256×2+4=5162、如标准数字1在5×7的方格中表示成如图所示的黑白图像,黑为1,白为0,现若有一数字1在5×7网格中向左错了一列。

试用分别计算要与标准模板之间的欧氏距离、绝对值偏差、偏差的夹角表示,异己用“异或”计算两者差异。

解:把该图像的特征向量为5×7=35维,其中标准模版的特征向量为: x =[0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0]T 待测样本的特征向量为:y =[0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0]T因此欧氏距离为3521()14i i i x y =-=∑ ,绝对值偏差为351|()|14i i i x y =-=∑,夹角余弦为cos 0||||||||Tx y x y θ==⋅,因此夹角为90度。

3、哈明距离常用来计算二进制之间的相似度,如011与010的哈明距离为1,010与100距离为3。

现用来计算7位LED 编码表示的个数字之间的相似度,试计算3与其它数字中的哪个数字的哈明距离最小。

解:是“9”,距离为14、对一个染色体分别用一下两种方法描述:(1)计算其面积、周长、面积/周长、面积与其外接矩形面积之比可以得到一些特征描述,如何利用这四个值?属于特征向量法,还是结构表示法?(2)按其轮廓线的形状分成几种类型,表示成a 、b 、c 等如图表示,如何利用这些量?属哪种描述方法? (3)设想其他结构描述方法。

解:(1)这是一种特征描述方法,其中面积周长可以体现染色体大小,面积周长比值越小,说明染色体越粗,面积占外接矩形的比例也体现了染色体的粗细。

模式识别习题集

模式识别习题集

2.6 简述最小张树算法的优点。
2.7 证明马氏距离是平移不变的、非奇异线性变换不变的。 2.8 设,类 有
p 、 q 的重心分别为 x p 、 xq ,它们分别有样本 n p 、 n q 个。将和 q 合并为 l ,则 l
个样本。另一类
2 Dkl


nl n p nq
k 的重心为 x k 。试证明 k 与 l 的距离平方是
,JH 越(
),说明模式的

)(i=1,2,…,c)时,JH 取极大值。
1.20 Kn 近邻元法较之于 Parzen 窗法的优势在于 ( 上述两种算法的共同弱点主要是( )。 )。
1.21 已知有限状态自动机 Af=(,Q,,q0,F),={0,1};Q={q0,q1}; :(q0,0)= q1,(q0,1)= q1,(q1,0)=q0,(q1,1)=q0;q0=q0;F={q0}。现有输入字符串:(a) 00011101011,(b) 1100110011,(c) 101100111000,(d)0010011,试问,用 Af 对上述字符串进行分类 的结果为( 1.22 句法模式识别中模式描述方法有: (1)符号串 (2)树 (3)图 (4)特征向量 )。 。
《模式识别》习题集
一、基本概念题 1.1 是: 1.2、模式分布为团状时,选用 1.3 欧式距离具有 。 马式距离具有 模 式 识 、 别 的 三 大 、 聚类算法较好。 。 核 心 问 。 题
(1)平移不变性 (2)旋转不变性 (3)尺度缩放不变性 (4)不受量纲影响的特性 1.4 描述模式相似的测度有: (1)距离测度 (2)模糊测度 (3)相似测度 (4)匹配测度 ;(2) 个技术途径。 ; 。
(1)

《模式识别》试题库

《模式识别》试题库

《模式识别》试题库一、基本概念题1.1 模式识别的三大核心问题是: 、。

1.2、模式分布为团状时,选用 聚类算法较好。

1.3 欧式距离具有 。

马式距离具有 。

(1)平移不变性 (2)旋转不变性 (3)尺度缩放不变性 (4)不受量纲影响的特性 1.4 描述模式相似的测度有: 。

(1)距离测度 (2)模糊测度 (3)相似测度 (4)匹配测度1.5 利用两类方法处理多类问题的技术途径有:(1) ;(2) ;(3) 。

其中最常用的是第 个技术途径。

1.6 判别函数的正负和数值大小在分类中的意义是: , 。

1.7 感知器算法 。

(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

1.8 积累位势函数法的判别界面一般为 。

(1)线性界面;(2)非线性界面。

1.9 基于距离的类别可分性判据有: 。

(1)1[]wB Tr S S - (2)B W S S (3)BW BS S S + 1.10 作为统计判别问题的模式分类,在( )情况下,可使用聂曼-皮尔逊判决准则。

1.11 确定性模式非线形分类的势函数法中,位势函数K(x,x k )与积累位势函数K(x)的关系为( )。

1.12 用作确定性模式非线形分类的势函数法,通常,两个n 维向量x 和x k 的函数K(x,x k )若同时满足下列三个条件,都可作为势函数。

①( ); ②( ); ③ K(x,x k )是光滑函数,且是x 和x k 之间距离的单调下降函数。

1.13 散度J ij 越大,说明ωi 类模式与ωj 类模式的分布( )。

当ωi 类模式与ωj 类模式的分布相同时,J ij =( )。

1.14 若用Parzen 窗法估计模式的类概率密度函数,窗口尺寸h1过小可能产生的问题是( ),h1过大可能产生的问题是( )。

1.15 信息熵可以作为一种可分性判据的原因是: 。

1.16作为统计判别问题的模式分类,在( )条件下,最小损失判决规则与最小错误判决规则是等价的。

模式识别练习题

模式识别练习题

一、试问“模式”与“模式类”的含义。

如果一位姓王的先生是位老年人,试问“王先生”和“老头”谁是模式,谁是模式类?答:在模式识别学科中,就“模式”与“模式类”而言,模式类是一类事物的代表,概念或典型,而“模式”则是某一事物的具体体现,如“老头”是模式类,而王先生则是“模式”是“老头”的具体化。

二、试说明Mahalanobis距离平方的定义,到某点的Mahalanobis距离平方为常数的轨迹的几何意义,它与欧氏距离的区别与联系。

答:Mahalanobis距离的平方定义为:其中x,u为两个数据,是一个正定对称矩阵(一般为协方差矩阵)。

根据定义,距某一点的Mahalanobis距离相等点的轨迹是超椭球,如果是单位矩阵Σ,则Mahalanobis距离就是通常的欧氏距离。

三、试说明用监督学习与非监督学习两种方法对道路图像中道路区域的划分的基本做法,以说明这两种学习方法的定义与它们间的区别。

答:监督学习方法用来对数据实现分类,分类规则通过训练获得。

该训练集由带分类号的数据集组成,因此监督学习方法的训练过程是离线的。

非监督学习方法不需要单独的离线训练过程,也没有带分类号(标号)的训练数据集,一般用来对数据集进行分析,如聚类,确定其分布的主分量等。

就道路图像的分割而言,监督学习方法则先在训练用图像中获取道路象素与非道路象素集,进行分类器设计,然后用所设计的分类器对道路图像进行分割。

使用非监督学习方法,则依据道路路面象素与非道路象素之间的聚类分析进行聚类运算,以实现道路图像的分割。

四、试述动态聚类与分级聚类这两种方法的原理与不同。

答:动态聚类是指对当前聚类通过迭代运算改善聚类;分级聚类则是将样本个体,按相似度标准合并,随着相似度要求的降低实现合并。

五、如果观察一个时序信号时在离散时刻序列得到的观察量序列表示为,而该时序信号的内在状态序列表示成。

如果计算在给定O 条件下出现S 的概率,试问此概率是何种概率。

如果从观察序列来估计状态序列的最大似然估计,这与Bayes 决策中基于最小错误率的决策有什么关系。

模式识别习题集答案解析

模式识别习题集答案解析

PCA是一种无监督的映射方法,LDA是一种有监督的映射方法。

PCA只是将整组数据映射到最方便表示这组数据的坐标轴上,映射时没有利用任何数据部的分类信息。

因此,虽然做了PCA后,整组数据在表示上更加方便(降低了维数并将信息损失降到了最低),但在分类上也许会变得更加困难;LDA在增加了分类信息之后,将输入映射到了另外一个坐标轴上,有了这样一个映射,数据之间就变得更易区分了(在低纬上就可以区分,减少了很大的运算量),它的目标是使得类别的点距离越近越好,类别间的点越远越好。

2、最大似然估计和贝叶斯方法的区别?p(x|X)是概率密度函数,X是给定的训练样本的集合,在哪种情况下,贝叶斯估计接近最大似然估计?最大似然估计把待估的参数看做是确定性的量,只是其取值未知。

利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值(模型已知,参数未知)。

贝叶斯估计则是把待估计的参数看成是符合某种先验概率分布的随机变量。

对样本进行观测的过程,把先验概率密度转化为后验概率密度,利用样本的信息修正了对参数的初始估计值。

当训练样本数量趋于无穷的时候,贝叶斯方法将接近最大似然估计。

如果有非常多的训练样本,使得p (x|X)形成一个非常显著的尖峰,而先验概率p(x)又是均匀分布,此时两者的本质是相同的。

3、为什么模拟退火能够逃脱局部极小值?在解空间随机搜索,遇到较优解就接受,遇到较差解就按一定的概率决定是否接受,这个概率随时间的变化而降低。

实际上模拟退火算法也是贪心算法,只不过它在这个基础上增加了随机因素。

这个随机因素就是:以一定的概率来接受一个比单前解要差的解。

通过这个随机因素使得算法有可能跳出这个局部最优解。

4、最小错误率和最小贝叶斯风险之间的关系?基于最小风险的贝叶斯决策就是基于最小错误率的贝叶斯决策,换言之,可以把基于最小错误率决策看做是基于最小风险决策的一个特例,基于最小风险决策本质上就是对基于最小错误率公式的加权处理。

(完整word版)模式识别试题及总结

(完整word版)模式识别试题及总结

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。

2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。

3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。

(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。

(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。

(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。

(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。

(1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A)(2)({A}, {0, 1}, {A→0, A→ 0A}, A)(3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S)(4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A)9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的类别数目))。

10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

模式识别习题及答案

模式识别习题及答案

模式识别习题及答案模式识别习题及答案模式识别是人类智能的重要组成部分,也是机器学习和人工智能领域的核心内容。

通过模式识别,我们可以从大量的数据中发现规律和趋势,进而做出预测和判断。

本文将介绍一些模式识别的习题,并给出相应的答案,帮助读者更好地理解和应用模式识别。

习题一:给定一组数字序列,如何判断其中的模式?答案:判断数字序列中的模式可以通过观察数字之间的关系和规律来实现。

首先,我们可以计算相邻数字之间的差值或比值,看是否存在一定的规律。

其次,我们可以将数字序列进行分组,观察每组数字之间的关系,看是否存在某种模式。

最后,我们还可以利用统计学方法,如频率分析、自相关分析等,来发现数字序列中的模式。

习题二:如何利用模式识别进行图像分类?答案:图像分类是模式识别的一个重要应用领域。

在图像分类中,我们需要将输入的图像分为不同的类别。

为了实现图像分类,我们可以采用以下步骤:首先,将图像转换为数字表示,如灰度图像或彩色图像的像素矩阵。

然后,利用特征提取算法,提取图像中的关键特征。

接下来,选择合适的分类算法,如支持向量机、神经网络等,训练模型并进行分类。

最后,评估分类结果的准确性和性能。

习题三:如何利用模式识别进行语音识别?答案:语音识别是模式识别在语音信号处理中的应用。

为了实现语音识别,我们可以采用以下步骤:首先,将语音信号进行预处理,包括去除噪声、降低维度等。

然后,利用特征提取算法,提取语音信号中的关键特征,如梅尔频率倒谱系数(MFCC)。

接下来,选择合适的分类算法,如隐马尔可夫模型(HMM)、深度神经网络(DNN)等,训练模型并进行语音识别。

最后,评估识别结果的准确性和性能。

习题四:如何利用模式识别进行时间序列预测?答案:时间序列预测是模式识别在时间序列分析中的应用。

为了实现时间序列预测,我们可以采用以下步骤:首先,对时间序列进行平稳性检验,确保序列的均值和方差不随时间变化。

然后,利用滑动窗口或滚动平均等方法,将时间序列划分为训练集和测试集。

模式识别导论习题集

模式识别导论习题集

模式识别导论习题集模式识别导论习题集1、设⼀幅256×256⼤⼩的图像,如表⽰成向量,其维数是多少?如按⾏串接成⼀维,则第3⾏第4个象素在向量表⽰中的序号。

解:其维数为2;序号为256×2+4=5162、如标准数字1在5×7的⽅格中表⽰成如图所⽰的⿊⽩图像,⿊为1,⽩为0,现若有⼀数字1在5×7⽹格中向左错了⼀列。

试⽤分别计算要与标准模板之间的欧⽒距离、绝对值偏差、偏差的夹⾓表⽰,异⼰⽤“异或”计算两者差异。

解:把该图像的特征向量为5×7=35维,其中标准模版的特征向量为:x =[0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0]T待测样本的特征向量为:y =[0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0]T,绝对值偏差为351|()|14i i i x y =-=∑,夹⾓余弦为cos 0||||||||T x y x y θ==?,因此夹⾓为90度。

3、哈明距离常⽤来计算⼆进制之间的相似度,如011与010的哈明距离为1,010与100距离为3。

现⽤来计算7位LED 编码表⽰的个数字之间的相似度,试计算3与其它数字中的哪个数字的哈明距离最⼩。

解:是“9”,距离为14、对⼀个染⾊体分别⽤⼀下两种⽅法描述:(1)计算其⾯积、周长、⾯积/周长、⾯积与其外接矩形⾯积之⽐可以得到⼀些特征描述,如何利⽤这四个值?属于特征向量法,还是结构表⽰法?(2)按其轮廓线的形状分成⼏种类型,表⽰成a 、b 、c 等如图表⽰,如何利⽤这些量?属哪种描述⽅法? (3)设想其他结构描述⽅法。

解:(1)这是⼀种特征描述⽅法,其中⾯积周长可以体现染⾊体⼤⼩,⾯积周长⽐值越⼩,说明染⾊体越粗,⾯积占外接矩形的⽐例也体现了染⾊体的粗细。

模式识别练习题

模式识别练习题

2013模式识别练习题一. 填空题1、模式识别系统的基本构成单元包括: 模式采集、特征选择与提取和模式分类。

2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、网。

3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离阈值、预定的类别数目。

4、线性判别函数的正负和数值大小的几何意义是正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。

5、感知器算法1,H-K算法(2)。

(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

6、在统计模式分类问题中,聂曼—皮尔逊判决准则主要用于某一种判决错误较另一种判决错误更为重要情况;最小最大判别准则主要用于先验概率未知的情况.7、“特征个数越多越有利于分类”这种说法正确吗?错误。

特征选择的主要目的是从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数。

一般在可分性判据对特征个数具有单调性和(C n m〉〉n )的条件下,可以使用分支定界法以减少计算量。

8、散度J ij越大,说明ωi类模式与ωj类模式的分布差别越大;当ωi类模式与ωj类模式的分布相同时,J ij= 0 。

二、选择题1、影响聚类算法结果的主要因素有( B C D)。

A.已知类别的样本质量;B。

分类准则;C.特征选取;D。

模式相似性测度2、模式识别中,马式距离较之于欧式距离的优点是( C D)。

A.平移不变性;B。

旋转不变性;C尺度不变性;D。

考虑了模式的分布3、影响基本K-均值算法的主要因素有( D A B)。

A.样本输入顺序;B.模式相似性测度;C。

聚类准则;D。

初始类中心的选取4、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的( B D).A. 先验概率;B. 后验概率;C。

类概率密度;D. 类概率密度与先验概率的乘积5、在统计模式分类问题中,当先验概率未知时,可以使用(B D)。

模式识别试题库

模式识别试题库

《模式识别》试题库一、基本概念题1.1 模式识别的三大核心问题是:、、。

1.2、模式分布为团状时,选用聚类算法较好。

1.3 欧式距离具有。

马式距离具有。

(1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性1.4 描述模式相似的测度有:。

(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度1.5 利用两类方法处理多类问题的技术途径有:(1);(2);(3)。

其中最常用的是第个技术途径。

1.6 判别函数的正负和数值大小在分类中的意义是:,。

1.7 感知器算法。

(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

1.8 积累位势函数法的判别界面一般为。

(1)线性界面;(2)非线性界面。

1.9 基于距离的类别可分性判据有:。

(1)1[]w BTr S S-(2)BWSS(3)BW BSS S+1.10 作为统计判别问题的模式分类,在()情况下,可使用聂曼-皮尔逊判决准则。

1.11 确定性模式非线形分类的势函数法中,位势函数K(x,x k)与积累位势函数K(x)的关系为()。

1.12 用作确定性模式非线形分类的势函数法,通常,两个n维向量x和x k的函数K(x,x k)若同时满足下列三个条件,都可作为势函数。

①();②( ); ③ K(x,x k )是光滑函数,且是x 和x k 之间距离的单调下降函数。

1.13 散度J ij 越大,说明ωi 类模式与ωj 类模式的分布( )。

当ωi 类模式与ωj 类模式的分布相同时,J ij =( )。

1.14 若用Parzen 窗法估计模式的类概率密度函数,窗口尺寸h1过小可能产生的问题是( ),h1过大可能产生的问题是( )。

1.15 信息熵可以作为一种可分性判据的原因是: 。

1.16作为统计判别问题的模式分类,在( )条件下,最小损失判决规则与最小错误判决规则是等价的。

1.17 随机变量l(x ρ)=p( x ρ|ω1)/p( x ρ|ω2),l( x ρ)又称似然比,则E {l( x ρ)|ω2}=( )。

模式识别习题及答案-精品资料

模式识别习题及答案-精品资料

第一章绪论1 •什么是模式?具体事物所具有的信息。

模式所指的不是事物本身,而是我们从事物中获得的—信息__。

2. 模式识别的定义? 让计算机来判断事物。

3. 模式识别系统主要由哪些部分组成? 数据获取一预处理一特征提取与选择一分类器设计/分类决策。

第二章贝叶斯决策理论P ( W 2 ) / p ( w 1 ) _,贝V X1. 最小错误率贝叶斯决策过程?答:已知先验概率,类条件概率。

利用贝叶斯公式 得到后验概率。

根据后验概率大小进行决策分析。

2 .最小错误率贝叶斯分类器设计过程?答:根据训练数据求出先验概率P ( W i ), i类条件概率分布p ( x | W i ), i 1 , 2 利用贝叶斯公式得到后验概率P (W i | x)P(X | W j )P(W j )j 1如果输入待测样本 X ,计算X 的后验概率根据后验概率大小进行分类决策分析。

3. 最小错误率贝叶斯决策规则有哪几种常用的表示形式?决策规则的不同形式(董点)C1^ 如vr, | JV ) = max 戶(vr ] WJ A * U vtvEQ 如杲尹a H ; )2^(ir, ) = max |沪0輕』),则x e HpCx |=尸4 "J"匕< 4) 如!4i= — 1IL | /( JV )] = — 111 戸(兀 | w”. ) -+- 11111r a4. 贝叶斯决策为什么称为最小错误率贝叶斯决策?答:最小错误率Bayes 决策使得每个观测值下的条件错误率最小因而保证了 (平均)错误率最小。

Bayes 决策是最优决策:即,能使决策错误率最小。

5 .贝叶斯决策是 由先验概率和(类条件概率)概率,推导(后验概率)概率,然后利用这 个概率进行决策。

6.利用乘法法则和全概率公式证明贝叶斯公式p(AB) p(A|B)p(B) p(B|A)p(A)P (A」B )答:m所以推出贝叶斯公式p(B) p(B|Aj)p(Aj)j 17. 朴素贝叶斯方法的条件独立D (1P (x | W i ) P(W i )i i入)2P(x | W j ) P (w j )j 11 ,2P (x | W i )P(W i )如果 I (x)P(B |A i )P(AJ P ( B ) P ( B | A i ) P ( A i ) 7MP ( B | A j ) P ( A j )2假设是( P(x| 3 i) =P(x1, x2, …,xn | co i)19.=P(x1|3 i) P(x2| 3 i)…P(xn| 3 i))8•怎样利用朴素贝叶斯方法获得各个属性的类条件概率分布?答:假设各属性独立,P(x| 3 i) =P(x1, x2, …,xn |3 i) = P(x1| 3 i) P(x2| 3 i)P(xn| 3 i)后验概率:P( 3 i|x) = P( 3 i) P(x1|3 i) P(x2| 3 i)…P(xn| 3 i)类别清晰的直接分类算,如果是数据连续的,假设属性服从正态分布,算出每个类的均值方 差,最后得到类条件概率分布。

模式识别习题

模式识别习题

3. 用ISODATA算法对下列样本集进行聚类分 析。
X 0 0 , 0 1 , 4 4 , 4 5 , 5 4 , 5 5 , 1 0

T T T T T T T

T x 0 1 3 x 5 0 x 14 45 4.设 x 4 2 1
: 0 0 0 , 1 0 0 , 1 0 1 , 1 1 0 : 0 0 1 , 0 1 1 , 0 1 0 , 1 1 1
T T T T 1 T T T T 2
T 0 1 2 2 0 设 w
p x | :0 . 1 ; 0 . 15 ; 0 . 3 ; 0 . 6 1
损失 决策
状态
1
2.5 4 1.5
2
2 1.0 1.5
p x | :0 . 8 ; 0 . 7 ; 0 . 55 ; 0 . 3 2
2 3
1
(1)试用最小错误率贝叶斯决策规则,判断四个样本各属于 哪一个类型 (2)假定只考虑前两种判决,试用最小风险贝叶斯决策规则 判断四个样本各属于哪一个类别 (3)把拒绝判决考虑在内,重新考核四次试验的结果
5. 有一个二维空间的两类问题,每类均服从 正态分布,且有相同的协方差矩阵: T 1 0 0 1.1 0.3
0.3 1.9 其均值向量分别是: 3 3T 2 T 根据贝叶斯分类器确定样本 属于 1 .0 2 .2
哪一类。
6. 对数正态分布
2 1 ln x p x exp , x 0 2 x2 2
T
T
T
现有下列三种划分: { x } { x ,x } 2 2,x 3 (1) 1 1 4 x4} { x ,x ,x } (2) 2 { 1 1 2 3 { x } { x ,x } (3) 2 3,x 4 1 1 2 请找出平方误差和准则Je的最小划分。

模式识别试题库

模式识别试题库

科目模式识别班级姓名学号得分:1、简答题(40分)1. 什么是模式?人们通常是如何表示模式的?对分类识别的对象进行科学的抽象,建立它的数学模型,用以描述和代替识别对象,称这种对象的描述为模式。

从它的定义可看出,模式是通过数学模型来表示的。

2. 什么是聚类分析?聚类分析是有监督分类还是无监督分类?为什么?聚类分析是基于数据集客观存在着若干个自然类、每个自然类中的数据某些属性都具有较强的相似性而建立的一种数据描述方法。

是无监督的分类。

因为在分类中不需要用训练样本进行学习和训练。

3. 什么是模式识别?模式识别系统通常包括哪些主要的环节?模式识别是根据研究对象的特征或属性,利用以计算机为中心的机器系统,运用一定的分析算法认定它的类别,系统应使分类识别的结果尽可能地符合真实。

主要环节包括:(1)特征提取(2)特征选择(3)学习和训练(4)分类识别4. 什么是最大后验概率准则?5. 什么是总体推断?6. 什么是梯度下降法?就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减少。

7. 什么是无偏估计?无偏估计是参数的样本估计值的期望值等于参数的真实值。

估计量的数学期望等于估计参数。

8. 什么是最小损失准则判决?其基本表达形式是什么?当对一待识模式进行分类识别决策时,算出判属它为各类的条件期望损失之后,判决属于条件期望损失最小的那一类。

基本表达式如下:如果,则判9. 有教师学习和无教师学习在算法上有何区别?10. 线性判别函数的几何意义是什么?11. 一次准则函数的基本形式是什么?简要说明这种形式的特点。

12. 在统计判决中,什么是损失、损失函数和平均损失?13. 利用特征矢量和特征空间如何表达模式和模式类?14. 聚类分析在选取特征时需要注意哪些问题?为什么?15. 判别域界面方程分类的基本思想是什么?16. Fisher判别规则的基本思想是什么?17. 特征空间在模式识别的研究起什么作用?请简要论述。

模式识别习题集

模式识别习题集

模式识别习题Part 2CH41.线性分类器的分界面是超平面,线性分类器设计步骤是什么?2.Fisher线性判别函数是研究这类判别函数中最有影响的方法之一,请简述它的准则.3.感知器的准则函数是什么?它通过什么方法得到最优解?4.(1)指出从x到超平面g(x)=(w T x+w0=0)的距离r=|g(x)|是在||w|| g(x q)=0的约束条件下,使||x−x q||2达到极小解;w(2)指出在超平面上的投影是x p=x−g(x)||w||2(《模式识别》第二版,边肇祺,pp.117 4.1) 5.设有一维空间二次判别函数g(x)=5+7x+9x2(1)试映射成广义齐次线性判别函数;(2)总结把高次函数映射成齐次线性函数的方法。

(《模式识别》第二版,边肇祺,pp.117 4.2) 6.(1)通过映射把一维二次判别函数g(x)=a1+a2x+a3x2映射成三维广义线性判别函数;(2)若x在一维空间具有分布密度p(x),说明三维空间中的分布退化成只在一条曲线上有值,且曲线上值无穷大。

(《模式识别》第二版,边肇祺,pp.117 4.3)7.对于二维线性判别函数g(x)=x1+2x2−2(1)将判别函数写成g(x)=w T x+w0的形式,并画出g(x)=0的几何图形;(2)映射成广义齐次线性函数g(x)=a T y;(3)指出上述X空间实际是Y空间的一个子空间,且a T y=0对于X子空间的划分和原空间中w T+w0=0对原X空间的划分相同,并在图上表示出来。

8.指出在Fisher线性判别中,w的比例因子对Fisher判别结果无影响。

9.证明在正态等方差条件下,Fisher线性判别等价于贝叶斯判别。

10.考虑准则函数J(a)=∑(a T y−b)2y∈Y(a)其中Y(a)是使a T y≤b的样本集合。

设y1是Y(a)中的唯一样本,则J(a)的梯度为∇J(a)=2(a k T y1−b)y1,二阶偏导数矩阵D=2y1y1T。

模式识别练习题

模式识别练习题

模式识别练习题模式识别练习题模式识别是一种认知能力,是人类大脑的重要功能之一。

通过模式识别,我们能够从复杂的信息中抽取出有用的模式,并进行分类、归纳和推理。

模式识别在日常生活中无处不在,无论是辨认人脸、理解语言还是解读图像,都离不开模式识别的帮助。

在这里,我将给大家提供一些模式识别练习题,帮助大家锻炼和提高自己的模式识别能力。

这些题目涵盖了不同的领域,包括数字、形状和图案等,旨在让大家在娱乐中提升自己的认知水平。

1. 数字序列请观察以下数字序列:2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ...请问下一个数字是多少?答案:2048解析:观察数字序列,可以发现每个数字都是前一个数字的2倍。

因此,下一个数字是1024的2倍,即2048。

2. 形状序列请观察以下形状序列:▲, □, ○, △, ▢, ◇, ...请问下一个形状是什么?答案:□解析:观察形状序列,可以发现每个形状都是按照一定的规律交替出现。

▲和○是封闭的形状,□和▢是开放的形状,△和◇是封闭的形状。

因此,下一个形状应该是开放的形状,即□。

3. 图案序列请观察以下图案序列:A, AB, ABA, ABAC, ABACA, ...请问下一个图案是什么?答案:ABACABAC解析:观察图案序列,可以发现每个图案都是在前一个图案的基础上添加一个新的元素。

第一个图案是A,第二个图案是在A的基础上添加B,第三个图案是在ABA的基础上添加C,依此类推。

因此,下一个图案是在ABACABAC的基础上添加ABAC,即ABACABAC。

通过这些练习题,我们可以锻炼自己的观察力和逻辑思维能力。

模式识别不仅仅是一种认知能力,也是一种解决问题的思维方式。

通过不断地练习和思考,我们可以提高自己的模式识别能力,更好地应对各种复杂的情境和挑战。

除了以上的练习题,我们还可以通过观察自然界、阅读文学作品和解决日常问题等方式来锻炼模式识别能力。

模式识别习题及答案

模式识别习题及答案

模式识别习题及答案案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

模式识别习题集

模式识别习题集

模式识别习题集模式识别习题Part 1CH11. Describe the structure of a pattern classification system and give detailed informationabout each module.CH22. Bayesian Classifier(a) What is the decision rule of the Bayesian classifier?(b) Which independency assumption is used for naive Bayes and how does this affectthe decision rule?(c) Show the optimality of the Bayesian classifier.3. Vessel diseases are a growing problem in the western world. Now, there is a softwarethat can classify a diseased person as actually diseased with 99% reliability. However, it may happen in 2% of the cases that a healthy person is mistakenly classified as diseased. A statistical analysis shows that the disease is apparent in one out of 100 patients. What is the probability that a patient is actually diseased if the system classifies a disease?4. 分别写出在以下两种情况1) P (x|w 1)=P (x|w 2) 2) P (w 1)=P (w 2)下的最小错误率贝叶斯决策规则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模式识别习题Part 1
CH1
1. Describe the structure of a pattern classification system and give detailed information
about each module.
CH2
2. Bayesian Classifier
(a) What is the decision rule of the Bayesian classifier?
(b) Which independency assumption is used for naive Bayes and how does this affect
the decision rule?
(c) Show the optimality of the Bayesian classifier.
3. Vessel diseases are a growing problem in the western world. Now, there is a software
that can classify a diseased person as actually diseased with 99% reliability. However, it may happen in 2% of the cases that a healthy person is mistakenly classified as diseased. A statistical analysis shows that the disease is apparent in one out of 100 patients. What is the probability that a patient is actually diseased if the system classifies a disease?
4. 分别写出在以下两种情况
1) P (x|w 1)=P (x|w 2) 2) P (w 1)=P (w 2)
下的最小错误率贝叶斯决策规则。

(《模式识别》第二版,边肇祺,pp.43 2.4)
5. 若λ11=λ22=0,λ12=λ21 ,证明此时最小最大决策面是来自两类的错误率相等。

(《模式识别》第二版,边肇祺,pp.43 2.7) 6. 二维正态分布,μ1=(−1,0)T
,μ2=(1,0)T
,Σ1=Σ2=Ι,P (ω1)=P (ω2)。

试写
出对数似然比决策规则。

(《模式识别》第二版,边肇祺,pp.45 2.23)
7. 在习题6中若Σ1≠Σ2,Σ1=[1
12
1
21
],Σ2=[
1−
12
−1
2
1
],写出负对数似然比决策规则。

(《模式识别》第二版,边肇祺,pp.45 2.24)
8.
()()()()贝叶斯决策进行分类。

的决策表,按最小风险)中的条件,利用下面1)对(2(进行分类。

对该细胞最小错误率贝叶斯规则,用 6.0|,3.0|布曲线上查得:,从类条件概率密度分 为其观察值。

现有一个待识细胞, 2.0;异常状态: 8.0正常状态:为
)两类的先验概率分别)和异常(别中正常()假设某部位的细胞识1(212121x x P x P x P P ====ϖϖϖϖϖϖ
9. 设在一维特征空间中两类样本服从正态分布,1σ=2σ=2,µ1=0,µ2=3,两类先验概率
之比e P P =)(/)(21ωω,试求按基于最小错误率贝叶斯决策原则的决策分界面的x 值。

10. 设在三维特征空间里,有两类正态分布模式,每类各有4个样本,分别为
ω1:[1,0,1]T ,[1,0,0]T ,[0,0,0]T ,[1,1,0]T ω2:[0,0,1]T ,[0,1,1]T ,[1,1,1]T ,[0,1,0]T
其均值向量和协方差矩阵可用下式估计
M i =1
i
∑X ij N i
j=1
C i =
1i
∑X ij X ij T −M i M i T N i
j=1
式中,N i 为类别ωi 中样本的数目;X ij 代表在第i 类中的第j 个样本。

两类的先验概率
P (ω1)=P (ω2)=12
试确定两类之间的判别界面。

11. 设向量x =(x 1,…,x d )t 的分量为二值的(0或1),且设P(ωj )为类别状态ωj 的先验概率,
其中j=1,…,c 。

现定义
p ij =Pr[x i =1|ωj ] i =1,…,d
j =1,…,c
且对于ωj 中所有x ,其分量x i 是统计独立的。

01
a 2
a 1
71
ϖ2
ϖ损失
状态决策
(a ) 解释p ij 的含义。

(b ) 证明最小误差概率通过下面的判定规则获得:对于所有的j 和k ,如果
g k (x )≥g j (x ),则判为ωk ,其中
g j (x )=∑x i d
i=1
ln p ij
1−p ij
+∑ln(1−p ij )d
i=1
+ln P(ωj )
(《模式分类》第二版,Richard O.Duda, pp.61 43)
CH3
12. 设总体分布密度为N (μ,1),−∞<μ<+∞,并设Χ={x 1,x 2,…,x N },分别用最大似然估
计和贝叶斯估计计算μ̂。

已知μ的先验分布p (μ)~N (0,1)。

(《模式识别》第二版,边肇祺,pp.81 3.1) 13. 设X ={x 1,x 2,…,x N }为来自点二项式分布的样本集,即f (x,P )=P x Q (1−x),x =0,1,0≤
P ≤1,Q =1−P ,试求参数P 的最大似然估计。

(《模式识别》第二版,边肇祺,pp.81 3.3) 14. 假设损失函数为二次函数λ(P
̂,P)=(P ̂−P)2
,以及P 的先验密度为均匀分布f(P)=1, 0≤P ≤1。

在这样假设条件下,求13题的贝叶斯估计P
̂。

(《模式识别》第二版,边肇祺,pp.81 3.4) 15. 设X ={x 1,x 2,…,x N }是来自p (x|θ)的随机样本,其中0≤x ≤θ时,p (x|θ)=1
θ,否则为0。

证明θ的最大似然估计是max k x k 。

(《模式识别》第二版,边肇祺,pp.81 3.7)
16. 考虑一维正态分布的参数估计。

设样本(一维)x 1,x 2,…x N 都是由独立的抽样试验采
集的,且密度函数服从正态分布,其均值μ与方差 2未知。

求均值和方差的最大似然估计。

17. 设一维样本集X={x 1,x 2,…x N }是取自正态分布N(μ, 2)的样本集,其中均值μ为未知
的参数,方差 2已知。

未知参数μ是随机参数,它有先验分布N(μ , 2)的,μ 、 2已知,求μ的贝叶斯估计μ̂。

18. 令x 为服从指数概率密度函数的分布:
p (x|θ)={θe −θx x≥
0 其他
(a ) 当θ=1时,画出p(x|θ)关于x 的函数图像。

对于x=2,画出p (x|θ)关于θ,0≤θ≤5的函
数图像。

(b ) 假设n 个样本点x 1,…,x n 都独立地服从分布p (x|θ),证明,关于θ的最大似然估计结
果为
θ
̂=1
1∑x k
n k=1
(c ) 在(a )中θ=1的图上,标记出当n 非常大时,最大似然估计θ
̂的位置。

(《模式分类》第二版,Richard O.Duda, pp.115 1) 19. 令x 具有均匀分布的概率密度
p (x|θ)~U (0,θ)={1θ⁄ 0≤x ≤θ
0 其他
(a ) 假设n 个样本点D ={x 1,…,x n }都独立地服从p(x|θ),证明对于θ的最大似然估计
就是D 中的最大值点max [D ]。

(b ) 假设n=5个样本点是从这个分布中抽取的,并且有max k x k =0.6。

画出在区间
0≤θ≤1上的似然函数p (D|θ)。

(《模式分类》第二版,Richard O.Duda, pp.116 2)
20. 设x 为一个d 维的二值向量(即其分量取值为0或1),服从多维伯努利分布
P (x |θ)=∏θi x
i d
i=1
(1−θi )1−x i
其中是θ=(θ1,…,θd )t 是一个未知的参数向量,而θi 为x i =1的概率。

证明,对于θ的最大似然估计为
θ̂=1n ∑x k
n k=1 (《模式分类》第二版,Richard O.Duda, pp.116 4)。

相关文档
最新文档