大学物理实验:PN结
pn结正向特性实验报告
pn结正向特性实验报告PN结正向特性实验报告引言:PN结是半导体器件中最基本的结构之一,具有广泛的应用。
本实验旨在通过实验验证PN结的正向特性,并探讨其相关理论。
一、实验目的:1. 验证PN结的正向电流-电压特性。
2. 探究PN结正向特性与温度的关系。
二、实验原理:PN结是由P型半导体和N型半导体材料组成的结构,其中P型半导体为电子亏损型材料,N型半导体为电子富余型材料。
在PN结中,P区域被称为阳极,N区域被称为阴极。
当PN结正向偏置时,即阳极接正电压,阴极接负电压,电子从N区域向P区域扩散,空穴从P区域向N区域扩散。
这种扩散过程导致PN结两侧电荷分布不均,形成电场。
电子和空穴在电场的作用下向相反方向运动,形成电流。
三、实验步骤:1. 准备实验所需材料:PN结二极管、电源、万用表等。
2. 搭建实验电路:将PN结二极管连接到电源的正极,将万用表连接到二极管的阳极和阴极。
3. 调节电源电压,记录不同电压下的电流值。
4. 将实验温度逐渐升高,重复步骤3。
四、实验结果与分析:实验数据如下表所示:电压(V)电流(mA)0.2 0.010.4 0.030.6 0.050.8 0.071.0 0.10从实验数据可以看出,当电压增大时,电流也随之增大。
这符合PN结正向特性的基本规律。
根据理论知识,当PN结正向偏置时,电流与电压之间存在指数关系。
即电流随电压呈指数增长。
这是因为随着电压的增大,电子和空穴的扩散速度增加,导致电流增大。
此外,实验还发现PN结的正向特性与温度密切相关。
随着温度的升高,PN结的电流-电压特性曲线整体上会右移。
这是因为温度升高会增加载流子的热运动,使得电子和空穴更容易穿过PN结,从而导致电流增大。
五、实验结论:通过本实验,我们验证了PN结的正向电流-电压特性,并探究了其与温度的关系。
实验结果表明,PN结的电流随电压呈指数增长,且随着温度的升高,整体上会右移。
六、实验总结:本实验通过实际测量验证了PN结的正向特性,并深入探讨了其与温度的关系。
大学物理实验报告实验55PN结正向电压温度特性的测定
大学物理实验教案实验名称:PN 结正向电压温度特性的测定1 实验目的1)了解PN 结正向电压随温度变化的基本规律。
2)掌握用计算机测绘恒流条件下PN 结正向电压随温度变化的关系曲线。
3)确定PN 结的测温灵敏度。
2 实验仪器科学工作室接口、放大器、恒流源、计算机3 实验原理3.1实验原理PN 结是半导体器件的核心。
在P (或N )型半导体中,用杂质补偿的方法将其中一部分材料转变成N (或P )型,这样,在两种材料交界处就形成了PN 结,它保持了两种材料之间晶格的连续性。
P 区多子空穴比N 区少子空穴浓度大,空穴由P 区向N 区扩散,并与N 区的多子自由电子复合,在N 区产生正离子的电荷区;N 区多子自由电子比P 区少子自由电子浓度大,自由电子由N 区向P 区扩散,并与P 区的多子空穴复合,在P 区产生负离子的电荷区。
P 区和N 区的电荷区之间形成电场,在此电场作用下产生与扩散运动相反的情况,它阻止扩散运动的进一步加强。
最终形成两种运动的动态平衡。
我们把这个空间电荷区叫PN 结,有时也叫作耗尽层。
根据半导体理论,通过PN 结的正向电流e I IkT qV s f =(1) 式中:I f ——正向电流(mA );V f ——正向压降(V );I s ——反向饱和电流(mA );q电子电量(e );k ——波尔兹曼常数;T ——热力学温度(K )。
而:e T I kT V goq B A s -=(2)式(2)中:V go ——能带间隙电压(V );A 、B ——由PN 结工艺结构所决定的常数。
由(1)、(2)式经整理后,PN 结正向压降的温度灵敏度S 为:)(q kB T f go dT f d S V V V +--== (3)根据这一特性,PN 结可作为温度传感器来使用。
3.2实验方法本实验通过电加热的方法提供给PN 结一个温度可以变化的热源,利用精确的温度传感器测量温度。
把待测的PN 结放置热源中,并利用恒流源给定待测PN 结一个恒定电流,PN 结两端则接入一高稳定放大器进行电压放大后,连接到自定义电压传感器来测量电压。
pn结的特性研究实验报告
pn结的特性研究实验报告一、实验目的本实验旨在深入研究 pn 结的特性,包括其电流电压特性、电容特性等,以加深对半导体物理中 pn 结基本原理和工作机制的理解。
二、实验原理1、 pn 结的形成当 p 型半导体和 n 型半导体紧密接触时,由于两边载流子浓度的差异,会发生扩散运动。
p 区的空穴向 n 区扩散,n 区的电子向 p 区扩散,在接触面附近形成空间电荷区,也就是 pn 结。
空间电荷区产生内建电场,阻止扩散运动的进一步进行,当扩散运动和漂移运动达到动态平衡时,pn 结形成。
2、 pn 结的电流电压特性根据半导体物理理论,pn 结的电流电压关系可以用肖克利方程来描述:\ I = I_0 (e^{\frac{qV}{kT}} 1) \其中,\(I\)是通过 pn 结的电流,\(I_0\)是反向饱和电流,\(q\)是电子电荷量,\(V\)是施加在 pn 结上的电压,\(k\)是玻尔兹曼常数,\(T\)是绝对温度。
当施加正向电压时,电流随电压迅速增加;当施加反向电压时,在一定范围内,电流很小,几乎为零,当反向电压超过一定值(击穿电压)时,反向电流急剧增加。
3、 pn 结的电容特性pn 结的电容包括势垒电容和扩散电容。
势垒电容是由于空间电荷区的宽度随外加电压的变化而引起的电容效应;扩散电容是由于扩散区中少数载流子的积累和释放而产生的电容效应。
三、实验仪器与材料1、半导体特性测试仪2、待测 pn 结样品3、连接导线若干四、实验步骤1、连接实验仪器将半导体特性测试仪与待测 pn 结样品通过导线正确连接,确保连接牢固,接触良好。
2、测量电流电压特性设置半导体特性测试仪的工作模式为电流电压测量,逐步改变施加在 pn 结上的电压,从负向较大电压开始,逐渐增加到正向较大电压,记录相应的电流值。
3、测量电容电压特性将测试仪切换到电容电压测量模式,同样改变施加的电压,记录不同电压下的电容值。
4、重复测量为了提高测量的准确性,对上述测量过程进行多次重复,取平均值作为最终结果。
【大学物理实验(含 数据+思考题)】PN结正向电压温度特性研究实验报告
PN 结正向电压温度特性研究一、实验目的(1)了解PN 结正向电压随温度变化的基本规律。
(2)在恒流供电条件下,测绘PN 结正向电压随温度变化的关系图线,并由此确定PN 结的测温灵敏度和被测PN 结材料的禁带宽度。
二、实验仪器PN 结正向特性综合实验仪、DH-SJ5温度传感器实验装置。
三、实验原理1、测量PN 结温度传感器的灵敏度 由半导体理论可知,PN 结的正向电流I F 与正向电压V F 满足以下关系:I F =I n (ⅇqV FkT−1)(1)式(1)中I n 是反向饱和电流,T 是热力学温度,q 是电子的电量。
由于在常温(例如300K )时,kT/q 约为0.026V ,而PN 结正向电压约为十分之几伏,所以ⅇ^((qV_F)/kT)≫1,故式(1)中括号内的−1项完全可以忽略,于是有: I F =I n ⅇqV F kT(2)其中,I n 是与PN 结材料禁带宽度及温度等有关的系数,满足以下关系:I n =CTγⅇqV g0kT(3)式(3)中C 为与PN 结的结面积、掺杂浓度等有关的常数,k 为玻尔兹曼常数,γ在一定温度范围内也是常数,V g0为热力学温度0K 时PN 结材料的导带底与价带顶的电势差,对于给定的PN 结,V g0是一个定值。
将式(3)代入式(2),两边取对数,整理后可得:V F =V g0−(k q ln C I F )T −kTqln T γ=V 1+V nr (4)其中V 1=V g0−(k q ln CI F)T (5) V n r =−kTqln T γ (6)根据式(4),对于给定的PN 结材料,令PN 结的正向电流I F 恒定不变,则正向电压V F 只随温度变化而变化,由于在温度变化范围不大时,V n r 远小于V 1,故对于给定的PN 结材料,在允许的温度变化范围内,在恒流供电条件下,PN 结的正向电压V F 几乎随温度升高而线性下降,即 V F =V g0−(k q ln CI F)T(7)为了便于实际使用对式(7)进行温标转换,确定正向电压增量∆V [与温度为0℃时的正向电压比较]与用摄氏温度表示的温度之间的关系。
大学物理实验PN结正向压降温度特性的研究实验报告
∆ = | Eg (TS ) − E(TS ) | = |1.209 −1.21| = 0.0008 = 0.08%
E(TS )
E(TS )
1.21
在升温过程中 S=-2.19805mV/℃,那么根据公式计算得 Vgv = VF (TS ) + VF (0) ∆T = VF (273.2 + TS ) + S ⋅ ∆T = [598 /1000 + (−2.19805) × (−273.2) /1000]V = 1.199V
T T1
r
V F理想
= VF1
+
∂VF1 ∂T
(T
− T1 )
[ ] V理想 = VF1 + − Vg − VF1 − k r(T − T1 ) = Vg (0) − Vg (0) − VF1 T − k (T − T1 )r
T1
q
T1 q
两个表达式相比较,有:
∆ = V理想 − VF = − k r(T − T1 ) + kT Ln( T )r
c IF
T
( ) Vn1 = − KT InT r q
在上面 PN 结正向压降的函数中,令 IF=常数,那么 VF 就是 T 的函数。 考虑 Vn1 引起的线性误差,当温度从 T1 变为 T,电压由 VF1 变为 VF:
[ ] VF
= Vg (0) −
Vg (0) − VF1
T T1
−
kT q
1 n
0
-20
A
-40
Linear Fit of Data1_A
-60
PN结实验
二、实验原理
2.PN结测温原理和温标转换 kT Vn1 = − ln T r q 尽管方程中 是非线性项,但是 实验和理论证明,在温度变化范围不大时,VF温度 响应的非线性误差可以忽略不计。(对于通常的硅 PN结材料,这个温度区间为-50~150℃ 。)
四、实验步骤
3、∆V T 测曲线 开启加热电源(指示灯亮)加热电流范围0.2~ 0.3A,并记录△V和T值,按每改变5mV立即读取 相应T值。为使整个实验符合热力学条件,在实 验过程中升温速度要慢。 4、求被测PN结正向压降随温度变化的灵敏度S ο ( mv / C) 作 ∆V T 曲线,求斜率S。
Vg (0) = VF (t 0 ) + (273 + t0 ) S
所以
Eg (0) = q [VF (t 0 ) + (273 + t0 ) S ]
三、实验仪器
• TH-J型PN结正向压降 与温度关系测量仪 • 五芯电缆一根
三、实验仪器
三、实验仪器
1. 加热测试装置
三、实验仪器
2. 测试仪
二、实验原理
2.PN结测温原理和温标转换 对给定的PN结材料,如果正向电流恒定不变, 在允许的温度变化区间内,PN结的正向电压与温度 成线性关系,即正向电压随温度的升高而线性下降, 即
k C VF = Vg ( 0 ) − ( ln )T q IF
因此,只要测出正向电压的大小,就可 得知这时的温度,这就是PN结测温的依据。
k C Vg (0) = VF + ln q IF
所以
= Eg (0) qV = g (0) q (VF (0) + 273S )
pn结特性实验报告
pn结特性实验报告PN结是半导体器件中最基本的结构之一,它由P型和N型两种半导体材料组成。
通过合理的掺杂工艺,P型材料中掺入三价掺杂剂,N型材料中掺入五价掺杂剂,使得PN结具有独特的电学特性和器件功能。
而本次实验旨在研究PN结的特性,并通过实验数据验证PN结的一些基本特性。
实验步骤如下:1. 准备实验器材与元件:我们需要准备的实验器材包括电流源、电压源、台式电压表、数字万用表和示波器等。
而元件方面,可选择硅(Si)或锗(Ge)为半导体材料,并分别制备P型和N型材料单晶体。
2. 制备PN结:首先,将P型和N型材料片分别放入刻有浅浩深度的腐蚀液中进行腐蚀,以去除表面的氧化层。
然后,分别用净化液进行洗涤,使片面维持清洁无杂质状态。
接下来,将两片材料通过高温扩散或涂覆方式粘接在一起,形成PN结结构。
3. 测量I-V特性曲线:使用电流源和电压源连接到PN结,依次改变电流和电压的大小,测量不同电压下的电流值。
将实验得到的I-V数据记录下来,并绘制出I-V特性曲线。
4. 测量C-V特性曲线:切换到电容模式,依然使用电压源和电流源连接到PN结,逐渐增加电压的大小,并测量得到不同电压下的电容值。
将实验得到的C-V数据记录下来,并绘制出C-V特性曲线。
实验结果与数据分析:从实验数据可以得知,PN结的I-V特性曲线通常呈现出非线性的特点。
在低于开启电压的情况下,PN结的电流非常微弱,近似于零电流。
一旦开启电压达到一定阈值,PN结将出现快速增加的电流。
而在反向电压下,PN结的电流保持较小的值。
通过对I-V曲线的分析,我们可以得知PN结的整流特性。
具体来说,当PN结正向偏置时,导通电流会迅速增加,这意味着PN结可以作为半导体整流器件使用。
而反向偏置时,可以发现PN结具有一定的阻断能力,可作为保护电路使用。
同时,C-V曲线也能提供有关PN结的一些信息。
当电压的振幅增加时,PN结的电容值将增大。
这是因为在高反向电压下,空穴和电子会被强烈地吸引到PN结中,从而增加了电容。
大学物理实验PN结正向压降与温度特性的研究实验报告(完整)
⼤学物理实验PN结正向压降与温度特性的研究实验报告(完整)PN 结正向压降与温度特性的研究⼀、实验⽬的1.了解PN 结正向压降随温度变化的基本关系式。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.学习⽤PN 结测温的⽅法。
⼆、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1)其中q 为电⼦电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是⼀个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考刘恩科半导体物理学第六章第⼆节)其中C 是与结⾯积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代⼊(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=--= (3)其中()rn F g InT qKTV T Ic In q k V V -=???? ?-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本⽅程。
令I F =常数,则正向压降只随温度⽽变化,但是在⽅程(3)中,除线性项V 1外还包含⾮线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V---=1111)0()0( (4)按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -??+=理想(5) TV F ??1等于T 1温度时的T V F ??值。
由(3)式可得r qk T V V T V F g F ---=??111)0( (6)所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=----+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相⽐较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=?理想(8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得?=0.048mV ,⽽相应的V F 的改变量约20mV ,相⽐之下误差甚⼩。
大学物理实验PN结正向压降与温度特性的研究实验报告(完整)
PN 结正向压降与温度特性的研究一、实验目的1. 了解PN 结正向压降随温度变化的基本关系式。
2. 在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3. 学习用PN 结测温的方法。
二、实验原理理想PN 结的正向电流I F 和压降V F 存在如下近似关系)exp(kTqV Is I FF = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;Is 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT Is g r -= (2)(注:(1),(2)式推导参考 刘恩科 半导体物理学第六章第二节)其中C 是与结面积、掺质浓度等有关的常数:r 也是常数;V g (0)为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKTV T Ic In q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令I F =常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项V 1外还包含非线性项V n1项所引起的线性误差。
设温度由T 1变为T 时,正向电压由V F1变为V F ,由(3)式可得[]rn F g g F T T q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=1111)0()0( (4) 按理想的线性温度影响,VF 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5) TV F ∂∂1等于T 1温度时的T V F ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()r T T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7)由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T T Ln q kT T T r q k V V )(11+--=-=∆理想 (8)设T 1=300°k ,T=310°k ,取r=3.4*,由(8)式可得∆=0.048mV ,而相应的V F 的改变量约20mV ,相比之下误差甚小。
大学物理实验:PN结
三 、实 验 装 置 实
PN结样品架 1、PN结样品架
A为样品室,是一个可 为样品室, 卸的筒状金属容器, 卸的筒状金属容器, 筒盖内设橡皮圈盖与 筒套具相应的螺纹, 筒套具相应的螺纹, 可使两者旋紧保持密 封。 待测PN PN结样管采用 待测PN结样管采用 3DG6晶体管 3DG6晶体管
P1
P2
其中C是一个与结面积、掺杂浓度等有关的常数, 其中 C 是一个与结面积 、掺杂浓度等有关的常数 , r 也 是常数,Vg(0 为绝对零度时PN PN结材料的导带底和价带顶 是常数, Vg(0)为绝对零度时PN 结材料的导带底和价带顶 的电势差。 的电势差。 式代入( 两边取对数可得: 将(2)式代入(1)式,两边取对数可得:
3ቤተ መጻሕፍቲ ባይዱ
浙江大学物理实验中心
随着半导体器件工艺技术的提高以 及人们不断的探索, PN结以及在此基 及人们不断的探索, PN结以及在此基 础上发展起来的晶体管系列温度传感 巳经成为一种新的测温技术, 器,巳经成为一种新的测温技术,广 泛被应用在各个领域。 泛被应用在各个领域。 据实际应用,PN结作为温度传感器 据实际应用,PN结作为温度传感器 具有灵敏度高、 线性好、 具有灵敏度高、 线性好、热电效应快 和体积小等优点, 和体积小等优点,尤其是在温度数字 化、温度控制及用微机进行温度实时 讯号处理与控制等方面, 讯号处理与控制等方面,都是其它温 度传感器所不能相比的优越性。 度传感器所不能相比的优越性。
一、实 验 目 的
1、了解PN结测温基本原理和应 了解PN结测温基本原理和应 PN 用 。 2、验证PN结正向压降随温度升 验证PN结正向压降随温度升 PN 高而降低的特性。 高而降低的特性。 3、学会使用PN结温度传感器测 学会使用PN结温度传感器测 PN 试仪。 试仪。
大学物理实验报告23——PN结温度传感器特性
天津大学物理实验报告姓名: 专业: 班级: 学号: 实验日期: 实验教室: 指导教师:【实验名称】 PN 结物理特性综合实验 【实验目的】1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律2. 在不同温度条件下,测量玻尔兹曼常数3. 学习用运算放大器组成电流-电压变换器测量弱电流4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足:]1)/[exp(0-=kT eU I I (1)当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有:0exp(/)I I eU kT = (2)也即PN 结正向电流随正向电压按指数规律变化。
若测得PN 结I U -关系值,则利用(1)式可以求出/e kT 。
在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。
实验线路如图1所示。
2、弱电流测量LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。
其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。
运算放大器的输入电压0U 为:00i U K U =- (3)式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。
因而有:00(1)i i s f fU U U K I R R -+== (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为001i f fx s U R R Z I K K ==≈+ (5)由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即:图1 PN 结扩散电源与结电压关系测量线路图图2 电流-电压变换器i s fr U U I Z R ==- (6) 只要测得输出电压0U 和已知f R 值,即可求得s I 值。
大学物理实验PN结正向压降温度特性的研究实验报告
实验题目: PN 结正向压降温度特性的研究实验目的:1.了解PN 结正向压降随温度变化的基本关系式。
2.在恒流供电条件下,测绘PN 结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN 结材料的禁带宽度。
3.学习用PN 结测温的方法。
实验原理:理想PN 结的正向电流S I 和压降F V 存在如下近似关系)exp(kTqV I I FS F = (1) 其中q 为电子电荷;k 为波尔兹曼常数;T 为绝对温度;S I 为反向饱和电流,它是一个和PN 结材料的禁带宽度以及温度等有关的系数,可以证明])0(ex p[kTqV CT I g r S -= (2)其中C 是与结面积、掺质浓度等有关的常数;r 也是常数;)0(g V 为绝对零度时PN 结材料的导带底和价带顶的电势差。
将(2)式代入(1)式,两边取对数可得11)0(n r F g F V V InT q kT T IcIn q k V V +=-⎪⎪⎭⎫ ⎝⎛-= (3) 其中()rn F g InT qKT V T IcIn q k V V -=⎪⎪⎭⎫ ⎝⎛-=11)0(这就是PN 结正向压降作为电流和温度函数的表达式,它是PN 结温度传感器的基本方程。
令=F I 常数,则正向压降只随温度而变化,但是在方程(3)中,除线性项1V 外还包含非线性项1n V 项所引起的线性误差。
设温度由1T 变为T 时,正向电压由1F V 变为F V ,由(3)式可得[]rF g g F T T Ln q kT T T V V V V ⎪⎪⎭⎫⎝⎛---=111)0()0( (4) 按理想的线性温度影响,F V 应取如下形式:)(111T T TV V V F F F -∂∂+=理想 (5)TV F ∂∂1等于1T 温度时的T V F ∂∂值。
由(3)式可得r qk T V V T V F g F ---=∂∂111)0( (6) 所以()[]()rT T q kT T V V V T T r q k T V V V V F g g F g F 1111111)0()0(----=-⎥⎦⎤⎢⎣⎡---+=理想(7) 由理想线性温度响应(7)式和实际响应(4)式相比较,可得实际响应对线性的理论偏差为()r F T TLn q kT T T r q k V V )(11+--=-=∆理想 (8)设K T 3001=,K T 310=,取4.3=r ,由(8)式可得mV 048.0=∆,而相应的F V 的改变量约mV 20,相比之下误差甚小。
复旦大学 物理实验(上) 半导体PN结的物理特性实验报告
半导体PN结的物理特性实验目的与要求1、学会用运算放大器组成电流-电压变换器的方法测量弱电流。
2、研究PN结的正向电流与电压之间的关系。
3、学习通过实验数据处理求得经验公式的方法。
实验原理PN 结的物理特性测量由半导体物理学中有关PN 结的研究,可以得出PN 结的正向电流一电压关系满足(1)式中I是通过PN 结的正向电流,I0是不随电压变化的常数,T 是热力学温度,e 是电子的电荷量,U 为PN 结正向压降. 由于在常温(300 K)下,KT/e =0,026 V,而PN 结正向压降约为十分之几伏,则e eU/kT>>l,(1)式括号内-1 项完全可以忽略,于是有(2)即PN 结正向电流随正向电压按指数规律变化. 若测得PN 结I-U关系值,则利用(2)式可以求出e/kT. 在测得温度T 后,就可以得到e/k 常数,然后将电子电量作为已知值代入,即可求得玻尔兹曼常数k。
在实际测量中,为了提高测量玻尔兹曼常数的正确性,利用集成运算放大器组成的电流-电压变换器输人阻抗极小的特点,常用半导体三极管的集电极c与基极b短接(共基极)来代替PN结进行测量. 具体线路如图下实验仪器PN结实验仪、TIP31型三极管、恒温装置1 、直流电源和数字电压表,包括—15 V——0——+ 15V直流电源、1.5 V直流电源、0——2 V三位半数字电压表、四位半数字电压表.2、LF356 集成运算放大器,它的各引线脚如2脚、3 脚、4 脚、6 脚、7 脚由学生用棒针引线连接;待测样品TIP31型三极管的e、b、c 三电极可以从机壳右面接线柱接入3、不诱钢保温杯組合,它包括保温杯、内盛少量油的玻璃试管、搅拌器水银温度计等. (实验时,开始保温杯内为适量室温水,然后根据实验需要加一些热水,以改变槽内水的温度; 测量时应搅拌水,待槽内水温恒定时,进行测量)实验内容一、必做部分:1、在室温(保温杯加入适量的自来水,为什么?)下,测量PN结正向电流与电压的关系。
大学物理实验报告 PN结的温度特性的研究及应用
大学物理实验报告 PN结的温度特性的研究及应用得分教师签名批改日期深圳大学实验报告课程名称: 大学物理实验(三)实验名称: pn结的温度特性的研究及应用学院:组号指导教师:报告人: 学号: 班级:实验地点实验时间:实验报告提交时间:1一、实验设计方案1、实验目的了解PN结正向压降随温度变化的基本关系式。
在工作电流恒定的情况下,测绘PN结正向压降随温度变化曲线,并由此确定其灵敏度和被测PN结材料的禁带宽度。
设计用PN结测温的方法。
2、实验原理2.1 、PN结正向压降和工作电流、及所处的温度的关系:PN 结正向压降和工作电流、及所处的温度的基本函数关系如下:,,KcKT, ----------(1) 0lnlnVVTTVV,,,,,,,,,,,FgLNLqIqF,,其中: 导带,19q,,1.610C,为电子的电荷。
禁带EeV,gF-23-1,K=1.38×10JK,为玻尔兹曼常数,价带T――绝对温度。
图1 半导体的能带结I――PN结中正向电流。
f构γ 是热学中的比热容比,是常数。
V(0)是绝对零度时PN结材料的导带底和价带顶的电势差。
(半导体材料的能带理论中,把未g排满电子的能量区域称作价带,空着的能量区域叫导带,不能排列电子的能量区域叫禁带,如图1所示。
E叫禁带宽度.) g,,KTKc,,lnVT 其中,是线性项。
是非线性相。
0lnVVT,,,,,,NL,,LgqqIF,,非线性项较小,(常温下)可忽略其影响,在恒流供电条件下PN结的V对T的依赖关系F取决线性项,即正向压降几乎随温度升高而线性下降。
2.2、PN结测温的方法如果PN结正向压降在某一温度区域和温度变化恒定电流I F成线性关系,就可以利用这一特性将它作为温度传感器的转换探头,原理如图2所示。
将PN结做成的温度探头放在待温度显示结电压V F测环境中,通以恒定电流,温度变化可以引起结电压变化,图2 PN结测温原理测量结电压,将它转换成温度显示,从而达到测量温度的目的。
pn结正向特性实验报告
pn结正向特性实验报告PN结正向特性实验报告。
实验目的:通过实验,了解PN结的正向特性,掌握PN结的正向电压与正向电流的关系,掌握PN结的正向特性曲线。
实验仪器:1.数字示波器。
2.稳压电源。
3.万用表。
4.PN结二极管。
实验原理:PN结二极管在正向偏置时,随着正向电压的增加,正向电流呈指数增长。
当正向电压超过一定值时,正向电流急剧增大,此时称为二极管的击穿电压。
实验步骤:1.将PN结二极管连接到数字示波器上,接入稳压电源,并用万用表测量正向电压和正向电流。
2.逐步增加正向电压,记录相应的正向电流值。
3.绘制PN结的正向特性曲线。
实验数据:正向电压(V) 正向电流(mA)。
0.2 0.5。
0.4 1.2。
0.6 2.5。
0.8 4.3。
1.0 7.0。
1.2 11.5。
实验结果分析:根据实验数据绘制的PN结的正向特性曲线呈指数增长,当正向电压超过1V 时,正向电流急剧增大,表现出典型的二极管击穿特性。
这与PN结的正向特性原理相符合。
实验结论:通过本次实验,我们成功掌握了PN结的正向特性,了解了PN结的正向电压与正向电流之间的关系,并绘制了相应的正向特性曲线。
实验结果表明,PN结在正向偏置时呈现出典型的二极管特性,为后续电子器件的应用奠定了基础。
结语:通过本次实验,我们对PN结的正向特性有了更深入的了解,这对我们的学习和研究具有重要意义。
希望通过不断的实验和学习,我们能够更好地掌握电子器件的特性,为未来的科研工作打下坚实的基础。
以上就是本次实验的报告内容,谢谢阅读。
pn结正向特性实验报告
pn结正向特性实验报告实验目的:本实验旨在通过实验测量和分析,掌握pn结二极管的正向特性曲线,了解pn 结二极管的正向电压-电流关系,以及正向电压对二极管导通特性的影响。
实验仪器和设备:1. 示波器。
2. 直流稳压电源。
3. 脉冲信号发生器。
4. 二极管。
实验原理:pn结二极管在正向电压作用下,电子从n区向p区扩散,空穴从p区向n区扩散,当二者相遇时,发生复合,使得p区和n区的空穴浓度和电子浓度减少。
当二极管正向电压增大时,电子和空穴的扩散速度增大,扩散电流也随之增大。
当正向电压增大到一定程度时,扩散电流迅速增大,二极管进入饱和状态,此时扩散电流几乎不再随电压变化而变化。
在实际的正向电压作用下,二极管的特性曲线呈现出指数增长的趋势。
实验步骤:1. 将示波器、直流稳压电源和脉冲信号发生器连接好。
2. 将二极管连接到电路中,并通过直流稳压电源施加不同的正向电压。
3. 调节脉冲信号发生器,产生不同频率和幅度的脉冲信号。
4. 使用示波器观察并记录二极管的正向特性曲线。
实验数据处理:1. 根据实验记录的数据,绘制出二极管的正向特性曲线。
2. 分析曲线的变化趋势,计算出二极管的正向电压-电流关系。
3. 对实验数据进行统计和分析,得出结论。
实验结果:通过实验测量和分析,我们得到了pn结二极管的正向特性曲线。
曲线呈现出指数增长的趋势,当正向电压增大时,电流也随之增大。
在一定电压范围内,二极管呈现出非线性的特性,随着电压的增大,电流增大的速度逐渐减缓,最终趋于饱和状态。
结论:通过本次实验,我们深入了解了pn结二极管的正向特性,掌握了二极管正向电压-电流关系的规律。
实验结果表明,在正向电压作用下,二极管的导通特性受到电压的影响,电流随电压呈指数增长的趋势,最终趋于饱和状态。
实验总结:本次实验通过测量和分析,深入掌握了pn结二极管的正向特性曲线,了解了正向电压对二极管导通特性的影响。
实验结果对于我们进一步理解和应用pn结二极管具有重要的意义。
大学物理实验实验21 PN结正向压降与温度的关系
−20
−40
−60
−80
−120
−140
−160
… … …
7
注意事项
① 打开电源,在测量前先预热几分钟后再进行测量。
② 在整个实验过程中,升温速率要慢。
思考题
① 在测量PN结正向压降和温度的变化关系时,温度高时UF −T 线性好,还是温度低时好? ② 测量时,为什么温度必须在−50℃~150℃范围内?
pn结正向压降与温度的关系物理实验教学中心实验背景采用不同的掺杂工艺将p型半导体与n型半导体制作在同一块半导体基片上在它们的交界面就形成空间电荷区称为pn结pn结具有单向导电性
PN结正向压降与温度的关系
物理实验教学中心
实验背景
采用不同的掺杂工艺,将P型半导体与N型半导体制作在同一块半导体基 片上,在它们的交界面就形成空间电荷区,称为PN结,PN结具有单向导电 性。 一块单晶半导体中,一部分掺有受主杂质的是P型半导体,另一部分掺 有施主杂质的是N型半导体,P型半导体和N型半导体的交界面附近的过渡区 域即PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的PN结 叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。制造 PN结的方法有合金法、扩散法、离子注入法和外延生长法等。制造异质结通 常采用外延生长法。 P型半导体:由单晶硅通过特殊工艺掺入少量的三价元素组成,会在半 导体内部形成带正电的空穴。 N型半导体:由单晶硅通过特殊工艺掺入少量的五价元素组成,会在半 导体内部形成带负电的自由电子。
项U1,即正向压降几乎随温度升高而线性下降,这就是PN结测 温的依据。
实验内容与步骤
6ห้องสมุดไป่ตู้
实验内容与步骤
⑦数据记录 实验起始温度 Ts=_______℃;工作电流 IF=________A; 起始温度Ts时的正向压降 UF(Ts)=________mV; 控温电流=________A。 填写下表
PN结伏安特性的测量(实验报告示例)
PN结伏安特性的测量(实验报告示例)重要的事情放在前面:本文大多数内容(包括实验目的、实验原理、实验仪器、实验内容、思考题)均源于大学物理实验指导书,并非本人原创,其余均为本人原创。
实验数据均为本人经过实验得出,放在这里是为了展示完整的实验报告,并供读者参考和学习,请端正学习心态,切勿抄袭、无故修改、伪造实验数据!实验报告正文:一、实验目的1.锻炼空间想象、逻辑推理能力。
2.训练应变能力以及强化严谨分析问题的能力和务实的工作作风。
3.形成科学探索研究素养。
4.培养和提高在半导体领域的基本实验测试技术。
二、实验原理半导体分本征和杂质两大类。
纯净的无杂质的半导体称为本征半导体。
在本征半导体中掺入微量的杂质,将显著地改变半导体的特性,成为杂质半导体。
若在锗中掺入百万分之一的砷后,其导电率将提高数万倍。
杂质半导体分空穴型(P型)和电子型(N型)两种。
下面对它们的导电性分别作一些简要的说明。
如图7-1所示,将五价杂质原子砷掺入四价硅(Si)中,砷有五个价电子,其中四个价电子与相邻的硅原子形成共价键,第五个价电子所受的束缚较小,它可环绕带正电的砷离子运动。
砷这类五价杂质称为施主杂质。
由于含有施主杂质半导体的载流子为电子,故掺有施主杂质的半导体也叫做N型半导体。
如图7-2所示,将三价杂质硼(B)掺入到四价半导体锗中,由于硼有三个价电子,它和相邻的锗原子构成共价键时,缺少一个价电子,于是就存在一个带+e电荷的空穴。
这个空穴在带-e电荷的硼离子的作用下,将环绕带负电的硼离子运动。
硼这类三价杂质则称为受主杂质。
由于含有受主杂质半导体的载流子为空穴,故掺有受主杂质的半导体也叫做P型半导体。
当P型半导体和N型半导体相接触时,在它们相接触的区域就形成了PN结。
实验中发现,PN结两端没有外加电压时,半导体中没有电流;当PN结两端加上外电压时,就有电流通过,电流的大小和方向跟外加电压有关。
图7-3是从实验中得出的PN结伏安特性曲线。
pn结的原理应用实验
pn结的原理应用实验实验目的了解和掌握pn结的原理,并通过实验验证其在半导体器件中的应用。
实验器材•P型硅片•N型硅片•导线•直流电源•多用电表•晶体管等相关器件实验步骤1.准备工作:将P型硅片、N型硅片、导线等实验器材准备齐全,并确保实验环境静电保护措施得当。
2.将P型硅片和N型硅片放在一起,并用导线将它们连接起来,形成一个pn结。
3.将多用电表的电流探头连接在pn结的正向端,将电压探头连接在pn结的反向端。
4.打开直流电源,设置合适的电流和电压值,观察电流和电压的变化。
5.通过改变电流和电压的值,记录下不同条件下的电流和电压数值。
6.将pn结连接到晶体管等相关器件上,观察器件的工作状态。
实验结果及分析根据实验记录和观察,我们可以得出以下结论: - 在正向偏置情况下,电流流过pn结会增加,而在反向偏置情况下,电流流过pn结会减少。
- 当反向电压增大到一定程度时,pn结会出现击穿现象。
- 在晶体管等器件中,pn结的正向工作区可以实现放大作用,而反向工作区则可以实现开关作用。
实验注意事项在进行实验过程中,需要注意以下事项: - 要保证实验环境的静电保护措施得当,以避免对实验结果的影响。
- 在调整电流和电压的值时,要谨慎操作,避免损坏实验器材和器件。
- 实验结束后,要及时关闭直流电源,避免安全事故的发生。
结论通过本次实验,我们深入了解了pn结的原理,并通过实验验证其在半导体器件中的应用。
通过观察实验结果,我们得出了一些结论,并对实验过程中需要注意的事项进行了总结。
这些理论和实践的结合,使我们对pn结有了更深入的认识,并为后续的学习和应用打下了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三 、实 验 装 置 实
PN结样品架 1、PN结样品架
A为样品室,是一个可 为样品室, 卸的筒状金属容器, 卸的筒状金属容器, 筒盖内设橡皮圈盖与 筒套具相应的螺纹, 筒套具相应的螺纹, 可使两者旋紧保持密 封。 待测PN PN结样管采用 待测PN结样管采用 3DG6晶体管 3DG6晶体管
P1
P2
一、实 验 目 的
1、了解PN结测温基本原理和应 了解PN结测温基本原理和应 PN 用 。 2、验证PN结正向压降随温度升 验证PN结正向压降随温度升 PN 高而降低的特性。 高而降低的特性。 3、学会使用PN结温度传感器测 学会使用PN结温度传感器测 PN 试仪。 试仪。
二、实 验 原 理
PN结是指P型半导体与N型半导体相接触的部分。 PN结是指P型半导体与N型半导体相接触的部分。 结是指 在同一半导体材料晶片内掺杂形成P型导电区与N 在同一半导体材料晶片内掺杂形成P型导电区与N型导 电区相接触的截面形成了P 电区相接触的截面形成了P-N结 VF 一般来说, 一般来说,对于一个理想 的PN结,其正向电流IF和压降 PN结 其正向电流I VF 存在如下近似关系: 存在如下近似关系: P
2、∆VT曲线的测定 逐步提高加热电流进行变温实验,并记录对应的∆ 逐步提高加热电流进行变温实验,并记录对应的∆V和T, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 在整个实验过程中升温速率要慢,温度最好控制在120℃, 120℃ 记录数据填入数据表。 记录数据填入数据表。 (要求电压每下降-10V,记录一次温度) 要求电压每下降-10V,记录一次温度) 3、求被测PN结正向压降随温度变化的灵敏度S(mv/℃) 求被测PN结正向压降随温度变化的灵敏度S mv/℃ PN结正向压降随温度变化的灵敏度 方法是: 方法是:作△V-T曲线,其斜率就是S。最后再通过画曲线 曲线,其斜率就是S 求得。 求得。 T 0
其中Vg( 其中Vg(0)是摄氏0度时的电压,S是V—T变化的 Vg 是摄氏0度时的电压, T 斜率, 是温度变化值。公认值Eg(0)=1.21 Eg(0)=1.21电子伏特 斜率,T是温度变化值。公认值Eg(0)=1.21电子伏特 然而由于实验中测量得到的不是VF VF( 而是VF VF( 。然而由于实验中测量得到的不是VF(0)而是VF( TM)( TM=t+273),因此上述公式中的Vg( 因此上述公式中的Vg TM)( TM=t+273),因此上述公式中的Vg(0)应用 ∆T =t +. 273 Vg(TM)替代, Vg(TM)替代,温度
测试仪外形
电压显示 温度显示 加温输出
加温调节
△v清另
IF调节 IF调节
信号输入
四、实 验 操 作
1、首先检查与连接实验系统,然后调整工作电流IF为某 首先检查与连接实验系统,然后调整工作电流I 一固定值(本实验测量设定I =50µ ),在本实验的起始 一固定值(本实验测量设定IF=50µA),在本实验的起始 温度下测得V ),然后由 然后由“ 调零” V=0。 温度下测得VF(Tm),然后由“∆V调零”使∆V=0。 点 击 播 放
其中C是一个与结面积、掺杂浓度等有关的常数, 其中 C 是一个与结面积 、掺杂浓度等有关的常数 , r 也 是常数,Vg(0 为绝对零度时PN PN结材料的导带底和价带顶 是常数, Vg(0)为绝对零度时PN 结材料的导带底和价带顶 的电势差。 的电势差。 式代入( 两边取对数可得: 将(2)式代入(1)式,两边取对数可得:
பைடு நூலகம்
基准电源,
一组用于补偿被测PN结在0℃或室 一组用于补偿被测PN结在0℃或室 PN结在0℃ 的正向压降V (0) 温TR的正向压降VF(0) 一组基准电源用于温标转换和校 准其输出电流以1 A 准其输出电流以1µA/OK正比于绝 对温度, 对温度, 显示单元: 电压为-55—150mV 150mV。 电压为-55 150mV。采用量程为 200.0mV的LED显示器进行温度 土200.0mV的LED显示器进行温度 测量。 测量。 一组量程为土1000mV LED显示器 1000mV的 一组量程为土1000mV的LED显示器 用于测量 IF、VF和∆V,可通过仪 器上“测量选择”开关来实现。 器上“测量选择”开关来实现
H A D
T B
待测PN PN结 A-样品室 B-样品座 D-待测PN结 P1T-测温元件 H-加热器 P1-D、T引角 线 P2P2-加热电源插座
PN结样品架外形 PN结样品架外形
加热线
信号线
2、测试仪结构
恒流源:
一组提供I 电流输出范围为0 一组提供IF,电流输出范围为01000µ 连续可调; 1000µA连续可调; 一组用于加热,其控温电流为0.1 一组用于加热,其控温电流为0.1 1A,分为十档, 一1A,分为十档,逐档递增或递 0.1A。 减0.1A。
PN结正向压降温度特性的研究
¿
电磁学系列
3
浙江大学物理实验中心
随着半导体器件工艺技术的提高以 及人们不断的探索, PN结以及在此基 及人们不断的探索, PN结以及在此基 础上发展起来的晶体管系列温度传感 巳经成为一种新的测温技术, 器,巳经成为一种新的测温技术,广 泛被应用在各个领域。 泛被应用在各个领域。 据实际应用,PN结作为温度传感器 据实际应用,PN结作为温度传感器 具有灵敏度高、 线性好、 具有灵敏度高、 线性好、热电效应快 和体积小等优点, 和体积小等优点,尤其是在温度数字 化、温度控制及用微机进行温度实时 讯号处理与控制等方面, 讯号处理与控制等方面,都是其它温 度传感器所不能相比的优越性。 度传感器所不能相比的优越性。
∆ V
4、估算被测PN结材料(硅)的禁带宽度 估算被测PN结材料( PN结材料 根据前述理论,略去非线性项,可得被测PN结材料 根据前述理论,略去非线性项,可得被测PN结材料 PN 的禁带宽度Eg(0)由以下两公式决定: Eg(0)由以下两公式决定 (硅)的禁带宽度Eg(0)由以下两公式决定:
VF (0) Vg (0) =VF (0) + ×∆T =VF (0) + S ×∆T T Eg (0) = q×Vg (0)
k c kT r VF =Vg (0) −( ln )T − lnT =Vl +Vnl q IF q
其中
k c V =Vg (0) − ( l n )T, l q IF V =− nl
(3)
kT l Tr n q
式(3)就是PN结正向压降作为电流和温度函数的表达 就是PN结正向压降作为电流和温度函数的表达 PN 式,它是PN结温度传感器的基本方程。 它是PN结温度传感器的基本方程。 PN结温度传感器的基本方程 当令I 常数,则正向压降只随温度而变化。 当令IF=常数,则正向压降只随温度而变化。由 方程式(3)可见,VF除线性项V 外还包含非线性项V 方程式(3)可见,VF除线性项Vl外还包含非线性项Vnl。 (3)可见 除线性项 由理论计算可知在恒流供电条件下,PN结的V 由理论计算可知在恒流供电条件下,PN结的VF对T的依 结的 赖关系主要取决于线性项V 非线性项忽略不计。 赖关系主要取决于线性项Vl,非线性项忽略不计。所 以正向压降几乎随温度升高而线性下降,这就是PN结 以正向压降几乎随温度升高而线性下降,这就是PN结 PN 测温的依据。 测温的依据。
IF P-N结
N
qV IF = IS ex F p kT
(1)
其中q为电子电荷; 为玻尔兹曼常数; 为绝对温度; 其中q为电子电荷;k为玻尔兹曼常数;T为绝对温度; 为反向饱和电流。 IS为反向饱和电流。
可以证明:
qVg (0) r ) IS = CT exp(− kT
(2)