[精]高三第一轮复习全套课件8圆锥曲线方程:高中数学复习教案64-排列组合的综合应用
高三数学一轮复习教学案:排列、组合、二项式定理 学案
排列、组合、二项式定理2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数性质,并能用它们解决一些简单的应用问题.4.掌握二排列与组合高考重点考察学生理解问题、综合运用分类计数原理和分步计数原理分析问题和解决问题的能力及分类讨论思想.它是高中数学中从内容到方法都比较独特的一个组成部分,是进一步学习概率论的基础知识.由于这部分内容概念性强,抽象性强,思维方法新颖,同时解题过程中极易犯“重复”或“遗漏”的错误,而且结果数目较大,无法一一检验,因此学生要学好本节有一定的难度.解决该问题的关键是学习时要注意加深对概念的理解,掌握知识的内在联系和区别,严谨而周密地去思考分析问题.二项式定理是进一步学习概率论和数理统计的基础知识,高考重点考查展开式及通项,难度与课本内容相当.另外利用二项式定理及二项式系数的性质解决一些较简单而有趣的小题,在高考中也时有出现.第1课时两1.分类计数原理(也称加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事共有N =种不同的方法.2.分步计数原理(也称乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做n 步有m n 种不同的方法,那么完成这件事共有N =种不同的方法.3.解题方法:枚举法、插空法、隔板法.(2)、(3)班分别有学生48,50,52人(1) 从中选1人当学生代表的方法有多少种?(2) 从每班选1人组成演讲队的方法有多少种?(3) 从这150名学生中选4人参加学代会有多少种方法?(4) 从这150名学生中选4人参加数理化四个课外活动小组,共有多少种方法?解:(1)48+50+52=150种 (2)48×50×52=124800种 (3)4150C (4)4150A 变式训练1:在直角坐标x -o -y 平面上,平行直线x=n ,(n=0,1,2,3,4,5),y=n ,(n=0,1,2,3,4,5),组成的图形中,矩形共有( )A 、25个B 、36个C 、100个D 、225个解:在垂直于x 轴的6条直线中任意取2条,在垂直于y 轴的6条直线中任意取2条,这样的4条直线相交便得到一个矩形,所以根据分步记数原理知道:得到的矩形共有22515152626=⨯=⋅C C 个, 故选D 。
高三数学第一轮复习教案讲义排列、组合、二项式定理复习资料
高三新数学第一轮复习教案—排列、组合、二项式定理一.课标要求:1.分类加法计数原理、分步乘法计数原理通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;2.排列与组合通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;3.二项式定理能用计数原理证明二项式定理; 会用二项式定理解决与二项展开式有关的简单问题。
二.命题走向本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。
排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。
考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目;预测2007年高考本部分内容一定会有题目涉及,出现选择填空的可能性较大,与概率相结合的解答题出现的可能性较大。
三.要点精讲1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类;(2)分步计数原理中的分步;正确地分类与分步是学好这一章的关键。
3.排列(1)排列定义,排列数(2)排列数公式:系m n A =)!(!m n n =n ·(n -1)…(n -m+1);(3)全排列列:n n A =n!;(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;4.组合(1)组合的定义,排列与组合的区别;(2)组合数公式:C n m =)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n ; (3)组合数的性质①C n m =C n n-m;②r n r n r n C C C 11+-=+;③rC n r =n ·C n-1r-1;④C n 0+C n 1+…+C n n =2n ;⑤C n 0-C n 1+…+(-1)n C n n =0,即 C n 0+C n 2+C n 4+…=C n 1+C n 3+…=2n-1;5.二项式定理(1)二项式展开公式:(a+b)n =C n 0a n +C n 1a n-1b+…+C n k a n-k b k +…+C n n b n ;(2)通项公式:二项式展开式中第k+1项的通项公式是:T k+1=C n k a n-k b k ;6.二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性。
高三数学一轮复习圆锥曲线方程及性质教案
圆锥曲线方程及性质程图形焦点坐标(,0)2p(,0)2p-(0,)2p(0,)2p-准线方程2px=-2px=2py=-2py=范围x≥0x≤0y≥0y≤对称性x轴x轴y轴y轴顶点(0,0)(0,0)(0,0)(0,0)离心率1e=1e=1e=1e=说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线o F xylo xyFlxyoFlxy2=,那么它的两条准线间的距离是()A.36 B.4 C.2 D.1解析:(1)设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时|PM|-|PN|=(|PF1|-2)-(|PF2|-1)=10-1=9故选B。
(2)双曲线221mx y+=的虚轴长是实轴长的2倍,∴ m<0,且双曲线方程为2214xy-+=,∴ m=14-,选A。
(3)如果双曲线的两个焦点分别为)0,3(1-F、)0,3(2F,一条渐近线方程为xy2=,∴2292a bba⎧+=⎪⎨=⎪⎩,解得2236ab⎧=⎨=⎩,所以它的两条准线间的距离是222ac⋅=,选C。
点评:关于双曲线渐近线、准线及许多距离问题也是考察的重点。
题型5:抛物线方程例9.(1))焦点到准线的距离是2;(2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程。
解析:(1)y2=4x,y2=-4x,x2=4y,x2=-4y;方程是x2=-8y。
点评:由于抛物线的标准方程有四种形式,且每一种形式中都只含一个系数p,因此只要给出确定p的一个条件,就可以求出抛物线的标准方程。
当抛物线的焦点坐标或准线方程给定以后,它的标准方程就唯一确定了;若抛物线的焦点坐标或准线方程没有给定,则所求的标准方程就会有多解。
题型6:抛物线的性质例10.(1)若抛物线22y px=的焦点与椭圆22162x y+=的右焦点重合,则p的值为( )A .2-B .2C .4-D .4 (2)抛物线28y x =的准线方程是( )(A) 2x =- (B) 4x =- (C) 2y =- (D) 4y =- (3)抛物线x y 42=的焦点坐标为( )(A ))1,0(. (B ))0,1(. (C ))2,0(. (D ))0,2(解析:(1)椭圆22162x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D ;(2)2p =8,p =4,故准线方程为x =-2,选A ;(3)(直接计算法)因为p=2 ,所以抛物线y 2=4x 的焦点坐标为 。
高三数学一轮复习直线与圆锥曲线教案高三全册数学教案
芯衣州星海市涌泉学校第四讲直线与圆锥曲线一、考情分析直线与圆锥曲线的位置关系,是高考考察的重中之重,主要涉及弦长、中点弦、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘〞. 本讲主要是调动学生学习的主动性,注意交代知识的来龙去脉,教给学生解决问题的思路,帮助考生培养分析、抽象和概括等思维才能,掌握形数结合、函数与方程、化归与转化等数学思想,培养良好的个性品质,以及勇于探究、敢于创新的精神,进一步进步学生“应用数学〞的程度.二、知识归纳〔一〕直线与圆锥曲线问题的解决思路“三十二字思路〞:设而不求,求而不设;联立消元,二次判别;韦达,解决问题;遇弦中点,点差优先.〔二〕直线与椭圆()()()2222222222222010y kx m a k b x mka x a m b x y a b a b=+⎧⎪⇒+++-=⎨+=>>⎪⎩,显然,2220a k b +≠; 〔1〕当0∆=时,直线与椭圆只有一个公一一共点,属于直线与椭圆相切; 〔2〕当0∆>时,直线与椭圆有两个公一一共点,属于直线与椭圆相交; 〔三〕直线与双曲线()()()22222222222220100y kx m a k b x mka x a m b x y a b a b=+⎧⎪⇒-+++=⎨-=>>⎪⎩,, 〔1〕假设2220bak b k a-=⇔=±时,直线平行于双曲线的渐进线,此时, ①当0m =时,直线与渐进线重合,与双曲线无交点;②当0m ≠时,直线与双曲线只有一个公一一共点,属于一个交点的相交,而不是相切;〔2〕假设2220bak b k a-≠⇔≠±时,直线不平行于双曲线的渐进线,此时, ①当0∆=时,直线与双曲线只有一个公一一共点,属于直线与双曲线相切; ②当0∆>时,直线与双曲线有两个公一一共点,属于直线与双曲线相交; 〔四〕直线与抛物线()()22222020y kx mk x mk p x m y px p =+⎧⎪⇒+-+=⎨=>⎪⎩, 〔1〕假设0k=时,直线平行于抛物线的对称轴,此时,直线与抛物线只有一个公一一共点,属于一个交点的相交,而不是相切;〔2〕假设0k≠时,直线不平行于抛物线的对称轴,此时,①当0∆=时,直线与抛物线只有一个公一一共点,属于直线与抛物线相切; ②当0∆>时,直线与抛物线有两个公一一共点,属于直线与抛物线相交; 三、精典例析例1:曲线22148x y C -=:,定点()10M ,,直线l 经过点()01,,斜率为t ,与曲线C 交于不同的两点A B 、,设AB 的中点为P ,求直线MP 的斜率k 关于t 的函数关系()k f t =.解析:设直线l 的方程为1l ytx =+:,()()()112200,A x y B x y P x y ,,,,,那么:()222212290148y tx t x tx x y =+⎧⎪⇒---=⎨-=⎪⎩, ∴22t≠,2904t ∆>⇔<,且1212002222x x y y tx y t ++===-, ∵()()120022112222tx tx t x y t t +++===--,,∴020212y kx t t ==-+-;故()()223321122222k t t t ⎛⎫⎛⎛⎫=∈-- ⎪ ⎪+-⎝⎝⎭⎝⎭,,,.例2:椭圆()222210x y a b a b+=>>的离心率36=e ,过点()0A b -,和()0B a ,的直线与原点的间隔为23. 〔1〕求椭圆的方程. 〔2〕定点()10E -,,假设直线()20y kx k =+≠与椭圆交于C D 、两点.问:是否存在k 的值,使以CD 为直径的圆过()10E-,点?请说明理由. 解析:〔1〕直线AB 方程为:0bx ay ab --=,那么:22633312c a a ab b a b⎧=⎪⎧=⎪⎪⇒⎨⎨=⎪⎩⎪=⎪+⎩ , ∴椭圆方程为1322=+y x . 〔2〕假假设存在这样的k 值,设()()1122Cx y D x y ,,,,那么:()22222131290330y kx k x kx x y =+⎧⇒+++=⎨+-=⎩ , ∴0)31(36)12(22>+-=∆k k ,且1212221291313k x x x x k k +=-=++⋅,,∵()()()2121212122224y y kx kx k x x k x x =++=+++⋅,∴要使以CD 为直径的圆过()10E-,点,当且仅当CE DE ⊥时,那么: 121212121(1)(1)011y y y y x x x x =-⇔+++=++⋅. ∴05))(1(2)1(21212=+++++x x k x x k ,∴67=k,经历证,67=k 时符合题意. 综上,存在67=k ,使得以CD 为直径的圆过()10E -,点.例3:双曲线G 的中心在原点,它的渐近线与圆2210200xy x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于A B 、两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC⋅=.〔1〕求双曲线G 的渐近线的方程; 〔2〕求双曲线G 的方程;〔3〕椭圆S 的中心在原点,它的短轴是G 的实轴.假设S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解析:〔1〕设双曲线G 的渐近线的方程为:y kx =,那么:∵渐近线与圆2210200xy x +-+=12k =⇔=±. 故双曲线G 的渐近线的方程为:12y x =±.〔2〕设双曲线G 的方程为:224xy m -=,那么:()2221438164044y x x x m x y m ⎧=+⎪⇒---=⎨⎪-=⎩, ∴8164 33A B A B mx x x x ++==-,, ∵2PA PB PC ⋅=,P A B C 、、、一一共线且P 在线段AB 上,∴()()()()()()244164320P A B P P C B A A B A B x x x x x x x x x x x x --=-⇔+--=⇔+++=,例4:〔05年卷〕设A B 、是椭圆λ=+223y x 上的两点,点()13N ,是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C D 、两点. 〔1〕确定λ的取值范围,并求直线AB 的方程;〔2〕试判断是否存在这样的λ,使得A B 、、C D 、四点在同一个圆上?并说明理由.解析:〔1〕法1:显然,直线AB 的斜率存在,设直线AB 的方程为(1)3y k x =-+,设1122()()A x y B x y ,,,,那么:22222(1)3(3)2(3)(3)03y k x k x k k x k x y λλ=-+⎧⇒+--+--=⎨+=⎩, ∴224[(3)3(3)]0k k λ∆=+-->,且21212222(3)(3)33k k k x x x x k k λ---+=⋅=++,,∵点()13N,是线段AB 的中点,∴2121(3)312x x k k k k +=⇔-=+⇒=-,直线AB 的方程是: ()3140y x x y -=--⇔+-=.∴12λ>,故λ的取值范围是()12,+∞.法2:设1122()()A x y B x y ,,,,那么:221112121212222233()()()()03x y x x x x y y y y x y λλ⎧+=⎪⇒-++-+=⎨+=⎪⎩, ∴12123()ABx x k y y +=-+;∵点()13N ,是线段AB 的中点,∴121226x x y y +=+=,,∴1AB k =-,直线AB 的方程是()3140y x x y -=--⇔+-=.∵点()13N,在椭圆的内部,∴2231312λ>⨯+=.故λ的取值范围是()12,+∞.〔2〕法1:∵直线CD 垂直平分线段AB ,∴直线CD 的方程为3120y x x y -=-⇔-+=,又设3344()()C x y D x y ,,,,CD 的中点00()M x y ,,那么:2222044403x y x x x y λλ-+=⎧⇒++-=⎨+=⎩, ∴103λ∆>⇔>,且341x x +=-,03400113()2222x x x y x =+=-=+=,,即1322M ⎛⎫- ⎪⎝⎭,.∴34||||CD x x =-=又22240481603x y x x x y λλ+-=⎧⇒-+-=⎨+=⎩,2012λ∆>⇔>,同理可得:12||AB x x =-=∴当12λ>AB CD >⇒<.假设在在12λ>,使得A B 、、C D 、四点一一共圆,那么CD 必为圆的直径,点M 为圆心,点M 到直线AB的间隔为:13|4|d-+-===,∴222229123||||||||22222AB CDMA MB dλλ--==+=+==.故当12>λ时,A B、、C D、四点均在以M为圆心,2||CD为半径的圆上.〔注:上述解法中最后一步也可如下解法获得:∵A B、、C D、一一共圆⇔△ACD为直角三角形,A为直角2||||||AN CN DN⇔=⋅,∴2||222CD CDABd d⎛⎫⎛⎫⎛⎫=+-⎪⎪⎪⎝⎭⎝⎭⎝⎭,∵3912 2222222CD CDd dλλ⎫⎛⎫⎛⎫--+-=-=-=⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭即A、B、C、D四点一一共圆.〕例5:〔05年卷〕如图,设抛物线2C y x=:的焦点为F,动点P在直线20l x y--=:上运动,过P作抛物线C的两条切线PA PB、,且与抛物线C分别相切于A B、两点.〔1〕求△APB的重心G的轨迹方程;〔2〕证明:PFA PFB∠=∠.解析:〔1〕设切点()()()22001101A x xB x x x x≠,,,,那么:切线PA的方程为:20020x x y x--=,切线PB的方程为:21120x x y x--=,联立,解得:P点的坐标为01012x xP x x+⎛⎫⎪⎝⎭,;∴△APB的重心G的坐标为:PPGxxxxx=++=310,2222010*******()43333P P PGy y y x x x x x x x x x yy+++++--====,∴234P G Gy y x=-+,∵点P在直线20l x y--=:上运动,∴从而得到重心G 的轨迹方程为:221(34)20(42)3x y xy x x --+-=⇔=-+.〔2〕法1:∵22010001111114244x x FA x x FP x x FB x x +⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, ,, ,, ∴cos ||||FP FA AFP FP FA ⋅∠=201001001201114||||x x x x x x x x FP FP x +⎛⎫⎛⎫⋅+--+⎪⎪⎝==; 同理,20110110122211112444cos ||||||1||x x x x x x x x FP FBBFP FP FB FP FP x +⎛⎫⎛⎫⋅+--+⎪⎪⋅⎝⎭⎝⎭∠===⎛⎫+;故PFA PFB ∠=∠. 法2:①当100x x =时,由于01x x ≠,不妨设00x =,那么:00y =,∴P 点坐标为102x P ⎛⎫⎪⎝⎭,,那么P 点到直线AF 的间隔为:11||2x d =;而直线BF 的方程212111111114()0444x y x x x x y x x --=⇔--+=,∴P 点到直线BF 的间隔为:22111111221||11|()|()||42124x x x x x x d x -++===+; ∴12d d =,故PFA PFB ∠=∠.②当001≠x x 时,直线AF 的方程:2020********(0)()04044x y x x x x y x x --=-⇔--+=-; 直线BF 的方程:212111111114(0)()04044x y x x x x y x x --=-⇔--+=-; ∴P 点到直线AF 的间隔为:22201010010001120111|()()||)()||24124x x x x x x x x x x x d x +---++-===+, 同理,P 点到直线BF 的间隔:2||012x x d -=, ∴12d d =,故PFA PFB ∠=∠.四、课后反思 .。
高三数学一轮 8.3 圆锥曲线精品复习学案
高三数学一轮 8.3 圆锥曲线精品复习学案【高考目标导航】一、曲线与方程1.考纲点击(1)了解方程的曲线与曲线的方程的对应关系;(2)了解解析几何的基本思想和利用坐标法研究几何问题的基本方法;(3)能够根据所给条件选择适当的方法求曲线的轨迹方程.2.热点提示(1)求轨迹方程是高考的重点和热点;(2)常以解答题的第一问的形式出现. 一般用直接法、定义法或相关点法求解,所求轨迹一般为圆锥曲线,属中低档题。
二、椭圆1.考纲点击(1)掌握椭圆的定义、几何图形、标准方程及简单性质;(2)了解椭圆的实际背景及椭圆的简单应用。
(3)理解数形结合的思想2.热点提示(1)椭圆的定义、标准方程和几何性质是高考重点考查的内容;直线和椭圆的位置关系是高考考查的热点。
(2)定义、标准方程和几何性质常以选择题、填空题的形式考查,而直线与椭圆位置关系以及与向量、方程、不等式等的综合题常以解答题的形式考查,属中高档题目。
三、双曲线1.考纲点击(1)了解双曲线的定义、几何图形和标准方程,知道双曲线的简单几何性质。
(2)了解双曲线的实际背景及双曲线的简单应用。
(3)理解数形结合的思想。
2.热点提示(1)双曲线的定义、标准方程和离心率、渐近线等知识是高考考查的重点;双曲线与其他圆锥曲线的交汇命题是热点。
(2)主要以选择、填空题的形式考查,属于中低档题。
四、抛物线1.考纲点击(1)掌握抛物线的定义、几何图形、标准方程及简单性质。
(2)理解数形结合的思想。
(3)了解抛物线的实际背景及抛物线的简单应用。
2.热点提示(1)抛物线的定义、标准方程及性质是高考考查的重点,抛物线与直线、椭圆、双曲线的交汇综合题是考查的热点。
(2)多以选择、填空题为主,多为中低档题。
有时也与直线、椭圆、双曲线交汇考查的解答题,此时属中高档题。
【考纲知识梳理】一、曲线与方程1.一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解。
高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版
第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。
高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(教师版) 新人教版
【考纲解读】1.了解圆锥曲线的简单应用,理解数形结合的思想. 2.领会转化的数学思想,提高综合解题能力.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.圆锥曲线中的最值问题2.圆锥曲线中的面积问题3.圆锥曲线中的定点或定值问题 【例题精析】考点一 圆锥曲线中的最值与面积问题 例1. (2012年高考重庆卷文科21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形。
(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B 作直线交椭圆于,P Q ,22PB QB ,求△2PB Q 的面积【答案】(Ⅰ)220x +24y =116102PB Q 的面积121211610||||29S B B y y =-= 当2m =- 时,同理可得(或由对称性可得)2PB Q 的面积16109S =综上所述,2PB Q 的面积为16109. 【名师点睛】本小题主要考查直线与椭圆,考查了圆锥曲线中的面积问题,熟练基本知识是解决本类问题的关键. 【变式训练】1.(2012年高考安徽卷文科20)(本小题满分13分)如图,21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求,a b 的值.法二:设2BF m =;则12BF a m =-,则在12BFF ∆中,由余弦定理可得考点二定点(定值)问题例2.(2012年高考福建卷文科21)(本小题满分12分)如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。
高考一轮复习必备—圆锥曲线讲义全
高考一轮复习必备—圆锥曲线讲义全-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANⅠ复习提问一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到关于一个变量的一元二次方程,即联立(,)0Ax By C F x y ++=⎧⎨=⎩消去y 后得20ax bx c ++= (1)当0a =时,即得到一个一元一次方程,则l 与C 相交,有且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 抛物线的对称轴平行。
(2)当0a ≠时,0∆>,直线l 与曲线C 有两个不同的交点;0∆=,直线l 与曲线C 相切,即有唯一公共点(切点);0∆<,直线l 与曲线C 相离。
二、圆锥曲线的弦长公式相交弦AB的弦长1212AB AB AB x y y ⎧⎪=⎪⎪⎪=⎨⎪⎪=-==-⎪⎪⎩三、中点弦所在直线的斜率(1)若椭圆方程为22221(0)x y a b a b +=>>时,以P 00(x ,y )为中点的弦所在直线斜率202(0)b k y a =-≠00x y ,即22op b k k a =-;若椭圆方程为22221(0)y x a b a b +=>>时,相应结论为202(0)a k y b =-≠0x y ,即22op a k k b =-;(2)P 00(x ,y )是双曲线22221x y a b -=内部一点,以P 为中点的弦所在直线斜率202(0)b k y a =≠0x y ,即22op b k k a =; 若双曲线方程为22221y x a b -=时,相应结论为202(0)a k y b =≠0x y ,即22op a k k b =;(3))P 00(x ,y )是抛物线22y px =内部一点,以P 为中点的弦所在直线斜率0(0)pk y =≠0y ;若方程为22x py =时,相应结论为k p=0x 。
高考数学一轮复习 8.6 圆锥曲线的应用教案
8.6 圆锥曲线的应用●知识梳理解析几何在日常生活中应用广泛,如何把实际问题转化为数学问题是解决应用题的关键,而建立数学模型是实现应用问题向数学问题转化的常用方法.本节主要通过圆锥曲线在实际问题中的应用,说明数学建模的方法,理解函数与方程、等价转化、分类讨论等数学思想.●点击双基1.一抛物线型拱桥,当水面离桥顶2 m 时,水面宽4 m ,若水面下降1 m 时,则水面宽为A.6mB.26mC.4.5 mD.9 m解析:建立适当的直角坐标系,设抛物线方程为x 2=-2Py (P >0),由题意知,抛物线过点(2,-2),∴4=2p ×2.∴p =1.∴x 2=-2y .当y 0=-3时,得x 02=6.∴水面宽为2|x 0|=26.答案:B2.某抛物线形拱桥的跨度是20 m ,拱高是4 m ,在建桥时每隔4 m 需用一柱支撑,其中最长的支柱是A.4 mB.3.84 mC.1.48 mD.2.92 m解析:建立适当坐标系,设抛物线方程为x 2=-2py (p >0),由题意知其过定点(10, -4),代入x 2=-2py ,得p =225. ∴x 2=-25y .当x 0=2时,y 0=254-,∴最长支柱长为4-|y 0|=4-254=3.84(m ). 答案:B3.天安门广场,旗杆比华表高,在地面上,观察它们顶端的仰角都相等的各点所在的曲线是A.椭圆B.圆C.双曲线的一支D.抛物线解析:设旗杆高为m ,华表高为n ,m >n .旗杆与华表的距离为2a ,以旗杆与地面的交点和华表与地面的交点的连线段所在直线为x 轴、垂直平分线为y 轴建立直角坐标系.设曲线上任一点M (x ,y ),由题意2222)()(y a x y a x +-++=nm ,即(m 2-n 2)x 2+(m 2-n 2)y 2-2a (m 2-n 2)x + (m 2-n 2)a 2=0.答案:B4.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点,已知灯口直径是 60 cm ,灯深40 cm ,则光源到反射镜顶点的距离是____________ cm.解析:设抛物线方程为y 2=2px (p >0),点(40,30)在抛物线y 2=2px 上,∴900=2p ×40.∴p =445.∴2p =845.因此,光源到反射镜顶点的距离为845cm. 答案:8455.在相距1400 m 的A 、B 两哨所,听到炮弹爆炸声音的时间相差3 s ,已知声速340 m/s.炮弹爆炸点所在曲线的方程为________________.解析:设M (x ,y )为曲线上任一点,则|MA |-|MB |=340×3=1020<1400.∴M 点轨迹为双曲线,且a =21020=510,c =21400=700. ∴b 2=c 2-a 2=(c +a )(c -a )=1210×190.∴M 点轨迹方程为22510x -19012102⨯y =1.答案:22510x -19012102⨯y =1 ●典例剖析【例1】 设有一颗彗星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此彗星离地球相距m 万千米和34m 万千米时,经过地球和彗星的直线与椭圆的长轴夹角分别为2π和3π,求该彗星与地球的最近距离. 剖析:本题的实际意义是求椭圆上一点到焦点的距离,一般的思路:由直线与椭圆的关系,列方程组解之;或利用定义法抓住椭圆的第二定义求解.同时,还要注意结合椭圆的几何意义进行思考.仔细分析题意,由椭圆的几何意义可知:只有当该彗星运行到椭圆的较近顶点处时,彗星与地球的距离才达到最小值即为a -c ,这样把问题就转化为求a ,c 或a -c .解:建立如下图所示直角坐标系,设地球位于焦点F (-c ,0)处,椭圆的方程为22a x +22by =1,当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足∠xFA =3π(或∠xFA ′=3π).作AB ⊥Ox 于B ,则|FB |=21|FA |=32m , 故由椭圆的第二定义可得m =a c (c a 2-c ), ① 34m =a c (ca 2-c +32m ).②两式相减得31m =a c ·32m ,∴a =2c .代入①,得m =21(4c -c )=23c , ∴c =32m .∴a -c =c =32m .答:彗星与地球的最近距离为32m 万千米.评述: (1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个端点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是a -c ,另一个是a +c .(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想.另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质.思考讨论椭圆上任一点到焦点的距离的最大值和最小值是多少?怎样证明? 提示:利用焦半径易求得最大值为a +c ,最小值为a -c.【例2】 某工程要挖一个横断面为半圆的柱形的坑,挖出的土只能沿道路AP 、BP 运到P 处(如下图所示).已知PA =100 m ,PB =150 m ,∠APB =60°,试说明怎样运土最省工.剖析:首先抽象为数学问题,半圆中的点可分为三类:(1)沿AP 到P 较近;(2)沿BP 到P 较近;(3)沿AP 、BP 到P 同样远.显然,第三类点是第一、二类的分界点,设M 是分界线上的任意一点.则有|MA |+|PA |=|MB |+|PB |.于是|MA |-|MB |=|PB |-|PA |=150-100=50.从而发现第三类点M 满足性质:点M 到点A 与点B 的距离之差等于常数50,由双曲线定义知,点M 在以A 、B 为焦点的双曲线的右支上,故问题转化为求此双曲线的方程.解:以AB 所在直线为x 轴,线段AB 的中点为原点建立直角坐标系xOy ,设M (x ,y )是沿AP 、BP 运土同样远的点,则|MA |+|PA |=|MB |+|PB |,∴|MA |-|MB |=|PB |-|PA |=50. 在△PAB 中,由余弦定理得|AB |2=|PA |2+|PB |2-2|PA ||PB |cos60°=17500,且50<|AB |.由双曲线定义知M 点在以A 、B 为焦点的双曲线右支上,设此双曲线方程为22a x -22by =1(a >0,b>0).2a =50, 4c 2=17500,c 2=a 2+b 2,a 2=625, ∵ 解之得b 2=3750.∴M 点轨迹是6252x -37502y =1(x ≥25)在半圆内的一段双曲线弧.于是运土时将双曲线左侧的土沿AP 运到P 处,右侧的土沿BP 运到P 处最省工.评述:(1)本题是不等量与等量关系问题,涉及到分类思想,通过建立直角坐标系,利用点的集合性质,构造圆锥曲线模型(即分界线)从而确定出最优化区域.(2)应用分类思想解题的一般步骤:①确定分类的对象;②进行合理的分类;③逐类逐级讨论;④归纳各类结果.【例3】 根据我国汽车制造的现实情况,一般卡车高3 m ,宽1.6 m.现要设计横断面为抛物线型的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持距中线0.4 m 的距离行驶.已知拱口AB 宽恰好是拱高OC 的4倍,若拱宽为a m ,求能使卡车安全通过的a 的最小整数值.剖析:根据问题的实际意义,卡车通过隧道时应以卡车沿着距隧道中线0.4 m 到2 m 间的道路行驶为最佳路线,因此,卡车能否安全通过,取决于距隧道中线2 m (即在横断面上距拱口中点2 m )处隧道的高度是否够3 m ,据此可通过建立坐标系,确定出抛物线的方程后求得.解:如下图,以拱口AB 所在直线为x 轴,以拱高OC 所在直线为y 轴建立直角坐标系,由题意可得抛物线的方程为x 2=-2p (y -4a ),∵点A (-2a ,0)在抛物线上,∴(-2a )2=-2p (0-4a ),得p =2a . ∴抛物线方程为x 2=-a (y -4a ).取x =1.6+0.4=2,代入抛物线方程,得22=-a (y -4a ),y =aa 4162-.由题意,令y >3,得aa 4162->3,∵a >0,∴a 2-12a -16>0.∴a >6+213.又∵a ∈Z ,∴a 应取14,15,16,….答:满足本题条件使卡车安全通过的a 的最小正整数为14 m.评述: 本题的解题过程可归纳为两步:一是根据实际问题的意义,确定解题途径,得到距拱口中点2 m 处y 的值;二是由y >3通过解不等式,结合问题的实际意义和要求得到a 的值,值得注意的是这种思路在与最佳方案有关的应用题中是常用的.●闯关训练 夯实基础1.1998年12月19日,太原卫星发射中心为摩托罗拉公司(美国)发射了两颗“铱星”系统通信卫星.卫星运行的轨道是以地球中心为一个焦点的椭圆,近地点为m km ,远地点为 n km ,地球的半径为R km ,则通信卫星运行轨道的短轴长等于A.2))((R n R m ++B. ))((R n R m ++C.2mnD.mn22Rn m ++-c =m +R , ① 22Rn m +++c =n +R ,②∴c =2mn -, 2b =222)2()22(m n R n m --++=2))((R n R m ++. 答案:A2.如下图,花坛水池中央有一喷泉,水管OP =1 m ,水从喷头P 喷出后呈抛物线状先向上至最高点后落下,若最高点距水面2 m ,P 距抛物线对称轴1 m ,则在水池直径的下列可选值中,最合算的是A.2.5 mB.4 mC.5 mD.6 m解析:以O 为原点,OP 所在直线为y 轴建立直角坐标系(如下图),则抛物线方程可设为y =a (x -1)2+2,P 点坐标为(0,1),∴1=a +2.∴a =-1.∴y =-(x -1)2+2.令y =0,得(x -1)2=2,∴x =1±2.∴水池半径OM =2+1≈2.414(m ).因此水池直径约为2×|OM |=4.828(m ).答案:C3.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2=2y (0≤y ≤20).在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的范围为____________.解析:由题意解析:玻璃球的轴截面的方程为x 2+(y -r )2=r 2,由 x 2=2y ,x 2+(y -r )2=r 2, 答案:0<r ≤14.河上有一抛物线型拱桥,当水面距拱顶5 m 时,水面宽为8 m ,一小船宽4 m ,高2 m ,载货后船露出水面上的部分高43m ,问水面上涨到与抛物线拱顶相距____________m 时,小船不能通航.解析:建立直角坐标系,设抛物线方程为x 2=-2py (p >0).将点(4,-5)代入求得p =58.∴x 2=-516y . 将点(2,y 1)代入方程求得y 1=-45.∴43+|y 1|=43+45=2(m ).答案:25.下图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干根等长的铁筋焊接在一起的架子支撑.已知镜口圆的直径为12 m ,镜深2 m ,(1)建立适当的坐标系,求抛物线的方程和焦点的位置;(2)若把盛水和食物的容器近似地看作点,试求每根铁筋的长度. 解:(1)如下图,在反光镜的轴截面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x 轴垂直于镜口直径.由已知,得A 点坐标是(2,6),设抛物线方程为y 2=2px (p >0), 则36=2p ×2,p =9.所以所求抛物线的标准方程是y 2=18x ,焦点坐标是F (29,0). (2)∵盛水的容器在焦点处,∴A 、F 两点间的距离即为每根铁筋长. |AF |=226)292(+-=213(或|AF |=29+2=213). 故每根铁筋的长度是6.5 m.6.有一种电影放映机的放映灯泡的玻璃上镀铝,只留有一个透明窗用作通光孔,它的反射面是一种曲线旋转而成的曲面的一部分,灯丝定在某个地方发出光线反射到卡门上,并且得y 2+2(1-r )y =0,由Δ=4(1-r )2=0,得r =1.这两物体间距离为4.5 cm ,灯丝距顶面距离为2.8 cm ,为使卡门处获得最强烈的光线,在加工这种灯泡时,应使用何种曲线可使效果最佳?试求这个曲线方程.分析:由于光线从灯丝发出,反射到卡门上光线应交于一点,这就是光线聚焦,只要把灯丝、卡门安在椭圆的2个焦点上,反射面采用旋转椭球面就可以使光线经反射后聚焦于卡门处,因而可获得强光.解:采用椭圆旋转而成的曲面,如下图建立直角坐标系,中心截口BAC 是椭圆的一部分,设其方程为22a x +22by =1,灯丝距顶面距离为p ,由于△BF 1F 2为直角三角形,因而,|F 2B |2=|F 1B |2+|F 1F 2|2=p 2+4c 2,由椭圆性质有|F 1B |+|F 2B |=2a ,所以a =21(p +224c p +),a = 21(2.8+225.48.2+)≈4.05 cm ,b =22c a -≈3.37 m.∴所求方程为2205.4x +2237.3y =1.培养能力7.某大桥在涨水时有最大跨度的中央桥孔如图所示,已知上部呈抛物线形,跨度为20 m ,拱顶距水面6 m ,桥墩高出水面4 m ,现有一货船欲过此孔,该货船水下宽度不超过18 m ,目前吃水线上部分中央船体高5 m ,宽16 m ,且该货船在现在状况下还可多装1000 t 货物,但每多装150 t 货物,船体吃水线就要上升0.04 m ,若不考虑水下深度,该货船在现在状况下能否直接或设法通过该桥孔?为什么?解:如下图,建立直角坐标系,设抛物线方程为y =ax 2,则A (10,-2)在抛物线上,∴-2=ax 2,a =-501,方程即为y =-501x 2让货船沿正中央航行. ∵船宽16 m ,而当x =8时,y =-501·82=1.28 m ,∴船体在x =±8之间通过.由B (8,-1.28), ∴B 点离水面高度为6+(-1.28)=4.72(m ),而船体水面高度为5 m ,∴无法直接通过.又5-4.72=0.28(m ),0.28÷0.04=7,而150×7=1050(t ), ∴要用多装货物的方法也无法通过,只好等待水位下降. 8.(文)(2004年春季北京,文18)2003年10月15日9时,“神舟”五号载人飞船发射升空,于9时9分50秒准确进入预定轨道,开始巡天飞行.该轨道是以地球的中心F 2为一个焦点的椭圆.选取坐标系如图所示,椭圆中心在原点.近地点A 距地面200 km ,远地点B 距地面350 km.已知地球半径R =6371 km.(如下图)(1)求飞船飞行的椭圆轨道的方程;(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约6×105km ,问飞船巡天飞行的平均速度是多少?(结果精确到1 km/s )(注:km/s 即千米/秒)解:(1)设椭圆的方程为22a x +22by =1.由题设条件得a -c =|OA |-|OF 2|=|F 2A |=6371+200=6571,a +c =|OB |+|OF 2|=|F 2B |=6371+350=6721.解得a =6646,c =75,所以a 2=44169316, b 2=a 2-c 2=(a +c )(a -c )=6721×6571=44163691.∴所求椭圆的方程为441693162x +441636912y =1.(注:由44163691≈6645.5768得椭圆的方程为226646x +226.6645y =1,也是正确的)(2)从15日9时到16日6时共21个小时,即21×3600 s. 减去开始的9分50 s ,即9×60+50=590(s ),再减去最后多计的1分钟,共减去590+60= 650(s ),得飞船巡天飞行的时间是21×3600-650=74950(s ),平均速度是74950600000≈8(km/s ).所以飞船巡天飞行的平均速度是8 km/s. (理)(2003年上海)如下图,某隧道设计为双向四车道,车道总宽22 m ,要求通行车辆限高4.5 m ,隧道全长2.5 km ,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h 为6 m ,则隧道设计的拱宽l 是多少?(2)若最大拱高h 不小于6 m ,则应如何设计拱高h 和拱宽l ,才能使半个椭圆形隧道的土方工程量最小?(半个椭圆的面积公式为S =4πlh ,柱体体积为底面积乘以高.本题结果均精确到0.1 m ) (1)解:如下图建立直角坐标系,则点P (11,4.5),椭圆方程为22a x +22by =1.将b =h =6与点P 坐标代入椭圆方程,得a =7744,此时l =2a =7788≈33.3.因此隧道的拱宽约为33.3 m.(2)解法一:由椭圆方程22a x +22b y =1,得2211a +225.4b=1.因为2211a +225.4b ≥ab 5.4112⨯⨯,即ab ≥99,且l =2a ,h =b ,所以S =4πlh =2πab ≥2π99.当S 取最小值时,有2211a =225.4b=21,得a =112,b =229.此时l =2a =222≈31.1,h =b ≈6.4.故当拱高约为6.4 m 、拱宽约为31.1 m 时,土方工程量最小.解法二:由椭圆方程22a x +22b y =1,得2211a +225.4b =1.于是b 2=481·12122-a a .a 2b 2=481(a 2-121+12112122-a +242)≥481(22121+242)=81×121,即ab ≥99,当S 取最小值时,有a 2-121=12112122-a .得a =112,b =229,以下同解法一. 探究创新9.中国跳水运动员进行10 m 跳台跳水训练时,身体(看成一点)在空中的运动路线为如下图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面1032m ,入水处距池边的距离为4 m ,同时,运动员在距水面高度为5 m 或5 m 以上时,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式.(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为353m ,问此次跳水会不会失误?并通过计算说明理由.(3)要使此次跳水不至于失误,该运动员按(1)中抛物线运行,且运动员在空中调整好入水姿势时,距池边的水平距离至多应为多少?解:(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为 y =ax 2+bx +c .由题意知,O 、B 两点的坐标依次为(0,0)、(2,-10),且顶点A 的纵坐标为32, c =0,ab ac 442 =32,4a +2b +c =-10.a =-625,b =310,c =0 a =-23,b =-2,c =0.∵抛物线对称轴在y 轴右侧,∴-ab2>0. 又∵抛物线开口向下,∴a <0.∴b >0,后一组解舍去.∴a =-625,b =310,c =0. ∴抛物线的解析式为y =-625x 2+310x .(2)当运动员在空中距池边的水平距离为353m 时,即x =353-2=58时,y =(-625)×(58)2+310×58=-316,∴此时运动员距水面的高为10-316=314<5.因此,此次跳水会出现失误.(3)当运动员在x 轴上方,即y >0的区域内完成动作并做好入水姿势时,当然不会失误,但很难做到.所以有 解之得 或∴当y <0时,要使跳水不出现失误,则应有|y |≤10-5,即-y ≤5. ∴有625x 2-310x ≤5, 解得2-34≤x ≤2+34.∴运动员此时距池边的距离至多为2+2+34=4+34m.●思悟小结解决圆锥曲线应用问题时,要善于抓住问题的实质,通过建立数学模型,实现应用性问题向数学问题的顺利转化;要注意认真分析数量间的关系,紧扣圆锥曲线概念,充分利用曲线的几何性质,确定正确的问题解决途径,灵活运用解析几何的常用数学方法,求得最终完整的解答.●教师下载中心教学点睛解应用题时涉及到两个基本步骤,即将实际问题抽象成数学问题和解决这个数学问题,为此要注意以下三点:1.阅读理解.数学应用题给出的方式是材料的陈述,而不是客体的展示.也就是说,所考的应用题通常已进行过初步加工,并通过语言文字、符号或图形展现在考生面前,要求考生读懂题意,理解实际背景,领悟其数学实质.2.数学建模,即将应用题的材料陈述转化成数学问题.这就要抽象、归纳其中的数量关系,并把这种关系用数学式子表示出来.3.数学求解.根据所建立数学关系的知识系统,解出结果,从而得到实际问题的解答. 本节就是通过圆锥曲线在现实生活中的应用,培养学生解决应用问题的能力.拓展题例【例1】 一摩托车手欲飞跃黄河,设计摩托车沿跑道飞出时前进方向与水平方向的仰角是12°,飞跃的水平距离是35 m ,为了安全,摩托车在最高点与落地点的垂直落差约10 m ,那么,骑手沿跑道飞出时的速度应为多少?(单位是 km/h ,精确到个位)(参考数据:sin12°=0.2079,cos12°=0.9781,t an12°=0.2125)分析:本题的背景是物理中的运动学规律,摩托车离开跑道后的运动轨迹为抛物线,它是由水平方向的匀速直线运动与竖直方向上的上抛运动合成的,它们运行的位移都是时间t 的函数,故应引入时间t ,通过速度v 的矢量分解来寻找解决问题的途径.解: 摩托车飞离跑道后,不考虑空气阻力,其运动轨迹是抛物线,轨迹方程是 x =vt cos12°,y =vt sin12°-21×9.8t 2. 其中v 是摩托车飞离跑道时的速度,t 是飞行时间,x 是水平飞行距离,y 是相对于起始点的垂直高度,将轨迹方程改写为y =-212)12(cos 1v ⋅︒×9.8x 2+t an12°·x ,即y =-5.121922vx +0.2125x . 当x ≈0.0207v 2时,取得y max ≈0.0022v 2.当x =35时,y 落=-6274.327521v +7.4375.∵y max -y 落=10,0.0022v 2+6274.327521v-17.4375=0,解得v ≈19.44 m/s 或v ≈86.88 m/s. 若v ≈86.88 m/s ,则x =156.246 m ,与题目不符,而v ≈19.44 m/s ,符合题意,为所求解.故v ≈19.44 m/s=69.984 km/h ≈70 km/h.答:骑手沿跑道飞出时的速度应为70 km/h.评述:本题直接构造y 是x 的函数解析式很困难,应引入适当的参数(时间t )作媒介,再研究x 与y 是怎样随参数变化而变化的,问题往往就容易解决了.这种辅助变量的引入要具体问题具体分析,以解题的简捷为原则.【例2】 A 、B 、C 是我方三个炮兵阵地,A 在B 正东6 km ,C 在B 正北偏西30°,相距4 km ,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B 、C 两地比A 距P 地远,因此4 s 后,B 、C 才同时发现这一信号,此信号的传播速度为1 km/s ,A 若炮击P 地,求炮击的方位角.解:如下图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则B (-3,0)、A (3,0)、C (-5,23).因为|PB |=|PC |,所以点P 在线段BC 的垂直平分线上.因为k BC =-3,BC 中点D (-4,3),所以直线PD 的方程为y -3=31(x +4). ①又|PB |-|PA |=4,故P 在以A 、B 为焦点的双曲线右支上.设P (x ,y ),则双曲线方程为42x -52y =1(x ≥0). ②联立①②,得x =8,y =53, 所以P (8,53).因此k PA =3835 =3. 故炮击的方位角为北偏东30°.。
高三数学第一轮复习课件(ppt)目录
第一章
集合与常用逻辑用语
1.1 集合的概念与运算 1.2 命题及其关系、充分条件与必要条件 1.3 简单的逻辑联结词、全称量词与存在量词
目录 CONTENTS
第二章
函数
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程 2.10 函数模型及其应用
12.1 算法与程序框图 12.2 基本算法语句 12.3 合情推理与演绎推理 12.4 直接证明与间接证明 12.5 数学归纳法 12.6 数系的扩充与复数的引入
目录 CONTENTS
选修4系列
选修4-1 几何证明选讲(选考) 选修4-4 坐标系与参数方程(选考) 选修4-5 不等式选讲(必考)
目录 CONTENTS
第十一章
概率与统计
11.1 事件与概率 11.2 古典概型与几何概型 11.3 离散型随机变量及其分布列 11.4 二项分布及其应用 11.5 离散型随机变量的均值与方差、正态分布 11.6 随机抽样与用样本估计总体 11.7 变量间的相关关系
目录 CONTENTS
第十二章 算法初步、推理与证明、复数
目录 CONTENT第S五章
平面向量
5.1 平面向量的概念及其线性运算
5.2 平面向量的基本定理及坐标运算
5.3 平面向量的数量积及其应用
第六章
数列
6.1 数列的概念与简单表示法 6.2 等差数列及其前n项和 6.3 等比数列及其前n项和 6.4 数列的通项与求和 6.5 数列的综合应用
目录 CONTENTS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目第十章排列、组台、二项式定理排列组合的综合应用高考要求1进一步加深对排列、组合意义理解的基础上,掌握有关排列、组合综合题的基本解法,提高分析问题和解决问题的能力,学会分类讨论的思想.2使学生掌握解决排列、组合问题的一些常用方法解题思路归纳 解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:特殊优先法对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个(答案:30个)科学分类法对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种(答案:350)分组(堆)问题的六个模型:①有序不等分;②有序等分;③有序局部等分;④无序不等分;⑤无序等分;⑥无序局部等分;插空法解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______ (答案:3600)捆绑法相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种(答案:240)排除法从总体中排除不符合条件的方法数,这是一种间接解题的方法 b 、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有_________条(答案:30)剪截法(隔板法):n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪成m 段(插入m -1块隔板),有11--m n C 种方法 错位法:编号为1至n 的n 个小球放入编号为1到 n 的n 个盒子里,每个盒子放一个小球要求小球与盒子的编号都不同,这种排列称为错位排列特别当n=2,3,4,5时的错位数各为1,2,9,442个、3个、4个元素的错位排列容易计算关于5个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题:①5个元素的全排列为:55120A =;②剔除恰好有5对球盒同号1种、恰好有3对球盒同号(2个错位的)351C ⨯ 种、恰好有2对球盒同号(3个错位的)252C ⨯ 种、恰好有1对球盒同号(4个错位的)159C ⨯ 种∴ 120-1-351C ⨯-252C ⨯-159C ⨯=44用此法可以逐步计算:6个、7个、8个、……元素的错位排列问题 容斥法:n 个元素排成一列,求某两个元素各自不排在某两个确定位置的排法种数,宜用容斥法 题型讲解例1 将6本不同的书按下列分法,各有多少种不同的分法?⑴分给学生甲3 本,学生乙2本,学生丙1本;⑵分给甲、乙、丙3人,其中1人得3本、1人得2 本、1 人得1 本; ⑶分给甲、乙、丙3人,每人2本;⑷分成3堆,一堆3 本,一堆2 本,一堆1 本;⑸分成3堆,每堆2 本⑹分给分给甲、乙、丙3人,其中一人4本,另两人每人1本; ⑺分成3堆,其中一堆4本,另两堆每堆1本分析:①分书过程中要分清:是均匀的还是非均匀的;是有序的还是无序的②特别是均匀的分法中要注意算法中的重复问题解:⑴是指定人应得数量的非均匀问题:方法数为321631C C C ;⑵是没有指定人应得数量的非均匀问题:方法数为33112336P C C C ⨯;⑶是指定人应得数量的均匀问题:方法数为222642C C C ;⑷是分堆的非均匀问题(与⑴等价):方法数为321631C C C ;⑸是分堆的均匀问题:方法数为33222426P C C C ÷; ⑹是部分均匀地分给人的问题:方法数为2233111246P P C C C ⨯;22111246C C C 点评:以上问题归纳为①见上表中的三类六种不同的分书问题的模型;②要将问题转化为六种分书模型来解决例2 求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.解:(1)是“相邻”问题,用捆绑法解决:227A A(2)是 “不相邻”问题,可以用插空法直接求解.6男先排实位,再在7个空位中排2女,即用插孔法解决:6267A A另法:用捆绑与剔除相结合:827827A A A -(3)是“相邻”问题,应先捆绑后排位:44442A A A(4)是 “不相邻”问题,可以用插空法直接求解: 431442A A A例3 有13名医生,其中女医生6人现从中抽调5名医生组成医疗小组前往灾区,若医疗小组至少有2名男医生,同时至多有3名女医生,设不同的选派方法种数为P,则下列等式(1)5141376;C C C -(2)23324157676767C C C C C C C +++; (3)514513766C C C C --; (4)23711C C ;其中能成为P 的算式有_________种分析: 交换医疗小组的两成员顺序是同一选派方法,故为组合问题用直接法解:选派5名医生分为2男3女,3男2女,4男1女,5男这四类,故(2)正确; 用间接法解: 不考虑限制条件,选派方法有513C 种,需剔除的有1男4女,5女两类,故(3)正确因此结论为: (2)(3)点评:本例要特别防止误选(4)例4 对某种产品的6件不同正品和4件不同次品,一一进行测试,到区分出所有次品为止若所有次品恰好在第五次测试被全部发现,则这样的测试方法有 种解:在各次测试结果中交换其中两者的顺序,成为两种不同的测试方法,因此是排列问题故所有测试方法是6件不同正品取出1件与4件次品排成一列且最后一件是次品:114644C A A =576种例5 某班新年联欢会原定的5个节目已排成节目单,开演前有增加了2个新节目,如果将这两节目插入节目单中,那么不同的插法种数为______ 解:实质是7个节目的排列,因原定的5个节目顺序不改变,故排这5个节目是一个组合,有57C 种方法,在排新插入的两个节目有22A 种方法,故527242C A =点评:分清是排列还是组合问题排列与组合的根本区别是元素之间有否顺序若元素之间交换次序后是两种不同的情形,则是排列问题;若元素之间交换次序后是相同的情形,则是组合问题;另外若元素之间已经规定了顺序,则仍是组合问题例6 从10 种不同的作物中选出6 种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法共有( )种 A 24108C A B 1599C A C 1589C A D 1588C A解: 先排第1号瓶,从甲、乙以外的8种不同作物种子中选出1种有18C 种方法,再排其余各瓶,有59A 种方法,故不同的放法共有1589C A 故选C点评:这样解分步合理、过程简捷但本题更容易想到先从10种不同的作物种子中选出6种,然后排列由于选出的6种种子中是否含甲、乙不确定,导致后继排列也不确定,这时就要分类了选出的6种种子中只含甲或只含乙的不同放法都为515855C A A 种,选出的6种种子中,同时含甲与乙的不同放法有424854C A A 种;选出的6种种子中,都不含甲与乙的不同放法有68A 种故不同的放法共有5154246158558548892C A A C A A A C A ++=种例7 将3种作物种植在如图的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有________种解: 根据同种作物最多能种植的块数分类讨论:(1) 当其中有一种作物种三块时,选取这种作物有13C 种,它们只能种在两端及中间位置,有不同的种植方法12326C A =种,(2)当其中两种作物各种两块时,选取这两种作物有23C 种,然后选定其中一种作物,其不同种植方式有以下六类:第(1)(2)(5)(6)类的种法都是2种; 第(3)类有1种种法;第(4)类有3种种法,于是这种情况有36)3124(23=++⨯C 种种法,故不同的种植方法共42种例8 四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有__种解: 本题直接计数很困难,用间接法,从10个点中取4个有410C 种方法,剔除四点共面的情况有:(1)四个面上的种数为46460C =;(2)三点在一条棱上,另一点为其对棱中点的种数为6;(3)任一组对棱以外的四棱中点的四点共面种数有3种,故不同的取法共有1413660410=---C 种点评:确定用分类法、分步法、还是间接法计数为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数例9 从黄瓜,白菜,油菜,扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有___种解:按要求从4种蔬菜品种中选出3种有23C 种方法,种在不同土质的三块土地上有33A 种方法,不同的种植方法共有233318C A =种例10 有四个不同的小球,全部放入四个不同的盒子内,恰有两个盒子不放球的放法总数为 ___解:选取两个不放球的盒子,有246C =种选法;把4个球分成两堆,可分为两堆各为1,3个或两堆都有2个球这两类,有22314241227C C C C A +=种;再把两堆分别放入两个盒子里有222=A 种,所求放法总数为84276=⨯⨯种点评:如何实施先组合,后排列对常见的排列组合综合问题,应先组合,后排列,可分为以下两类例11 把9个相同小球放入其编号为1、2、3的三个箱子里,要求每个箱子放球的个数不小于其编号数,则不同的放球方法共有______种解:先给编号为2、3的三个箱子里分别放入1个、2个小球,有1种方法;再将剩余的6个小球串成一串,截为三段有2510C =种截断法,对应放到编号为1、2、3的三个箱子里因此,不同的放球方法有1×10=10种例12 某校准备参加2005年高中数学联赛,把10个选手名额分配到高三年级的8 个教学班,每班至少一个名额,则不同的分配方案共有___种解 问题等价于把10个相同小球放入8个盒子里,每个盒子至少有一个小球的放法种数问题将10个小球串成一串,截为7段有7936C =种截断法,对应放到8个盒子里因此,不同的分配方案共有36种点评: 剪截法(隔板法):n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪成m 段(插入m -1块隔板),有11--m n C 种方法例13 编号为1至6的6个小球放入编号为1至6的6个盒子里,每个盒子放一个小球,其中恰有2个小球与盒子的编号相同的放法有____种解: 选取编号相同的两组球和盒子的方法有2615C =种,其余4组球与盒子需错位排列有9种放法,故所求方法有135915=⨯种点评:错位法:编号为1至n 的n 个小球放入编号为1到 n 的n 个盒子里,每个盒子放一个小球要求小球与盒子的编号都不同,这种排列称为错位排列特别当n=2,3,4,5时的错位数各为1,2,9,44例14 将A 、B 、C 、D 、E 、F 六个不同的电子元件在线路上排成一排组成一个电路,如果元件A 不排在始端,元件B 不排在末端,那么这六个电子元件组成不同的电路的种数是_解:不考虑限制条件共有66A 种排法,元件A 排在始端和B 排在末端各有55A 种排法,把它们都剔除,则A 排在始端同时B 排在末端的总数多减了一次,需补上44A 种故组成不同的电路6546542504A A A -+=种点评:容斥法:n 个元素排成一列,求某两个元素各自不排在某两个确定位置的排法种数,宜用容斥法小结:①六种分书模型;②解决排列、组合问题的一些常用方法:容斥法、错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法 学生练习 1将3封不同的信投入4个不同的邮筒,则不同的投法的种数是( )A 43B 34 C 34A D 34C 2某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分;一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有( )A 3种B 4种C 5种D 6种 3若436mm C A =,则=m ( ) A 9 B 8 C 7 D 6 4从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块地上,其中黄瓜必须种植,不同的种植方法共有( ) A 24种 B 18种 C 12种 D 6种 5从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各2台,则不同的选取法有 种(结果用数值表示) 6在一块并排10垄的田地中,选择2垄分别种值A 、B 两种作物,每种作物种植一垄,为有利于作物生长,要求A 、B 两种作物的间隔不小于6垄,则不同的选垄方法共有 种(作数字作答) 7有()*N n n ∈件不同的产品排成一排,若其中A 、B 两件产品排在一起的不同排法有48种,则=n 8将3种作物种植在如图的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有 种(以数字作答)9把6名同学排成前后两排,每排3人,则不同排法的种类( ) A 36 B 120 C 720 D 1440 106个人排成一排,其中甲、乙不相邻的排法种数是( ) A 288 B 480 C 600 D 640 1112名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A 4448412C C C 种 B 34448412C C C 种 C 3348412A C C 种 D 334448412A12从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有()种 A 280 B 240 C 80 D 96 13用1,2,3,4,5这五个数字组成比20000大,且百位数不是3的,无重复数字的个数是( )A 64B 72C 78D 96 14从某班学生中,选出四个组长的不同选法有m 种,选出正、副组长各一名的不同选法有n 种,若m:n=13:2,则该班的学生人数是( ) A 10 B 15 C 20 D 22 15如图所示,为某市的四个小镇,现欲修建三条公路,将这四个镇连接起来,则不同的修路方案种数为( )A 6B 12C 16D 24 16从1,2,3,4,5,6,7,8,9中每次取出两个不重复的数字分别作为对数式中的底和真数,共可得到不同的对数值( )A 53个B 55个C 57个D 59个 178名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行了单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3,4名,大师赛共有 场比赛(用数字作答) 18平面上有4条平行线与另外5条平行直线相互垂直,则可围成 个矩形(用数字作答) 19设编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球放入这五个盒内,要求每个盒内投放一个球,并且恰好有两个球的编号与盒子的编号相同,则不同的投放方法有 种(用数字作答) 20楼道里有10盏灯,为节约用电,在一定时间可关掉其中的3盏灯,但关掉的灯不能相邻,而且不在楼道两端,则不同的关灯方法共有 种 21如图,一个地区分5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种(用数字作答) 22将10个相同的小球装入3个编号分别为1,2,3的盒子(每次要把10个球装完),要求盒子里球的个数不小于盒子的编号数,这样的装法种数是 (用数字作答) 23某药品研究所研制了5种消炎药54321a a a a a 、、、、, 4种退烧药4321b b b b 、、、,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知21a a 、两种药必须同时使用,且43b a 、两种药不能同时使用,⑤④③②①则不同的实验方案有 种 24对于任意正整数n ,定义“n 的双阶乘n !!”如下:当n 是偶数时,()()24642!!⨯⨯-⋅-⋅= n n n n当n 是奇数时,()()13542!!⨯⨯-⋅-⋅= n n n n现有如下四个命题:①()()!2004!!2003!!2004=⋅;②!10022!!20041002⋅=;③!!2004的个位数是0 ; ④!!2003的个位数是5其中正确的命题有参考答案: 1B 2A 3C 4B 5350 612 75 842 9C 10B 11 A 12B 13C 14B 15C 16A 1716 1860 1920 2020 2172 2215 2314 24①②③④ 课前后备注 1从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 100 种 2设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有 5 种(左四右-) 3从正方体的八个顶点中任取三个点作为三角形,直角三角形的个数为( C )A .56B .52C .48D .40 4某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为(B ) A 2426C A B 242621C A C 2426A A D 262A 54名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( C )A .12 种B . 24 种C 36 种D . 48 种6北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(A ) A 124414128C C C B 124414128C A AC 12441412833AD 12443141283C C C A 7将9个人(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分法的种数为( A )A .70B .140C .280D .840 8 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,有多少种方法?(48C )。