分式的运算 同步练习及答案
人教版八年级数学上册第15章15.2《分式的运算》同步练习及(含答案)3.docx
初中数学试卷桑水出品第15章——15.2《分式的运算》同步练习及(含答案)15.2.2 第3课时 分式的加减一、选择题 1.已知x x 1-=3,则x x 232142+-的值为( ) A . 1 B . C . D . 2.化简)121(1212-+÷+-+a a a a 的结果是( ) A .11-a B .11+a C .112-a D . 112+a 3.化简xyx x y y x -÷-)(的结果是( ) A .y 1 B .y y x + C .yy x - D .y 4.化简)11()12(xx x x -÷--的结果是( ) A .x 1 B .1-x C .x x 1- D .1-x x 5.计算ab ba b a b a b a b a 2)(2222-⨯+---+的结果是( )A .b a -1 B .b a +1C .b a -D .b a + 6.计算)111()111(2-+÷-+x x 的结果为( ) A . 1 B .1+x C .x x 1+ D .11-x7.已知:1a =x +1(x ≠0且x ≠﹣1),2a =1÷(1﹣1a ),3a =1÷(1﹣2a ),…,n a =1÷(1﹣1-n a ),则2014a 等于( )A . xB . x +1C .x 1-D .1+x x8.某商品因季节原因提价25%销售,为庆祝元旦,特让利销售,使销售价为原价的85%,则现应降价 ( )A . 20%B . 28%C . 32%D . 36% 二.填空题 9.化简:4)222(2-÷--+m mm m m m=___________. 10.若222222M xy y x y x y x y x y--=+--+ ,则M =___________. 11.若代数式1324x x x x ++÷++有意义,则x 的取值范围是___________. 12.计算:8241681622+-÷++-a a a a a =___________. 13.化简x x x x x x x 21121222++-•+--的结果是___________. 14.已知032≠=b a ,则代数式)2(42522b a b a b a -•--=___________. 15.化简:)14()22441(22-÷-+-+--a aa a a a a =___________. 16.化简:22229631y xy x y x y x y x +--÷-+- =___________.17.若,5321=++z y x ,7123=++z y x 则z y x 111++=___________. 18.已知0=++z y x ,则=-++-++-+222222222111zy x y x z x z y ___________. 三、解答题19.计算:(1)2112222+++--+÷+x x x x x x x x ;(2))11112()1(2+--+÷-+x x x x x .20.已知实数a 、b 满足式子|a ﹣2|+(b ﹣)2=0,求)2(2ab ab a a b a --÷-的值.21.先化简,再求值:444)212(2+--÷---+x x x x x x x ,其中x 是不等式3x +7>1的负整数解.22.先化简121)1(12222+--++÷-+a a a a a a ,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.23.A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a ﹣1)米的正方形,两块试验田的玉米都收获了500千克. (1)哪种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?第3课时 分式的混合运算一.选择题1.D2.A3.B4.B5.B6.C7.B8.C 二、填空题9.6-m 10.2x 11.432-≠-≠-≠x x x 且且 12.-2 13.x 314.21 15.2)2(1-a 16.y x y -2 17.3 18.0. 三、解答题19.解:(1)原式=21)1)(2()1)(1()1(+++-+-+⨯+x x x x x x x x x=12121=++++x x x . (2)原式=)11112()1(2+--+÷-+x x x x x=)1)(1(11)1(21223-++-++-÷-+-x x x x x x x x x=232)1)(1()1)(1(x x x x x x -+•-+=2x . 20.解:原式=,ab ab a a b a 222+-÷- =2)(b a a a b a -•-, =ba -1, ∵|a ﹣2|+(b ﹣)2=0, ∴a ﹣2=0,b ﹣=0, 解得a =2,b =,所以,原式==2+.21.原式=[)2()1()2()2)(2(-----+x x x x x x x x ]×4)2(2--x x ,=4)2()2(4222--⨯-+--x x x x x x x , =4)2()2(42--⨯--x x x x x , =xx 2-, 73+x >1, x 3>﹣6, x >﹣2,∵x 是不等式73+x >1的负整数解, ∴x =﹣1把x =﹣1代入xx 2-中得:=3.22.解:原式=11111)1(2-+++⨯-+a a a a a =131112-+=-++-a a a a a , 当a =2时,原式==5.23.解:(1)A 玉米试验田面积是)1(2-a 米2,单位面积产量是15002-a 千克/米2; B 玉米试验田面积是2)1(-a 米2,单位面积产量是21500)(-a 千克/米2; ∵)1(2-a ﹣2)1(-a =2(a ﹣1)且a ﹣1>0, ∴0<2)1(-a <)1(2-a∴15002-a <21500)(-a ∴B 玉米的单位面积产量高;(2)21500)(-a ÷15002-a=21500)(-a ×50012-a =21)1)(1()(--+a a a=11-+a a . ∴高的单位面积产量是低的单位面积产量的11-+a a 倍.。
2020年秋人教版八年级上册同步练习:15.2《分式的运算》 含答案
2020年人教版八年级上册同步练习:15.2《分式的运算》一.选择题1.(﹣)﹣1的值是()A.﹣2020B.C.2020D.12.某桑蚕丝的直径约为0.000016米,则这种桑蚕丝的直径用科学记数法表示约为()A.1.6×10﹣6米B.1.6×106米C.1.6×10﹣5米D.1.6×105米3.不改变分式的值,下列各式变形正确的是()A.B.=﹣1C.D.=4.下列运算结果正确的是()A.()2=B.()2=C.•=D.÷=5.下列计算正确的是()A.=B.C.D.6.化简的结果为()A.a﹣b B.a+b C.D.7.化简(a﹣1)+(﹣1)•a的结果是()A.﹣a2B.0C.a2 D.﹣18.化简÷的结果是()A.x+3B.x﹣3C.3﹣x D.﹣6x9.一辆汽车以80千米/时的速度行驶,从A城到B城需t小时,如果该车的速度增加v千米/时,那么从A城到B城需要()A.B.C.D.10.已知大家以相同的效率做某件工作,a人做b天可以完工,若增加c人,则提前完工的天数为()A.b﹣B.﹣b C.﹣b D.b﹣11.若a满足a2=1,则分式的值为()A.﹣1B.﹣C.0D.12.已知=2,则的值为()A.4B.6C.7D.8二.填空题13.计算的结果是.14.目前世界上刻度最小的标尺是钻石标尺,它的最小刻度为0.2nm(其中1nm=10﹣9m)用科学记数法表示:0.2nm=m.15.计算﹣的结果为.16.计算的结果等于.17.计算:的结果为.18.已知x2+5x+1=0,那么x2+=.三.解答题19.计算:(1)(2).20.计算:(1);(2);(3).21.分式化简:()÷.22.已知:,求A,B的值.23.先化简,再求值:,其中|x|=3.24.先化简:,再从2,﹣2,3,﹣3中选一个合适的数作为a的值代入求值.参考答案一.选择题1.解:(﹣)﹣1==﹣2020.故选:A.2.解:0.000016=1.6×10﹣5.故选:C.3.解:A、≠;B、=﹣1;C、==x﹣y;D、(﹣)2=;故选:B.4.解:A.,故错误;B.,故错误;C.,故正确;D.,故错误.故选:C.5.解:(A)原式==,故A错误.(C)原式=,故C错误.(D)原式==﹣1,故D错误.故选:B.6.解:===a+b,故选:B.7.解:原式=a﹣1+•a=a﹣1+1﹣a=0.故选:B.8.解:原式=•=x﹣3.故选:B.9.解:根据题意,从A城到B城的路程为80t(千米),当该车的速度为(v+80)千米/时,从A城到B城需要的时间为(小时).故选:B.10.解:∵a人做b天可以完工,∴每人的工作效率为,∴(a+c)人每天的工作效率为(a+c)•,∴增加c人后完成工作的天数为=,∴提前完工的天数为b﹣.故选:A.11.解:原式=÷=•=,由a2=1,得到a=1或a=﹣1,当a=1时,原式没有意义,舍去;当a=﹣1时,原式=﹣.故选:B.12.解:∵=2,∴()2=4,即x2﹣2+=4,∴=6,故选:B.二.填空题13.解:=﹣8+9=1,故答案为:1.14.解:0.2nm=0.2×10﹣9m=2×10﹣10m.故答案为:2×10﹣10.15.解:原式=﹣=﹣=﹣==.故答案为:.16.解:原式=•=.故答案为:.17.解:==﹣=,故答案为:.18.解:∵x2+5x+1=0,∴x+=﹣5,则原式=(x+)2﹣2=25﹣2=23,故答案为:23三.解答题19.解:(1)原式===.(2)原式===.20.解:(1)原式=•=;(2)原式=﹣==;(3)原式=•+=+=.21.解:原式=•=•=.22.解:∵+=,∴=,∴,解得:.23.解:===,∵|x|=3,∴x=±3,∴当x=3时,原式==;当x=﹣3时,原式==﹣.24.解:原式=÷(﹣)=•=﹣,∵a﹣2≠0,a﹣3≠0,a+3≠0,∴a≠2,a≠±3,∴当a=﹣2时,原式=﹣=﹣.。
分式的运算练习题及答案
分式的运算练习题及答案分式的运算是数学中的基本内容之一,掌握好分式的运算方法对于提高数学水平具有重要的作用。
本文将为您提供一些分式的运算练习题及答案,帮助您巩固分式运算的知识。
一、基础练习题1. 计算:$\frac{1}{2} + \frac{3}{4}$答案:$\frac{5}{4}$2. 计算:$\frac{2}{3} \times \frac{3}{5}$答案:$\frac{2}{5}$3. 计算:$\frac{5}{6} \div \frac{1}{2}$答案:$\frac{5}{3}$4. 计算:$\frac{3}{4} + \frac{2}{9} - \frac{1}{3}$答案:$\frac{1}{36}$5. 计算:$(\frac{2}{3} + \frac{1}{4}) \times \frac{3}{5}$答案:$\frac{13}{30}$二、复杂练习题1. 计算:$\frac{3}{4} \div \frac{2}{5} \times \frac{1}{3}$答案:$\frac{15}{8}$2. 计算:$(\frac{7}{8} - \frac{3}{4}) \div (\frac{2}{3} \times\frac{5}{6})$答案:$\frac{7}{20}$3. 计算:$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} \times \frac{1}{5}$答案:$\frac{2}{15}$4. 计算:$\frac{2}{3} \div \frac{3}{4} + \frac{4}{5} - \frac{5}{6}$答案:$\frac{7}{6}$5. 计算:$(\frac{3}{4} + \frac{1}{5}) \div \frac{2}{3} - \frac{5}{6}$答案:$-\frac{17}{36}$三、应用题1. 甲、乙两人一起做数学题,甲做的时间是乙的$\frac{2}{3}$,若乙做完题所需时间为1小时,问甲需要多长时间做完这些题?答案:$\frac{4}{3}$小时解析:设甲需要x小时做完这些题,则根据题意可得$\frac{x}{1}=\frac{2}{3}$,解得x=$\frac{4}{3}$。
人教八年级数学上册第15章《分式的运算》同步练习及(含答案)5
人教八年级数学上册第15章《分式的运算》同步练习及〖含答案〗515.2.2第2课时 分式的加减一﹨选择题1.分式)1(111+++a a a 的计算结果是〖 〗 A .11+a B .1+a a C .a 1 D .aa 1+ 2.下列计算正确的是〖 〗 A .)(818181y x y x +=+ B .xzy z y x y 2=+ C .y y x y x 21212=++ D .011=-+-x y y x 3.已知a ,b 为实数,且ab =1,a ≠1,设M=11+++b b a a ,N=1111+++b a ,则M ,N 的大小关系是〖 〗A .M >NB .M=NC .M <ND .无法确定4.化简abb a a b b a 22+--的结果是〖 〗 A .0 B .-b a 2 C .-a b 2 D .ab 2 5.若1111x y y x=+=+,,则y 等于〖 〗 A.1x -B .1x +C .x - D.x6.若x > y > 0,则11y y x x+-+的值为〖 〗 A.正数 B.负数 C.零 D.无法确定 7.已知公式21111R R R +=〖R 1≠R 2〗,则表示R 1的公式是〖 〗 A .R 1=22RR R R - B .R 1=22R R RR - C .R 1=221)(R R R R + D .R 1=R R RR -22 8.甲﹨乙两人3次都同时到某个体米店买米,甲每次买m 〖m 为正整数〗千克米,乙每次买米用去2m 元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元﹨2.2元﹨2元,那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是〖 〗A .甲比乙便宜B .乙比甲便宜C .甲与乙相同D .由m 的值确定二﹨填空题9.分式225a b c ﹨2710c a b ﹨252b ac -的最简公分母是 . 10.计算:329122---m m = . 11.化简11-+x x 的结果是 . 12.计算:211+-x x = . 13.计算22122x x x -=-- . 14.若ab =2,1-=+b a ,则b a 11+的值为 . 15.若113x y -=,则232x xy y x xy y+---= . 16.若nm n m +=+711,则n m m n +的值为 . 17.如果a a 1+=3,则221aa += . 18.观察下列各式:)311(21311-=⨯,)51-31(21531=⨯,)71-51(21751=⨯,…,根据观察计算:=+⨯-++⨯+⨯+⨯)12()12(1751531311n n 〖n 为正整数〗. 三﹨解答题19.计算:〖1〗1112-+-a a . 〖2〗1211112--++-a a a a20.当a =,b=2时,求代数式222222ba ab b b ab a b a ---+++的值.21.已知2-2x =0,求代数式11)1(222++--x x x x 的值.22.已知两个分式:A=442-x ,B=x x -++2121,其中x ≠±2.下面有三个结论: ①A=B ;②A ﹨B 互为倒数;③A ﹨B 互为相反数.请问哪个正确?为什么?23.描述证明:小明在研究数学问题时发现了一个有趣的现象:〖1〗请你用数学表达式补充完整小明发现的这个有趣的现象;〖2〗请你证明小明发现的这个有趣现象.第2课时 分式的加减一.选择题 1.C 2.D 3.B 4.C 5.D 6.A 7.D 8.B二﹨填空题9.22210a b c 10.32-+m 11.11-+x 12.)2(2+x x 13.1x - 14.21- 15.43 16.5 17.7 18.12+n n . 三、解答题19.解:〖1〗原式=11111)12++-+-++a a a a a a ( =1)1(1)12++--+a a a a ( =11123+---+a a a a =1223+--+a a a a . 〖2〗 解:原式=)1)(1(211+---++a a a a a =)((1)10+-a a =0.20. 解:原式=))(()()(2b a b a b a b b a b a -+-+++ =ba b b a b b a ++=+++11, 当a=3,b=2时,原式=2321++=3〖2﹣3〗=6﹣33.21. 解:原式=1)1(1)1(22+++--x x x x x )( =1112+++-x x x x =112+-+x x x ; ∵22-x =0,∴2x =2;∴原式=112+-+x x =1. 22.解:∵ B=444442221212121222--=--=----=--+=-++x x x x x x x x x , 又∵A=442-x , ∴A ﹨B 互为相反数,③正确.23. 解:〖1〗如果ab ab b a =++2,那么ab b a =+; 〖2〗证明:∵ab ab b a =++2, ∴ab abab b a =++222,〖3分〗 ∴2222)(ab ab b a =++,∴22)()(ab b a =+; ∴ab b a =+.。
分式运算50练(含详细解答)
,
.
解法二:
10
.
40. 化简后得 解析: 原式
,代入值后得 .
,
∵
,
∴
,
将
代入化简后的式子得:
.
41. . 解析:
原式
,
∵
,∴
,
根据题意,
,
∴
,
∴原式 .
42. . 解析: 原式
,
有
得,
,
代入上式得:原式
.
43.
11
化简后得: 解析: 原式
,代入值后得: .
,
把
代入
.
44. . 解析: 原式
∵
33. . 解析: 原式
.
∵
,
∴原式 .
34. . 解析: 原式
,
8
∵ ∴ ∴原式
, ,
.
35. . 解析: 原式
∵ ∴ ∴原式
. , . .
36. . 解析: 原式
∵
∴
∴原式
.
9
37. 解析: 原式
.
∵
,
∴
,
∴原式
.
38. . 解析:
,
∵
,
∴
,即
,
∴原式
.
39.
.
解析:
解法一:
原式
,
当 原式
时,
. .
.
12.
.
解析:
原式
.
13.
.
解析:
.
14.
.
解析:
. 15. .
3
解析:
原式
.
16.
.
2021最新人教版 八年级数学 15.2 分式的运算 同步训练(含答案)
人教版 八年级数学 15.2 分式的运算 同步训练一、选择题(本大题共10道小题)1. 若△÷a2-1a =1a -1,则“△”可能是( ) A.a +1aB.aa -1C.a a +1D.a -1a2. 化简a 2-b 2ab -ab -b 2ab -a 2等于( )A. b aB. a bC. -b aD. -ab3. (2020·淄博)化简的结果是( )A .a +bB .a ﹣bC .D .4. 根据分式的基本性质,分式-a a -b 可变形为( )A.a -a -bB .-aa +bC.a a +bD .-a a -b5. 把通分后,各分式的分子之和为 ( )A .2a 2+7a+11B .a 2+8a+10C .2a 2+4a+4D .4a 2+11a+136. A ,B两地相距m 米,通信员原计划用t 小时从A 地到达B 地,现因有事需提前n 小时到达,则每小时应多走( )A .米B .米C .米D .米7. 计算x -y x +y ÷(y -x )·1x -y 的结果是( )A.1x 2-y 2B.y -x x +yC.1y 2-x 2D.x -y x +y8. 不改变分式0.2x -10.4x +3的值,把它的分子和分母中各项系数都化为整数,则所得结果为( ) A.2x -14x +3B.x -52x +15C.2x -14x +30D.2x -10x +39. 老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图K -42-1所示:接力中,自己负责的一步出现错误的是( ) A .只有乙 B .甲和丁 C .乙和丙D .乙和丁10. 有一个计算程序(如图),每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次运算的结果y n = .(用含字母x 和n 的式子表示)二、填空题(本大题共6道小题) 11. 计算:5c 26ab ·3ba 2c =________.12. 计算(-b 2a )3的结果是________.13. (2020·聊城)计算:(1+a a -1)÷aa -21= .14. 若m -3m -1·|m |=m -3m -1,则m =________.15. 分式32(x +1),2x -15(x -1),2x +1x2-1的最简公分母是________________.16. 要使x +52x +1=(x +5)(3m +2)(2x +1)(7-2m )成立,则m =________.三、解答题(本大题共4道小题)17. 小强昨天做了一道分式题“对下列分式通分:x -3x2-1,31-x.” 他的解答如下,请你指出他的错误,并改正. 解:x -3x2-1=x -3(x +1)(x -1)=x -3,31-x =-3x -1=-3(x +1)(x -1)(x +1)=-3(x +1).18. (2020·乐山)已知:y =2x ,且x ≠y ,求(1x -y +1x +y )÷x 2yx 2-y 2.19. 化简:(x -5+16x +3)÷x -1x 2-9.20. (1)通分:z xy ,y xz ,xyz;(2)求证:z xy +y xz +xyz的值不能为0;(3)求证:a -b (b -c )(c -a )+b -c (a -b )(c -a )+c -a(a -b )(b -c )的值不能为0.人教版 八年级数学 15.2 分式的运算 同步训练-答案一、选择题(本大题共10道小题)1. 【答案】A [解析] △=a2-1a ·1a -1=(a +1)(a -1)a ·1a -1=a +1a .2. 【答案】B 【解析】原式=(a +b )(a -b )ab -b (a -b )a (b -a )=(a +b )(a -b )ab+b a =(a +b )(a -b )+b 2ab =a 2-b 2+b 2ab =a 2ab =ab ,故答案为B.3. 【答案】原式=a ﹣b .故选:B .4. 【答案】D [解析] -a a -b =-a a -b .5. 【答案】A[解析]==,=,=,所以把通分后,各分式的分子之和为-(a+1)2+6(a+2)+3a (a+1)= 2a 2+7a+11.6. 【答案】D[解析] 由题意得-===.7. 【答案】C [解析] x -y x +y ÷(y -x)·1x -y =x -y x +y ·1y -x ·1x -y =1(x +y )(y -x )=1y 2-x 2.8. 【答案】B [解析] 0.2x -10.4x +3=5×(0.2x -1)5×(0.4x +3)=x -52x +15.9. 【答案】D [解析] 因为x2-2x x -1÷x21-x =x2-2x x -1·1-x x2=x2-2x x -1·-(x -1)x2=x (x -2)x -1·-(x -1)x2=-(x -2)x =2-xx ,所以出现错误的是乙和丁.10. 【答案】[解析] 由题意得y 1=,y 2=,y 3=,…,所以y n =.二、填空题(本大题共6道小题)11. 【答案】5c 2a 3 【解析】原式=5c 2a 3.12. 【答案】-b 38a 3 [解析] (-b 2a )3=-b 3(2a )3=-b 38a 3.13. 【答案】-a【解析】含括号的分式混合运算,先算括号里的加法,再算除法;也可利用分配律进行运算.方法1:原式=aaa -+-11×a (a -1)=)1(1--a ×a (a -1)=-a .方法2:原式=(1-1-a a )×(a 2-a )=a 2-a -1-a a×a (a -1)=a 2-a -a 2=-a .14. 【答案】m =-1或m =3 【解析】m -3m -1·|m|=m -3m -1,去分母得(m -3)·|m|=m -3,即(m -3)(|m|-1)=0,所以m =3或m =±1,经检验m =1是方程的增根,所以m =3或m =-1.15. 【答案】10(x +1)(x -1)[解析] 因为x2-1=(x +1)(x -1),所以三个分式的最简公分母是10(x +1)(x -1).16. 【答案】1[解析] 根据题意,得3m +2=7-2m ,移项,得3m +2m =7-2, 合并同类项,得5m =5, 系数化为1,得m =1.三、解答题(本大题共4道小题)17. 【答案】解:x -3x2-1=x -3(x +1)(x -1)=x -3,不能进行去分母,31-x =-3x -1=-3(x +1)(x -1)(x +1)=-3(x +1),不能进行去分母. 改正如下:x -3x2-1=x -3(x +1)(x -1),31-x =-3x -1=-3(x +1)(x -1)(x +1).18. 【答案】解:原式=222))((2y x y x y x y x x -÷-+ =y x y x y x x 222222-⨯-=xy 2, ∵x y 2=,∴ 2=xy ,∴原式=22=1.19. 【答案】解:原式=(x -5)(x +3)+16x +3÷x -1x 2-9(1分)=x 2-2x +1x +3·x 2-9x -1(2分)=(x -1)2x +3·(x +3)(x -3)x -1(3分)=(x -1)(x -3)(4分) =x 2-4x +3.(5分)20. 【答案】解:(1)最简公分母是xyz. z xy =z2xyz ,y xz =y2xyz ,x yz =x2xyz. (2)证明:z xy +y xz +x yz =z2xyz +y2xyz +x2xyz =x2+y2+z2xyz .因为分子x2+y2+z2≥0,所以只有当x =y =z =0时分式的值才能等于0,但在分式有意义的前提下,x ,y ,z 均不为0,所以z xy +y xz +xyz的值不能为0.(3)证明:令a -b =x ,b -c =y ,c -a =z , 则原式=x yz +y xz +zxy.由(2)可知,上式的值不能为0.故a -b (b -c )(c -a )+b -c (a -b )(c -a )+c -a(a -b )(b -c )的值不能为0.。
人教版八年级数学上册第15章15.2《分式的运算》同步练习及(含答案)6.docx
初中数学试卷 桑水出品第15章——15.2《分式的运算》同步练习及(含答案)15.2.3 第1课时 整数指数幂一、选择题1.下列计算中,正确的是( )A .0a =1B .23-=-9C .5.6×210-=560D .21()5-=25 2.下列式子中与()2a -计算结果相同的是( )()()12224244. . . . A a B a a C a a D a a --÷-g g --3.111()x y ---+=( ) A .x y = B .1x y + C .xy x y + D .x y xy+ 4.已知m a ,0≠是正整数,下列各式中,错误的是( ) A m m aa 1=- B m m a a )1(=- C m m a a -=- D 1)(--=m m a a 5.下列计算中,正确的是 ( )A .22112()2m n m m n n -----+=++B .212()m n m n --=C .339(2)8x x --=D .11(4)4x x --=6.在:①()110=-,②()111-=-,③22313aa =-, ④()()235x x x -=-÷-中,其中正确的式子有( )A 、1个B 、2个C 、3个D 、 4个7.将11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的结果是 ( ) A .0(2)-<11()6-<2(3)- B .11()6-<0(2)-<2(3)- C .2(3)-<0(2)-<11()6- D .0(2)-<2(3)-<11()6- 8.n 正整数,且n n ---=-2)2(则n 是( )A 、偶数B 、奇数C 、正偶数D 、负奇数二、填空题9.填空:=-25 ,=⎪⎭⎫ ⎝⎛--321 . 10.计算:3-a = ,21-⎪⎭⎫ ⎝⎛-a = . 11.()=-31322b a b a ,()=--2223x b a .12.计算(-3-2)2的结果是_________.13.计算2323()a b a b --÷= .14.将式子32213--yx b a 化为不含负整数指数的形式是 . 15.化简:))()((2211---+-+y x y x y x =______________.16.若63=-n x ,则=n x 6.17.已知:57,37==n m ,则=-n m 27________________.18.已知:9432278321=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛--x x , 则x=____________. 三、解答题19.(2013曲靖)计算:12-+|﹣|+()0.20.计算(1)()()22223y x yx -- (2)()()32121223---y x yz x(3)()()232212353z xy z y x --- (4)()()232232----n m n m21.已知2=x a ,求()()12233---++x x x x a a a a 的值.22.已知0)1(22=-++-b a b ,求32--b a 的值.23.拓展延伸【例题】阅读第(1)题的解题过程,再做第(2)题:(1)已知13x x -+=,求33x x -+的值.解:因为1222()29x x x x --+=++=所以227x x -+=所以332211()()()73318x x x x x x x x ----+=++-+=⨯-=;(2)已知13x x -+=,求55x x -+的值.15.2.3 整数指数幂第1课时 整数指数幂一、选择题1.D2.D3.C4.C5.D6. B7. A8.B二、填空题 9.251、8- 10.31a 、2a 11.a b 68、464xa b 12.811 13.64b a 14.2323ax y b 15.441y x - 16.361 17.59 18.58 三、解答题19.2 20.(1)102x y (2)2472z y x (3)848925y x z (4)244mn 21.()()()()[]()()[]()()34652222122331223312233=++=++=++---------x x x x x x x x a a a a a a a a 22.⎩⎨⎧=-+=-0102b a b 解得⎩⎨⎧=-=21b a 则 ()81213232=⨯-=----b a 23.()()()12337181223355=-⨯=+-++=+----x x x x x x x x15.3 分式方程第1课时 分式方程一、选择题1.A 2.A 3.B 4.D 5.D 6. D 7. C 8.A 二、填空题9.2-=x 10.2=x 11.3=x 12.—3 13.5-=x 14.3=x 15.5 16.1- 17.1- 18.43+=+=n x n x 或三、解答题19.9=x 20.3=x21.把2=x 代入原分式方程得()5822-=+a a ,解得910-=a 22.根据题意可知321=--x x ,解得25=x 23.解原分式方程得k x 36-=,2,036,0><-<∴解得即原分式方程有负解,k x Θ。
100道分式试题及答案
100道分式试题及答案一、选择题1. 下列哪个选项是分式的加法运算的正确结果?A. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{xy} \)B. \( \frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} \)C. \( \frac{1}{x} + \frac{1}{y} = \frac{y}{x} + \frac{x}{y} \)D. \( \frac{1}{x} + \frac{1}{y} = \frac{1}{x} - \frac{1}{y} \)答案: B(接下来的题目继续以类似格式出题,每个题目后都直接给出答案)二、填空题2. 若 \( \frac{a}{b} \) 与 \( \frac{c}{d} \) 最简分式相同,则\( ad = bc \),其中 \( a \)、\( b \)、\( c \)、\( d \) 都是非零实数。
请填空,使 \( \frac{3x^2}{4y} \) 与 \( \frac{6x}{y^2} \) 相等,\( x \) 和 \( y \) 的取值范围是:答案: \( x \neq 0 \) 且 \( y \neq 0 \)三、计算题3. 计算下列分式的和:\( \frac{2}{x} + \frac{3}{y} \)解答:首先找到两个分式的最小公倍数,即 \( xy \)。
然后进行通分: \( \frac{2y}{xy} + \frac{3x}{xy} = \frac{2y + 3x}{xy} \)四、化简题4. 化简下列分式:\( \frac{3x^2 - 5x}{x^2 - 9} \)解答:首先分解分子和分母的因式:\( \frac{3x(x - \frac{5}{3})}{(x + 3)(x - 3)} \) 然后约去公因式 \( x - 3 \)(假设 \( x \neq 3 \)):\( \frac{3x}{x + 3} \)五、解分式方程5. 解下列分式方程:\( \frac{1}{x} + \frac{1}{x - 1} = \frac{2}{x^2 - x} \)解答:首先将方程两边乘以 \( x(x - 1) \) 以消去分母:\( (x - 1) + x = 2 \)解得 \( x = \frac{3}{2} \),经检验,\( x = \frac{3}{2} \) 是原方程的解。
人教版八年级数学上册同步练习15.2分式的运算(含答案解析).doc
115.2分式的运算专题一 分式的混合运算1.化简221111x x ⎛⎫-÷ ⎪+-⎝⎭的结果是( ) A . ()21x 1+ B .()21x 1- C .()21x + D .()21x - 2.计算211x x x ---.3.已知:22x x y x +6+9=-9÷2x x x+3-3-x +3.试说明不论x 为任何有意义的值,y 的值均不变.专题二 分式的化简求值4.设m >n >0,m 2+n 2=4mn ,则22m n mn-的值等于( ) A .BCD . 3 5.先化简,再求值:b a b b a b ab a +++2222-2-,其中a =-2,b=1.6.化简分式222()1121x x x x x x x x --÷---+,并从—1≤x ≤3中选一个你认为适合的整数x 代入求值.状元笔记21.分式的运算结果一定要化为最简分式或整式.2.分式乘方时,若分子或分母是多项式,要避免出现类似2222()a b a b c c ++=这样的错误. 3.同分母分式相加减“把分子相加减”就是把各个分式的“分子整体”相加减,各分子都应加括号,特别是相减时,要避免出现符号错误.【方法技巧】1.分式的乘除运算归根到底是乘法运算,其实质是分式的约分.2.除式或被除式是整式时,可把它们看作分母是1的分式,然后依照除法法则进行计算.参考答案:1.D 解析:原式=2)1()1)(1(11)1)(1(1121-=+-⋅+-=-+÷+-+x x x x x x x x x .故选D . 2.原式221(1)(1)11111x x x x x x x x +-+-=-==---. 3.解:22x x y x +6+9=-9÷2x x x+3-3-x +3 =2(3)(3)(3)x x x ++-×()x x x -3+3-x+3 =x -x +3=3.根据化简结果与x 无关可以知道,不论x 为任何有意义的值,y 的值均不变.4.A 解析:∵224m n mn += ∴2226m n mn mn ++=,2222m n mn mn +-=,∴()()m n m n mn +-==A .3 5.解:原式=b a b b a b a b a ++-+-))(()(2=ba b b a b a +++-=b a b b a ++-=b a a +, 当a =2-,1=b 时,原式=2122=+--. 6.解:原式=22221()11x x x x x x x x-+-⋅--- =22(1)(1)1(1)(1)(1)(1)x x x x x x x x x x x --⋅-⋅--+-- =111x -+ =1x x +. ∵x ≠-1,0,1∴当x =2时,原式=22213=+.。
最新人教版初中八年级上册数学《分式的运算》同步练习含答案
15.2 分式的运算一、选择题(共21小题)1.()0是()A.B.1 C.D.﹣12.下列运算正确的是()A.×(﹣3)=1 B.5﹣8=﹣3 C.2﹣3=6 D.(﹣2013)0=03.下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣4)0=1 C.(﹣2)2×(﹣2)3=﹣26D.(﹣5)4÷(﹣5)2=﹣52 4.下列等式成立的是()A.|﹣2|=2 B.(﹣1)0=0 C.(﹣)﹣1=2 D.﹣(﹣2)=﹣25.下列计算正确的是()A. =9 B. =﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=26.下列计算正确的是()A.﹣|﹣3|=﹣3 B.30=0 C.3﹣1=﹣3 D. =±37.下列运算中,正确的是()A. =±3 B. =2 C.(﹣2)0=0 D.2﹣1=8.π0的值是()A.πB.0 C.1 D.3.149.下列运算的结果中,是正数的是()A.(﹣)﹣1B.﹣()﹣1C.(﹣1)×(﹣)D.(﹣)÷10.计算(﹣1)0的结果为()A.1 B.﹣1 C.0 D.无意义11.计算:(﹣)0=()A.1 B.﹣ C.0 D.12.(π﹣3.14)0的相反数是()A.3.14﹣π B.0 C.1 D.﹣113.下列计算正确的是()A.22=4 B.20=0 C.2﹣1=﹣2 D. =±214.当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.a=15.2﹣3可以表示为()A.22÷25B.25÷22C.22×25D.(﹣2)×(﹣2)×(﹣2)16.2﹣1等于()A.2 B.﹣2 C.D.﹣17.下列计算中,正确的是()A.a3•a2=a6B.(π﹣3.14)0=1 C.()﹣1=﹣3 D. =±3 18.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣1)0=0 C.|﹣1|=﹣1 D.﹣(﹣1)2=﹣1 19.一个代数式的值不能等于零,那么它是()A.a2B.a0C.D.|a|20.下列计算错误的是()A.4÷(﹣2)=﹣2 B.4﹣5=﹣1 C.(﹣2)﹣2=4 D.0=121.下列说法正确的是()A.a0=1B.夹在两条平行线间的线段相等C.勾股定理是a2+b2=c2D.若有意义,则x≥1且x≠2二、填空题22.计算:(2π﹣4)0=______.23.2﹣1等于______.24.计算:20+()﹣1的值为______.25.计算:(﹣3)0+3﹣1=______.26.2﹣2=______.27.计算: =______.28.若实数m,n 满足|m﹣2|+(n﹣)2=0,则m﹣1+n0=______.29.计算(π﹣1)0+2﹣1=______.15.2 分式的运算参考答案一、选择题1.B;2.B;3.B;4.A;5.A;6.A;7.D;8.C;9.C;10.A;11.A;12.D;13.A;14.A;15.A;16.C;17.B;18.D;19.B;20.C;21.D;二、填空题22.1;23.;24.3;25.;26.;27.9;28.;29.;作者留言:非常感谢!您浏览到此文档。
9.2分式的运算同步练习1及答案(沪科版七年级下)
(分式的运算)同步测控我夯基,我达标1 •已知 1 1 1x = 0 , 则等于)x2x 3x11 511A.B.C.D.2x6x6x6x解析:异分母分式相加减, 先通分为同分母的分式,1 1 1然后再加减.63 2 = + + : 11x 2x 3x6x 6x 6x6x答案:D2.下面的计算正确的是 ()2b “ 2] 2A. 8 a + =4a bB.( a — b )十1 22x( a — b ) = a2(a-b)2C. (a — b )十 12 x ( a — b )2=(a — b )5D.15a 2十 3a=5a(a-b )2b b解析:分式乘除法按从左到右的顺序进行,本题极易错选为 B.答案:C答案:4 . (2011安徽)化简(—1A . - x — 1B . — x +1 1x 2x - 1 的结果是( 解析:先把分式分解因式后再按分式除法的法则去做. 答案:A 5. (2011 2 _ b +b 2安徽芜湖)如果a=2 •则分式a :2b 的值为() b a 2 b 2解析:a=2变形为a =2b ,b然后代入到分式中进行化简.答案:B 3 •使分式 2 2a x —a y x x 2 (x y)2ax ay的值等于一5的a 的值是()A. 5B.C.D.解析: 将分式化简后,再判断.原式=a 2(x- y) (x -y)(x y) x(^=a .a(x y)a 6 a_100a+2 + a2-2a1-的值为()aa -2101 c 49 51A. 0 B . C . D100 50 50解析:分数线有括号的作用,将三个分式通分写成一个分式时,隐藏的括号要写上得原式=a 2,再代入求值a答案:Da 37-(-厂)3=______________be2 2(x)2 (y )3 ;(-)(-)=y x解析:一个负分式的奇次幕结果为负,一个负分式的偶次幕结果为正3aY~3be&把—4 m写成分式的形式,若分母是—2m n2,那么分子是.解析:分子等于—4m与—2n2的积.答案:8卅n24a d + a9 •计算二4^ ^a的结果是a2-1 1-a解析:异分母分式加减,先通分变为同分母的分式,再加减,在计算过程中,注意符号的变化•4a *1+a_ 4a a+1 _ 4a (a+1)(a+1)_ - (a-1)2= a-1 a2-1 1-a (a 1)(a -1) a -1 (a 1)(a-1) (a 1)(a-1) (a 1)(a-1) a 1 ' 答案:-a_1a +110.锅炉房储存了t天用的煤m吨,要使储存的煤比预定的多用d天,每天应该节约煤 _____ 吨.解析:预定每天用煤m吨,实际每天用煤—吨,每天节约煤-—卫_业d) - mt_ mdt t+d t t+d t(t+d) t(t+d)11 . (2011广东梅州)计算:(1 X)尹一H.先将原分式化简答案:- -xy答案:md t(t d)分析:该题综合性较强,涉及整式运算、分解因式等知识•计算时运用乘法分配率较为简便.1 _ 1------ =2(2 -1) 2解:原式=(1?緒范右x x12 •先化简,再求值: (1) (2011福建福州)3x -3 亠 3x~2 • X -1 x 1,其中x =2;2 2/、x +2x+1 x -1(2)x+2 x —1飞其中x=j •分析:分式的混合运算,按先乘除、后加减的顺序化简后,再代入求值•化简要彻底.解:⑴原式=怎±栄1 = 1 x -1 x1 = 1 x -1 x(x -1)(2)原式= 2(X 1)(x 1)(x-1)1x —1(x 1)21 1 _ x 11 _ x------- X ---- — ---- =—=11 当x=—时,原式=一.2 513.下面是一道题的完整解题步骤.计算:12 2+2 m - 93 - m解:12 2 12+ =—2m -9 3-m (m 3)(m-3) (A )12 (m 3)(m -3) 2(m 3) (m -3)(m3)(B )12 -2(m3)(m 3)(m -3)(C )-2m 6 (m 3)(m -3)(m 3)(D )回答下列问题:(1) A 步的名称是 ____________ ; (2) B 步变形的依据是 ______________ ;(3) C 步的名称是 ____________ ; (4) D 步的名称是 __________ ,这步变形的依据是 解析:认真读题,仔细分析解题过程中每一步变形的依据和每一步变形对应的数学概念当x = 2 时,原式=1 2 1(3)答案:(1 )因式分解 (2)分式的基本性质 (4)约分分式的基本性质我综合,我发展14. ( 2011四川绵阳)化简 上31,并指出X 的取值范围.x_1 (xJ)(x+2)分析:分式的计算或化简应先分清运算顺序,再按分式乘除和加减法的法则进行运算 时,可当成分母为1的分数参与通分•解:_(x_1)(x 2) -1x(x 2) 3 (x -1)(x 2)(x -1)(x 2) —(x _1)(x 2) —(x _1)(x 2) _ x22x -3 _(x 2x —2) _ 1(x _1)(x 2)要使-x31有意义,需满足X 一1.-0且x .2 =0,解得:X M1且X M — 2.x_1 (x_1)(x+2)(3)分式的加减法.当某项是整式所以X 的取值范围是XM — 2且x ^l 的实数.15. (2011湖北宜昌) 请将式子:x? 一1x( 1+ 土)化简后,再从0, 1, 2三个数中选择一个你X - 1喜欢且使原式有意义的 x 的值带入求值.”十,(x +1)( x -1) 1解:原式=—倉X (1+禹)=(x +1( x +1+1右)=x +1+1=x +2.方法一:当x =0时,原式=2. 方法二:当x =2时,原式=4.16.观察下列各式:1 = 1 =1_ 丄 1234 3 4 '111130 5 6 5 6(1) 由此可推测42请你猜想出能表示(1)的特点的一般规律,用含字母m的等式表示出来,并说明理由( m表示整数);请直接用(2)中的规律计算一+ 的值.(x_2)(x_3) (x_1)(x_3) (x_1)(x_2)分析:由观察知:当分子是1,分母是两个连续正整数的积时;可把它写成这两个数的倒数的差.121(3)(1)把任意一个分式除以前面一个分式,你发现了什么规律 (2)根据你发现的规律.试写出给定的那列分式中的第7个分式.分析:(1)按照要求,依次用一个分式除以前面的分式,便可发现规律;92 4 (丄)3即可得到第七个分式.y y2解:(1)规律是任意一个分式除以前面一个分式恒等于y1 = 1 m(m 1)m 理由:右边m 1 m(m 1)m(m 1) m(m 1)1 1 1 (3)原式= ----- —------- — ---- + x —2 x —3 x —1 1 1+ —x -3 x-1—=0. 17•某项工程,甲单独做所需天数是乙、丙两队合作所需的天数的a 倍;乙独做所需的天数等于甲、丙两队合作所需的天数的 b 倍;丙独做所用的 天数等于甲、乙两队合 作所需天数的 c 倍.求丄.丄.丄a 1b 1c 1的值.分析:根据工作时间,效率及工作总量之间的关系,用甲、乙、丙三队的工作时间分别表示 a , b , c ,然后再进一步表示解:设甲、乙、丙三队独做所需的天数分别为则 x - ay,得 a 1xy yz xz1yz1+1 y+z yz, a 1 xy yz xzy z同理xz1xyxy xz yz' c 1 xy yz xz=1.18. (2011浙江舟山)给定下面一列分式:(其中X H 0)(2 )根据发现的规律,用x , y , z(2)第7个分式应该是15 X~7 y。
分式的运算(有答案)
分式的运算一、 分式的加减法1.同分母分式的加减法2.异分母分式的加减法二、 分式的乘除法 三、 分式的混合运算一、 分式的加减法1.同分母分式的加减法1. 【易】计算111x x x ---结果是( ) A .0 B .1 C .1- D .x【答案】C2. 【易】化简:2111x xx x -+=++_____________. 【答案】13. 【易】计算代数式ac bca b a b--- 【答案】C4. 【易】计算:211m mm m -=--_____________.【答案】m5. 【易】计算22a b a b a b-=--___________ 【答案】a b +6. 【易】化简代数式2111x x x+-- 【答案】1x +7. 【易】化简211x xx x+--的结果是( ) A .1x + B .1x - C .x -D .x【答案】D 8. 【中】计算2222222x y x xy y x xy y --+-+ 【答案】解:原式()()2222x y x y x y =---()222x y x y -=-x yx y+=-9. 【中】计算222222222a ab b a b b a a b ++---【答案】10. 【中】计算251222x x xx x x-+----- 【答案】2x +11. 【中】计算2224332222x y x y x yxy y x xy +-+-- 【答案】1xy12. 【中】计算2222222233n m m n m n mm n m n m n m n -+-++----- 【答案】22nm n -13. 【中】计算:⑴2222135333x x x x x x x x +--+-++++;⑵22222621616x x x x x +-++-- 【答案】⑴2=;⑵24x =+.a ba b-=+2.异分母分式加减法14. 【易】计算11x x y --的结果是( ) A .()y x x y -- B .2()x yx x y +- C .()2x y x x y --D .()yx x y -【答案】A15. 【易】2213a a a -- 【答案】263a a a -- 16. 【易】分式()1111a a a +++的计算结果是( ) A .11a + B .1a a + C .1aD .1a a+ 【答案】C 17. 【易】化简代数式()()a bb a b a a b ---【答案】a bab+ 18. 【中】学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式()()()22322624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明 B .小亮 C .小芳 D .没有正确的 【答案】C19. 【中】化简22124a a a -=--___________ 【答案】12a + 20. 【中】计算:218416x x ---. 【答案】14x =+ 21. 【中】计算:22111x x x ---. 【答案】11x =+ 22. 【中】化简:2212211x x x x -+=+++_____________. 【答案】123. 【中】计算11aa a +--的结果是( )A .11a -B .11a --C .211a a a ---D .1a -【答案】C24. 【中】化简211a a a ---的结果是( )A .B .-C .D .【答案】A25. 【中】化简1a ba b b a++-- 【答案】原式=1a ba b b a ++-- =1a ba b -+- =11+ =226. 【中】()21126329xx xx +++-- 【答案】29218x =--27. 【中】(2009年大兴二模)化简:311(1)(2)x x x x ----+,并指出x 的取值范围. 【答案】=12x +.x 的取值范围是2x ≠-且1x ≠的实数.28. 【中】化简:12212112a a a a +---+-+. 【答案】原式421254a a =-+29. 【难】化简:2481124811111x x x x x -----++++. 【答案】原式16161x =-30. 【难】计算:222111563243x x x x x x +-++++++.【答案】2143x x =++二、 分式的乘除法31. 【易】计算:11m nn m +⋅=+_________. 【答案】132. 【易】计算:mn m nm n m+⋅=+___________. 【答案】n33. 【易】计算2324ab axcd cd-÷等于( )A .223b x B .232b xC .223b x-D .222238a b x c d-【答案】C34. 【易】计算:()()23221323m n m n ----⋅(最后结果写成正整数幂形式)=_________【答案】713427m n35. 【易】22()an m m n ⋅--的值为( ) A .2a m n + B .a m n + C .a m n -+D .am n-- 【答案】C36. 【易】化简:2()n nm m m-÷-的结果是( )A .1m --B .1m -+C .mn m -+D .mn n --【答案】B37. 【易】化简:2211x x x x +-÷. 【答案】1x x -38. 【中】化简:222448.244a ab abab a a -+++ 【答案】24a -39. 【中】计算下列各题①252128y xy x ⋅;②222242m n m mnm mn m n --÷-- ③22111.(1)11x x x x -÷--+;④22222(32)25549x a a b a b x a x +-⋅+- 【答案】①2154y x;②22m n m +;③1;④5(23)a b x a --.40. 【中】①389()22x y y x ⋅-=_______________;②22333x xy x y x x--+÷=_______________; ③1()a b a b ÷+=+_____________;④2222222ab b a b a ab b a ab+-⋅=++-____________. 【答案】①218x -;②1-;③()21a b +;④ba.41. 【中】2221()111a a a a a a a -+÷⋅--- 【答案】11aa+-42. 【中】计算23243a a bb b a⎛⎫-÷⋅⎪⎝⎭ 【解析】原式=224233a b bb a a ⨯⨯89= 【答案】8943. 【中】计算:()234a a a b b b ⎛⎫⎛⎫-⋅-÷- ⎪ ⎪⎝⎭⎝⎭【答案】6ab44. 【中】2342()()()b a ba b a -⋅-÷-【答案】23423452642648()b a b b a a a a a a a b b b=⋅-÷=-⋅⋅=-45. 【中】2223()()()x y x x y xy x y -÷+⋅- 【答案】2()()x x y y x y +-46. 【中】计算:22266(3)443x x x x x x x -+-÷+⋅-+- 【答案】22(3)1(3)(2)2(2)3(3)2x x x x x x x -+-=⋅=--+---47. 【中】()23224422281xy xy x x x xy y x -+--+÷-⋅-- 【答案】解:()23224422281xy xy x x x xy y x -+--+÷-⋅-- ()()()()2221122221x y x x y y y x ---=⋅⋅+--- ()()1221x x xy -=⋅+3224x x y -=+48. 【难】化简:44xy xy x y x y x y x y ⎛⎫⎛⎫-+⋅+- ⎪ ⎪-+⎝⎭⎝⎭【答案】原式()()2244x y xyx y xyx yx y-++-=⋅-+2342()()()b a b a b a -⋅-÷-22266(3)443x x x x x x x-+-÷+⋅-+-()()22x y x y x yx y+-=⋅-+22x y =-三、 分式的混合运算49. 【易】计算的结果是( ) A . B . C .D .【答案】B50. 【易】计算()a b a bb a a +-÷的结果为_________________.【答案】a bb-51. 【易】化简22(1)b a a b a b -÷+- 【答案】解:22(1)b a a b a b -÷+- ()()a b a b a b b a b a +-+-=⋅+ a b =-52. 【易】化简263393m m m m +÷+--的结果是_________________ 【答案】153. 【易】计算:22(1)b a a b a b +÷-- 【答案】a b +54. 【易】化简:231122x x x --÷++() 【答案】231122x x x --÷++() 2322(1)(1)x x x x x +-+=⋅++-11x =+55. 【易】22()a b ab b a a b a a ⎛⎫--÷-≠ ⎪⎝⎭【答案】原式222a b a ab b a a ---=÷ =22222a b a b a ba b a b ab ⎛⎫+---⨯ ⎪-+⎝⎭1a b -1a b +a b -a b +1a b-56. 【易】化简:2224222a a a a a a ⎛⎫⋅- ⎪+--⎝⎭【答案】a57. 【易】计算:()241222a a a a -÷-⨯+- 【答案】()241222a a a a -÷-⨯+- ()()2211222a a a a a +-=⋅⨯+-- 12a =-58. 【易】计算或化简:()21111x x xx x +⎛⎫-÷ ⎪-⎝⎭- 【答案】解: 11x=-+59. 【易】计算221()a ba b a b b a-÷-+-【答案】解:原式=()()()a a b b aa b a b b ---⨯+- ()()b b aa b a b b -=⨯+- 1a b=-+60. 【中】化简:22221369x y x y x y x xy y +--÷=--+_______ 【解析】2yx y-61. 【中】计算:()222211121a a a a a a +-÷+---+. 【答案】1-62. 【中】计算:2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭ 【答案】原式63. 【中】化简:2211()1211a a a a a a ++÷--+-.【答案】11a -64. 【中】221121x x x x x x x+⎛⎫-÷ ⎪--+⎝⎭【答案】()211x --65. 【中】化简:2222111x x x x x x -+⎛⎫-÷ ⎪+-⎝⎭【答案】x66. 【中】化简:221211241x x x x x x --+÷++-- 【答案】167. 【中】化简:22222369x y x y yx y x xy y x y--÷-++++ 【答案】128(2)(2)(2)2a a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦2(2)8(2)(2)2a a a a a a a +-=⨯+--2(2)(2)(2)2a a a a a a -=⨯+--12a =+68. 【中】化简22424422x x x x x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x -- B .82x - C .82x -+ D .82x + 【答案】D69. 【中】⑴222b a a b a b a b-⎛⎫++÷ ⎪-⎝⎭ ⑵222244224y x y x y x y y x +++-- 【答案】⑴a b ab+;⑵22x x y +70. 【中】化简:222211214421a a a a a a a +-⋅÷+=-+++-_________________ 【答案】11a -71. 【中】化简:2()b a b a b a b a+-+⋅+ 【答案】解:2()b a b a b a b a+-+⋅+ 222a b b a b a b a -++=⋅+ a =72. 【中】44()()ab ab a b a b a b a b-++--+ 【答案】22a b -73. 【中】化简:11n m n m m m n m m n ⎛⎫⎛⎫+-÷+- ⎪ ⎪-+⎝⎭⎝⎭. 【答案】原式()()()()()()22m m n n m n m m m n n m n m m m n m m n -+--+++-=÷-+ ()()222m m n n m m n mn n +-=⋅-+ 2222mn n m mn n --=--74. 【中】化简:111111a a a a ⎛⎫+÷+ ⎪+-+⎝⎭. 【答案】解:原式=()()111111a a a a a a -+++⨯+-+ 2111a a a -=+-- 11a a +=-。
人教版八年级上16.2分式的运算同步练习(附答案)(含答案)
16.2分式的运算同步练习(附答案)一、选择题1、已知,则的值为().A. B. C.D.2、如果的值为0,则代数式+x的值为()A、0B、 2C、 -2D、±23、如果=3,则=()A. B. C.4 D.4、如果将分式中的和都扩大到原来的3倍,那么分式的值()(A)扩大到原来的3倍;(B)扩大到原来的9倍;(C)缩小到原来的;(D)不变.5、分式,,的最简公分母是()(A)(B)(C)(D)6、若x是一个不等于0的数,且x2﹣3x+1=0,则等于()A、 B、 C、10 D、127、下列变形正确的是( )(A) (B)(C) (D)8、计算(2004﹣π)0的结果是()A.0 B.1 C.2004﹣π D.π﹣20049、已知,则的值是()(A)(B)-(C)2 (D)-210、计算的结果为()A. 1 B. 2 C.-1 D.-2二、填空题11、已知,则__________.12、近似数 3.106精确到_______位; 用科学记数法表示:0.0000368≈ ______(保留两个有效数字)13、将表示成只含有正整数的指数幂形式____;14、计算:=_______;15、肥皂泡表面厚度大约是0.0007毫米,将这个数用科学记数法表示为_______ 毫米;16、计算:=_______;三、简答题17、先化简,再求值,其中,a=-1。
18、请你先化简,再从-2 , 2,中选择一合适的数代入求值.19、先阅读下面的材料,然后回答问题:方程x+=2+的解为x=2, x=;方程x+=3+的解为x=3, x=;方程x+=4+的解为x1=4,x=;……(1)观察上述方程的解,猜想关于x的方程x+=5+的解是_______;(2)根据上面的规律,猜想关于x的方程x+=的解是_______;(3)由(2)可知,在解方程:y+=时,可变形转化为x+=的形式求值,按要求写出你的变形求解过程。
20、“先化简再求值:-÷,其中a=”。
最新人教版八年级数学上册《分式的运算》同步练习及(含答案)5.docx
第15章——15.2《分式的运算》同步练习及(含答案) 15.2.2第2课时 分式的加减一、选择题1.分式)1(111+++a a a 的计算结果是( ) A .11+a B .1+a a C .a 1 D .a a 1+ 2.下列计算正确的是( )A .)(818181y x y x +=+B .xzy z y x y 2=+ C .y y x y x 21212=++ D .011=-+-x y y x 3.已知a ,b 为实数,且ab =1,a ≠1,设M=11+++b b a a ,N=1111+++b a ,则M ,N 的大小关系是( )A .M >NB .M=NC .M <ND .无法确定4.化简abb a a b b a 22+--的结果是( ) A .0 B .-b a 2 C .-a b 2 D .ab 2 5.若1111x y y x=+=+,,则y 等于( ) A.1x - B .1x + C .x - D.x6.若x > y > 0,则11y y x x+-+的值为( ) A.正数 B.负数 C.零 D.无法确定7.已知公式21111R R R +=(R 1≠R 2),则表示R 1的公式是( )A .R 1=22RR R R -B .R 1=22R R RR -C .R 1=221)(R R R R + D .R 1=RR RR -22 8.甲、乙两人3次都同时到某个体米店买米,甲每次买m (m 为正整数)千克米,乙每次买米用去2m 元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元,那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是( )A .甲比乙便宜B .乙比甲便宜C .甲与乙相同D .由m 的值确定二、填空题9.分式225a b c 、2710c a b 、252b ac-的最简公分母是 . 10.计算:329122---m m = . 11.化简11-+x x 的结果是 . 12.计算:211+-x x = . 13.计算22122x x x -=-- . 14.若ab =2,1-=+b a ,则b a 11+的值为 . 15.若113x y -=,则232x xy y x xy y+---= . 16.若nm n m +=+711,则n m m n +的值为 . 17.如果a a 1+=3,则221aa += .18.观察下列各式:)311(21311-=⨯,)51-31(21531=⨯,)71-51(21751=⨯,…,根据观察计算:=+⨯-++⨯+⨯+⨯)12()12(1751531311n n (n 为正整数). 三、解答题19.计算:(1)1112-+-a a . (2)1211112--++-a a a a20.当a =,b=2时,求代数式222222b a abb b ab a b a ---+++的值.21.已知2-2x =0,求代数式11)1(222++--x xx x 的值.22.已知两个分式:A=442-x ,B=x x -++2121,其中x ≠±2.下面有三个结论: ①A=B ;②A 、B 互为倒数;③A 、B 互为相反数.请问哪个正确?为什么?23.描述证明:小明在研究数学问题时发现了一个有趣的现象:(1)请你用数学表达式补充完整小明发现的这个有趣的现象;(2)请你证明小明发现的这个有趣现象.第2课时 分式的加减一.选择题1.C2.D3.B4.C5.D6.A7.D8.B二、填空题9.22210a b c 10.32-+m 11.11-+x 12.)2(2+x x 13.1x - 14.21- 15.43 16.5 17.7 18.12+n n . 三、解答题19.解:(1)原式=11111)12++-+-++a a a a a a ( =1)1(1)12++--+a a a a ( =11123+---+a a a a =1223+--+a a a a . (2) 解:原式=)1)(1(211+---++a a a a a =)((1)10+-a a =0.20. 解:原式=))(()()(2b a b a b a b b a b a -+-+++ =ba b b a b b a ++=+++11, 当a=3,b=2时,原式=2321++=3(2﹣3)=6﹣33.21. 解:原式=1)1(1)1(22+++--x x x x x )( =1112+++-x x x x =112+-+x x x ;∵22-x =0,∴2x =2; ∴原式=112+-+x x =1. 22.解:∵ B=444442221212121222--=--=----=--+=-++x x x x x x x x x , 又∵A=442-x , ∴A 、B 互为相反数,③正确.23. 解:(1)如果ab ab b a =++2,那么ab b a =+; (2)证明:∵ab ab b a =++2, ∴ab abab b a =++222,(3分) ∴2222)(ab ab b a =++,∴22)()(ab b a =+; ∴ab b a =+.。
人教版八年级数学上册第15章15.2《分式的运算》同步练习及(含答案)1.docx
初中数学试卷 桑水出品第15章——15.2《分式的运算》同步练习及(含答案)15.2.1 分式的乘除一、选择题1. x 克盐溶解在a 克水中,取这种盐水m 克,其中含盐( )克 A. a mx B. xam C. a x am + D. a x mx + 2. 桶中装有液状纯农药a 升,刚好一满桶,第一次倒出8升后用水加满,第二次又倒出混合药4升,则这4升混合药液中的含药量为( )升 A. a 32 B. a a )8(4- C.84-a D.2)8(4a a - 3 .大拖拉机m 天耕地a 公顷,小拖拉机n 天耕地b 公顷,大拖机的工作效率是小拖机的工作效率( )倍. A.b a B.m n C. bm an D. mnab 4.下列各式与x y x y-+相等的是( ) A .55x y x y -+++ B ..22x y x y-+ C .222()x y x y --(x ≠y ) D .2222x y x y -+ 5.如果把分式2x y x+中的x 和y 的值都扩大了3倍,那么分式的值( ) A .扩大3倍 B .扩大2倍 C .扩大6倍 D .不变6.下列公式中是最简分式的是( ) A .21227b a B .22()a b b a -- C .22x y x y ++ D .22x y x y-- 7.已知x 2-5x-1 997=0,则代数式32(2)(1)12x x x ---+-的值是( ) A .1999 B .2000 C .2001 D .20028.使代数式33x x +-÷24x x +-有意义的x 的值是( ) A .x ≠3且x ≠-2 B .x ≠3且x ≠4C .x ≠3且x ≠-3D .x ≠-2且x ≠3且x ≠4二、填空题9.-3xy ÷223y x的值为_________ 10.2234xy z·(-28z y )的值为_______11. 22ab cd ÷34ax cd -等于_______ 12.计算:(xy-x 2)·xy x y -=________. 13.(-3a b)÷6ab 的结果是( ) A .-8a 2 B .-2a b C .-218a b D .-212b14.将分式22x x x+化简得1x x +,则x 应满足的条件是________. 15.计算(1-11a -)(21a-1)的正确结果是_________ 16.若分式278||1x x x ---的值为0,则x 的值等于______ 17.若x 等于它的倒数,则263x x x ---÷2356x x x --+的值是_________ 18.计算:222242x y x xy y -++÷22x y x xy ++÷22x xy x y-+的值是________1 三、解答题19.已知1a b +=1a +1b ,求b a +a b 的值.20.已知a=-2,b=12,求代数(a-b-4ab b a -)·(a+b-4ab a b +)的值. 21.化简227101a a a a ++-+·32144a a a +++÷12a a ++; 22.225616x x x -+-·22544x x x ++-÷34x x --。
八年级数学上册《第十五章-分式》同步练习题含答案(人教版)
八年级数学上册《第十五章 分式》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________知识点:一、分式1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA 就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯ );()(为整数n ba b a n nn = ;cb ac b c a ±=± bdbc ad d c b a ±=± 二、分式方程1、分式方程分母里含有未知数的方程叫做分式方程。
2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。
3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。
练习题一、单选题1.化简22x y y x x y+--的结果为( ) A .﹣x ﹣y B .y ﹣x C .x ﹣y D .x+y2.把分式x x y+(x ≠0,y ≠0)中的分子、分母的x 、y 同时扩大为原来的2倍,那么分式的值( ) A .扩大为原来的2倍B .扩大为原来的4倍C .缩小为原来的12D .不改变 3.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了14,设公共汽车的平均速度为x 千米/时,则下面列出的方程中正确的是( ) A .4020x +=34×40x B .40x =34×4020x + C .4020x ++14=40x D .40x =4020x +-144.分式方程21124x x x -=--去分母后的结果正确的是( ) A .x 2﹣4﹣1=1B .x 2+2x ﹣(x 2﹣4)=1C .x+2﹣x 2﹣4=1D .x+2﹣1=1 5.已知1a +12b =3,则代数式254436a ab b ab a b-+--的值为( ) A .3 B .-2 C .13- D .12- 6.关于x 的方程31133x a x x-=---有增根,则a 的值是( ) A .3 B .8 C .8- D .14-7.若关于x 的分式方程2311x m x x-=--的解为正数,则m 的取值范围是( ). A .m<-2且3m ≠- B .m<2且3m ≠-C .m>-3且2m ≠-D .m>-3且2m ≠8.已知1112x y z +=+,1113y z x +=+与1114z x y +=+,则234x y z++的值为( ) A .1B .32C .2D .52二、填空题 9.当x= 时,分式 225x x -+ 的值为0.10.小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x 千米/时,根据题意列方程为11.某药品原来每盒p 元,现在每盒提高3元,用200元买这种药品现在比原来少买 盒.12.若关于x 的分式方程23m x x +- ﹣1= 2x无解,则m 的值 13.若x + 1x =3,则 21x x x ++ 的值是 . 14.若关于x 的分式方程 2-1--1k x x x = 的解为正数,则满足条件的非负整数K 的值为 . 三、计算题15.解方程:12133x x x-+=--16.化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭.17.先化简2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭,然后从22a -≤≤的范围内选择一个合适的整数作为a 的值代入求值.18.某公司开发生产的1200件新产品需要精加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品.公司派出相关人员分别到这两间工厂了解生产情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天比甲工厂多加工20件.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?19.为了深入贯彻习总书记关于“双减”工作的重要指示,增强学生的体质,济南市某中学决定购买一些篮球和足球来促进学生的体育锻炼,已知每个篮球的售价比每个足球的售价单价多20元,并且花费6000元购买篮球的数量是花费3200元购买足球数量的1.25倍.(1)求篮球和足球的单价分别是多少元?(2)根据学校的实际需求,需要一次性购买篮球和足球共200个,并且要求购买篮球和足球的总费用不超过9600元,那么学校最少购入多少个足球?参考答案:1.【答案】A 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】C9.【答案】210.【答案】5x ﹣52x =1611.【答案】26003p p+ 12.【答案】﹣32 或﹣ 12 13.【答案】1414.【答案】015.【答案】解:等式两边同时乘以 3x - 原方程可化为: 123x x --=-解得 1x =经检验 1x = 是原方程的解.16.【答案】解:原式211112a a a a a++--=⋅- 2(1)(1)12a a a a a+-=⋅- 1a =+. 17.【答案】解:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭=()()231111(2)a a a a a --++⋅+- =()()22211(2)a a a a a +-+-⋅+- =22a a +-- 当a =0时,原式=1.18.【答案】解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工x+20件新产品,根据题意得:1200x ﹣120020x +=10解得:x=40或x=﹣60(不合题意舍去)经检验:x=40是所列方程的解.乙工厂每天加工零件为:40+20=60(件).答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品.19.【答案】(1)解:设每个足球的售价为x 元,则每个篮球的售价为()20x +元 由题意得600032001.2520x x =⨯+ 解得40x =经检验40x =是所列方程解且正确∴2060x +=答:每个足球售价为40元,则每个篮球售价为60元;(2)解:设购入m 个足球,则购入()200m -个篮球.由题意得()40602009600m m +-≤解得120m ≥答:学校最少购入120个足球。
人教版八年级数学上册15.2 分式的运算 同步练习及答案
a b
16.计算: x 2 y
4y2 4x 2 y 2 x2 y 4 y x2
17.计算: (1
x2 1 1 ) 2 x 2x 1 x 1
18.已知 M
2 xy x2 y2 ,用“+”或“-”连结 M、N,有三种不同的形式 : 、 N x2 y 2 x2 y2
2
22.A 玉米试验田是边长为 am 的正方形减去边长为 1m 的蓄水池后余下部分,B 玉米试验 田是边长为(a-1)m 的正方形,两块试验田的玉米都收获了 500kg. (1)哪种玉米田的单位面积产量高? (2)高的单位面积产量是低的单位面积产量的多少倍?
参考答案
1.A. 9.x4y. 2.D. 10. 3.D. 4.D. 12. 5.D. 6.D. 13. 7.C. 14. 8.B.
c c 1 1 a a a 2 a 7. a b 的结果是( ba
(C) (A)
(D) ). (B)
2 a
4 a
(C)
b2 ab
(D)
b a
8.化简 (
1 x
1 xy ) 2 的结果是( y x y2
(B)
).
(A)
1 x y
1 x y
(C)x-y
1 a
(D)
a ab
5.下列分式中,最简分式是(
21xy (A) 15 y 2
(C)
x2 y2 (B) x y
(D) ). (B)
x 2 2 xy y 2 .x y
1 1 1 2a 2b 2(a b)
x2 y2 x y
6.下列运算中,计算正确的是( (A)
b b 2b a c ac 1 1 0 b ba
分式运算练习题及答案
分式运算练习题及答案一、基础练习题1. 化简下列分式,并求最大公约数:a) $\frac{8}{20}$;b) $\frac{18}{30}$;c) $\frac{36}{48}$;d) $\frac{64}{96}$.2. 按照要求变换下列分式:a) $\frac{2}{3}$,变为分母为12的分式;b) $\frac{5}{8}$,变为分母为40的分式;c) $\frac{9}{5}$,变为分母为15的分式;d) $\frac{7}{12}$,变为分母为36的分式.3. 计算下列分式的值:a) $\frac{5}{8} \div \frac{3}{4}$;b) $\frac{7}{12} \times \frac{5}{6}$;c) $\frac{2}{3} + \frac{1}{6}$;d) $\frac{2}{5} - \frac{1}{10}$.4. 根据下列分式的大小关系,填入">"、"<"或"=":a) $\frac{3}{4}\_\_\_\_\_\_\_ \frac{2}{3}$;b) $\frac{4}{7}\_\_\_\_\_\_\_ \frac{12}{21}$;c) $\frac{5}{8}\_\_\_\_\_\_\_ \frac{10}{16}$;d) $\frac{7}{9}\_\_\_\_\_\_\_ \frac{63}{81}$.二、提高练习题1. 计算下列分式的值,并将结果化简为最简形式:a) $\frac{1}{2} + \frac{3}{8}$;b) $\frac{4}{5} - \frac{2}{3}$;c) $\frac{3}{4} \times \frac{5}{6}$;d) $\frac{2}{3} \div \frac{4}{9}$.2. 若$\frac{2}{n} = \frac{4}{15}$,求$n$的值.3. 解方程:$\frac{3}{x+2} - \frac{2}{x-1} = \frac{5}{x}$.4. 若$\frac{1}{a} + \frac{1}{b} = \frac{2}{5}$,求$\frac{a+b}{a-b}$的值.三、挑战练习题1. 根据已知条件,填写下列分式的值:a) 若$\frac{a}{3} = \frac{5}{6}$,求$\frac{2a}{5}$的值;b) 若$\frac{3}{b} = \frac{24}{36}$,求$\frac{2}{3b}$的值;c) 若$\frac{p}{2} = \frac{3}{5}$,求$\frac{5p}{4}$的值;2. 解方程:$\frac{x+3}{3} - \frac{x+1}{2} = \frac{5}{6}$.3. 某校全校学生人数的$\frac{1}{3}$是男生,男生中$\frac{5}{9}$参加了篮球比赛,篮球比赛男生人数占全校学生人数的$\frac{1}{4}$,求全校学生人数和男生人数各是多少?四、答案一、基础练习题1.a) $\frac{8}{20} = \frac{2}{5}$,最大公约数为2;b) $\frac{18}{30} = \frac{3}{5}$,最大公约数为3;c) $\frac{36}{48} = \frac{3}{4}$,最大公约数为12;d) $\frac{64}{96} = \frac{2}{3}$,最大公约数为32.2.a) $\frac{2}{3} = \frac{8}{12}$;b) $\frac{5}{8} = \frac{25}{40}$;c) $\frac{9}{5} = \frac{27}{15}$;d) $\frac{7}{12} = \frac{21}{36}$.3.a) $\frac{5}{8} \div \frac{3}{4} = \frac{5}{8} \times \frac{4}{3} = \frac{20}{24} = \frac{5}{6}$;b) $\frac{7}{12} \times \frac{5}{6} = \frac{35}{72}$;c) $\frac{2}{3} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3}$;d) $\frac{2}{5} - \frac{1}{10} = \frac{4}{10} - \frac{1}{10} =\frac{3}{10}$.4.a) $\frac{3}{4} > \frac{2}{3}$;b) $\frac{4}{7} < \frac{12}{21}$;c) $\frac{5}{8} = \frac{10}{16}$;d) $\frac{7}{9} = \frac{63}{81}$.二、提高练习题1.a) $\frac{1}{2} + \frac{3}{8} = \frac{4}{8} + \frac{3}{8} =\frac{7}{8}$;b) $\frac{4}{5} - \frac{2}{3} = \frac{12}{15} - \frac{10}{15} =\frac{2}{15}$;c) $\frac{3}{4} \times \frac{5}{6} = \frac{15}{24} = \frac{5}{8}$;d) $\frac{2}{3} \div \frac{4}{9} = \frac{2}{3} \times \frac{9}{4} = \frac{6}{12} = \frac{1}{2}$.2. 若$\frac{2}{n} = \frac{4}{15}$,则$n = \frac{15}{4} = \frac{15}{4} = \frac{15}{2} = 7.5$.3.首先将方程的等式两边乘以$x(x-1)(x+2)$,得到:$3(x-1)(x+2) - 2(x+2) = 5x(x-1)$;展开并整理得:$3x^2 - 3 + 6x - 2x - 4 = 5x^2 - 5x$;继续整理得:$2x^2 - 3x - 7 = 0$;使用因式分解或者求根公式,解得:$x = -1$ 或 $x = \frac{7}{2}$.4. 若$\frac{1}{a} + \frac{1}{b} = \frac{2}{5}$,则 $\frac{a+b}{a-b} = \frac{\frac{a}{b} + 1}{\frac{a}{b} - 1} =\frac{\frac{2}{5b}}{\frac{4}{5b}} = \frac{2}{4} = \frac{1}{2}$.三、挑战练习题1.a) 若$\frac{a}{3} = \frac{5}{6}$,则 $a = \frac{5}{6} \times 3 =\frac{5}{2}$,故$\frac{2a}{5} = \frac{2 \times \frac{5}{2}}{5} =\frac{5}{5} = 1$;b) 若$\frac{3}{b} = \frac{24}{36}$,则 $b = \frac{36}{24} \times 3 = \frac{3}{2}$,故$\frac{2}{3b} = \frac{2}{3 \times \frac{3}{2}} =\frac{2}{9}$;c) 若$\frac{p}{2} = \frac{3}{5}$,则 $p = \frac{3}{5} \times 2 =\frac{6}{5}$,故$\frac{5p}{4} = \frac{5 \times \frac{6}{5}}{4} =\frac{6}{4} = \frac{3}{2}$.2.将$\frac{x+3}{3} - \frac{x+1}{2} = \frac{5}{6}$通分得到$\frac{2(x+3)}{6} - \frac{3(x+1)}{6} = \frac{5}{6}$,化简得到 $\frac{2x + 6 - 3x - 3}{6} = \frac{5}{6}$,继续整理得到 $x = 2$.3. 设全校学生人数为$x$人,男生人数为$\frac{1}{3} \cdot x$人,参加篮球比赛的男生人数为$\frac{5}{9} \cdot \frac{1}{3} \cdot x$人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式及其运算同步检测
一填空(27)
1 若分式11
--x x 的值为零,则x 的值等于 ,若分式3
49
22+--x x x 值为零,
则x=
当x= 时,分式无意义 2 函数y=1
1
-+x x 的自变量x 的取值范围是 ,(x+x -1)-1= 3
()322b a ab b a =- ()2
232-=-x x x xy 4 已知 x 2-3x+1=0,则=+221x
x ,x-x 1
=
5 若=-+--=-b
ab a a ab b b a 232,211则 已知x:y:z=3:4:6≠0,则
z
y x z
y x +--+=
6 ()
43
2xy y x x y -÷⎪⎪⎭⎫ ⎝
⎛-⎪⎪⎭⎫ ⎝⎛-= ()()3
2
2
3
22y x z xy ---÷=
7 若代数式
43
21++÷
++x x x x 有意义,则x 的取值范围是 8分式121
,221,112
+---x x x x 的最简公分母是 9 若1
,31242
++=+x x x x x 则分式的值是
二 选择(24) 1计算⎪⎭⎫
⎝
⎛-÷-a a a a 11的结果是( ) A
11+a B 1 C 1
1-a D -1 2 已知a 、b 为实数,且ab=1,设M=1
111,11+++=+++b a N b b a a 则M 、N 的关系是()
A M >N ,
B M=N
C M <N
D 不 确定
3 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )
A (b a 11+)小时
B ab 1小时 c b a +1小时 D b
a a
b +小时
4 把分式
xy
y
x +中的x 、y 都扩大2倍,那么分式的值 A 扩大2倍 B 扩大4倍 C 缩小一半 D 不变 5 x x x 31211++等于( ) A x 21 B x 23 C x 611 D x 65 6 若a<0,则
a
a a -=( )
A 0
B 2
C -2
D 1
7 若分式x x 312
-+的值为正数,则x 的取值范围是( )
A -2<x<31
B 31 x 或x<-2
C x 3
1
≠ D x>-2
8已知x 为整数,9
18
232322
-++-++x x x x 也为整数,则所有符合条件的x 的值的和为( )
A 12
B 15
C 18
D 20 9 下列计算正确的是( )
A (-1)0=1
B 15.0210
=⎪⎭⎫
⎝⎛- C (-1)-1=1 D (-x )5÷(-x )3=-x 2
10当x 为全体实数时,下列分式一定有意义的是( ) A
X
X 2
+ B 42
2--x x C 3122++x x D ()
2
3+x x 11 下列计算正确的是( )
A b b a 1⨯÷=a
B a 1=•÷•b a b
C 22a b a b =
D –1
1
112+=
--x x x 12如果x>y>0,那么
x
y
x y -++11的结果是( ) A 零 B 正数 C 负数 D 整数 三 计算或化简(24) 1 ()b a b a b ab +-÷-2
2
2
2 3
5
422⎪⎭
⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-•⎪⎪⎭⎫ ⎝⎛+x y y x y x xy
3
()0
3
1
233291⎪⎪⎭
⎫ ⎝⎛--+-+⎪⎭⎫ ⎝⎛- 4
⎪⎭⎫ ⎝
⎛-÷⎪⎭⎫ ⎝⎛+----+x x x x x x x 4144122
22
5 a a a a a 21
24222+•⎪⎪⎭⎫ ⎝⎛---
6 ⎪⎭⎫ ⎝⎛+-+•⎪⎭⎫ ⎝
⎛
-+-b a ab b a b a ab b a 44
四先化简,再求值(10)
1 22,11132-=-•⎪⎭
⎫ ⎝⎛+--x x x x x x x 其中
2
2,2
1
1121222=+---÷+++x x x x x x x 其中
答案
一 1.-1,-3,3或1。
2.x ≥-1且x ≠1,
1
2
+x x。
3.ab(a-b),3y.。
4.7,5±。
5.-1,5
1。
6.7
6434,y
z x x y -。
7.x ≠-2,x ≠-3,x ≠-4。
8.2(x-1)2
.。
9.81。
二.ABDCC CAAACDB
三 1.b.。
2.(),44
9
y y x x +。
3.4。
4.
a
x x 1.
5.4412+-。
6.a 2-b 2
四 1.2x+4,22.2..12,2-+x x 五 1.122.3.3,2.2.4,22
++--a a a a b。