高考数学必胜秘诀在哪(16讲)

合集下载

高考数学必胜秘诀

高考数学必胜秘诀

高考数学必胜秘诀立体几何几何法处理线面平行垂直方法1、直线与平面平行的判定和性质:(1)判定:①判定定理:如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面平行; ②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行。

(2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行。

在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质。

2、直线和平面垂直的判定和性质:(1)判定:①如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线和这个平面垂直。

②两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。

(2)性质:①如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。

②如果两条直线都垂直于同一个平面,那么这两条直线平行。

3、直线和平面所成的角:(1)定义:平面的一条斜线和它在平面内的射影所成的锐角,叫这条直线和这个平面所成的角。

(2)范围:[0,90]o o;(3)求法:作出直线在平面上的射影;(4)斜线与平面所成的角的特征:斜线与平面中所有直线所成角中最小的角。

4、两个平面平行的判定和性质:(1)判定:一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行。

(2)性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

5、二面角:(1)平面角的三要素:①顶点在棱上;②角的两边分别在两个半平面内;③角的两边与棱都垂直。

(2)作平面角的主要方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;②垂面法:过一点作棱的垂面,则垂面与两个半平面的交线所成的角即为平面角;(3)二面角的范围:[0,]π;(4)二面角的求法:①转化为求平面角;②面积射影法:利用面积射影公式cos S S θ⋅射原=,其中θ为平面角的大小。

一数高考数学核心方法

一数高考数学核心方法

一数高考数学核心方法高考数学是所有高中学生必须面对的重要考试科目之一。

想要在高考数学中取得好成绩,除了平时的认真学习和练习外,还需要掌握一些核心方法。

下面就介绍一些可以帮助你在高考数学中取得好成绩的核心方法。

1. 熟练掌握基本概念和公式高考数学中的所有内容都是建立在基本概念和公式之上的。

因此,熟练掌握基本概念和公式是非常重要的。

在平时的学习中,要认真理解每个概念的定义和意义,并且积累各种常用的公式。

只有掌握了基本概念和公式,才能更好地理解和解决数学问题。

2. 注重基本技能的训练高考数学中的许多题目都需要进行基本技能训练,如加减乘除、分式化简、代数式简化等。

因此,在平时的学习中,要重视基本技能的训练,掌握各种技巧和方法,熟练掌握各种运算的规律。

只有掌握了基本技能,才能更好地解决各种数学问题。

3. 善于分析问题和解题思路高考数学中的题目往往比较复杂,需要我们善于分析问题和解题思路。

在做题时,要认真阅读题目,分析问题的本质和要求,确定解题思路和方法,并按照一定的步骤进行求解。

只有善于分析问题和解题思路,才能更好地解决复杂的数学问题。

4. 增强数学应用能力高考数学中的许多题目都需要我们灵活应用数学知识解决实际问题。

因此,在平时的学习中,要注重培养数学应用能力,掌握各种数学方法和技巧,并通过实际问题的练习,提高数学应用能力。

只有具备了较强的数学应用能力,才能更好地解决实际问题。

总之,高考数学的核心方法不仅包括基本概念和公式的掌握,还包括基本技能的训练、分析问题和解题思路的能力以及数学应用能力的提高。

只有通过不断的练习和总结,才能掌握这些核心方法,取得好成绩。

高中数学解题技巧方法

高中数学解题技巧方法

高中数学解题技巧方法高中数学解题技巧方法高中数学解题技巧方法1高中数学选择题的解题方法方法一:直接法所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.方法二:特例法特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.注意:在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.方法三:排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.注意:排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.方法四:数形结合法数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.方法五:估算法在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.方法六:综合法当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.高中数学的证明题的推理方法一、合情推理1.归纳推理是由部分到整体,由个别到一般的推理,在进行归纳时,要先根据已知的部分个体,把它们适当变形,找出它们之间的联系,从而归纳出一般结论;2.类比推理是由特殊到特殊的推理,是两类类似的对象之间的推理,其中一个对象具有某个性质,则另一个对象也具有类似的性质。

高考数学答题技巧及经验分享

高考数学答题技巧及经验分享

高考数学答题技巧及经验分享高考数学的目的是考查大家对数学知识的综合运用能力,想要取得高分,就必须要夯实基础、活学活用。

下面是小编整理的高考数学答题技巧及经验分享,欢迎大家阅读分享借鉴,希望对大家有所帮助。

高考数学答题技巧及经验分享调适心理,增强信心(1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考;(2)合理安排饮食,提高睡眠质量;(3)保持良好的备考状态,不断进行积极的心理暗示;(4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。

悉心准备,不紊不乱(1)重点复习,查缺补漏。

对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。

强化联系,形成知识网络结构,以少胜多,以不变应万变。

(2)查找错题,分析病因,对症下药,这是重点工作。

(3)阅读《考试说明》和《试题分析》,确保没有知识盲点。

(4)回归课本,回归基础,回归近年高考试题,把握通性通法。

(5)重视书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对,对而不全”现象的出现。

(6)临考前应做一定量的中、低档题,以达到熟悉基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的竞技状态。

入场临战,通览全卷最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。

刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事:(1)填写好全部考生信息,检查试卷有无问题;(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B 两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

高考数学题型有哪些特点(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

高考数学神仙技巧

高考数学神仙技巧

高考数学神仙技巧
在高考数学中,有一些神仙技巧可以帮助你提高分数。

以下是一些有效的技巧:
1.仔细审题:审题是做好数学题的关键。

在做数学题时,一定要认真仔细地阅读题目中的文字说明,把握好题目中的信息和要求,确定解题思路。

2.善于归纳总结:在高考数学中,有些问题看似复杂,但只要找到问题的本质,就可以很快地找到解决问题的方法。

因此,在做题时,要善于归纳总结,找出规律,从而更好地解决类似的问题。

3.学会画图:数学中有些问题可以通过画图来解决。

通过画图可以直观地理解问题的本质,找到解决问题的突破口。

因此,在做数学题时,要学会画图,并掌握一些常用的画图方法。

4.善用排除法:在选择题中,如果选项中有一个是明显错误的,那么正确的答案很可能就是剩下的选项中的某一个。

因此,在做选择题时,要善于利用排除法,提高做题的正确率。

5.掌握速算技巧:在数学计算中,有些问题可以通过速算技巧来解决。

例如,可以利用乘法分配律、提取公因数等方法简化计算过程,提高计算效率。

6.善用数形结合法:数形结合法是一种非常重要的数学思想方法。

通过将数量关系和空间形式结合起来,可以更好地理解问题的本质,找到解决问题的突破口。

7.善于猜想和验证:在解决数学问题时,要善于猜想和验证。

通过猜想可以找到解决问题的思路和方法,通过验证可以确定猜想的正确性。

在高考数学中,要善于运用各种神仙技巧来提高自己的解题效率和正确率。

同时,也要注意掌握基础知识,加强练习,提高自己的数学素养和综合能力。

高考数学答题技巧与套路精选

高考数学答题技巧与套路精选

高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。

说到去年高考数学和理科综合,周洁娴仍心有余悸。

数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。

她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。

“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。

”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。

陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。

做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。

“既然得不到难题分,一定要保证简单题不错。

”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。

结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。

三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。

周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。

当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。

好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。

毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。

答题时,应先做自己最拿手的科目。

四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。

”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。

他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。

“要留意题目的所有条件。

”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。

这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。

“文科综合更是重在审题。

”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。

高考数学快速提高成绩的十种方法

高考数学快速提高成绩的十种方法

高考数学快速提高成绩的十种方法介绍一:直选法——简单直观这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。

二:比较排除法——排除异己这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选答案一个一个地排除掉,最后只剩下正确的答案。

如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。

三:特殊值法、极值法——投机取巧对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。

这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。

四:极限思维法——无所不极物理中体现的极限思维常见方法有极端思维法、微元法。

当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。

微元法是把物理过程或研究对象分解为众多细小的“微元”,只需对这些“微元”进行必要的数学方法或物理思想处理,便可使问题得于求解。

五:代入法——事半功倍对于一些计算型的选择题,可以将题目选项中给出的答案直接代入进行检验,或在计算程中某阶段代入检验,常可以有效地减少数学运算量。

六:对比归谬法——去伪存真对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于答案应为单选或双选的选择题可用此方法进行排除错误选项。

七:整体、隔离法——双管齐下研究对象为多个时,首先要想到利用整体、隔离法去求解。

常用思路是整体求外力,隔离求内力,先整体后隔离,两种方法配合使用。

八:对称分析法——左右开弓对于有对称性的物理问题,我们可以充分利用其特点,快速简便地求解问题九:图像图解法——立竿见影根据题目的内容画出图像或示意图,如物体的运动图像、受力示意图、光路图等,再利用图像分析寻找答案,利用图像或示意图解答时,具有形象、直观的特点,便于了解各物理量之间的关系,能够避免繁琐的计算,迅速简便地找出正确的答案。

高三数学提分方法总结

高三数学提分方法总结

高三数学提分方法总结1500字高三数学是高中阶段重要的科目之一,也是许多考生备战高考的关键科目。

为了提高高三数学的成绩,以下是一些有效的提分方法总结:1. 熟悉考试大纲:高三数学的考试内容是根据考试大纲来规定的,因此,掌握考试大纲是非常重要的。

考生应仔细阅读考试大纲,了解每个考点的要求,重点掌握考试重点内容。

2. 注重基础:高三数学考试的题目多为基础知识的运用和综合应用,因此,注重基础知识的复习非常重要。

考生应重点复习高一、高二的重点内容,熟练掌握基本的数学知识和定理,并善于将所学知识进行灵活运用。

3. 肯定每一次进步:在备战高考的过程中,不可避免地会遇到困难和挫折。

考生应该学会肯定每一次的进步,鼓励自己。

无论进步多小,只要自己付出了努力,都应该为自己鼓掌。

4. 多做题:高三数学的复习过程中,多做题是非常重要的。

做题可以帮助考生巩固所学的知识,增加对知识的理解,并培养解题能力。

考生可以选择一些习题册进行刷题,或者参加一些模拟考试,提高自己的应试能力。

5. 形成学习计划:为了高效地备战高考,考生应该制定一个合理的学习计划。

学习计划应包含每天的学习任务和时间安排,可以根据自己的情况进行调整。

在制定学习计划时,也要考虑到时间的分配,不要只注重某一门学科。

6. 找到适合自己的学习方法:每个人的学习方法都不同,考生应找到适合自己的学习方法。

可以利用各种学习资源,如教辅书、视频教学等,根据自己的学习习惯进行选择。

同时也可以多与同学交流,学习他们的学习方法和经验。

7. 培养解题思维:高考数学是一门注重解题思维的科目,因此,考生应该培养自己的解题思维能力。

在解题过程中,要注重分析题目、理清思路,提炼出关键信息,并合理运用所学的知识和方法进行解题。

8. 多做模拟考试:模拟考试是检验自己复习效果的重要方法。

通过参加模拟考试,可以了解自己的考试状态和解题水平,发现问题并及时调整复习计划。

同时也可以通过模拟考试熟悉考试流程,提高自己的应试能力。

高三数学应试技巧如何在中发挥最佳状态

高三数学应试技巧如何在中发挥最佳状态

高三数学应试技巧如何在中发挥最佳状态高三的学子们,面对数学这门学科,在考试中想要发挥出最佳状态,取得理想的成绩,掌握一些有效的应试技巧是至关重要的。

以下将为大家详细介绍一些实用的技巧,帮助大家在高三数学考试中稳定发挥,展现自己的真实水平。

首先,扎实的基础知识是一切的根本。

在高三复习阶段,要对数学的基本概念、定理、公式等进行全面梳理和深入理解。

很多同学在考试中因为概念不清、公式记错而丢分,这是非常可惜的。

所以,建议大家准备一个专门的笔记本,将容易混淆和遗忘的知识点记录下来,随时翻阅强化记忆。

比如函数的定义域、值域、单调性等概念,三角函数的诱导公式,立体几何中的线面关系等,都要做到烂熟于心。

其次,做好考前的复习规划。

不要在考试前临时抱佛脚,而是要有计划地进行复习。

可以根据考试的范围和重点,将复习内容分成几个部分,每天安排一定的时间进行复习。

比如,周一复习函数部分,周二复习数列部分,周三复习立体几何部分等等。

在复习的过程中,要注重做一些典型的例题和练习题,加深对知识点的理解和应用能力。

同时,要对之前做过的错题进行整理和分析,找出自己的薄弱环节,有针对性地进行强化训练。

在考试过程中,合理安排时间是非常关键的。

拿到试卷后,不要急于答题,先整体浏览一下试卷的结构和题型,大致了解各部分的难易程度。

然后根据自己的情况,制定一个答题的时间计划。

一般来说,选择题和填空题应该控制在 40 分钟左右,解答题要保证有足够的时间去思考和书写。

如果遇到难题,不要死磕,先跳过,把会做的题目做完后,再回过头来思考难题。

这样可以避免在一道题目上花费过多的时间,导致后面的题目没有时间做。

答题时,要注意书写规范和答题步骤的完整性。

数学考试是按照步骤给分的,即使最终答案错误,如果答题步骤正确,也能得到一定的分数。

所以,在答题时要条理清晰,逻辑严谨,每一步都要有依据。

比如在解答几何证明题时,要写出已知条件、求证内容、证明过程等;在解答函数应用题时,要写出函数关系式、定义域、最值的求解过程等。

高考数学必考答题技巧_有哪些实用技巧

高考数学必考答题技巧_有哪些实用技巧

高考数学必考答题技巧_有哪些实用技巧高考数学必考答题有什么技巧一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

数学答题方法1、信心要充足,暗示靠自己答卷中,见到简单题,要细心,不要忘乎所以,谨防“大意失荆州”。

面对偏难的题,要耐心,不能急。

考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。

2、跳步答题解题过程卡在某一过渡环节上是常见的。

这时,我们可以先承认中间结论,往后推,看能否得到结论。

如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。

高三数学应试技巧合理利用中的各种技巧

高三数学应试技巧合理利用中的各种技巧

高三数学应试技巧合理利用中的各种技巧高三阶段,数学考试对于很多同学来说是一项重大挑战。

然而,通过合理利用各种应试技巧,我们可以在考试中更加游刃有余,提高成绩。

以下是一些在高三数学应试中非常实用的技巧。

一、考前准备1、知识梳理在考前,对整个高中数学的知识体系进行系统梳理是至关重要的。

将各个章节的知识点、公式、定理等进行整理,形成清晰的知识框架。

可以通过制作思维导图或者列提纲的方式来帮助记忆。

2、错题回顾平时积累的错题是宝贵的复习资源。

在考前,认真回顾错题,分析出错的原因,总结解题的思路和方法,避免在考试中犯同样的错误。

3、模拟考试按照考试的时间和要求进行模拟考试,提前适应考试的节奏和氛围。

在模拟考试中,要注意时间的分配,找到自己在不同题型上的答题速度和效率,以便在正式考试中做出合理的安排。

二、考试中的答题技巧1、认真审题审题是解题的关键。

在拿到题目后,不要急于动笔,要仔细阅读题目,理解题目的意思,找出题目中的关键信息和条件。

对于一些复杂的题目,可以多读几遍,确保自己理解准确。

2、选择合适的解题方法根据题目所给的条件和要求,选择合适的解题方法。

高中数学的解题方法多种多样,如直接法、间接法、数形结合法、分类讨论法等。

在选择解题方法时,要综合考虑题目特点和自己的掌握程度,选择最简便、最有效的方法。

3、分步答题对于一些综合性较强的题目,可以采用分步答题的方法。

将题目分解成若干个小问题,逐步解决,这样可以降低解题的难度,也便于检查和纠错。

4、注意答题规范答题规范不仅可以让阅卷老师清晰地了解你的解题思路,还可以避免因为书写不规范而导致的扣分。

在答题时,要注意字迹工整、步骤清晰、符号使用正确。

三、时间管理技巧1、合理分配时间根据试卷的题型和分值,合理分配答题时间。

一般来说,选择题和填空题的答题时间不宜过长,要为后面的解答题留出足够的时间。

对于难度较大的题目,如果在规定时间内没有思路,可以先跳过,等完成其他题目后再回来思考。

高考数学有哪些应试技巧

高考数学有哪些应试技巧

高考数学有哪些应试技巧高考数学有哪些应试技巧_高频考点学好数学的关键是方法的掌握,数学不仅是一门科学,而且是一种普遍适用的技术。

它是科学的大门和钥匙,学数学是令自己变的理性的一个很重要的措施,数学本身也有自身的乐趣。

下面是小编为大家整理的高考数学有哪些应试技巧,希望能帮助到大家!高考数学应试技巧1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。

抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。

2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。

首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。

3、抓住重点内容,注重能力培养高中数学主体内容是支撑整个高中数学最重要的部分,也是进入大学必须掌握的内容,这些内容都是每年必考且重点考的。

象关于函数(含三角函数)、平面向量、直线和圆锥曲线、线面关系、数列、概率、导数等,把它们作为复习中的重中之重来处理,要一个一个专题去落实,要通过对这些专题的复习向其他知识点辐射。

4、关心教育动态,注意题型变化由于新增内容是当前社会生活和生产中应用比较广泛的内容,而与大学接轨内容则是进入大学后必须具备的知识,因此它们都是高考必考的内容,因此一定要把诸如概率与统计、导数及其应用、推理与证明、算法初步与框图的基本要求有目的的进行复习与训练。

一定要用新的教学理念进行高三数学教学与复习,5、细心审题、耐心答题,规范准确,减少失误计算能力、逻辑推理能力是考试大纲中明确规定的两种培养的能力。

可以说是学好数学的两种最基本能力,在数学试卷中的考查无处不在。

并且在每年的阅卷中因为这两种能力不好而造成的失分占有相当的比例。

高考数学提分技巧 快速提高成绩的方法

高考数学提分技巧 快速提高成绩的方法

一.选择题突破选择题的突破争分在最后一个阶段可以说不是太现实,虽然选择题的题型大致固定在30个左右,但是题型变化多样,有些题型去年考了今年不一定考,虽然选择题过程简单,得分感觉容易,但如果集中精力攻克选择必然得不偿失,对于选择题樊瑞军(微信sibujieti)认为目前应该集中精力攻克高考必考选择题比如三视图,线性规划等这类题目,在会做的条件下,寻找方法压缩解题时间,为其它题目争取时间。

策略:会的题目寻找创新,缩短时间为后面题目争取时间,掌握选择题快速运算技巧,选项特征等适应难题。

二.解答题突破对于解答题由于题型固定,可以说在后面还有较大提升空间,但是需要寻找一些方法,如果单纯是大量做题,樊瑞军认为基本上没有效果,高三一年到现在做的题目可以说已经很多了,最后阶段是提炼方法的时候了,再做题徒劳无功了,有些同学怀着万一不大量做题,恰好与高考题目相同怎么办,这种想法确实有一些道理,但是这种可能性非常微妙,几乎不可能,因为目前大多数同学拿的题目基本上都是一些成年老题,高考题目在出题是都是原创题,所以相同的可能性几乎可以忽略了,但是不管是什么样的题目,解题方法总归是一样的。

解答题题目类型数列:通项,求和,等差等比证明及不等式相关证明及一些存在性会做的题目要压缩时间,对于数列等基础题目适当掌握一些口算方法比如递推数列的通项,已知一些不太复杂的求和可以根据规律直接口算,等差乘等比数列,分式型拆项求和,不太复杂通项求和等都可以通过规律直接口算,这样可以提高解题速度,为后面题目赢得考试时间。

概率,极坐标略空间几何:平行证明,垂直(线与线,线与面,面与面)证明,夹角(线与线,线与面,二面角),距离,体积计算。

对于平行垂直基本上是第一问,会用到纯几何法,要掌握出题规律,夹角等的计算主要是坐标系,同样要掌握方法,比如复杂的坐标系怎么建,三条垂直线怎么找有几种方法,复杂坐标怎么写,法向量如何不用算直接写,都要心理有数,樊瑞军认为考场的事情都要在考前解决,在考试中才要解决,你已经失败了。

高考前数学偷分技巧,白拿40分

高考前数学偷分技巧,白拿40分

在高考数学中,有一些拿分技巧,可以帮助你提高分数。

以下是一些实用的技巧:1.熟悉基本概念和公式:在解答数学题之前,确保你已经掌握了基本的数学概念和公
式。

这些是解决问题的关键,也是你能够正确解答问题的前提。

2.仔细审题:在开始解答问题之前,一定要仔细审题。

理解题目的要求和意图,弄清
楚需要求解的是什么,避免因为误解题目而失分。

3.制定解题计划:在审题之后,你需要制定一个明确的解题计划。

确定解题步骤和方
法,以及如何利用已知条件来求解未知数。

4.细心计算:数学考试中,计算是必不可少的部分。

在进行计算时,一定要细心,避
免因为计算错误而导致失分。

5.检查答案:在完成解答之后,一定要检查答案是否符合题目的要求。

检查解答过程
是否有误,以及答案是否准确无误。

以上这些技巧能够帮助你提高数学分数,但需要注意的是,这些技巧并不能保证你一定能够拿到满分。

要想在高考数学中取得好成绩,还需要在平时的学习中多加练习和积累经验。

同时,保持积极的心态和良好的应试心态也是非常重要的。

关于高考数学15天快速提分秘籍

关于高考数学15天快速提分秘籍

关于高考数学15天快速提分秘籍高考数学15天快速提分秘籍高考数学15天快速提分秘籍1:做题心态高考数学做题时心态是非常重要的,小编建议同学们在高考数学压轴题上训练自己的心态,即使做不出来也要冷静、淡定,另外要注意好时间的控制。

在做高考数学压轴题时已经是一场考试的最后阶段,疲劳、紧张不可避免,做题时要谨慎,控制好时间的同时,心态也要平稳,避免出现小差错。

高考数学15天快速提分秘籍2:小窍门通常情况下,一道大题中第一题的答案是下一题的条件。

很多同学在做高考数学题时都忽略了一个重要条件,所以耗时很久也解答不出来。

小编建议考生有很多压轴题的不同小题给出不同条件,希望考生们能够根据实际情况随机应变。

高考数学15天快速提分秘籍2:平日多练习平日练习时一定要注意方法,重视数学解题思路,实在解答不出来时可以参考答案或者询问老师同学,在这上面耗费太多时间得不偿失。

对于高考考生来讲,在不到一个月的时间里最好不要把时间浪费在压轴题目上,基础巩固与考试技巧训练更加重要。

高中数学答题注意事项越是容易的题要越小心,因为这样的题很可能有陷阱。

出现怪异的答案的题要小心,因为很有可能计算错误。

任何带有数字的题要多问一下自己,有没有遗漏答案,如出现2的答案,就要考虑-2有没有可能也是答案。

最后一道填空题很有可能是难题,如果不能马上解出,应迅速放在一边进行下面答题,毕竟这道题再难也分数也有限,不应恋战。

高考数学快速提分的学习方法一、回归基础查缺漏高考数学快速提分考生应当结合数学课本,把高考数学知识点从整体上再理一遍,要特别重视新课程新增的内容,看看有无知识缺漏,若有就应围绕该知识点再做小范围的高考复习,消灭知识死角。

二、重点知识再强化高考数学以三角、概率、立体几何、数列、函数与导数、解析几何、解三角形、选做题为主,也是数学大题必考内容,这些板块应在老师指导下做一次小专题的强化训练,熟悉不同题型的解法。

如果学校没有专门安排,考生可以把最近做过的综合试卷选五六份分类整理,把这些高考数学重点知识涉及的不同题型、解法较系统地温习一遍,快速提分就有望实现。

高考数学秒杀技巧有哪些

高考数学秒杀技巧有哪些

高考数学秒杀技巧有哪些高考数学有哪些提分技巧?需要了解的考生看过来,下面由小编为你精心准备了“高考数学秒杀技巧有哪些”仅供参考,持续关注本站将可以持续获取更多的资讯!高考数学秒杀技巧有哪些直选法这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。

特殊值法、极值法对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。

这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。

高考数学秒杀公式与方法1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A 为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):1、若f(x)=-f(x+k),则T=2k;2、若f(x)=m/(x+k)(m不为0),则T=2k;3、若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称高考数学加分答题技巧缺步解答对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,能演算几步就写几步,每进行一步就可得到这一步的分数。

高考数学必胜秘诀在哪?――概念、方法计划、题型、易误点及应试技巧总结计划十四高考数学选择题解题策略

高考数学必胜秘诀在哪?――概念、方法计划、题型、易误点及应试技巧总结计划十四高考数学选择题解题策略

高考数学必胜秘诀在哪?――概念、方法、题型、易误点及应试技巧总结十四、高考数学选择题的解题策略数学选择题在当今高考试卷中,不但题目多,而且占分比例高,即使今年江苏试题的题量发生了一些变化,选择题由原来的12题改为10题,但其分值仍占到试卷总分的三分之一。

数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。

解答选择题的根本策略是准确、迅速。

准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要防止“超时失分〞现象的发生。

高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。

解选择题的根本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选〞字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的根本策略。

〔一〕数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学根底。

例1、某人射击一次击中目标的概率为,经过3次射击,此人至少有2次击中目标的概率为〔〕A.81543627B. C. D.125125125125解析:某人每次射中的概率为,3次射击至少射中两次属独立重复实验。

C3264627应选A。

()210C33()31251010例 2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与 α垂直;③异面直线a 、b 不垂直,那么过 a 的任一个平面与 b 都不 垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学必胜秘诀在哪?――概念、方法、题型、易误点及应试技巧总结二、函 数1.映射f : A →B 的概念。

在理解映射概念时要注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。

如(1)设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合(答:A );(2)点),(b a 在映射f 的作用下的象是),(b a b a +-,则在f 作用下点)1,3(的原象为点________(答:(2,-1));(3)若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个,A 到B 的函数有 个(答:81,64,81);(4)设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈,()x f x +是奇数”,这样的映射f 有____个(答:12);(5)设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____(答:∅或{1}).2.函数f : A →B 是特殊的映射。

特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个。

如(1)已知函数()f x ,x F ∈,那么集合{(,)|(),}{(,)|1}x y y f x x F x y x =∈= 中所含元素的个数有 个(答: 0或1);(2)若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2)3. 同一函数的概念。

构成函数的三要素是定义域,值域和对应法则。

而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数。

如若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“天一函数”,那么解析式为2y x =,值域为{4,1}的“天一函数”共有______个(答:9)4. 求函数定义域的常用方法(在研究函数问题时要树立定义域优先的原则):(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零,对数log a x 中0,0x a >>且1a ≠,三角形中0A π<<, 最大角3π≥,最小角3π≤等。

如(1)函数lg 3y x =-____(答:(0,2)(2,3)(3,4) );(2)若函数2743kx y kx kx +=++的定义域为R ,则k ∈_______(答:30,4⎡⎫⎪⎢⎣⎭);(3)函数()f x 的定义域是[,]a b ,0b a >->,则函数()()()F x f x f x =+-的定义域是__________(答:[,]a a -);(4)设函数2()lg(21)f x ax x =++,①若()f x 的定义域是R ,求实数a 的取值范围;②若()f x 的值域是R ,求实数a 的取值范围(答:①1a >;②01a ≤≤)(2)根据实际问题的要求确定自变量的范围。

(3)复合函数的定义域:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域由不等式()a g x b ≤≤解出即可;若已知[()]f g x 的定义域为[,]a b ,求()f x 的定义域,相当于当[,]x a b ∈时,求()g x 的值域(即()f x 的定义域)。

如(1)若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为__________(答:{}42|≤≤x x );(2)若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________(答:[1,5]). 5.求函数值域(最值)的方法:(1)配方法――二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题。

求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系),如(1)求函数225,[1,2]y x x x =-+∈-的值域(答:[4,8]);(2)当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___(答:21-≥a );(3)已知()3(24)x b f x x -=≤≤的图象过点(2,1),则1212()[()]()F x f x f x --=-的值域为______(答:[2, 5])(2)换元法――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型,如(1)22sin 3cos 1y x x =--的值域为_____(答:17[4,]8-);(2)21y x =++的值域为_____(答:(3,)+∞)t =,0t ≥。

运用换元法时,要特别要注意新元t 的范围);(3)s i n c o s s i n c o s y x x x x =++ 的值域为____(答:1[1,2-+);(4)4y x =++的值域为____(答:4]); (3)函数有界性法――直接求函数的值域困难时,可以利用已学过函数的有界性,来确定所求函数的值域,最常用的就是三角函数的有界性,如求函数2sin 11sin y θθ-=+,313x x y =+,2sin 11cos y θθ-=+的值域(答: 1(,]2-∞、(0,1)、3(,]2-∞); (4)单调性法――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性,如求1(19)y x x x =-<<,229sin 1sin y x x=++,532log x y -=+______(答:80(0,)9、11[,9]2、[2,10]); (5)数形结合法――函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等,如(1)已知点(,)P x y 在圆221x y +=上,求2y x +及2y x -的取值范围(答:[、[);(2)求函数y =(答:[10,)+∞);(3)求函数y =及y =的值域(答:)+∞、()注意:求两点距离之和时,要将函数式变形,使两定点在x 轴的两侧,而求两点距离之差时,则要使两定点在x 轴的同侧。

(6)判别式法――对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式: ①2b y k x =+型,可直接用不等式性质,如求232y x =+的值域(答:3(0,]2) ②2bx y x mx n =++型,先化简,再用均值不等式,如(1)求21x y x=+的值域(答:1(,]2-∞);(2)求函数3y x =+的值域(答:1[0,]2) ③22x m x n y x mx n ''++=++型,通常用判别式法;如已知函数2328log 1mx x n y x ++=+的定义域为R ,值域为[0,2],求常数,m n 的值(答:5m n ==) ④2x m x n y mx n ''++=+型,可用判别式法或均值不等式法,如求211x x y x ++=+的值域(答:(,3][1,)-∞-+∞ )(7)不等式法――利用基本不等式,)a b a b R ++≥∈求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。

如设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21221)(b b a a +的取值范围是____________.(答:(,0][4,)-∞+∞ )。

(8)导数法――一般适用于高次多项式函数,如求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。

(答:-48) 提醒:(1)求函数的定义域、值域时,你按要求写成集合形式了吗?(2)函数的最值与值域之间有何关系?6.分段函数的概念。

分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。

在求分段函数的值0()f x 时,一定首先要判断0x 属于定义域的哪个子集,然后再代相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集。

如(1)设函数2(1).(1)()41)x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量x 的取值范围是__________(答:(,2][0,10]-∞- );(2)已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是________(答:3(,]2-∞) 7.求函数解析式的常用方法:(1)待定系数法――已知所求函数的类型(二次函数的表达形式有三种:一般式:2()f x ax bx c =++;顶点式:2()()f x a x m n =-+;零点式:12()()()f x a x x x x =--,要会根据已知条件的特点,灵活地选用二次函数的表达形式)。

如已知()f x 为二次函数,且 )2()2(--=-x f x f ,且f(0)=1,图象在x 轴上截得的线段长为22,求()f x 的解析式 。

(答:21()212f x x x =++) (2)代换(配凑)法――已知形如(())fg x 的表达式,求()f x 的表达式。

如(1)已知,sin )cos 1(2x x f =-求()2xf 的解析式(答:242()2,[f x x x x =-+∈);(2)若221)1(xx x x f +=-,则函数)1(-x f =_____(答:223x x -+);(3)若函数)(x f 是定义在R 上的奇函数,且当),0(+∞∈x 时,)1()(3x x x f +=,那么当)0,(-∞∈x 时,)(x f =________(答:(1x ). 这里需值得注意的是所求解析式的定义域的等价性,即()f x 的定义域应是()g x 的值域。

(3)方程的思想――已知条件是含有()f x 及另外一个函数的等式,可抓住等式的特征对等式的进行赋值,从而得到关于()f x 及另外一个函数的方程组。

如(1)已知()2()32f x f x x +-=-,求()f x 的解析式(答:2()33f x x =--);(2)已知()f x 是奇函数,)(xg 是偶函数,且()f x +)(x g = 11-x ,则()f x = __(答:21x x -)。

相关文档
最新文档