最新角的比较练习题
二年级数学角的认识练习题
二年级数学角的认识练习题二年级数学角的认识练习题在二年级的数学课上,角的概念是一个重要的内容。
学生们需要通过练习题来巩固对角的认识和理解。
下面是一些有趣的练习题,帮助学生更好地掌握角的概念。
1. 角的定义a) 请你用自己的话解释什么是角?b) 画出以下几种角:直角、钝角、锐角。
2. 角的度量a) 什么是度?如何用度来度量角?b) 将以下角度转化为度数:45°、90°、180°、270°。
c) 将以下度数转化为角度:60°、120°、240°、360°。
3. 角的分类a) 根据角的度数,将以下角分为锐角、直角、钝角:30°、90°、120°、150°。
b) 根据角的度数,将以下角分为锐角、直角、钝角:60°、45°、150°、135°。
4. 角的比较a) 比较以下两个角的大小:60°和90°。
b) 比较以下两个角的大小:120°和135°。
c) 比较以下两个角的大小:30°和45°。
5. 角的补角和余角a) 什么是补角?如果两个角是补角,它们的度数之和是多少?b) 什么是余角?如果两个角是余角,它们的度数之和是多少?c) 找出以下角的补角和余角:30°、45°、60°、90°。
6. 角的绘制a) 用直尺和量角器画出以下角:45°、90°、120°、180°。
b) 用直尺和量角器画出一个锐角和一个钝角。
7. 角的应用a) 角的概念在我们日常生活中有哪些应用?b) 角的概念在建筑设计中有哪些应用?通过以上练习题,学生们可以加深对角的认识和理解。
老师可以根据学生的掌握情况,适当调整练习题的难度,帮助他们更好地掌握角的概念。
二年级《角的认识》练习题
二年级《角的认识》练习题二年级第一学期数学《角的认识》一、判断题1.画出哪些是角,哪些不是角。
2.画出哪些是直角,哪些不是直角。
二、填空1.在括号里填写每个图形中的角的数量。
2.在括号里填写直角的数量。
3.在括号里填写图形中的直角数量。
4.数一数每个图形中正方形、长方形和直角的数量。
三、其他题(12分)从指定的一点开始画一个角,并命名各部分。
小学二年级角的认识练题一、判断题用三角板测量下面的角,画出哪些是直角,哪些不是直角。
二、填空题1.在括号里标出哪个角大,哪个角小。
2.在括号里填写每个图形中的角的数量。
3.在括号里填写每个图形中的直角的数量。
4.在图形中添加一条线段,使其分为一个正方形和一个三角形。
在括号中填写直角的数量。
5.在图中填写直角的数量。
数学二年级上册角的初步认识姓名:一、我会填。
1.一条红领巾有几个角?一面国旗有几个角?2.一个长方形中有几个直角?两块手帕有几个直角?3.三角板上有几个角?其中最大的是哪个角?4.一个角有几个顶点和几条边?5.给右图的角的各部分填上名称。
二、我能做好。
1.判断哪些图形是角,画出哪些是角,哪些不是角。
2.用三角板比较哪个角是直角,画出哪些是直角,哪些不是直角。
3.用三角板比较哪个角大,哪个角小,画出哪些是大角,哪些是小角。
三、我会数。
数一数,填写每个图形中的角的数量。
五、动脑筋。
1.一张正方形纸有4个角,剪去一个角后还剩几个角?画出你的答案。
2.在图中填写角的数量、三角形的数量和长方形的数量。
《4.3.2 角的比较与运算》同步练习 2021-2022学年人教版七年级数学上册
4.3.2 角的比较与运算一.填空题1.如图,∠AOB∠AOC,∠AOB∠BOC(填>,=,<);用量角器度量∠BOC =,∠AOC=,∠AOC∠BOC.2.如图,∠AOC=+=﹣;∠BOC=﹣=﹣.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 4.将一副常规三角板拼成如图所示的图形,则∠ABC=度.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=度.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为度.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=.二.选择题14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC三.解答题19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON 的度数.参考答案与试题解析1.如图,∠AOB>∠AOC,∠AOB>∠BOC(填>,=,<);用量角器度量∠BOC =30°,∠AOC=25°,∠AOC>∠BOC.【分析】根据图形,射线OC在∠AOB的内部,即可判断角之间的大小关系.【解答】解:由图知,射线OC在∠AOB的内部,所以∠AOB>∠AOC,∠AOB>∠BOC,用量角器量得∠BOC=25°,∠AOC=30°,故∠AOC>∠BOC.故答案为:>,>,25°,30°,>.2.如图,∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD ﹣∠COD=∠AOC﹣∠AOB.【分析】根据图形即可求出∠AOC及∠BOC的不同表示形式.【解答】解:根据图形,∴∠AOC=∠AOB+∠BOC=∠AOD﹣∠COD;∠BOC=∠BOD﹣∠COD=∠AOC﹣∠AOB.故答案为:∠AOB+∠BOC,∠AOD﹣∠COD,∠BOD﹣∠COD,∠AOC﹣∠AOB.3.如图,O是直线AB上一点,∠BOD=90°,∠COE=90°,那么下列各式中错误的是()A.∠AOC=∠DOE B.∠COD=∠BOE C.∠AOD=∠BOD D.∠BOE=∠AOC 【分析】由∠BOD=90°,∠COE=90°,得∠AOD=∠BOD=90°.根据同角的余角相等,得∠COD=∠BOE,∠AOC=∠DOE.那么,∠AOC+∠BOE=90°.进而推断出A、B、C不合题意,D符合题意.【解答】解:A:∵∠BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOC+∠COD=90°.又∵∠COE=∠COD+∠DOE=90°,∴∠AOC=∠DOE.故A不合题意.B:∵∠COE=∠COD+∠DOE=90°,∠BOD=∠BOE+∠DOE=90°,∴∠COD=∠BOE.故B不符合题意.C:∵BOD=90°,∴∠AOD=180°﹣∠BOD=90°.∴∠AOD=∠BOD.故C不符合题意.D:由B知:∠BOE=∠COD.∵∠AOD=∠AOC+∠DOC=∠AOC+∠BOE=90°.∴∠BOE与∠AOC不一定相等.故选:D.4.将一副常规三角板拼成如图所示的图形,则∠ABC=135度.【分析】根据图形得出∠ABD和∠CBD的度数,即可求出∠ABC的度数.【解答】解:∵∠ABD=90°,∠DBC=45°,∴∠ABC=∠ABD+∠BCD=90°+45°=135°.故答案为:135.5.如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=180度.【分析】先利用∠AOD+∠COD=90°,∠COD+∠BOC=90°,可得∠AOD+∠COD+∠COD+∠BOC=180°,而∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,于是有∠AOB+∠COD=180°.【解答】解:如右图所示,∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC,∠AOD+∠BOD=∠AOB,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°.故答案是180.6.OC是从∠AOB的顶点O引出的一条射线,若∠AOB=90°,∠AOB=2∠BOC,求∠AOC的度数.【分析】利用角的和差关系计算,注意此题要分两种情况.【解答】解:①如图1所示,OC在∠AOB内部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,∴∠AOC=∠AOB﹣∠BOC=90°﹣45°=45°;②如图2所示,OC在∠AOB外部,∵∠AOB=90°,∠AOB=2∠BOC,∴∠BOC=×90°=45°,又∵∠AOC=∠AOB+∠BOC,∴∠AOC=90°+45°=135°.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较【分析】根据∠AOB=∠COD,再在等式的两边同时减去∠BOD,即可得出答案.【解答】解:∵∠AOB=∠COD,∴∠AOB﹣∠BOD=∠COD﹣∠BOD,∴∠1=∠2;故选:B.8.如图,∠AOB=∠AOC,∠BOC=110°,∠AOB=125°.【分析】本题是角的计算问题,根据周角是360°即可求出∠AOB的度数.【解答】解:设∠AOB=∠AOC=x,则2x+110°=360°,解得x=125°,∴∠AOB=125°,故答案为125°.9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为180度.【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【解答】解:∠AOD+∠COB=∠AOD+∠AOC+∠AOD+∠BOD=∠COD+∠AOB=90°+90°=180°.故答案是:180.10.如图所示,把一张长方形纸片ABCD沿EF折叠,点C、D分别落在C'、D'的位置上,EC'交AD于点G,已知∠FEC=48°,那么∠BEG=84°.【分析】由折叠的性质可得∠FEG=∠FEC=48°,再由点E在BC上,可求得∠BEG 的度数.【解答】解:∵长方形纸片ABCD沿EF折叠,∠FEC=48°,∴∠FEG=∠FEC=48°,∵点E在BC上,∴∠BEG=180°﹣∠FEC﹣∠FEG=180°﹣48°﹣48°=84°.故答案为:84°.11.钟面上8:30这一时刻,钟面上时针与分针所形成的角度是75°.【分析】根据钟面上圆心角的大小关系进行计算即可.【解答】解:钟面上每相邻两个数字之间所对应的圆心角为360°÷12=30°,即∠DOC=∠COB=30°,而钟面上8:30时,时针指向“8与9中间”,因此∠AOB=×30°=15°,所以钟面上8:30这一时刻,钟面上时针与分针所形成的角∠AOD=30°×2+15°=75°,故答案为:75°.12.已知∠AOB=120°,∠BOC=30°,则∠AOC=90°或150°.【分析】由于点C的位置不确定,所有此题要分类讨论,利用角之间相加减求出∠AOC 的大小.【解答】解:①当点C在射线OB左侧时,∠AOC1=∠AOB﹣∠BOC1=120°﹣30°=90°,②当点C在射线OB右侧时,∠AOC2=∠AOB+∠BOC2=120°+30°=150°.故答案为90°或150°.13.用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,30°角的相邻直角边与45°角的相邻斜边重合,用铅笔沿AB,ED画线,移开三角板,延长DE 与AB交于点A,∠DAB=15°.【分析】根据角的和差计算即可.【解答】解:用三角板画15°角,如图所示,使30°角的顶点与45°角的顶点重合,∴∠DAB=∠CAB﹣∠CAD=45°﹣30°=15°.故答案为:重合,15°.14.下列说法正确的是()A.不大于90的角是锐角B.一个钝角减去比它小的钝角,差是锐角C.钝角与锐角的差小于直角D.两个锐角的和是钝角【分析】不大于90°的角还有直角,故A错误,135°的钝角﹣1°的锐角差还是钝角,故C错误,两个较小的锐角和可能还是锐角也可能是直角,故D错误,因为两个钝角都大于90°且小于180°,故B正确.【解答】解:∵不大于90°的角还有直角,故A错误,举例:135°的钝角﹣1°的锐角差还是钝角,故C错误,∵两个较小的锐角和可能还是锐角也可能是直角,故D错误,∵两个钝角都大于90°且小于180°,故B正确,故选:B.15.下列说法错误的是()A.角的大小与角的边画出部分的长短没有关系B.角的大小与它们的度数大小是一致的C.角的和差倍分的度数等于它们的度数的和差倍分D.若∠A+∠B>∠C,那么∠A一定大于∠C【分析】根据角的大小与角的开口大小有关,与角的边的长短无关,角的大小是通过角的度数来体现的,然后对各选项分析判断后利用排除法求解.【解答】解:A、角的大小与角的边画出部分的长短没有关系,因为角的大小只与角的开口有关,故本选项正确;B、角的大小与它们的度数大小是一致的,正确;C、角的和差倍分的度数等于它们的度数的和差倍分,正确;D、∠A+∠B>∠C,∠A与∠C的大小关系无法确定,故本选项错误.故选:D.16.用一副三角板不能画出()A.75°角B.135°角C.160°角D.105°角【分析】用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【解答】A选项:75°的角,45°+30°=75°;B选项:135°的角,45°+90°=135°;C选项:160°的角,无法用三角板中角的度数拼出;D选项:105°的角,45°+60°=105°.故选:C.17.如果∠1﹣∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是()A.∠3>∠4B.∠3=∠4C.∠3<∠4D.不确定【分析】由∠1﹣∠2=∠3,可把∠1等效替换为∠2与∠3的和,进而求解.【解答】解:∵∠1﹣∠2=∠3,∴∠1=∠2+∠3,又∠4+∠2=∠1,即∠4+∠2=∠2+∠3,∴∠4=∠3故选:B.18.在∠AOB的内部任取一点C,作射线OC,那么有()A.∠AOC=∠BOC B.∠AOC>∠BOC C.∠BOC>∠AOB D.∠AOB>∠AOC 【分析】根据题意画出图,观察图即可得答案.【解答】解:如图:∵C点是∠AOB内部任一点,∴∠AOC与∠BOC的大小无法确定,由图可知∠AOB必大于∠AOC,故选:D.19.如图,把∠AOB绕着O点按逆时针方向旋转一个角度,得∠A′OB′,指出图中所有相等的角,并简要说明理由.【分析】可根据旋转前后,图形的大小形状不变,旋转角相等的性质,寻找相等角.【解答】解:①∠AOB=∠A′OB′.因∠A′OB′是由∠AOB旋转得到的.②∠AOA′=∠BOB′.∵∠AOB=∠A′OB′,∴∠AOB﹣∠A′OB=∠A′OB′﹣∠A′OB,∴∠AOA′=∠BOB′.20.如图:∠AOB是哪几个角的和?∠DOC是哪几个角的和?若∠AOB=∠COD,则还有哪两个角相等?【分析】本题是角的计算问题,利用角的加法定义即可.【解答】解:由图可知,∠AOB=∠AOD+∠DOB,∠DOC=∠DOB+∠BOC,∵∠AOB=∠COD,∠AOD=∠AOB﹣∠BOD,∠COB=∠COD﹣∠BOD,∴∠AOD=∠COB.21.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA﹣∠BOC=70°﹣15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的错误指出,并给出你认为正确的解法.【分析】在同一平面内,若∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB的外部.【解答】解:如图,当OC在∠AOB的内部时,∠AOC=∠BOA﹣∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.22.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是60°;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=60、90、150.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON的度数.【分析】(1)根据∠AOB=∠AOD+∠BOD=90°,而∠AOD=∠COD=30°,代入即可求出结论;(2)①在旋转的过程中,能够发现∠COD的一边与∠AOB的一边垂直共有三种情况,分别求出每种情况下旋转的度数即可;②根据角与角之间的关系,将直接求∠MON得度数转换成求∠AOM,∠DON的度数,再依照角的关系即可求得结论.【解答】解:(1)∠BOD=∠AOB﹣∠AOD=∠AOB﹣∠COD=90°﹣30°=60°.故答案为:60°.(2)①∵0<n<180,∴分三种情况.a:点D在射线0B上,∠AOC=∠AOB﹣∠COD=90°﹣30°=60°;b:点C在射线OB上,∠AOC=∠AOB=90°;c:点D在AO的延长线上,∠AOC=180°﹣∠COD=180°﹣30°=150°.综上得n为60、90、150.故答案为:60、90、150.②∵∠AOC=n°,OM平分∠AOC,∴∠AOM=n°,∠AOD=∠AOC+∠COD=n°+30°,∠BOD=∠AOD﹣∠AOB=n°+30°﹣90°=n°﹣60°,∵ON平分∠BOD,∴∠DON=∠BOD=×(n°﹣60°)=n°﹣30°,∠MON=∠AOD﹣∠AOM﹣∠DON=n°+30°﹣n°﹣(n°﹣30°)=60°。
七年级数学上册角的比较与运算课时练习题
七年级数学上册角的比较与运算课时练习题一、选择题(每题3分)1.如图,O是直线AB上的一点,过点O任意作射线OC, OD平分ZAOC, OE 平分ZBOC,则ZDOEOA.一定是钝角B. 一定是锐角C. 一定是直角D.都有可能【答案】C【解析】试题分析:直接利用角平分线的性质得出ZAOD=ZDOC, ZBOE=ZCOE,进而得出答案.解:TOD 平分ZAOC, OE 平分ZBOC,Λ ZAOD=ZDOC, ZBOE=ZCOE,ΛZD0E=× 180° =90° ,故选:C.考点:角平分线的定义.2.两个锐角的和不可能是()A.锐角B.直角C.钝角D.平角【答案】D【解析】试题分析:因为等于0。
小于90°的角是锐角,所以两个锐角的和不可能是180°,所以D正确,故选:D.考点:锐角3.己知ZAOB=50o , ZCOB=30°,则ZAoC 等于()A. 80oB. 20oC. 80o或20°D.无法确定【答案】C【解析】试题分析:本题需要分两种情况进行讨论:当射线OC在ZAoB 内部时,则ZAoC=50° -30° =20°;当射线OC在ZAOB外部时,则ZAOC=50° +30°=80° .考点:角度的计算4.如图,将一副三角板的直角顶点重合放置于处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是()A.ZBAE>ZDACB.ZBAE-ZDAC=45°C.ZBAE+ZDAC=180oD.ZBAD≠ZEAC【答案】C.【解析】试题解析:因为是直角三角板,所以ZBAC=ZDAE=90° ,所以ZBAD+ ZDAC+ ZCAE+ ZDAC=ISO o ,即ZBAE+ZDAC二180° .故选C.考点:角的计算.5.如图,己知ZAOB= α , ZBOC= β , OM 平分ZAOC, ON 平分ZBOC,则ZMoN的度数是()A. βB. ( a - β )C. aD. a - β【答案】C.试题分析:,平分,,平分,,故选C.考点:1、角平分线的定义;2、角的计算.6.己知,ZAOC=90°,且ZAOB: ZAOC=2: 3,则ZBOC 的度数为()A. 30oB. 150oC. 30°或150°D. 90°【答案】C.【解析】试题分析:当在内部时,当在外部时,故选C.考点:角的计算.7.用一副三角板可以画出一些指定的角,下列各角中,不能用一副三角板画出的是()A、15o B. 75o C. 85o D. 105°【答案】C【解析】试题分析:一副三角板中的度数有:90°、60°、45°、30° ; 用三角板画出角,无非是用角度加减法,根据选项一一分析,排除错误答案.解:A、15。
四年级角练习题
四年级角练习题1. 角的概念一个角是由两条相交的线段形成的,通常我们用一个小短线段来表示角,其中两条线段称为角的边,相交的点称为角的顶点。
2. 角的度量角的度量通常用度(°)表示,一个完整的圆可以划分为360°,一个直角为90°,一个钝角大于90°而小于180°,一个锐角则小于90°。
3. 角的分类根据角的度量,可以将角分为以下几类:- 锐角:度量小于90°的角;- 直角:度量等于90°的角;- 钝角:度量大于90°而小于180°的角;- 平角:度量等于180°的角;- 全角:度量等于360°的角。
4. 角的绘制绘制角可以通过以下步骤进行:- 在纸上画两条相交的线段,确定两条线段的交点作为角的顶点;- 从顶点开始,用一个弧度量角度,确定角的度量大小;- 用一条小短线段表示角的边,将角的度量写在角内。
5. 角的比较通过比较角的度量大小,可以进行以下判断:- 如果角A的度量小于角B的度量,我们可以写作A < B;- 如果角A的度量大于角B的度量,我们可以写作A > B;- 如果角A的度量等于角B的度量,我们可以写作A = B。
6. 角的运算角可以进行加法和减法运算:- 加法运算:将两个角的度量相加,得到一个新的角;- 减法运算:将一个角的度量减去另一个角的度量,得到一个新的角。
7. 角的应用角在日常生活中有着广泛的应用,例如:- 在建筑工程中,需要使用角度测量工具来确定建筑物的方向和坡度;- 在地理学中,使用经度和纬度来表示地球上的位置;- 在天文学中,使用角度来测量天体的位置和运动。
通过以上练习题,你可以加深对四年级角概念的理解和运用。
同时,练习题的解答也可以帮助你巩固知识,提高解题能力。
希望你在接下来的学习中能够更好地掌握角的知识!。
角的大小比较习题及解析
Dszxrj专用题库学生姓名:一、选择题1. 下列说法正确的是()A.两个锐角的和一定是锐角B.用一个放大倍率3倍的放大镜看一个10∘的角为30∘C.钝角是大于90∘而小于180∘的角D.周角是一条射线2. 一条船沿北偏东50∘方向航行到某地,然后沿原航线返回,返回时正确的航行方向是()A.南偏西50∘B.南偏东50∘C.北偏西50∘D.北偏东50∘3. 如图,在灯塔O处观测到轮船A位于东北方向,同时轮船B在南偏东55∘方向,那么∠AOB的大小为()A.80∘B.90∘C.100∘D.85∘4. 已知∠MON=30∘,∠NOP=15∘,则∠MOP=( )A.45∘B.15∘C.45∘或15∘D.无法确定5. 8点30分的时候,时针与分针所夹的锐角度数是()A.60∘B.70∘C.75∘D.80∘6. 10点30分,钟面上的时针和分针的夹角是()度.A.120∘B.135∘C.150∘D.180∘7. 38.33∘可化为()A.38∘30ˊ3″B.38∘20ˊ3″C.38∘19ˊ8″D.38∘19ˊ48″8. 22∘20′×8等于()A.178∘20′B.178∘40′C.176∘16′D.178∘30′9. 将一副三角板按如图方式摆放在一起,若∠2=30∘10′,则∠1的度数等于()A.30∘10′B.60∘10′C.59∘50′D.60∘50′10. 在△ABC中,若∠A的补角是85∘,∠B的余角是65∘,则∠C的度数为()A.60∘B.65∘C.80∘D.85∘11. 利用一副三角尺不能画出的角的度数是()A.67∘B.75∘C.90∘D.105∘12. 如图,下列说法正确的是()A.∠1就是∠ABCB.∠2就是∠ADBC.以B为顶点的角有三个,它们是∠1,∠2,∠ABCD.∠ADB也可表示为∠D13. 如图所示:若∠DEC=50∘17′,则∠AED=( )A.129∘43′B.129∘83′C.130∘43′D.128∘43′二、填空题14. 35∘42′30″+24∘17′30″=________.15. 一个角的余角比它的补角的1还少20∘,则这个角的大小是________.316. 钟表的时间为3点半时的时针与分针成的角是________.17. 如图,已知∠AOB是直角,COD是一条直线,∠AOC=30∘,则∠BOD=________度.17题 19题 20题18. 观察站测得一轮船在北偏东35∘方向,则在轮船上看观察站的方向是________.19. (1)当图中的∠1和∠2满足________时,能使OA⊥OB.(只需填上一个条件即可)(2)若一个角的余角是67∘41′,则这个角的大小是________.20. 如图,将两块直角三角板的直角顶点重合,若∠AOD=144∘42′,则∠BOC=________度.三、解答题21. 如图,AOB为一条直线,∠1+∠2=90∘,∠COD是直角.(1)请写出图中相等的角,并说明理由;(2)请分别写出图中互余的角和互补的角.22. 一个角等于它的余角的8倍,求这个角的补角.23. (1)180∘−(34∘55′+21∘33′);(2)(180∘−91∘31′24″)÷2.24. 如图,学校、工厂、电视塔在平面图上的标点分别是A、B、C,工厂在学校的北偏西30∘,电视塔在学校的南偏东15∘,则平面图上的∠BAC应是少度?25. 探究同一个锐角的余角与这个角的补角之问的关系.26. 在∠AOB的内部以O为端点画出一条射线,那么图中一共有多少个角?如果画出2条射线,图中共有多少个角?画n条呢?27. 如图,OD是∠AOB的平分线,∠AOC=2∠BOC.(1)若AO⊥CO,求∠BOD的度数;(2)若∠COD=21,求∠AOB的度数.28. 如图,已知∠AOB内部有顺次的四条射线:OE,OC,OD,OF,OE平分∠AOC,OF平分∠BOD.(1)若∠AOB160,∠COD40,则∠EOF的度数为________;(2)若∠AOBα,∠CODβ,求∠EOF的度数.29. 如图O为直线AB上一点,∠AOC=50∘,OD平分∠AOC,∠DOE=90∘.(1)求∠BOD的度数;(2)试判断OE是否平分∠BOC,并说明理由.30. 如图所示,OA丄OB,OC丄OD,OE为∠BOD的平分线,∠BOE=22∘,求∠AOC的度数.参考答案与试题解析2019年7月5日初中数学一、选择题(本题共计 13 小题,每题 3 分,共计39分)1.【解答】故选C.2.【解答】故选:A.3.【解答】故选A.4.【解答】故选C.5.【解答】故选:C.6.【解答】故选:B.7.【解答】故选D.8.【解答】故选B.9.【解答】故选C.10.【解答】故选A.11.【解答】故选:A.12.【解答】故选C.13.【解答】故选A.二、填空题14.【解答】故答案为:60∘.15.【解答】故答案为75∘.16.【解答】故答案为:75∘.17.【解答】故答案为:120∘.18.【解答】故答案为:南偏西35∘.19.【解答】故当图中的∠1和∠2满足∠1+∠2=90∘时,能使OA⊥OB;(2)90∘−67∘41′=22∘19′.故这个角的大小是22∘19′.20.【解答】故答案为:35.3.三、解答题21.【解答】解:(1)①∠AOC=∠1.理由是:因为∠COD是直角,所以∠AOC+∠2=90∘,又∠1+∠2= 90∘,根据同角的余角相等,可得∠AOC=∠1.②∠EOB=∠COB.理由是:因为∠1+∠EOB=180∘,∠AOC+∠COB=180∘,而∠AOC=∠1,根据等角的补角相等,可得∠EOB=∠COB;(2)互余的角:∠1与∠2,∠AOC与∠2;互补的角:∠1与∠EOB,∠AOC与∠EOB,∠AOC与∠COB,∠1与∠COB,∠2与∠AOD.22.【解答】解:设这个角的度数为x,根据题意得x=8(90∘−x),解得x=80∘,则180∘−x=100∘,所以这个角的补角为100∘.23.【解答】解:(1)原式=180∘−55∘88′=179∘60′−56∘28′=123∘32′;(2)原式=(179∘59′60″−91∘31′24″)÷2=88∘28′36″÷2=44∘14′18″.24.【解答】解:∵工厂在学校的北偏西30∘,电视塔在学校的南偏东15∘,∴∠1=30∘,∠3=15∘,∴∠2=90∘−∠1=60∘,∴∠BAC=∠3+90∘+∠2=15∘+90∘+60∘=165∘.25.【解答】解:设这个锐角的度数为x,则它的余角为90∘−x,它的补角为180∘−x,所以180∘−x−(90∘−x)=90∘,所以同一个锐角的补角比这个角的余角大90∘.26.【解答】解:画1条,共有角:3个;画2条,共有角:6个,个.画n条,共有角:(n+1)(n+2)227.【解答】解:(1)∵AO⊥CO,∴∠AOC=90∘,∴∠BOC=45∘,∴∠AOB=∠AOC+∠BOC=135∘,又OD为∠AOB的平分线,∴∠BOD=67.5∘.(2)∵∠AOC=2∠BOC,∠COD=21∘,∠AOD=∠BOD,∴∠AOC−21∘=∠BOC+21∘,即2∠BOC−21∘=∠BOC+21∘,∴∠BOC=42∘,∴∠AOB=∠AOC+∠BOC=3∠BOC=126∘.28.【解答】解:(1)∵OE平分∠AOC,OF平分∠BOD,又∵∠AOB=160,∠COD=40,∴∠AOC+∠BOD=160−40=120,即2∠AOE+2∠BOF=120,∴∠AOE+∠BOF=60,∴∠EOF=∠AOB−(∠AOE+∠BOF)=160−60=100,∴∠EOF的度数为100.故答案为:100.(2)∵OE平分∠AOC,OF平分∠BOD,又∵∠AOB=α,∠COD=β,∴∠AOC+∠BOD=α−β,即2∠AOE+2∠BOF=α−β,∴∠AOE+∠BOF=α−β2,∴∠EOF=∠AOB−(∠AOE+∠BOF)=α−α−β2=α2+β2=α+β2.∴∠EOF的度数为α+β2.29.【解答】解:(1)因为∠AOC=50∘,OD平分∠AOC,所以∠DOC=12∠AOC=25∘,∠BOC=180∘−∠AOC=130∘,所以∠BOD=∠DOC+∠BOC=155∘;(2)OE平分∠BOC.理由如下:因为∠DOE=90∘,∠DOC=25∘,所以∠COE=∠DOE−∠DOC=90∘−25∘=65∘.又因为∠BOE=∠BOD−∠DOE=155∘−90∘=65∘,所以∠COE=∠BOE,所以OE平分∠BOC.30.【解答】解:∵OA丄OB,OC丄OD,∴∠AOB=∠COD=90∘,∵OE为∠BOD的平分线,∴∠BOD=44∘,∴∠AOC=360∘−(∠AOB+∠COD+∠BOD),=360∘−(90∘+90∘+44∘),=136∘.。
2022-2023学年人教版七年级数学上册《4-3-2角的比较与运算》题型分类练习题(附答案)
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》题型分类练习题(附答案)一.角平分线的定义1.如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数有()A.1个B.2个C.3个D.4个2.如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.3.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.4.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)若∠AOE=160°,∠AOB=50°,那么∠COD是多少度?5.已知:如图,OC是∠AOB的角平分线,∠AOD=2∠BOD,∠COD=18°.请你求出∠BOD的度数.6.如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.二.角的计算7.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°8.如图,已知∠AOB:∠BOC=2:3,∠AOC=75°,那么∠AOB=()A.20°B.30°C.35°D.45°9.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.10.如图,射线OB和OD分别为∠AOC和∠COE的角平分线,∠AOB=45°,∠DOE=20°,则∠AOE=()A.110°B.120°C.130°D.140°11.如图所示,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是()A.2α﹣βB.α﹣βC.α+βD.以上都不正确12.如图所示,将一张长方形纸片斜折过去,使顶点A落在A′处,BC为折痕,然后再把BE折过去,使之与BA′重合,折痕为BD,若∠ABC=58°,则求∠E′BD的度数()A.29°B.32°C.58°D.64°13.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°14.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为.15.如图,将一张纸折叠,若∠1=65°,则∠2的度数为.16.如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON =80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).17.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC 的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?18.如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°.(1)若∠AOC=48°,求∠DOE的度数.(2)若∠AOC=α,则∠DOE=(用含α的代数式表示).19.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.20.如图,已知同一平面内∠AOB=90°,∠AOC=60°,(1)填空∠BOC=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.三.角的大小比较21.比较:28°15′28.15°(填“>”、“<”或“=”).22.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个参考答案一.角平分线的定义1.解:①∵∠AOB=∠COD=90°,∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD,∴①正确;②∵只有当OC,OB分别为∠AOB和∠COD的平分线时,∠AOC+∠BOD=90°,∴②错误;③∵∠AOB=∠COD=90°,OC平分∠AOB,∴∠AOC=∠COB=45°,则∠BOD=90°﹣45°=45°∴OB平分∠COD,∴③正确;④∵∠AOB=∠COD=90°,∠AOC=∠BOD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线,∴④正确;故选:C.2.解:①由∠COD=∠EOC,得∠EOC=4∠COD=4×15°=60°;②由角的和差,得∠EOD=∠EOC﹣∠COD=60°﹣15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°.3.解:设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70﹣x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70﹣x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+(70﹣x)+(70﹣x)=180°(4分)解得:x=20(5分)∴∠2=3x=60°(6分)答:∠2的度数为60°.(7分)4.解:(1)OB是∠AOC的平分线,∴∠BOC=∠AOB=50°;∵OD是∠COE的平分线,∴∠COD=∠DOE=30°,∴∠BOD=∠BOC+∠COD=50°+30°=80°;(2)OB是∠AOC的平分线,∴∠AOC=2∠AOB=100°,∴∠COE=∠AOE﹣∠AOC=160°﹣100°=60°,∵OD是∠COE的平分线,∴∠COD=∠COE=30°.5.解:∵OC是∠AOB的角平分线∴∠BOC=∠AOB,∵∠AOD=2∠BOD,∴∠AOB=3∠BOD,即∠BOD=∠AOB;∴∠COD=∠AOB﹣∠AOB=∠AOB,∴∠BOD=2∠COD,∵∠COD=18°,∴∠BOD=36°.6.解:(1)∵∠AOC=58°,OD平分∠AOC,∴∠AOD=29°,∴∠BOD=180°﹣29°=151°;(2)OE是∠BOC的平分线.理由如下:∵∠AOC=58°,∴∠BOC=122°.∵OD平分∠AOC,∴∠DOC=×58°=29°.∵∠DOE=90°,∴∠COE=90°﹣29°=61°,∴∠COE=∠BOC,即OE是∠BOC的平分线.二.角的计算7.解:∠ABC=30°+90°=120°.故选:D.8.解:∵∠AOB:∠BOC=2:3,∠AOC=75°,∴∠AOB=∠AOC=×75°=30°,故选:B.9.解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.10.解:∵OB是∠AOC的角平分线,∠AOB=45°,∴∠COB=∠AOB=45°∵OD是∠COE的角平分线,∠DOE=20°,∴∠DOC=∠DOE=20°,∴∠AOE=∠AOB+∠COB+∠DOC+∠DOE=45°×2+20°×2=130°.故选:C.11.解:∵∠MON=α,∠BOC=β∴∠MON﹣∠BOC=∠CON+∠BOM=α﹣β又∵OM平分∠AOB,ON平分∠COD∴∠CON=∠DON,∠AOM=∠BOM由题意得∠AOD=∠MON+∠DON+∠AOM=∠MON+∠CON+∠BOM=α+(α﹣β)=2α﹣β.故选:A.12.解:∵根据折叠得出∠ABC=∠A′BC,∠EBD=∠E′BD,又∵∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠ABC+∠E′BD=90°,∵∠ABC=58°,∴∠E′BD=32°.故选:B.13.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.14.解:∵∠BOD=90°﹣∠AOB=90°﹣30°=60°∠EOC=90°﹣∠EOF=90°﹣40°=50°又∵∠1=∠BOD+∠EOC﹣∠BOE∴∠1=60°+50°﹣90°=20°故答案是:20°.15.解:∵将一张纸条折叠,∠1=65°,∴∠1+∠2=180°﹣∠1即65°+∠2=180°﹣65°,得∠2=50°.故答案为:50°.16.解:(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOM+∠DON=40°,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;(2)∵∠AOD=x°,∠MON=80°,∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∵∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.17.解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.18.解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=48°,∴∠BOC=132°,∵OD平分∠BOC,∴∠COD=∠BOC=66°,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣66°=24°;(2)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=α,∴∠BOC=180°﹣α,∵OD平分∠BOC,∴∠COD=∠BOC=(180°﹣α)=90°﹣α,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣(90°﹣α)=α.故答案为:α.19.解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.20.解:(1)∵∠AOB=90°,∠AOC=60°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,故答案为:150°;(2)∵OD平分∠BOC,OE平分∠AOC,∴∠COD=∠BOC=75°,∠COE=∠AOC=30°,∴∠DOE的度数为:∠COD﹣∠COE=45°;故答案为:45;(3)∵∠AOB=90°,∠AOC=2α,∴∠BOC=90°+2α,∵OD、OE平分∠BOC,∠AOC,∴∠DOC=∠BOC=45°+α,∠COE=∠AOC=α,∴∠DOE=∠DOC﹣∠COE=45°.三.角的大小比较21.解:∵28°15′=28°+(15÷60)°=28.25°,∴28°15′>28.15°.故答案为:>.22.解:(1)连接两点之间的线段的长度叫两点间的距离,错误;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,错误;(3)当C在线段AB上,且AB=2CB时,点C是AB的中点,当C不在线段AB上时,则不是中点,故命题错误;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B,正确;故选:A.。
元角分比大小练习题
元角分比大小练习题一、基本比较题1. 5角与8分相比,哪个大?2. 3元2角与250分相比,哪个大?3. 10元与9元8角相比,哪个大?4. 6角5分与65分相比,哪个大?5. 4元3角与400分相比,哪个大?二、进位比较题1. 100分与1元相比,哪个大?2. 7元8角与780分相比,哪个大?3. 9元9角与1000分相比,哪个大?4. 15元与1490分相比,哪个大?5. 20元与1990分相比,哪个大?三、混合比较题1. 2元3角4分与245分相比,哪个大?2. 5元6角7分与570分相比,哪个大?3. 8元9角与890分相比,哪个大?4. 12元3角与1230分相比,哪个大?5. 18元7角与1870分相比,哪个大?四、逆向比较题1. 300分与3元相比,哪个小?2. 4元5角与450分相比,哪个小?3. 6元7角与670分相比,哪个小?4. 9元8角与980分相比,哪个小?5. 11元2角与1120分相比,哪个小?五、实际应用题1. 小明有5元3角,小红有530分,谁的钱多?2. 妈妈给了小华10元,小华用去8角5分,还剩多少钱?3. 小刚有15元,小强有1500分,他们的钱数相等吗?4. 小丽有20元,小王有1980分,谁的钱少?5. 小明有100分,他想买一个价值1元的铅笔,他还差多少钱?六、复杂比较题1. 2元8角与3元2角相比,哪个更大?2. 4元5分与5元3角相比,哪个更小?3. 7元6角与8元4分相比,哪个更大?4. 9元8分与10元6角相比,哪个更小?5. 12元5角与13元2分相比,哪个更大?七、逻辑推理题1. 如果A有3元,B有300分,C有3元3角,那么谁的钱最多?2. D有5元4角,E有540分,F有5元5角,谁的钱最少?3. G有8元7角,H有870分,I有9元,谁的钱在中间?4. J有10元8角,K有1080分,L有11元,谁的省钱最多?5. M有15元5角,N有1550分,O有16元,谁的省钱最少?八、速度比较题1. 小张有50元,每分钟花去5角,小王有500分,每分钟花去50分,谁先花完?2. 小李有7元,每分钟赚3角,小赵有70分,每分钟赚30分,谁赚钱更快?3. 小陈有10元,每分钟花去2角,小刘有1000分,每分钟花去200分,谁剩下的钱多?4. 小王有15元,每分钟赚1元,小赵有1500分,每分钟赚100分,谁赚钱更多?5. 小李有20元,每分钟花去4角,小刘有200分,每分钟花去40分,谁先花完?九、综合应用题1. 小明有3元2角,他想买一本书,书的价格是2元8角,他还剩多少钱?2. 小红有5元,她买了一个文具盒花去1元2角,她还剩多少钱?3. 小华有10元,他买了一支笔花去8角,又买了一本书花去3元,他还剩多少钱?4. 小刚有20元,他买了一个玩具花去15元5角,他还剩多少钱?5. 小丽有50元,她买了一件衣服花去30元,又买了一双鞋花去15元,她还剩多少钱?答案一、基本比较题1. 5角大2. 3元2角大3. 10元大4. 6角5分大5. 4元3角大1. 100分与1元相等2. 7元8角与780分相等3. 9元9角小于1000分4. 15元大于1490分5. 20元大于1990分三、混合比较题1. 2元3角4分小于245分2. 5元6角7分大于570分3. 8元9角小于890分4. 12元3角大于1230分5. 18元7角小于1870分四、逆向比较题1. 300分与3元相等2. 4元5角大于450分3. 6元7角小于670分4. 9元8角小于980分5. 11元2角大于1120分五、实际应用题1. 小明的钱多2. 小华还剩9元1角5分3. 他们的钱数不相等,小刚的钱多4. 小丽的钱少5. 小明还差0元7角1. 3元2角更大2. 4元5分更小3. 7元6角更大4. 9元8分更小5. 12元5角更大七、逻辑推理题1. C的钱最多2. D的钱最少3. H的钱在中间4. J的省钱最多5. M的省钱最少八、速度比较题1. 小张先花完2. 小李赚钱更快3. 小陈剩下的钱多4. 小王赚钱更多5. 小刘先花完九、综合应用题1. 小明还剩0元4角2. 小红还剩3元8角3. 小华还剩6元8角4. 小刚还剩4元5角5. 小丽还剩4元。
《角的比较与运算》习题
角的比较与运算
一、选择题
1.下列语句中,正确的是().
A.比直角大的角钝角; B.比平角小的角是钝角
C.钝角的平分线把钝角分为两个锐角; D.钝角与锐角的差是锐角2.两个锐角的和().
A.必定是锐角; B.必定是钝角;
C.必定是直角; D.可能是锐角,可能是直角,也可能是钝角3.两个角的和与这两个角的差互补,则这两个角().
A.一个是锐角,一个是钝角; B.都是钝角;
C.都是直角; D.必有一个是直角
4.下列说法错误的是().
A.两个互余的角都是锐角; B.一个角的补角大于这个角本身;
C.互为补角的两个角不可能都是锐角;
D.互为补角的两个角不可能都是钝角
二、解答题
5.所示,直线AB上一点O,任意画射线OC,已知OD、OE分别是∠AOC、•∠BOC 的角平分线,求∠DOE的度数.
6.如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.
- 8 -。
2022-2023学年人教版七年级数学上册《4-3-2角的比较与运算》知识点分类练习题(附答案)
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》知识点分类练习题(附答案)一.角平分线1.如图,下列结论中,不能说明射线OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOB=2∠AOC D.∠AOC+∠BOC=∠BOA2.如图所示,∠AOB=156°,OD是∠AOC的平分线,OE是∠BOC的平分线,那么∠DOE 等于()A.78°B.80°C.88°D.90°3.一个钝角的平分线和这个角的一边形成的角一定是()A.锐角B.钝角C.直角D.平角4.如图,∠AOB是直角,OE平分∠AOC,OD平分∠BOC.求∠EOD的度数.5.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.6.如图,点O为直线AB上的一点,∠BOC=42°,∠COE=90°,且OD平分∠AOC,求∠AOE和∠DOE的度数.7.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠AOD=()A.45°B.55°C.65°D.75°8.如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD 的平分线,∠MON等于度.9.如图,OC平分∠AOB,若∠BOC=23°,则∠AOB=度.10.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125°D.145°11.如图,∠AOC与∠BOC的度数比为5:2,OD平分∠AOB,若∠COD=15°,求∠AOB 的度数.12.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD 的度数是.二.角的计算13.不能用一副三角板拼出的角是()A.150°B.105°C.15°D.110°14.如图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=°.15.如图,已知∠AOB=90°,OD平分∠AOC,OE平分∠BOC.(1)若∠DOB=15°,求∠DOE的度数;(2)若∠DOB=x,此时∠DOE=.(1)解:∵∠AOB=90°,∠DOB=15°,∴∠1=.又∵OD平分∠AOC,∴.请继续完成求∠DOE度数的推理过程:16.如图,∠DOC=∠BOD,OB平分∠AOC.(1)若∠DOC=20°,求∠BOD和∠AOC的度数;(2)若∠DOC=α,则∠AOD=°.17.如图,已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,若∠COE=35°,求∠DOB的度数;(2)若将图1中的∠COD放置到图2所示的位置,其他条件不变,若∠COE=β,求∠DOB的度数.(根据图形中角的关系进行推理和计算,并用含β的代数式表示出∠DOB)18.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°19.平面内有公共端点的三条射线OA,OB,OC,构成的角∠AOB=30°,∠BOC=70°,OM和ON分别是∠AOB和∠BOC的角平分线,则∠MON的度数是.20.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为.21.如图:已知直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=32°,求∠BOE的度数;(2)若∠BOD:∠BOC=2:7,求∠BOD的度数.22.如图,点O为直线AC上任意一点,∠AOB=78°,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC.求∠EOC及∠DOC的度数.23.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.24.如图,OE为∠AOD的平分线,∠EOC,∠COD=18°,求:∠AOD的大小.三.比较角的大小25.将钝角,直角,平角,锐角由小到大依次排列,顺序是.26.比较大小:52°52′52.52°.(填“>”、“<”或“=”)27.如图,正方形网格中每个小正方形的边长都为1,则∠α与∠β的大小关系为()A.∠α<∠βB.∠α=∠βC.∠α>∠βD.无法估测28.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.29.如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?参考答案一.角平分线1.解:A、∵∠AOC=∠BOC,∴OC平分∠AOB,故A正确;B、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BO,C∴∠AOC=∠BOC,故B正确;C、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BOC,∴∠AOC=∠BOC,故C正确;D、∵∠AOC+∠BOC=∠AOB,∠AOC不一定等于∠BOC,故D错误;故选:D.2.解:∵OD是∠AOC的平分线,∴∠COD=∠AOC,同理,∠COE=∠BOC,又∵∠AOB=∠AOC+∠BOC,∴∠DOE=∠COD+∠COE=∠AOB=×156°=78°.故选:A.3.解:设这个角的度数是α°,则90<α<180,两边都除以2得:45<α<90,即是锐角.故选:A.4.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠EOD=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB,∵∠AOB是直角,∴∠EOD=45°.5.解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°6.解:∵点O为直线AB上的一点,∠BOC=42°,∴∠AOC=180°﹣42°=138°,∵OD平分∠AOC,∴∠COD=∠AOD=∠AOC=69°,∵∠COE=90°,∴∠DOE=90°﹣69°=21°,∴∠AOE=∠AOD﹣∠DOE=48°.7.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=45°,∴∠BOC=45°﹣15°=30°,∵OC是∠AOB的角平分线,∴∠BOC=∠AOC=30°,∴∠AOD=75°.故选:D.8.解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故答案为135.9.解:∵OC平分∠AOB,且∠BOC=23°,∴∠AOB=2∠BOC=46°.∴∠AOB=46°.故答案为46.10.解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选:C.11.解:设∠AOC=5x,则∠BOC=2x,∠AOB=7x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠COD=∠BOD﹣∠BOC∴15°=x﹣2x,解得x=10°,∴∠AOB=7×10°=70°.12.解:①OC在∠AOB外,如图1,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D+∠BOC=30°+20°=50°;②OC在∠AOB内,如图2,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D﹣∠BOC=30°﹣20°=10°.故答案为:50°或10°.二.角的计算13.解:A、150°可以用90°与60°角拼出;B、105°可以用60°与45°角拼出;C、15°可以用30°与45°角拼出;D、110°不能拼出.故选:D.14.解:∵∠AOD+∠BOC=∠AOB+∠COB+∠DOC+∠COB+∠COD,∵∠AOC=∠BOD=90°,∴∠AOD+∠BOC=180°.故答案为180.15.解:(1)∵∠AOB=90°,∠DOB=15°,∴∠1=90°﹣∠DOB=90°﹣15°=75°.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=150°,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=150°﹣90°=60°,∵OE平分∠BOC,∴∠3=∠BOC=30°,∴∠DOE=∠DOB+∠3=15°+30°=45°;故答案为:90°﹣∠DOB=90°﹣15°=75°;∠1=∠COD=∠AOC,(2)∵∠AOB=90°,∠DOB=x,∴∠1=90°﹣∠DOB=90°﹣x.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=180°﹣2x,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=180°﹣2x﹣90°=90°﹣2x,∵OE平分∠BOC,∴∠3=∠BOC=45°﹣x,∴∠DOE=∠DOB+∠3=x+45°﹣x=45°.故答案为:45°.16.解:(1)∵∠DOC=∠BOD,∠DOC=20°,∴∠BOD=3∠DOC=60°,∴∠BOC=∠BOD﹣∠DOC=60°﹣20°=40°,∵OB平分∠AOC,∴∠AOC=2∠BOC=80°,答:∠BOD和∠AOC的度数分别为60°,80°;(2)∵∠DOC=∠BOD,∴∠BOD=3∠DOC=3α°,∴∠BOC=∠BOD﹣∠DOC=3α°﹣α°=2α°,∵OB平分∠AOC,∴∠AOC=2∠BOC=4α°,∴∠AOD=∠DOC+∠AOC=5α°,故答案为:5α.17.解:(1)∵∠COE=35°,∠COD是直角,∴∠DOE=∠COD﹣∠COE=55°,∵OE平分∠AOD,∴∠AOD=2∠DOE=110°,∴∠DOB=180°﹣∠AOD=70°;(2)∵∠COD是直角,∠COE=β,∴∠DOE=∠COE﹣∠COD=β﹣90°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2β﹣180°,∴∠DOB=180°﹣∠AOD=360°﹣2β.18.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.19.解:有两种情况,(1)射线OA在∠BOC的内部,∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON﹣∠BOM=35°﹣15°=20°.(2)射线OA在∠BOC的外部.∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON+∠BOM=35°+15°=50°.故答案为:20°或50°.20.解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故答案为:28°或112°.21.解:(1)∵∠COE=90°,∠AOC=32°,∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣32°﹣90°=58°;(2)∵∠BOD:∠BOC=2:7,∠BOD+∠BOC=180°,∴∠BOD=40°.22.解:∵∠AOB=78°,OD平分∠AOB∴,∴∠DOC=180°﹣∠AOD=180°﹣39°=141°;∵,∴∠EOC====68°.23.解:∵∠COD=∠AOD=120°,∴∠AOC=120°,∵∠AOB=∠AOC,∴∠AOB=40°,∴∠COB=80°.24.解:∵∠COD=∠EOC,∠COD=18°,∴∠EOC=72°;∵OE平分∠AOD,∴∠DOE=∠AOE,∵∠EOC=72°,∠COD=18°,∴∠DOE=54°,则∠AOD=2∠DOE=108°.三.比较角的大小25.解:将钝角,直角,平角,锐角由小到大依次排列,顺序是锐角<直角<钝角<平角,故答案为:锐角<直角<钝角<平角.26.解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.27.解:将∠α平移,使∠α与∠β两个角的顶点重合,∠α下边的一条边与∠β下边的一条边重合,可得:∠α上面的一条边在∠β的内部,所以∠α<∠β,故选:A.28.解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.29.解:7+6+5+4+3+2+1==28,一般地如果MOG小于180,且图中一共有几条射线,则一共有:(n﹣1)+(n﹣2)+…+2+1=.。
四年级数学角的练习题
四年级数学角的练习题四年级数学角的练习题数学是一门让人们充满好奇和挑战的学科,其中一个重要的概念就是角。
角是我们生活中常见的几何形状,它们存在于我们的日常生活中的各个角落。
在四年级的数学课程中,学生们开始接触和学习有关角的知识。
今天,我们将一起来解决一些有趣的四年级数学角的练习题。
1. 角的定义首先,我们需要了解角的定义。
角是由两条射线共享同一个起点构成的形状。
这个起点被称为角的顶点,两条射线被称为角的边。
现在,让我们来看一个例子。
假设有一根直线,我们可以在这条直线上选择两个不同的点A和B。
现在,我们可以通过这两个点来画一条射线,分别从点A和点B开始,并且这两条射线共享同一个起点。
这样,我们就形成了一个角,记作∠ABC。
2. 角的分类角可以根据其大小进行分类。
如果一个角的度数小于90度,则称为锐角。
如果一个角的度数等于90度,则称为直角。
如果一个角的度数大于90度但小于180度,则称为钝角。
现在,我们来解决一些关于角分类的练习题。
练习题1:下面的角是什么类型的角?a) 30度b) 90度c) 120度d) 150度练习题2:画一个锐角和一个钝角。
3. 角的度数角的度数是用来衡量角的大小的。
一个完整的圆有360度,所以一个角的度数可以在0度到360度之间。
现在,我们来解决一些关于角度的练习题。
练习题3:下面的角的度数是多少?a) 45度b) 180度c) 270度d) 360度练习题4:画一个60度的角。
4. 角的比较我们可以通过比较两个角的度数来确定它们的大小。
如果一个角的度数大于另一个角的度数,则我们可以说这个角比较大。
现在,我们来解决一些关于角比较的练习题。
练习题5:比较下面两个角的大小:∠ABC = 50度∠DEF = 70度练习题6:比较下面两个角的大小:∠PQR = 100度∠STU = 100度5. 角的补角和余角在数学中,我们可以通过找到一个角的补角和余角来衡量它的大小。
补角是指两个角的度数加起来等于90度。
人教版七年级上册数学4.3.7角的大小比较练习题
2019年12月04日初中数学组卷参考答案与试题解析一.选择题(共36小题)1.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.以上都不对【分析】首先同一单位,利用1°=60′,把∠α=40.4°=40°24′,再进一步与∠β比较得出答案即可.【解答】解:∵∠1=40.4°=40°24′,∠2=40°4′,∴∠1>∠2.故选:B.【点评】此题考查角的大小比较和度分秒之间的换算,在比较角的大小时有时可把度化为分来进行比较.2.如图,在此图中小于平角的角的个数是()A.9 B.10 C.11 D.12【分析】根据角的定义,找出图中小于平角的角.【解答】解:由图可知:∠CAB、∠CAE、∠BAE、∠AEB、∠CED、∠D、∠DCE、∠DCA、∠ECA、∠EBA、∠ABC小于平角,共11个.故选C.【点评】除了注意角要小于平角外,还要注意同一顶点处的角要全部找出来.3.用一个放大镜去考查一个角的大小,正确的说法是()A.角的度数扩大了 B.角的度数缩小了C.角的度数没有变化D.以上都不对【分析】角的大小只与两边叉开的大小有关,放大镜不能改变角的大小.【解答】解:用放大镜看一个角的大小时,角的度数不会发生变化,故选C.【点评】本题主要考查角的大小,明确角的大小只与两边叉开的大小有关,与其他无关是解决此类问题的关键.4.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()A.点C B.点D或点EC.线段DE(异于端点)上一点D.线段CD(异于端点)上一点【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.【解答】解:连接BC,AC,BD,AD,AE,BE,已知A,B,D,E四点共圆,同弧所对的圆周角相等,因而∠ADB=∠AEB,然后圆同弧对应的“圆内角“大于圆周角,“圆外角“小于圆周角,因而射门点在DE上时角最大,射门点在D点右上方或点E左下方时角度则会更小.故选C.【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.5.若∠1=20°18′,∠2=20°15′30′′,∠3=20.25°,则()A.∠1>∠2>∠3 B.∠2>∠1>∠3 C.∠1>∠3>∠2 D.∠3>∠1>∠2【分析】∠1、∠2已经是度、分、秒的形式,只要将∠3化为度、分、秒的形式,即可比较大小.【解答】解:∵∠1=20°18′,∠2=20°15′30′′,∠3=20.25°=20°15′,∴∠1>∠2>∠3.故选A.【点评】主要考查了两个角比较大小.在比较时要注意统一单位后再比较.6.若∠A=20°18′,∠B=20°16″,∠C=20.25°,则有()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B 【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【解答】解:∵∠A=20°18′,∠B=20°16″,∴∠A>∠B,∵∠C=20.25°=20°15′,∴∠B<∠C∴∠A>∠C>∠B.故选:C.【点评】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.7.如图,AOE是一条直线,图中小于平角的角共有()A.4个 B.8个 C.9个 D.10个【分析】根据角的定义分别表示出各角即可.【解答】解:图中小于平角的角共有:∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠BOE,∠COD,∠DOE,∠COE,共9个.故选:C.【点评】此题主要考查了角的定义,熟练掌握角定义是解题关键.8.若∠A=20°18′,∠B=1212′,∠C=20.25°,则()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B 【分析】先把∠B和∠C用度、分、秒表示,再比较即可.【解答】解:∵∠A=20°18′,∠B=1212′=20°12′,∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选C.【点评】本题考查了度、分、秒之间的换算,角的大小比较的应用,能理解度、分、秒之间的关系是解此题的关键.9.如图,射线OB、OC将∠AOD分成三部分,下列判断错误的是()A.如果∠AOB=∠COD,那么∠AOC=∠BODB.如果∠AOB>∠COD,那么∠AOC>∠BODC.如果∠AOB<∠COD,那么∠AOC<∠BODD.如果∠AOB=∠BOC,那么∠AOC=∠BOD【分析】利用图中角与角的关系选择即可得出D为错误选项.【解答】解:A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;C、如果∠AOB<∠COD,那么∠AOC<∠BOC,本选项正确;D、如果∠AOB=∠BOC,那么∠AOC=∠BOD,本选项错误.故选:D.【点评】本题主要考查了角的大小比较,解题的关键是正确找出各角的关系式.10.已知∠1=17°18′,∠2=17.18°,∠3=17.3°,下列说法正确的是()A.∠1=∠2 B.∠1=∠3 C.∠1<∠2 D.∠2>∠3【分析】根据1°=60′把∠1=17°18′化成度数再进行解答即可.【解答】解:∵1°=60′,∴18′=()°=0.3°,∴∠1=17°18′=17.3°,∴B正确.故选B.【点评】此题比较简单,解答此题的关键是熟知1°=60′.11.已知∠α,如图,则∠α的度数约为()A.75°B.60°C.45°D.30°【分析】根据图形和各个角度的大小得出即可.【解答】解:根据图形可以估计∠α约等于45°,故选C.【点评】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.12.已知α=76°5′,β=76.5°,则α与β的大小关系是()A.α>βB.α=βC.α<βD.以上都不对【分析】根据度分秒转化得出76.5°=76°30′,进而得出α与β的大小关系.【解答】解:∵α=76°5′,β=76.5°=76°30′,∴α<β.故选:C.【点评】此题主要考查了角的比较以及度分秒的转化,正确进行度分秒转化是解题关键.13.已知∠A=40°18′,∠B=40°17′30″,∠C=40.18°,则()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠C>∠A>∠B D.∠A>∠C>∠B【分析】先统一单位,再根据角的大小比较的方法进行比较即可求解.【解答】解:∵∠C=40.18°=40°10′48″,40°18′>40°17′30″>40°10′48″,∴∠A>∠B>∠C.故选:A.【点评】考查了度分秒的换算和角的大小比较,度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.注意要统一单位.14.如果∠α=55.5°,∠β=55°5′,那么∠α与∠β之间的大小关系是()A.∠α>∠βB.∠α<∠βC.∠α=∠β D.无法确定【分析】首先根据1°=60′,将∠α转化为55°30′,再比较即可.【解答】解:∵∠α=55.5°=55°30′,∠β=55°5′,∴∠α>∠β.故选A.【点评】此题考查角的大小比较及度分秒的换算,注意统一单位,掌握1°=60′,1′=60″.15.如图,如果∠CAE>∠BAD,那么下列说法中一定正确的是()A.∠BAC>∠CAD B.∠DAE>∠CADC.∠CAE<∠BAC+∠DAE D.∠BAC<∠DAE【分析】先由∠CAE>∠BAD,根据角的和差可得∠CAD+∠DAE>∠BAC+∠CAD,再利用不等式的性质得出∠DAE>∠BAC,即∠BAC<∠DAE.【解答】解:∵∠CAE>∠BAD,∴∠CAD+∠DAE>∠BAC+∠CAD,∴∠DAE>∠BAC,即∠BAC<∠DAE.故选D.【点评】本题考查了角的大小比较,角的和差,不等式的性质,根据角的和差结合图形得出∠CAE=∠CAD+∠DAE,∠BAD=∠BAC+∠CAD是解题的关键.16.将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的()A.另一边上B.内部C.外部D.无法判断【分析】如果两个角的顶点重合,且有一边重合,两角的另一边均落在重合边的同旁:如果这两边也重合,说明两角相等;如果两边不重合,另一条边在里面的小,在外面的大;由此方法求解即可.【解答】解:将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的外部.故选C.【点评】此题考查利用叠合法比较两个角的大小,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.17.若∠A=62.58°,∠B=62°48′.则∠A与∠B的大小关系是()A.∠A<∠B B.∠A=∠B C.∠A>∠B D.无法确定【分析】首先将62°48′,转化成62.8°,进而比较得出即可.【解答】解:∵∠A=62.58°,∠B=62°48′=62.8°,∴∠A<∠B,故选:A.【点评】此题主要考查了度分秒的转化以及角的比较大小,正确进行度分秒转化是解题关键.18.若∠A=45°18′,∠B=45°15′30″,∠C=45.15°,则()A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B 【分析】根据度分秒间的关系,可把不到一度的化成分,根据度分秒的大小比较,可得答案.【解答】解;∠C=45.15°=45°9′,∵45°18′>45°15′30″>45°9′,故选:A.【点评】本题考查了角的大小比较,利用了角的度数大小的比较,先化成相同的单位.19.下列角度中,比20°小的是()A.19°38′B.20°50′C.36.2°D.56°【分析】根据角的大小比较方法分别与20°进行比较,即可得出答案.【解答】解:∵19°38′<20°,20°50′>20°,36.2°>20°,56°>20°,∴比20°小的是19°38,故选A.【点评】此题考查了角的大小比较,根据角的比较方法进行比较,是一道基础题,比较简单.20.在∠AOB的内部任取一点C,作射线OC,则一定存在()A.∠AOB>∠AOC B.∠AOB<∠BOC C.∠BOC>∠AOC D.∠AOC>∠BOC 【分析】利用角的大小进行比较.【解答】解:射线OC在∠AOB的内部,那么∠AOC在∠AOB的内部,且有一公共边;则一定存在∠AOB>∠AOC.故选A.【点评】本题考查角的大小比较,比较简单.21.∠α和∠β的顶点和一边都重合,另一边都在公共边的同侧,且∠α>∠β,那么∠α的另一边落在∠β的()A.另一边上B.内部C.外部D.以上结论都不对【分析】根据题意画出图形,利用数形结合即可得出结论.【解答】解:如图所示:.故选C.【点评】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.22.若∠1=75°24′,∠2=75.3°,∠3=75.12°,则()A.∠1=∠2 B.∠2=∠3 C.∠1>∠3 D.以上都不对【分析】根据1°=60′把∠1=75°24′化成度数再进行解答即可.【解答】解:∵1°=60′,∴24′=()°=0.4°,∴∠1=75°24′=75.4°,∴A、B均错误,C正确.故选C.【点评】此题比较简单,解答此题的关键是熟知1°=60′.23.如图,∠AOB=∠COD,则∠AOC与∠DOB的大小关系是()A.∠AOC>∠DOB B.∠AOC<∠DOBC.∠AOC=∠DOB D.∠AOC与∠DOB无法比较大小【分析】先根据∠AOB=∠COD得出∠AOB+∠BOC=∠COD+∠BOC,故可得出结论.【解答】解:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠DOB.故选C.【点评】本题考查的是角的大小比较,熟知角比较大小的法则是解答此题的关键.24.下列各式不正确的是()A.18000″<360′B.2°30′>2.4°C.36000″<8°D.1°10′20″>4219″【分析】1°=60′,1′=60″,根据以上内容进行变换,再比较即可.【解答】解:A、18000″=(18000÷60)′=300′<360′,故本选项错误;B、2°30′=2.5°>2.4°,故本选项错误;C、36000=10°>8°,故本选项正确;D、4219″=1°13′39″>1°10′20″,故本选项错误.故选C.【点评】本题考查了度、分、秒之间的换算的应用,能进行度、分、秒之间的换算是解此题的关键.25.已知O是直线AB上一点,OC是一条射线,则∠AOC与∠BOC的关系是()A.∠AOC一定大于∠BOCB.∠AOC一定小于∠BOCC.∠AOC一定等于∠BOCD.∠AOC可能大于、等于或小于∠BOC【分析】根据题意发现,此题没有图形,那么我们应该通过分类讨论的方法,画出图形,由OC不同的位置,即可判断.【解答】解:如图所示,∴∠AOC可能会大于、小于、等于∠BOC.【点评】本题主要考查角的比较大小,当题目中没有给出图形时,要考虑全面,分情况去讨论.26.如图,若∠AOB=∠COD,那么()A.∠1>∠2 B.∠1<∠2C.∠1=∠2 D.∠1、∠2的大小不确定【分析】根据图形可知∠1+∠COB=∠AOB,∠COB+∠2=∠COD,由∠AOB=∠COD,从而可以判断∠1与∠2的关系.【解答】解:由图可知:∠1+∠COB=∠AOB,∠COB+∠2=∠COD,∵∠AOB=∠COD,∴∠1+∠COB=∠COB+∠2.∴∠1=∠2.故选C.【点评】本题考查角的大小的比较,解题的关键是数形结合,找出其中相等的量.27.如图,小于平角的角共有()A.10个B.9个 C.8个 D.4个【分析】小于平角的角有∠EOD,∠EOC,∠EOB,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA.【解答】解:小于平角的角有∠EOD,∠EOC,∠EOB,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA,共9个.【点评】本题考查了角的大小比较的应用,注意:应沿一个方向数,只有这样才能做到不重不漏.28.如图所示,小于平角的角有()A.9个 B.8个 C.7个 D.6个【分析】分别根据以A,B,C,D,E为顶点得出角的个数即可.【解答】解:符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,故有1+2+1+1+2=7个角.故选C.【点评】此题主要考查了角的定义,根据已知分别得出角的个数是解题关键.29.下列判断正确的是()A.∠1的2倍小于∠1的3倍B.用度量法无法确定两个角的大小C.若∠AOB=2∠BOC,则OC是∠AOB的平分线D.角的大小随边的长度变化而变化【分析】根据∠1>0即可判断A;角的大小比较用度量法和重叠法两种,角的大小不随边的长度的变化而变化,即可判断B、D,举出反例即可判断C.【解答】解:A、∵∠1>0,∴2∠1<3∠1,故本选项正确;B、用度量法能确定两个角的大小,故本选项错误;C、如图,符合条件∠AOB=2∠BOC,但OC不是∠AOB的平分线,故本选项错误;D、角的大小不随边的长度的变化而变化,故本选项错误;故选A.【点评】本题考查了角的有关内容,角平分线定义的应用,主要考查学生的理解能力和辨析能力.30.∠ABC与∠MNP相比较,若顶点B与N重合,且BC与MN重合,BA在∠MNP的内部,则它们的大小关系是()A.∠ABC>∠MNP B.∠ABC=∠MNP C.∠ABC<∠MNP D.不能确定【分析】根据题意画出图形,比较出两角的大小关系即可.【解答】解:如图所示:∵∠MNP=∠ABC+∠PBA,∴∠ABC<∠MNP.故选C.【点评】本题考查的是角的大小,根据题意画出图形,利用数形结合求解是解答此题的关键.31.已知三个点A,B,C在直线L上,点D在直线L外,以其中任意一点为顶点,则小于平角的角有()A.6个 B.7个 C.8个 D.10个【分析】利用图形找出角.【解答】解:先根据题意画出图形,便可找到如图所示的∠1,∠2,∠3,∠4,∠5,∠6,∠7.故选B.【点评】解题时要找到图中三条两两相交直线的交点,作为角的顶点,且找出的角要小于180°.32.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则()A.∠A>∠B>∠C B.∠A>∠B=∠C C.∠B>∠C>∠A D.∠B=∠C>∠A 【分析】将∠A、∠B、∠C统一单位后比较即可.【解答】解:∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选B.【点评】此类题是进行度、分、秒的转化计算,相对比较简单,注意以60为进制即可.33.如图,若∠AOC=∠BOD,那么∠AOD与∠BOC的关系是()A.∠AOD>∠BOC B.∠AOD<∠BOC C.∠AOD=∠BOC D.无法确定【分析】根据题意∠AOC=∠BOD,再根据图得知∠COD为∠AOD与∠BOC的公共角,从而得出答案.【解答】解:∵∠AOC=∠BOD,∠COD为∠AOD与∠BOC的公共角,∴∠AOC+∠COD=∠BOD+∠COD,∴∠AOD=∠BOC,故选C.【点评】本题考查了角的大小比较,解题的关键是根据图得知∠COD为∠AOD 与∠BOC的公共角,再解题就容易了.34.已知∠α=39°18′,∠β=39.18°,∠γ=39.3°,下面结论正确的是()A.∠α<∠γ<∠βB.∠γ>∠α=∠βC.∠α=∠γ>∠βD.∠γ<∠α<∠β【分析】首先把∠α转化为39.3°,然后再来比较它们的大小.【解答】解:∵∠α=39°18′=39.3°,39.18°<39.3°,∴∠α=∠γ>∠β.故选C.【点评】本题考查了角的大小比较、度分秒的换算.度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.35.已知∠α=18°18′,∠β=18.18°,∠γ=18.3°,下列结论正确的是()A.∠α=∠βB.∠α<∠βC.∠α=∠γ D.∠β>∠γ【分析】将∠α、∠β、∠γ统一单位后比较即可.【解答】解:1°=60′,∴18′=()°=0.3°,∴18°18′=18°+0.3°=18.3°,即∠α=∠γ.故选C.【点评】此类题是进行度、分、秒的转化计算,相对比较简单,注意以60为进制即可.36.下列说法中,正确的是()A.角的平分线就是把一个角分成两个角的射线B.若∠AOB=∠AOC,则OA是∠AOC的平分线C.角的大小与它的边的长短无关D.∠CAD与∠BAC的和一定是∠BAD【分析】根据角平分线的性质和角的含义以及角的计算分别进行解答,即可得出答案.【解答】解:A、角的平分线就是把一个角分成两个相等的角的射线,故本选项错误;B、若∠AOB=∠AOC,OA也不是∠AOC的平分线,如图:故本选项错误;C、角的大小与它的边的长短无关,故本选项正确;D、当射线AB在∠CAD的内部时,∠CAD与∠BAC的差是∠BAD,故本选项错误;故选C.【点评】此题考查了角的大小比较、角平分线的性质和角的计算,关键掌握角平分线的性质和角的画法,多数角分两种情况画,在角的内部和角的外部.二.填空题(共3小题)37.如果∠1=∠2,∠2=∠3,则∠1=∠3;如果∠1>∠2,∠2>∠3,则∠1>∠3.【分析】根据等量代换由∠1=∠2,∠2=∠3得到∠1=∠3;根据不等式的性质由∠1>∠2,∠2>∠3得到∠1>∠3.【解答】解:∵∠1=∠2,∠2=∠3,∴∠1=∠3;∵∠1>∠2,∠2>∠3,∴∠1>∠3.故答案为=,>.【点评】本题考查了角的大小比较:角的度数越大,角越大.也考查了等量代换和不等式的性质.38.如图,∠AOB>∠AOC(填>,=,<);若∠AOC=∠AOB,则OC平分∠AOB;若OC是∠AOB的角平分线,则∠AOB=2∠AOC.【分析】利用已知图形,结合角平分线的性质分析得出即可.【解答】解:由图象可得:∠AOB>∠AOC,若∠AOC=∠AOB,则OC平分∠AOB;若OC是∠AOB的角平分线,则∠AOB=2∠AOC故答案为:>,∠AOB,∠AOB.【点评】此题主要考查了角的比较大小以及角平分线的定义,正确把握角的定义是解题关键.39.如图,能用一个字母表示的角是∠A,∠O,图中共有8个小于平角的角,它们分别是∠A、∠O、∠ABO、∠ABC、∠OBC、∠AOC、∠ACB、∠OCB..【分析】利用角的定义及角的表示法解题.【解答】解:以点A、O为顶点的角分别只有一个,故能用一个字母表示为∠A、∠O.图中的角:以A为顶点的角是∠A;以B为顶点的角是∠ABO,∠ABC,∠OBC;以C为顶点的角是∠ACO,∠ACB,∠OCB;以O为顶点的角是∠O.共8个.故填∠A、∠O;8;∠ABO,∠ABC,∠OBC,∠ACO,∠ACB,∠OCB.【点评】数角时将每个顶点处的角数全,不要遗漏.三.解答题(共11小题)40.如图,AO⊥OC,解答下列问题:①比较∠AOB、∠AOC、∠AOD、∠AOE的大小,并指明其中的锐角、直角、钝角及平角;②写出∠AOB、∠AOC、∠BOC、∠AOE中某些角之间的两个等量关系.【分析】(1)根据垂直得出∠AOC=90°,再根据锐角、直角、钝角及平角的定义求出即可;(2)根据已知得出∠AOB+∠BOC=∠AOC,∠AOB+∠BOC+∠AOC=∠AOE.【解答】解:(1)∠AOB<∠AOC<∠AOD<∠AOE,∵AE⊥OC,∴∠AOC=90°,∴∠AOB是锐角,∠AOC是直角,∠AOD是钝角,∠AOE是平角;(2)∠AOB+∠BOC=∠AOC,∠AOB+∠BOC+∠AOC=∠AOE.【点评】本题考查了角的大小比较和垂直定义的应用,主要考查学生的理解能力.41.如图所示,点O在直线AB上,并且∠AOC=∠BOC=90°,∠EOF=90°,试判断∠AOE和∠COF,∠COE和∠BOF的大小关系.【分析】根据已知得出∠AOE和∠COF都与∠COE互余,进而得出∠AOE=∠COF,即可得出:∠COE=∠BOF.【解答】解:因为∠EOF=∠COF+∠COE=90°,∠AOC=∠AOE+∠COE=90°,即∠AOE和∠COF都与∠COE互余,根据同角的余角相等得:∠AOE=∠COF,同理可得出:∠COE=∠BOF.【点评】此题主要考查了角的比较大小,根据已知得出∠AOE=∠COF是解题关键.42.如图,回答下列问题:(1)比较∠FOD与∠FOE的大小;(2)借助三角板比较∠DOE与∠BOF 的大小;(3)借助量角器比较∠AOE与∠DOF的大小.【分析】(1)根据OD边在∠FOE内部,即可得出∠FOD<∠FOE.(2)用量角器量∠DOE大于45゜,∠DOF小于45゜,即可得出∠DOE>∠DOF.(3)用量角器量出角的度数,再比较大小即可.【解答】解:(1)∵OD在∠FOE的内部,∴FOD<∠FOE.(2)用含有45゜角的三角板比较,可得∠DOE>45゜,∠BOF<45゜,则∠DOE>∠BOF.(3)用量角器度量得∠AOE=30゜,∠DOF=30゜,则∠AOE=∠DOF.【点评】此题考查了角的大小比较,解题的关键是会用量角器估算角的大小,是一道基础题.43.如图,∠BOD=90°,∠COE=90°,解答下列问题:(1)图中有哪些小于平角的角?用适当的方法表示出它们.(2)比较∠AOC、∠AOD、∠AOE、∠AOB的大小,并指出其中的锐角、钝角、直角、平角.(3)找出图中所有相等的角.【分析】根据题中所给条件,结合图形:(1)找出途中锐角、直角、钝角即可;(2)直接比较,并且分类即可;(3)利用直角都相等,等角的余角相等列出即可.【解答】解:(1)图中小于平角的角有∠AOC、∠AOD、∠AOE、∠COD、∠COE、∠DOE、∠DOB、∠EOB;(2)由图可知,∠AOC<∠AOD<∠AOE<∠AOB,其中∠AOC为锐角,∠AOD为直角,∠AOE为钝角,∠AOB为平角;(3)∠AOC=∠DOE,∠COD=∠BOE,∠AOD=∠BOD=∠COE.【点评】此题考查对角的分类以及角的大小比较,注意找角要从一个点出发,按一定的顺序数.44.如图,AB>AC,AD平分∠BAC,且CD=BD.试说明∠B与∠C的大小关系?【分析】在AB上截取AE=AC,连接DE,证△ACD≌△AED,根据全等三角形的性质和等腰三角形的性质即可得到两角的大小关系.【解答】解:∠B十∠C=180°.理由如下:在AB上截取AE=AC,连接DE.∵AD平分∠BAC,∴∠CAD=∠EAD,在△ACD与△AED中,,∴△ACD≌△AED(SAS),∴∠C=∠AED,CD=DE,又∵CD=BD,∴DE=DB,∴∠B=∠DEB,又∵∠DEB+∠AED=180°,∴∠B+∠C=180°.【点评】本题主要考查全等三角形的性质和等腰三角形的性质和角平分线的定义.45.比较两个角的大小,有以下两种方法(规则)①用量角器度量两个角的大小,用度数表示,则角度大的角大;②构造图形,如果一个角包含(或覆盖)另一个角,则这个角大.对于如图给定的∠ABC与∠DEF,用以上两种方法分别比较它们的大小.注:构造图形时,作示意图(草图)即可.【分析】①根据量角器的使用方法量出每一个角的度数,根据角的度数即可比较大小;②把∠ABC放在∠DEF上,使B和E重合,边EF和BC重合,DE和BA在EF的同侧,根据图形的包含情况即可得出答案.【解答】①解:用量角器度量∠ABC=50°,∠DEF=70°,即∠DEF>∠ABC.②解:如图:把∠ABC放在∠DEF上,使B和E重合,边EF和BC重合,DE和BA在EF的同侧,从图形可以看出∠DEF包含∠ABC,即∠DEF>∠ABC.【点评】本题主要考查学生的动手操作能力,注意:用量角器测量角的度数的方法,比较两个角的大小由三种方法:①度量法,②重叠法,③观察法,即通过看直接比较两个角的大小.46.李老师到数学王国去散步,刚走到“角”的家门,就听到∠A、∠B、∠C在吵架,∠A说:“我是37°18′,我应该最大!”∠B说:“我是37.2°,我应该最大!”.∠C也不甘示弱:“我是37.18°,我应该和∠A一样大!”听到这里,李老师对它们说:“别吵了,你们谁大谁小,由我来作评判!”,你知道李老师是怎样评判的吗?【分析】根据度、分、秒的换算1度=60分,即1°=60′,1分=60秒,即1′=60″.将37°18′,37.2°,37.18°的单位统一,再进行大小的比较.【解答】解:∵∠A=37°18′,∠B=37.2°=37°12′,∠C=37.18°=37°10.8′,∴∠C<∠B<∠A.【点评】本题考查了度分秒的换算和角的大小比较,关键是统一单位,再进行大小的比较.47.如图,AB垂直CD(即∠AOC=∠AOD=∠BOD=∠BOC=90°)(1)比较∠AOD,∠EOB,∠AOE大小(用“<”连接)(2)如∠EOC=28°,求∠EOB和∠EOD的度数(适当写出解题过程)【分析】(1)根据已知得出∠AOD=90°,∠EOB<90°,∠AOE>90°,即可得出答案;(2)代入∠EOB=∠BOC﹣∠EOC求出即可;代入∠EOD=∠BOD+∠BOE求出即可.【解答】解:(1)∵∠AOC=∠AOD=∠BOD=∠BOC=90°,∴∠AOD=90°,∠EOB<90°,∠AOE>90°,即∠EOB<∠AOD<∠AOE.(2)∵∠EOC=28°,∠BOC=90°,∴∠EOB=90°﹣28°=62°,∵∠BOD=90°,∴∠EOD=∠EOB+∠BOD=62°+90°=152°.【点评】本题考查了角的大小比较和计算的应用,主要考查学生的计算能力.48.如图,已知OE是∠COA的平分线,∠AOE=59°35′,∠AOB=∠COD=16°17′22″.(1)求∠BOC的度数.(2)比较∠AOC与∠BOD的大小.【分析】(1)根据角平分线定义求出∠AOC,根据∠BOC=∠AOC﹣∠AOB代入求出即可;(2)∠AOC=∠BOD,理由是根据∠BOD=∠BOC+∠COD求出∠BOD=119°10′,即可得出答案.【解答】解:(1)∵OE是∠COA的平分线,∠AOE=59°35′,∴∠AOC=2∠AOE=119°10′,∵∠AOB=16°17′22″,∴∠BOC=∠AOC﹣∠AOB=102°52′38″;(2)∠AOC=∠BOD,理由如下:∵∠BOC=102°52′38″,∠COD=16°17′22″,∴∠BOD=∠BOC+∠COD=119°10′,∵∠AOC=119°10′,∴∠AOC=∠BOD.【点评】本题主要考查了角平分线定义和角的有关计算,根据图形求出有关角的度数是解答此题的关键.49.已知∠A=24.1°+6°,∠B=56°﹣26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.【分析】先求出每个角的度数,再比较即可.【解答】解:∵∠A=24.1°+6°=30.1°=30°6′,∠B=56°﹣26°30′=29°30′,∠C=18°12′+11.8°=18°12′+11°48′=29°60′=30°,∴∠A>∠C>∠B.【点评】本题考查了度、分、秒之间的换算的应用,能求出各个角的度数是解此题的关键.50.如图,点D在∠AOB的内部,点E在∠AOB的外部,点F在射线OA上,试比较下列各角的大小.(1)∠AOB>∠BOD;(2)∠AOE>∠AOB;(3)∠BOD<∠FOB;(4)∠AOB=∠FOB;(5)∠DOE>∠BOD.【分析】根据图形,即可比较角的大小.【解答】解:(1)∠AOB>∠BOD;(2)∠AOE>∠AOB;(3)∠BOD<∠FOB;(4)∠AOB=∠FOB;(5)∠DOE>∠BOD.故答案为:(1)>;(2)>;(3)<;(4)=;(5)>.【点评】本题考查了角的大小比较,解决本题的关键是结合图形进行解答.。
四年级角计算练习题
四年级角计算练习题在这个练习题中,我们将练习四年级学生对角的计算。
角是数学中的一个重要概念,对于几何形状的描述和计算具有重要意义。
通过解决这些练习题,学生将能够更好地理解和掌握角的概念,并提高他们的计算能力。
1. 计算角的度数a) 一个直角的角度是多少?b) 一个钝角的角度是多少?c) 一个锐角的角度是多少?2. 判断角的类型判断下列角的类型(直角、钝角、锐角):a) 90°b) 120°c) 45°3. 比较角的大小比较下列角的大小:a) 60°和90°b) 100°和120°c) 30°和45°4. 角的补角和余角计算下列角的补角和余角:a) 30°的补角是多少?b) 60°的补角是多少?c) 45°的补角是多少?5. 解决角度的加法和减法问题计算下列角度的加法和减法问题:a) 30° + 60° =b) 90° - 45° =c) 120° + 30° =6. 求未知角度找出下列图中未知角度的大小:a)[图]b)[图]c)[图]7. 求三角形内角的和计算下列三角形内角的和:a) 30° + 50° + 60° =b) 45° + 45° + 90° =c) 60° + 70° + 50° =8. 角的练习题根据所给的信息,回答下列问题:a) 如果一个三角形的两个内角分别是60°和80°,求第三个角的度数是多少?b) 如果一个四边形的一个角是90°,另外三个角分别是40°、80°和100°,这个四边形是一个什么类型的角?9. 角大小的关系根据角的大小关系,填入适当的符号(>、<或=):a) 90° ____ 45°b) 60° ____ 30°c) 40° + 50° ____ 100°10. 在图形中寻找角在下列图形中寻找给定角的大小:a)[图]b)[图]c)[图]通过完成这些练习题,四年级学生将能够更好地理解和运用角的概念。
小学一年级数学数角练习题
小学一年级数学数角练习题1. 角的概念:角是由两条射线共同起点组成的图形部分。
射线的起点称为角的顶点,两条射线的端点分别称为角的两个边。
2. 角的分类:(1) 锐角:角的度数小于90°。
(2) 直角:角的度数等于90°。
(3) 钝角:角的度数大于90°。
(4) 平角:角的度数等于180°。
3. 判断角的大小:(1) 钝角大于直角,直角大于锐角。
(2) 同一类型的角,度数越大,角就越大。
4. 练习题:1) 判断下列角的类型:a) 45°b) 110°c) 90°d) 75°2) 比较下列角的大小:a) 60°与75°b) 120°与135°c) 90°与100°3) 找出以下角的对应角:a) 120°的对应角是多少?b) 45°的对应角是多少?c) 180°的对应角是多少?4) 根据已知条件,找出缺失的角度:a) 锐角与直角的和是多少?b) 钝角与锐角的差是多少?c) 平角与钝角的和是多少?5. 答案解析:1) 判断下列角的类型:a) 45°为锐角。
b) 110°为钝角。
c) 90°为直角。
d) 75°为锐角。
2) 比较下列角的大小:a) 60° < 75°,角度小的角较大。
b) 120° < 135°,角度小的角较大。
c) 90° = 90°,角度相等,大小相等。
3) 找出以下角的对应角:a) 120°的对应角为 180° - 120° = 60°。
b) 45°的对应角为 180° - 45° = 135°。
c) 180°的对应角为 180°。
初一角的认识和角的比较
角的认识一、考点、热点回顾1、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
2、平角、周角和直角:平角:射线OA绕点O旋转,当终止位置OB与起始位置OA成一条直线时,所成的角叫做平角.周角:射线OA绕点O旋转,当终止位置OB与起始位置OA第一次重合时,所成的角叫做周角.直角:平角的一半叫做直角.3、角的表示A. 角的内部和外部角的内部:射线旋转时经过的平面部分是角的内部.角的外部:平面内除去角的内部和角的顶点、角的边以外的部分是角的外部.注:角将平面分为三部分.即角的外部、角的内部、和角的两边及顶点.B.角的表示方法有以下四种:①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
4、角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”5、角的性质(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较(3)角可以参与运算。
6、角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
二、经典例题例1 (1)34.37°=_____度_____分_____秒. (2)36°17′42″=_____度.(3)62.125°=_____度_____分_____秒. (4)41°18′36″=_____度.过手训练 1、(1)57.32°=_____度_____分_____秒. (2)27°14′24″=_____度.2、45°=_____直角=_____平角=____周角.3、∠α+∠β=90°,且∠α=2∠β,则∠α=___,∠β=____.例2 如图,用字母A、B、C表示∠α、∠β.则∠α_______,∠β=_________(例3) (过手训练)过手训练 1、图中,以B 为顶点的角有几个?把它们表示出来.以D 为顶点的角有几个?把它们表示出来.2、 请将图中的角用不同方法表示出来,并填写下表:例3 小亮利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,问小亮出发时和到家时时 针和分针的夹角分别为____________度.过手训练 时钟的时针三小时旋转的角度是_______,分针三分钟旋转的角度是_______.例4 两角差是36°,且它们的度数比是3∶2,则这两角的和是多少?过手训练 四个角的和是180°,其中有三个角相等,且都是第四个角的32,求这四个角.例5 如图,A 、B 两地隔着湖水,从C 地测得CA=50m,CB=60m,∠ACB=145°,用1 厘米代表10米(就是1:1000的比例尺)画出如图的图形.量出AB 的长(精确到1毫米), 再换算出A 、B 间的实际距离.过手训练 如图,∠AOB 是平角,OD 、OC 、OE 是三条射线,OD 是∠AOC 的平分线, 请你补充一个条件,使∠CAB∠ABE∠1∠2∠3DOE=90°,并说明你的理由.三、随堂训练1、如图1,∠AOB______∠AOC,∠AOB_______∠B OC(填>,=,<); 用量角器度量∠BOC=____°,∠AOC=______°,∠AOC______∠BOC.2、如图2,∠AOC=______+______=______-______;∠BOC=______-______= _____-______.3、把一根小棒OC 一端钉在点O ,旋转小木棒,使它落在不同的位置上形成不同的角,其中∠AOC 为____,∠AOD 为____,∠AOE 为____,木棒转到OB 时形成的角为____.(回答钝角、锐角、直角、平角)4、 时间为三点半时,钟表时针和分针所成的角为______,由2点到7点半,时针转过的角度为______. 5、 如图4,∠1=∠2,则∠1+∠3=______.6、 已知五角星的五个顶点在同一圆上,且均分布,五角星的中心是这个圆的圆心,则圆心与两个 相邻顶点的连线,构成的角度为______. 7、 如图5,AOB 为一直线,OC 、OD 、OE 是射线,则图中大于0°小于180°的角有__________个. 8、 如果一个角的度数为n ,则它的补角为______,余角为______ 图5 9、 ∠α的补角为125°,∠β的余角为37°,则α、β的大小关系为α___β. 10、一个角等于它的补角的5倍,那么这个角的补角的余角是( )A.30°B.60°C.45°D.150°11、如图3,若∠AOC=∠BOD,那么∠AOD 与∠BOC 的关系是( )A.∠AOD>∠BOCB.∠AOD<∠BOC;C.∠AOD=∠BOCD.无法确定 12、如果∠1-∠2=∠3,且∠4+∠2=∠1,那么∠3和∠4间的关系是( ) A.∠3>∠4 B.∠3=∠4; C.∠3<∠4 D.不确定 13、下列各角中是钝角的为( )A.41周角B.65平角 C.32直角D.31直角OD CAE BOC(1)AB O DC(2)AB123图414、如果角α和角β互为余角,角α与角γ互为补角,角β和角γ的和等于周角的31,那么此三个角分别为( )A.75°,15°,105°B.60°,30°, 120°C.50°, 30°,130°D.70°, 20°, 110° 15、如图15,图形表示的是( ) 图15A.直线B.射线C.平角D.周角16、船的航向从正北按顺时针方向转到东南方向,它转了( )A.135°B.225°C.180°D.90°17 有两个角,它们的比为7∶3,它们的差为72°,则这两个角的关系是( )A.互为余角B.互为补角C.相等D.以上答案都不对19、如图19,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.图19图2020、如图20,已知O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线,求∠DOE 的度数.四、家庭作业1、 如图1所示,能用一个字母表示的角有_______个,以A 为顶点的角有_____个,图中所有角有_____个.2、 如图2,∠AOC=∠COD=∠BOD ,则OD 平分____,OC 平分______,32∠AOB =______=______.(1) (2)3、OC 是∠AOB 内部的一条射线,若∠AOC=________,则OC 平分∠AOB;若OC 是∠AOB 的角平分线,则_________=2∠AOC.4、下列说法错误的是( )ODC (3)A B 12ACDBA.角的大小与角的边画出部分的长短没有关系;B.角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D.若∠A+∠B>∠C,那么∠A一定大于∠C。
小学四年级数学角练习题
小学四年级数学角练习题本文将为小学四年级学生提供一些角的练习题,旨在帮助他们巩固和提升数学角的基本概念与运算能力。
以下是一些角的练习题及其解答。
1. 角的命名与分类(1)请画出以下各角,并写出它们的名称:a) 直角b) 锐角c) 钝角解答:a) 直角:将两条相邻线段延长,相交于一点形成的角,角的度数为90°。
b) 锐角:小于90°的角。
c) 钝角:大于90°小于180°的角。
(2)在以下各组角中,请找出锐角、直角和钝角:a) 30°、 90°、 120°b) 45°、 60°、 75°c) 100°、 180°、 60°解答:a) 锐角:30°、120°直角:90°钝角:无b) 锐角:45°、60°直角:无钝角:75°c) 锐角:60°直角:无钝角:100°、180°2. 角的比较与运算(1)在下列各组角中,比较大小:a) 60°与90°b) 120°与135°c) 150°与135°解答:a) 60°小于90°。
b) 120°大于135°。
c) 150°大于135°。
(2)计算下列各角的和:a) 30° + 60°b) 45° + 75°c) 90° + 90°解答:a) 30° + 60° = 90°b) 45° + 75° = 120°c) 90° + 90° = 180°3. 角的特殊性质(1)在一个直角三角形ABC中,角A是直角,请问角B和角C 是什么类型的角?解答:在一个直角三角形ABC中,角A是直角(90°),则角B和角C是锐角。
二年级数学角练习题
二年级数学角练习题1. 计算下列各角的度数:a) 直角的度数是多少?b) 你能计算一下钝角的度数吗?c) 尖角的度数是多少?2. 估计下列各角的度数并判断它们是锐角、直角还是钝角:a) 30°b) 90°c) 120°d) 150°3. 判断下列各角是否是相邻角:a) 45°和60°b) 110°和130°c) 75°和90°4. 利用适当的符号(<, >, =)比较下列各对角的度数:a) 45°和30°b) 100°和100°c) 60°和80°5. 在下列各组角中,找出邻补角和补角:a) 45°和135°b) 75°和15°c) 90°和60°6. 根据提供的图形,回答下列问题:a) 图1中,角A、角B和角C的度数分别是多少?b) 图2中,角X、角Y和角Z的度数分别是多少?c) 图3中,角P、角Q和角R的度数分别是多少?7. 在下列两个角中,找出共同的顶点和边:a) 角ABC和角DEFb) 角MNO和角OPQ8. 使用适当的圆规和直尺,在下面的图形中画出所给角度的角:a) 45°b) 90°c) 135°9. 如果一个角的度数是40°,那么它的补角和邻补角的度数分别是多少?10. 使用适当的公式计算下列各角的补角和邻补角的度数:a) 角A的度数为60°b) 角B的度数为20°11. 利用已知的角度关系,计算下列各角的度数:a) 角X和角Y是补角,角X的度数为30°,请计算角Y的度数。
b) 角P和角Q是邻补角,角P的度数是70°,请计算角Q的度数。
12. 选择正确的选项完成下列句子:a) 两个形成直角的角度总和是 ___________ 度。
二年级角的练习题
二年级角的练习题二年级角的练习题在小学二年级的数学课上,角的概念是一个重要的内容。
角是指由两条射线共同起点所组成的图形。
学生们需要学会辨认不同类型的角,并能够进行简单的角度测量。
为了帮助学生巩固这一知识点,老师设计了一套有趣的练习题。
第一道题是关于直角的。
直角是指两条相交的射线所形成的角度为90度的角。
学生需要观察图中的角,并判断哪些是直角。
这道题的目的是让学生通过视觉感知来辨认直角,培养他们对角度的敏感度。
第二道题是关于锐角和钝角的。
锐角是指角度小于90度的角,而钝角是指角度大于90度但小于180度的角。
学生需要观察不同的角,并将其分类为锐角或钝角。
这道题的目的是让学生通过比较角度的大小来辨认不同类型的角,培养他们对角度大小的概念。
第三道题是关于角度测量的。
学生需要使用量角器来测量给定角的度数。
这道题的目的是让学生熟悉使用量角器,并能够准确地测量角度。
通过实际操作,学生可以更好地理解角度的概念,并培养他们的测量技能。
第四道题是关于角度的比较。
学生需要观察两个给定的角,并判断哪个角度更大或更小。
这道题的目的是让学生通过比较角度的大小来加深对角度的理解,并培养他们的比较能力。
第五道题是关于角度的绘制。
学生需要根据给定的度数和起点,使用直尺和量角器来绘制一个特定角度的角。
这道题的目的是让学生通过实际操作来练习角度的绘制,培养他们的几何绘图能力。
通过这套练习题,学生们可以在巩固角的概念的同时,培养他们的观察力、比较能力、测量技能和几何绘图能力。
这些技能对于学生在日后的数学学习中都将起到重要的作用。
角的概念和应用广泛存在于我们的日常生活中。
比如,我们可以通过角的大小来判断一个物体的形状,比如直角的桌子、锐角的尖刀等。
在建筑设计中,角度的准确测量和绘制也是非常重要的。
因此,掌握角的知识和技能对于学生的数学学习和日常生活都有着积极的影响。
通过这套练习题的训练,学生们可以逐渐提高他们对角度的理解和运用能力。
同时,老师还可以根据学生的实际情况,设计更多有趣的角练习题,以帮助他们更好地掌握这一知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
O C A
D B O C A
E D
B
4.4角的比较(A 卷)
1 一、填空题:(每小题5分,共20分)
2 1.若OC 是∠AOB 的平分线,则(1)∠AOC=______;
3 (2)∠AOC=12
______;(3)∠AOB=2_______.
4
2. 12
平角=_____直角, 14
周角=______平角=_____直角,135°角=______平角. 5 3.如图,(1)∠AOC=_____+_____=_____-______;
6 (2)∠AOB=______-______=______-______.
7 4.如图,O 是直线AB 上一点,∠AOC=90°,∠DOE=90°,
8 则图中相等的角有___对( 小于直角的角)分别是______.
9 二、选择题:(每小题5分,共20分)
10 5.下列说法正确的是( )
11 A.两条相交直线组成的图形叫做角
12 B.有一个公共端点的两条线段组成的图形叫做角
13 C.一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角 14 D.角是从同一点引出的两条射线
15 6.已知O 是直线AB 上一点,OC 是一条射线,则∠AOC 与∠BOC 的关系是( ) 16 A.∠AOC 一定大于∠BOC; B.∠AOC 一定小于∠BOC
17 C.∠AOC 一定等于∠BOC; D.∠AOC 可能大于,等于或小于∠BOC 18 7.已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC 等于( ) 19 A.120° B.120°或60° C.30° D.30°或90°
20 8. α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在
21 β∠的( )
22 A.另一边上 B.内部; C.外部 D.以上结论都不对 23 三、解答题:(共20分)
24 9.(6分)已知一条射线OA,如果从点O 再引两条射线OB 和OC,使∠AOB=60°, ∠BOC=20°,求∠AOC 25 的度数. 26 27 28 29
30 10.(6分)如图,如果∠1=65°15′,∠2=78°30′,求∠3是多少度?
31
31
2
32
33
2
11.(8分)如图,∠AOD=∠BOC=90°,∠COD=42°,求∠AOC 、∠AOB 的度数.
34
35 36
37 38
39 4.4 角的比较(B 卷)
40 一、综合题:(每小题6分,共12分)
41 1.如图,已知O 是直线AD 上的点,∠AOB,∠BOC,∠COD, 三个角从小到大依次相差25度,求这三个42 角的度数.
43
C
A
D
B
44 2.两个相等的钝角有一公共顶点和一条公共边, 并且两个角的另一边所成的角为90°,画出该图45 形,并求出钝角的大小. 46 47 48 49 50 51
52 二、应用题:(共13分)
53 3.(6分)如图, 在一张透明纸上画∠AOB, 能否折出一条射线, 使这条射线把∠AOB 平均分为254 份.
55
O
A
B
56 4.(7分)在飞机飞行时,飞行方向是用飞机路线与实际的南或北方向线之间的夹角大小来表示的,57 如图,用AN(南北线), 与飞机路线之间顺时针方向的夹角作为飞行方向角,以A 到B 的飞行方向58 角为35°,从A 到C 的飞行方向角为60°,从A 到D 的飞行方向角为145°,试求AB 与AC 之间59 的夹角为多少度?AD 与AC 之间夹角为多少度?并画出从A 飞出且方向角为105°的飞行路线.
60
C
A
D
B
N
61 三、创新题:(6分)
62 (一)教材中的变型题(P132,例1) 63 5.根据图,回答下列问题:
64 (1)根据∠AOB 、∠AOC 、∠AOD 的大小,并指出图中的锐角、直角和钝
65
O C
A
D
B
3
角.
66 (2)能否看出图中某些角之间的等量关系.
67 O
C
A D
B
68 四、中考题:(共9分)
69 6.(2001,宁夏,3分)学校、电影院、公园在平面图上的标点分别是A 、B 、C, 电影院在学校的正70 东方向,公园在学校的南偏西25°方向,那么平面图上的∠CAB 等于( ) 71 A.115° B.155° C.25° D.65°
72 7.(2001,哈尔滨市,3分)如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC=___.
73
O C A D
B
O
C A
E D
B
74
75 8.(2002,安徽,3分)如图,AB 、CD 相交于点O,OB 平分∠DOE,若∠DOE=60°, 则∠AOC 的度数是76 _______. 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
100
4
101 102 103 104 105 106 107 108
109 答案(A )
110 一、1.(1)∠BOC (2)∠AOB (3)∠AOC 或∠BOC 111 2.1,13,1,24
112 3.(1)∠AOB;∠BOC;∠AOD;∠COD 113 (2)∠AOC;∠BOC;∠AOD;∠BOD 114 4.2 ∠COD=∠BOE 和∠AOD=∠COE 115 二、5.C 6.D 7.B 8.C
116 三、9.解:当OC 在∠AOB 的内部时,如答图(1),此时∠AOC=∠AOB-∠BOC=60°- 20°=40°. 117 当OC 在∠AOB 的外部时,如图(2),此时∠AOC=∠AOB+∠BOC=60°+20°=80°, 118 ∴∠AOC 等于40°或80°.
119
(1)
O
C
A
B
(2)
O
C
A
B
120 10.解:∠3=180°-∠1-∠2=180°-65°15′-78°30′=36°15′ 121 11.解:∠AOC=∠AOD+∠DOC=90°+42°=132°
122 ∠AOB=360°-∠AOD-∠BOC-∠COD=360°-90°-90°-42°=138° 123
124 答案(B):
125 一、1.解:设∠AOB=x °,则∠BOC=(25+x)°,∠COD=(25+25+x)° 126 由题意∠AOB+∠BOC+∠COD=180° 127 即x+25+x+25+25+x=180
128 解得x=35°,所以∠AOB=35°,∠BOC=60°,∠COD=85° 129 2.解:如答图所示,∠AOB=∠AOC 为钝角,∠BOC=90°.
130 由题意∠AOB+∠AOC+∠BOC=360°,∠AOB=∠AOC=000
3603609022
BOC -∠-=
=135° 131 二、3.解:把∠AOB 对折,使OA 、OB 重合,则折线可把∠AOB 平分
132 4.解:∵由题意∠NAB=35°,∠NAC=60°,∠NAD=145°,
133 ∴∠BAC=∠NAC-∠NAB=60°-35°=25°,∠CAD=∠NAD-∠NAC=145°-60°=85°
134 以NA 为始边,顺时针画∠NAM=105°,如答图:
135
C
M
A
D B
N
25︒
北
西
南东
第6题
C A
D
136
137
三、5.解:(1)∠AOB<∠AOC<∠AOD;
138
锐角为∠AOB、∠COD、∠BOC;
139
直角为∠AOC、∠BOD;
140
钝角为∠AOD.
(2)∠AOB=∠COD;∠AOC=∠BOD;∠AOB+∠BOC=90°;∠COD+∠BOC=90°. 141
142
四、6.A 7.34° 8.30°
143
5。