纳米二氧化钛的制备及性质实验

合集下载

实验溶胶凝胶法制备纳米二氧化钛实验

实验溶胶凝胶法制备纳米二氧化钛实验

实验八溶胶-凝胶法制备纳米二氧化钛实验一、实验目的1、掌握溶胶-凝胶法制备纳米粒子的原理;2、了解TiO2纳米粒子光催化机理;二、实验原理溶胶-凝胶法Sol-Gel法是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法;溶胶凝胶法制备TiO2纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为:TiORn+H2OTiOHORn-1+ROHTiOHORn-1+H2OTiOH2ORn-2+ROH……反应持续进行,直到生成TiOHn.缩聚反应:—Ti—OH+HO—Ti——Ti—O—Ti+H2O—Ti—OR+HO—Ti——Ti—O—Ti+ROH最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成;三、原料及设备仪器1、原料:钛酸正四丁脂分析纯、无水乙醇分析纯、冰醋酸分析纯、盐酸分析纯、蒸馏水2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉四、实验步骤以钛酸正丁酯TiOC4H94为前驱物,无水乙醇C2H5OH为溶剂,冰醋酸CH3COOH为螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶;1、室温下量取10mL钛酸丁酯,缓慢滴入到35mL无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A;2、将2mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3;3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中;4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1h后得到白色凝胶倾斜烧瓶凝胶不流动;5、置于80℃下烘干,大约20h,得黄色晶体,研磨,得到淡黄色粉末;6、在600℃下热处理2h,得到二氧化钛纯白色粉体;五、思考题1、溶胶-凝胶法制备材料有哪些优点2、纳米二氧化钛粉体有哪些用途六、实验报告要求实验报告按照学校统一模板书写,包括下列内容:1、实验名称、目的和实验步骤;2、解答思考题;。

纳米二氧化钛的制备实验综述

纳米二氧化钛的制备实验综述

纳米二氧化钛的制备实验综述摘要:纳米二氧化钛,亦称纳米钛白粉。

其外观为白色疏松粉末。

具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。

关键词:纳米二氧化钛、溶胶凝胶法、应用、发展前景溶胶凝胶法:溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

一、二氧化钛的性质:白色无定形粉末。

溶于氢氟酸和热浓硫酸,不溶于水、盐酸、硝酸和稀硫酸。

与硫酸氢钾或与氢氧化碱或碳酸碱共同熔融成钛酸碱后可溶于水。

相对密度约4.0。

熔点1855℃。

二、纳米二氧化钛的应用1、杀菌:用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。

在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。

因此,纳米TiO2能净化空气,具有除臭功能。

2、防紫外线:纳米二氧化钛的强抗紫外线能力是由于其具有高折光性和高光活性。

其抗紫外线能力及其机理与其粒径有关:当粒径较大时,对紫外线的阻隔是以反射、散射为主,且对中波区和长波区紫外线均有效。

防晒机理是简单的遮盖,属一般的物理防晒,防晒能力较弱;随着粒径的减小,光线能透过纳米二氧化钛的粒子面,对长波区紫外线的反射、散射性不明显,而对中波区紫外线的吸收性明显增强。

其防晒机理是吸收紫外线,主要吸收中波区紫外线。

3、纳米二氧化钛可作为锂电池、太阳能电池原料(1)纳米二氧化钛具有极好的高倍率性能和循环稳定性,快速充放电性能和较高的容量,脱嵌锂可逆性好等特点,在锂电池领域具有很好的应用前景。

纳米二氧化钛的制备

纳米二氧化钛的制备

纳米二氧化钛的制备方法综述纳米二氧化钛的制备方法综述【摘要】纳米二氧化钛(Ti02)具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点倍受关注,制备和开发纳米二氧化钛成为国内外科技界研究的热点之一。

本文主要对纳米二氧化钛的各种制备方法作了简单介绍。

【关键词】纳米二氧化钛、制备【正文】二氧化钛的制备方法可分为气相法和液相法两大类。

一、气相制备法低压气体蒸发法此种制备方法是在低压的氩、氮气等惰性气体中加热普通的Ti02,然后骤冷生成纳米二氧化钛粉体,其加热源有以下几种:(1)电阻加热法;(2)等离子喷射法; (3)高频感应法; (4)电子束法; (5)激光法,这些方法可制备lOOnm以下的二氧化钛粒子。

活性氢—熔融金属反应法含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电离的N2,Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器或过滤式收集器使微粒与气体分离而获得纳米二氧化钛微粒。

溅射法此方法是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气,两电极间施加的电压范围为0.3—1.5kV。

由于两电极间的辉光放电使Ar离子形成。

在电场的作用下Ar离子冲击阴极靶材表面,靶上的Ti02就由其表面蒸发出来,被惰性气体冷却而凝结成纳米TiO2粉末,粒度在50nm以下,粒径分布较窄。

流动液面上真空蒸发法用电子束在高真空下加热蒸发TiO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得TiO2超微粒子钛醇盐气相水解法该工艺可以用来开发单分散的纳米TiO2,其反应式如下: nTi(0R)4,+2nH2O(g)————>nTiO2(s)+4nROH优点是操作温度较低、能耗小,对材质要求不是很高,并且可以连续化TiCl4,高温气相水解法该法与气相法生产白炭黑的原理相似,是将TiCl4气体导入高温的氢氧火焰中进行气相水解,其化学反应式为: TiCl4(g)+2H2(g)+O2(g)→TiO2(s)+4HCl(g)优点工艺制备的纳米粉体产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小。

tio2纳米材料的制备与表征

tio2纳米材料的制备与表征

tio2纳米材料的制备与表征制备和表征二氧化钛(TiO2)纳米材料是一项重要的科学任务,由于其广泛的应用领域,包括光催化、太阳能电池、光电器件、光致发光、药物载体和生物成像等。

下面将介绍一种常用的制备和表征TiO2纳米材料的方法。

制备目前,制备TiO2纳米材料的主要方法包括化学气相沉积(CVD)、溶胶-凝胶法、水热法、微波等离子体化学方法等。

这里我们以水热法为例。

水热法是一种在高温高压条件下,利用水作为溶剂,使原料在其中发生化学反应并形成结晶的方法。

制备TiO2纳米材料的水热法通常包括以下步骤:1.将一定量的钛酸丁酯(Ti(OC4H9)4)和适量的硝酸(HNO3)溶液混合,搅拌均匀。

2.将上述混合液转移到高压反应釜中,密封后置于烘箱中加热至指定温度(通常为150-250℃)。

3.在该温度下保持一定时间(例如1-10小时),使钛酸丁酯和硝酸发生水热反应,生成二氧化钛(TiO2)纳米颗粒。

4.待反应结束后,将反应釜自然冷却至室温,取出产物。

5.用去离子水冲洗产物,去除可能存在的杂质。

6.最后,将产物进行干燥,得到TiO2纳米材料。

表征为了确认制备得到的物质是否为TiO2纳米材料,以及其结构和形貌等性质,我们通常会使用一系列表征方法。

1.X射线衍射(XRD):XRD可以用于确定材料的晶体结构和相组成。

通过对比标准PDF卡片,可以确认制备得到的物质是否为TiO2纳米材料。

2.扫描电子显微镜(SEM)和透射电子显微镜(TEM):SEM和TEM可以用于观察材料的形貌和尺寸。

通过这些方法,我们可以了解到制备得到的TiO2纳米材料的形状、大小以及分布情况。

3.光电子能谱(XPS):XPS可以用于分析材料的化学组成和化学状态。

通过这种方法,我们可以确认制备得到的物质是否含有Ti、O元素,并得到它们的比例。

4.紫外-可见光谱(UV-Vis):UV-Vis可以用于研究材料的电子结构和光学性质。

通过这种方法,我们可以得到制备得到的TiO2纳米材料的吸收边和带隙等信息。

实验溶胶凝胶法制备纳米二氧化钛实验精编版

实验溶胶凝胶法制备纳米二氧化钛实验精编版

实验溶胶凝胶法制备纳米二氧化钛实验精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】实验八溶胶-凝胶法制备纳米二氧化钛实验一、实验目的1、掌握溶胶-凝胶法制备纳米粒子的原理。

2、了解TiO2纳米粒子光催化机理。

二、实验原理溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。

溶胶凝胶法制备TiO2纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为:Ti(OR)n+H2OTi(OH)(OR)n-1+ROHTi(OH)(OR)n-1+H2OTi(OH)2(OR)n-2+ROH……反应持续进行,直到生成Ti(OH)n.缩聚反应:—Ti—OH+HO—Ti——Ti—O—Ti+H2O—Ti—OR+HO—Ti——Ti—O—Ti+ROH最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成。

三、原料及设备仪器1、原料:钛酸正四丁脂(分析纯)、无水乙醇(分析纯)、冰醋酸(分析纯)、盐酸(分析纯)、蒸馏水2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉四、实验步骤以钛酸正丁酯[Ti(OC4H9)4]为前驱物,无水乙醇(C2H5OH)为溶剂,冰醋酸(CH3COOH)为螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶。

1、室温下量取10mL钛酸丁酯,缓慢滴入到35mL无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。

2、将2mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3。

3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中。

4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1h后得到白色凝胶(倾斜烧瓶凝胶不流动)。

纳米二氧化钛太阳能电池的制备及其性能测试实验报告

纳米二氧化钛太阳能电池的制备及其性能测试实验报告

纳米二氧化钛太阳能电池的制备及其性能测试一、前言1.1实验目的(1)了解纳米二氧化钛染料敏化太阳能电池的组成、工作原理及性能特点。

(2)掌握合成纳米二氧化钛溶胶、组装成电池的方法与原理。

(3)学会评价电池性能的方法。

1.2实验意义随着世界各国的工业发展,煤、石油等传统能源的使用量急剧增长,寻找干净的新能源成为当务之急。

太阳能是唯一种永不枯竭的清洁能源,受到众多研究者的青睐。

目前市场上的太阳能电池种类较多,其中硅半导体太阳能电池占了绝对的优势,另外还有无机半导体太阳能电池、p-n结型太阳能电池等。

1991年Gratzel等制备了TiO2太阳能电池,把多吡啶钌配合物吸附在多孔膜上,制作成染料敏化纳米晶TiO2太阳能电池,简称DSSC。

该太阳能电池的光电转换效率大于10%,且具有永久性、清洁性和灵活性三大优点。

只要有太阳光,DSSC就可以一次投资而长期使用。

1.3文献综述与总结1991年瑞士学者Grätzel等在Nature上发表文章,提出了一种新型的以染料敏化二氧化钛纳米薄膜为光阳极的光伏电池,现称为Grätzel型电池。

这种电池的出现为光电化学电池的发展带来了革命性的创新。

目前,此种电池的效率已稳定在10%左右,成本比硅太阳能电池大为降低,且性能稳定。

纳米TiO2的粒径和膜的微结构对光电性能的影响很大,纳米TiO2的粒径小,比表面积越大,吸附能力越强,吸附染料分子越多,光生电流也就越强,所以人们采用不同方法使之纳米化、多孔化、薄膜化。

只有紧密吸附在半导体表面的单层染料分子才能产生有效的敏化效率。

[1](1)半导体电极的制备目前,合成纳米TiO2的方法有溶胶凝胶法、水热反应法、溅射法、醇盐水解法、溅射沉积法、等离子喷涂法和丝网印刷法等。

应用在DSSC中的TiO2多孔薄膜常用制备方法有胶体涂膜直接低温烧结法、水热法烧结、热液法烧结、微波烧结、紫外-化学气相沉积法等。

[1]溶胶凝胶法是用水解钛酸正丁酷(或无机钛盐,如TiCl4)制得TiO2胶体溶液,后经由浸渍、提拉、丝网印刷、旋涂等方法在导电基底上生长纳米高温锻烧制备出纳米TiO2电极,向溶胶中加入聚合物则有助于TiO2纳米晶粒径的大小的控制。

《材料化学综合实验II》实验指导书-2012-2013年第二学期-20130315

《材料化学综合实验II》实验指导书-2012-2013年第二学期-20130315

《材料化学综合实验II》实验指导书实验一 纳米二氧化钛的制备及光催化性能研究一、实验目的1. 掌握二氧化钛的溶胶-凝胶的制备方法。

2. 了解二氧化钛光催化降解污染物的原理。

3. 熟悉测定光催化性能的方法。

二、 实验原理1、溶胶-凝胶法制备二氧化钛溶胶-凝胶法是20世纪 80年代兴起的一种制备纳米粉体的湿化学方法,具有分散性好、煅烧温度低、反应易控制等优点。

制备溶胶所用的原料为钛酸丁酯(Ti(O-C 4H 9)4)、水、无水乙醇(C 2H 5OH)以及盐酸(或者醋酸、硝酸等)。

反应物为钛酸丁酯和水,分散介质为乙醇,盐酸用来调节体系的酸度防止钛离子水解过速,使钛酸丁酯在乙醇中水解生成钛酸(Ti(OH)4),钛酸脱水后即可获得TiO 2。

水解反应方程式如下。

Ti(O-C 4H 9)4+4H 2O Ti(OH)44C 4H 9OH +Ti(OH)4Ti(OH)42TiO 24H 2O+ 在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以获得不同晶型的二氧化钛。

2、二氧化钛光催化降解污染物二氧化钛作为光催化剂的代表,在太阳能光解水, 污水处理等方面有着重要的应用前景。

TiO 2有三种晶型,四方晶系的锐钛矿型、金红石型和斜方晶系的板钛型。

此外,还存在着非晶型TiO 2。

其中板钛型不稳定;金红石型禁带宽度为3ev ,表现出最高的光敏性,但因为表面电子-空穴对重新结合的较快,几乎没有光催化活性;锐钛矿禁带宽度稍大一些,为3.2ev ,在一定波长范围的紫外光辐照下能被激发,产生电子和空穴,且二者能发生分离,另外它的表面对O 2的吸附能力较强,具有较高的光催化活性。

当它受到波长小于或等于387.5nm 的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e -);而价带中则相应地形成光生空穴(h +),如图1所示。

如果把分散在溶液中的每一颗TiO 2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。

纳米二氧化钛浆料的制备及应用研究

纳米二氧化钛浆料的制备及应用研究

纳米二氧化钛浆料的制备及应用研究纳米二氧化钛(Nano-TiO2)是一种具有良好耐候性和热稳定性的半导体材料,受到了广泛的关注和应用。

纳米二氧化钛具有低毒、高特异性、良好的光催化、电化学性质以及强氧化作用等多项优良性能,能够广泛应用于太阳能电池、物理信息学、光化学反应、生物医学等领域。

本文将从制备纳米二氧化钛浆料的方法、纳米二氧化钛的表征以及纳米二氧化钛在环境治理、电池、高分子复合材料、生物医学等方面的应用研究进展等几个方面描述纳米二氧化钛浆料的制备及应用研究。

一、纳米二氧化钛浆料的制备方法纳米二氧化钛浆料的制备方法通常包括水相法、界面法和气相法。

目前,最为常见的制备方法是水相法。

1、水相法水相法一般采用水热法或溶胶-凝胶法制备。

水热法是将氢氧化钛溶胶在高温高压的条件下,反应一段时间,形成微米到纳米级别的球状颗粒。

水热法能够制备高分散性、晶型和晶粒大小可控的纳米二氧化钛。

溶胶-凝胶法是将钛酸酯等前驱体经溶胶、凝胶、煅烧得到纳米晶粒的方法。

其中,水热法和溶胶-凝胶法的制备成本较低,应用领域较广。

2、界面法界面法除了水相法中的两种制备方法之外,还包括溶剂热法、微乳法、反应过程控制法、浆料法等。

溶剂热法是利用有机溶剂作为反应介质,将钛酸酯等前驱体加入有机溶剂中,加热后产生类似于水热法中超临界水流的条件下,形成纳米二氧化钛粉末。

微乳法是将油相和水相通过表面活性剂的作用形成微观混合体,再加入钛酸酯等前驱体,紧接着再通过加热等方法得到纳米二氧化钛的制备方法。

3、气相法气相法是利用化学气相沉积(CVD)工艺或物理气相沉积(PVD)制备纳米二氧化钛。

这种方法的优点是制备高纯度、晶型良好的纳米二氧化钛。

但同时也存在较高制备成本等缺点。

二、纳米二氧化钛的表征纳米二氧化钛的表征包括物理性质和化学性质等。

物理性质方面主要包括表面积、粒径、晶型等;化学性质方面主要包括化学组成、化学反应活性等。

1、表面积纳米二氧化钛的表面积一般通过比表面积等数据来表征纳米二氧化钛的分散性、活性等理化性质。

TiO2的实验报告

TiO2的实验报告

纳米TiO2的制备及其光催化性能的检验实验报告一、实验目的:1、了解纳米TiO2的性质及应用。

2、掌握制备纳米TiO2的原理和方法,并比较不同方法的优缺点。

3、掌握检验纳米TiO2光催化性能的一般方法。

4、掌握离心机、分光光度计等仪器的使用方法。

二、性质:(1)基本化学性质:纳米TiO2化学性能稳定,常温下几乎不与其它化合物反应,不溶于水、稀酸,溶于氢氟酸和热浓硫酸。

不与空气中CO2 ,SO2,O2等反应,具有生物惰性。

纳米TiO2具有热稳定性,无毒性。

与硫酸氢钾或与氢氧化碱或碳酸碱共同熔融成钛酸碱后可溶于水。

相对密度约4.0。

熔点1855℃。

(2)光催化:纳米TiO2是一种n型半导体材料,禁带宽度较宽,其中锐钛型为3.2eV,金红石型为3.0eV,当它吸收了波长小于或等于387.5nm 的光子后,价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+,吸附在TiO2表面的氧俘获电子形成•O2-,而空穴则将吸附在TiO2表面的OH-和H2O氧化成具有强氧化性的•OH,反应生成的原子氧、氢氧自由基都有很强的化学活性, 氧化降解大多数有机污染物,同时空穴本身也可夺取吸附在半导体表面的有机物质中的电子,使原本不吸收光的物质被直接氧化分解,这两种氧化方式可能单独起作用也可能同时起作用,对于不同的物质两种氧化方式参与作用的程度有所不同。

这些原子氧、氢氧自由基和空穴还能与细菌内的有机物反应,生成CO2、H2O 及一些简单的无机物,从而杀死细菌,清除恶臭和油污。

此外,半导体表面产生的高活性电子具有很强的还原能力,电子受体可直接接受光生电子而被还原, 故也可用来还原去除环境中的某些特定污染物,如: Cu2+等有毒离子。

另外,光催化效率与激发态电子、空穴到达表面的时间有关, 纳米TiO2粒子作为光催化剂, 其粒径越小,电子、空穴到达反应表面的数量越多,光催化效率越高但是,由于TiO2本身禁带宽, 产生的电子-空穴对不仅极易复合而且寿命较短, 光响应范围较窄, 使光催化活性受到了一定的限制,且利用的光谱范围受到一定的限制。

溶胶凝胶法制备纳米二氧化钛的工艺条件实验

溶胶凝胶法制备纳米二氧化钛的工艺条件实验

溶胶凝胶法制备纳米二氧化钛的工艺条件实验1【实验目的】1.掌握溶胶-凝胶法基本原理2.了解纳米TiO2的制备方法【背景介绍】纳米TiO2是一种n型半导体材料,晶粒尺寸介于1~100 nm,其晶型有两种:金红石型和锐钛型。

由于纳米TiO2比表面积大,表面活动中心多,因而具有独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等,呈现出许多特有的物理、化学性质,在涂料、造纸、陶瓷、化妆品、工业催化剂、抗菌剂、环境保护等行业具有广阔的应用前景。

20世纪70年代末日本专利首次公开了纳米TiO2的制备方法,20世纪80年代才开始正式生产。

纳米TiO2的制备方法可归纳为物理方法和化学方法。

物理制备方法主要有机械粉碎法、惰性气体冷凝法、真空蒸发法、溅射法等;物理化学综合法又可大致分为气相法和液相法。

目前的工业化应用中,最常用的方法还是物理化学综合法。

本实验主要讨论溶胶-凝胶法( Sol - Gel法)制备纳米二氧化钛的最佳工艺条件的选择。

【仪器与试剂】试剂:钛酸丁酯(化学纯) 、无水乙醇(分析纯) 、95%乙醇(分析纯) 、冰醋酸(化学纯) 、羟基丙酯纤维素(化学纯) 、三乙胺(化学纯)。

仪器:电子天平,恒温磁力搅拌器,真空干燥箱,管式气氛炉,烧杯等玻璃仪器。

【实验步骤】1.样品的制备(1) 取17 mL的钛酸丁酯加入到盛有40 mL的无水乙醇的分液漏斗中混匀,得到溶液A;(2) 另取10 mL冰醋酸和42. 5mL的95%乙醇混匀得到溶液B;(3) 将A溶液缓慢地滴加到B溶液中并且用磁力搅拌器迅速地搅拌,得到透明的胶体;(4)室温下自然风干一段时间后再在烘箱中105℃左右进行烘干得到干凝胶;(5)将干凝胶研磨成粉,再置于马福炉中进行煅烧,得到二氧化钛微粒。

2. 样品的表征(1) 用激光粒度分布仪(Nano-S 90,JeolCO.,JAPAN)测定TiO2微粒的粒径和粒度分布。

【结果与讨论】(1) 解释红外光谱图,对各峰进行确认。

纳米二氧化钛的制备

纳米二氧化钛的制备

化学方法
4、钛醇盐气相分解法 该工艺以钛醇盐为原 料, 将其 加热气化, 用氮 气、 氦气或氧气作载气把钛醇盐蒸气经预热后导入 热分解炉, 进行热分解反应, 以钛酸丁酯为例: nTi(OC4H9R)4(g) nTiO2(s)+2nH2O(g)+4nC4H8(g)
化学方法
气相沉积
前驱体
物理方法
物理气相沉积
物理气相沉积法(PVD)是利用电弧、高频或等离 子体等高稳热源将原料加热,使之气化或形成等离 子体,然后骤冷使之凝聚成纳米粒子。其中以真空 蒸发法最为常用。粒子的粒径大小及分布可以通过 改变气体压力和加热温度进行控制。
物理方法
磁控溅射
成品展示
Thank you
合作愉快
化学方法
化学气相沉积
化学气相沉积法(CVD):两种或两种以上的气态原材料导入到 一个反应室内,他们之间发生化学反应,形成一种新的材料,沉 积到晶片表面上。该法制备的纳米TiO2粒度细,化学活性高,粒 子呈球形,单分散性好,可见光透过性好,吸收屏蔽紫外线能力 强。该过程易于放大,实现连续化生产,但一次性投资大,同时 需要解决粉体的收集和存放问题。
化学方法
1、 TiCl4 氢氧火焰水解法 该方法所用原料是TiCl4、H2 和O2, 是将TiCl4气体导入 高温(700 C ~ 1 000 C) 的氢氧火焰中进行气相水解, 化学反应式为: TiCl4(g) +2H2(g) +O2(g) =4TiO2(s) +4HCl(g) 所得到的晶体类型一般是锐钛型和金红石型的混晶型。
化学方法
3、钛醇盐气相水解法 该工艺最早是由美国麻省理工学院开发成功 的, 可以用来生产单分散的球形纳米 TiO2, 化学反 应式是: n(TiOR)4( g) +4nH2O(g) nTi(OH)4(s)+4nROH(g) nTi(OH) 4( s) nTiO2 H2O(s)+nH2O(g) nTiO2 •H2O(s) nTiO2(s)+nH2O(g)

纳米二氧化钛的制备及性质实验

纳米二氧化钛的制备及性质实验
一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定凝胶。
(2)光降解实验
标准曲线的制作:
(1)最大吸收波长
取0.005g/100mL的溶液于比色皿中,以蒸馏水为参比,从500nm-700nm范围内每隔50nm,测吸光度,在最大吸收波长周围以10nm为间隔重新扫描,寻找最大吸收波长。
液,最后直接加热,仍然会生成溶胶,只不过由于受热不均匀,水解速率不一而出现了大量气孔。这说明转速和滴速对溶胶的生成影响很小,加入适当试剂使钛酸正丁酯缓慢水解才是至关重要的。
2.亚甲基蓝的催化光解
得此浓度亚甲基蓝最大吸收波长为615nm,并制作标准曲线:
质量浓度mg/L
1
2
3
4
5
吸光度
0.056
0.145
五、实验仪器
量筒、烧杯、磁力搅拌器、电子天平、电热炉、马弗炉、移液枪、离心机、分光光度计等
六、实验过程
实验开始的第一天,早上八点左右进入实验室,取完所需要的实验器材,我便开始了实验。首先我严格按照上述所设计的流程配置了A液,A液在完全无水(除空气中的水汽外)的情况下配置,为淡黄色液体,未见浑浊。然后我配置了B液,与设计不同的是,调节酸性时,我认为盐酸与硫酸对于实验没有太大区别,于是选用6mol/L的硫酸调节B液pH小于3,最后待A、B液搅拌均匀后,在室温水浴下,我缓慢的将A液滴加入B液,一开始剂量比较小,混合液依然澄清,但刚刚滴加两试管后,混合液便出现白色浑浊,表明钛酸正丁酯已然水解成了颗粒较大的乳浊液,实验失败。于是我开始思考,到底是哪出了问题?滴加速率过快吗?还是搅拌不均匀?于是我又做了一次尝试,这次我加大了转速,放慢了滴加速率,但不幸的是,得到的结果还是失败的。到了下午,在老师的提醒下,我意识到,问题可能出在调节B液pH所用的酸上,硫酸根的作用可能对Ti(OR)4的水解产生了影响。于是我改用了浓盐酸进行调节,其余流程不变,终于得到了凝胶。历经一整天时间,失败了两次,我最终将凝胶制备了出来,坚持取得了胜利。之后,我将凝胶放置在电热炉里,让其烘干12小时以上。

纳米二氧化钛的可控制备及其光催化和光电性能的研究

纳米二氧化钛的可控制备及其光催化和光电性能的研究

纳米二氧化钛的可控制备及其光催化和光电性能的研究一、纳米二氧化钛的可控制备方法1. 溶胶-凝胶法溶胶-凝胶法是一种常用的纳米二氧化钛制备方法。

其原理是将金属有机化合物或金属无机盐溶解在适当的溶剂中,形成溶胶。

随后,通过加入适量的催化剂或掺杂剂,将溶胶凝胶化成胶体颗粒,最终形成纳米二氧化钛材料。

该方法制备的纳米二氧化钛颗粒尺寸均匀,形貌好,适用于大面积薄膜的制备。

2. 水热法3. 气相沉积法气相沉积法是利用金属有机化合物或金属无机盐在高温条件下分解成金属原子或金属离子,再在衬底表面沉积成膜的一种方法。

通过控制气相反应的物理条件,如温度、压强、流速等参数,可以实现对纳米二氧化钛薄膜的可控制备。

该方法制备的纳米二氧化钛薄膜薄,适用于光电器件的制备。

以上介绍了几种常用的纳米二氧化钛制备方法,各有优劣。

在实际应用中,可根据具体要求选择合适的制备方法,以实现对纳米二氧化钛材料的可控制备。

二、纳米二氧化钛的光催化性能研究纳米二氧化钛具有优良的光催化性能,主要是由于其带隙能宽(3.2eV)和能带结构的特殊性质所致。

在紫外光照射下,纳米二氧化钛表面产生电子-空穴对,在存在氧分子的情况下,电子和空穴可分别参与氧分子的还原和氧分子的氧化反应,从而实现对有机废水中有机物的降解,达到净化水质的目的。

由于纳米二氧化钛具有良好的稳定性和可再生性,因此在环境治理方面具有巨大潜力。

针对纳米二氧化钛的光催化性能研究,研究者们主要通过调控纳米二氧化钛的晶型、晶粒大小、表面形貌等因素,以提高其光催化活性。

通过掺杂其他金属离子或非金属元素,可以调控纳米二氧化钛的带隙能宽,提高其可见光吸收率,从而提高光催化活性;通过合成纳米二氧化钛的不同形貌,如纳米棒、纳米粒等,可以增加其光催化活性表面积,改善光催化反应速率。

以上研究为纳米二氧化钛的光催化性能提供了理论和实验基础,为纳米二氧化钛的实际环境治理应用奠定了基础。

除了光催化性能外,纳米二氧化钛还具有良好的光电性能,因此在光电器件领域也备受关注。

二氧化钛的制备

二氧化钛的制备

制备措施旳优劣分析
物理法制备旳纳米二氧化钛纯度高,但设 备投入大,产量小;化学法制备旳纳米二 氧化钛产量大但一般都需煅烧或干燥才 干制得粉体,粉体中往往具有一定旳杂质; 综正当兼具了前两者旳优点。所以,在制 备纳米TiO2材料时应结合其使用要求而 选择制备工艺简朴、设备投入少、产量 大、成本较低旳制备措施。
Ti(OC4H9)4(g)→TiO2(s) + 2H2O(g) + 4C4H8(g) 日本出光兴产企业就是利用钛醇盐气相分解法生产球形非晶型
旳纳米TiO2。这种纳米TiO2能够用作吸附剂、光催化剂、催化 剂载体和化装品等等。除了上述多种气相合成法外,气相法还涉 及低温等离子体化学法、激光化学反应法、金属有机化合物气 相沉积法、强光离子束蒸发法、乳液燃烧法等,虽然这些措施制 得旳粉体纯度高、粒径分布窄、性好,但因为生产成本高,应用价 值不大[2]。在上述多种措施中, TiCl4气相氧化法因为经济、环 境保护和生产工艺旳柔性而最具竞争力。
2.2 TiCl4气相氧化法
与氯化法制造一般金红石型旳原理相类似,只是工艺 控制条件愈加复杂和精确,其基本化学反应式 为:TiCl4(g) + O2(g)→TiO2(s) + 2Cl2(g)施利毅等利 用N带TiCl4蒸汽,经预热到435℃后经套管喷嘴旳内管 进入高温管式反应器,O2经预热到870℃后经套管喷 嘴旳外管也进入反应器,TiC14和O2在900~1400℃下 反应,反应生成旳纳米TiO2微粒经粒子捕集系统,实现 气固分离[2]。这种工艺目前还处于试验室小试阶段, 该工艺旳关键是要处理喷嘴和反应器旳构造设计及 TiO2粒子遇冷壁结疤旳问题。这种工艺旳优点是自 动化程度高,能够制备出优质旳粉体。
2)加入醋酸旳量对凝胶时间旳影 响:在室温、pH=2~3、m(无水乙 醇):m(水):m(钛酸丁酯)=25:5:1

实验三 水热法制备纳米二氧化钛

实验三 水热法制备纳米二氧化钛

实验三水热法制备纳米二氧化钛一、实验目的1、了解水热法制备纳米二氧化钛的原理、方法和操作2、掌握根据实验原理选择实验装置的一般方法。

二、实验原理TiO2在自然界中存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型TiO2均具有光催化活性,尤以锐钛矿型光催化活性最佳,两种晶型结构如图1.1所示。

OTi图1 二氧化钛的晶体结构二氧化钛的用途极为广泛,目前已经用于化工、环保、医药卫生、电子工业等领域。

纳米二氧化钛具有良好的紫外线吸收能力,且具有很好的光催化作用,因而可以用做织物的抗紫外和抗菌的整理剂。

纳米二氧化钛制备原理如下:Ti(OC4H9)4+2H2O TiO2+4C4H9OH可分为两个独立的反应,即:Ti(OC4H9)4+xH2O Ti(OC4H9)4-x OH x+xC4H9OHTi(OC4H9)4-x OH x+Ti(OC4H9)4(OC4H9)4-x TiO x Ti(OC4H9)4-x+xC4H9OH当x=4时水解完全,反应为可逆反应,因此在反应过程中保持足够量的水保证醇盐水解完全。

a = 4.593Åc = 2.959ÅEg=3.1eVρ= 4.250 g/cm30212.6fG∆=-a = 3.784 Åc = 9.515ÅEg=3.3eVρ= 3.894 g/cm30211.4/fG kcal mol∆=-三、主要仪器与药品1.仪器磁力加热反应器,水热反应釜(60ml),250ml烧杯,100ml量筒,电子分析天平, pH试纸。

2.试剂钛酸丁酯(化学纯); 二乙醇胺、十二胺(化学纯); 氨水(稀释至30%)、无水乙醇(分析纯),去离子水。

四、操作步骤方法一:在盛有0.5g表面活性剂十二胺的烧杯中加入20ml二次蒸馏水, 在磁力搅拌下使之充分溶解(可以适当加热), 然后加入氨水调节pH值至10。

迅速加入钛酸丁酯溶液(Ti(OC4H9)4,使Ti4+的浓度为0.25mol/L,M=340.36), 搅拌30min,生成胶状沉淀。

溶胶-凝胶法制备纳米二氧化钛及性质研究

溶胶-凝胶法制备纳米二氧化钛及性质研究
溶胶-凝胶法制备纳米 溶胶二氧化钛及性质研究
验目的
溶胶- 溶胶-凝胶法合成纳米级半导体材料 TiO2; 了解纳米粒性和物性; 了解纳米粒性和物性; 研究纳米二氧化钛光催化降解甲基橙水 溶液 了解化学中的X射线衍射分析, 了解化学中的 射线衍射分析,扫描透 射线衍射分析 射电镜等方面的理论和实验手段。 射电镜等方面的理论和实验手段。
仪器及试剂
试剂 钛酸正四丁脂(分析纯),无水乙醇( ),无水乙醇 钛酸正四丁脂(分析纯),无水乙醇(分析 ),冰醋酸 分析纯),盐酸(分析纯), 冰醋酸( ),盐酸 纯),冰醋酸(分析纯),盐酸(分析纯), 蒸馏水。 蒸馏水。 仪器 恒温磁力搅拌器,搅拌子,三口瓶(250 mL), 恒温磁力搅拌器,搅拌子,三口瓶 , 恒压漏斗(50 mL),量筒 恒压漏斗 ,量筒(10 mL, 50 mL), , 烧杯(100 mL) 烧杯
实验原理
钛酸四丁脂在酸性条件下, 钛酸四丁脂在酸性条件下,水解产物为含 钛离子溶胶
Ti(O-C4H9)4 + 4H2O Ti(OH)4 + 4C4H9OH
含钛离子溶液中钛离子通常与其它离子相 互作用形成复杂的网状基团, 互作用形成复杂的网状基团,最后形成稳定 凝胶
Ti(OH)4 +Ti(O-C4H9)4 Ti(OH)4 + Ti(OH)4 2TiO2 + 4C4H9OH 2TiO2 + 4H2O
实验步骤
X射线衍射 射线衍射(XRD)的测定 射线衍射 的测定 X射线衍射 射线衍射(XRD)谱图 射线衍射 谱图
图1 X射线衍射谱图 射线衍射谱图
实验步骤
透射电镜(TEM)表征 表征 透射电镜
透射电镜(TEM)表征 (教师讲解) 表征 教师讲解) 透射电镜

纳米二氧化钛的水热法制备及其应用研究进展

纳米二氧化钛的水热法制备及其应用研究进展

4、干燥:将分离后的产物进行 干燥处理,以便后续应用。
4、干燥:将分离后的产物进行干燥处理,以便后续应用。
为了表征纳米二氧化钛的结构和性质,常采用X射线衍射(XRD)、傅里叶变 换红外光谱(FTIR)等方法进行测试。XRD可以确定纳米二氧化钛的晶体结构和 相组成,而FTIR则可以了解其分子结构和化学基团。
研究方法
研究方法
水热法制备纳米二氧化钛的基本流程如图1所示,包括以下几个步骤: 步骤1:材料准备。根据实验需要,准备好钛酸盐、还原剂、表面活性剂等材 料。
研究方法
步骤2:溶液配制。将钛酸盐、还原剂、表面活性剂等按一定比例配制成溶液。 步骤3:实验装置。将配制好的溶液放入高压反应釜中,在一定温度和压力下 进行反应。
实验过程
4、产物的分离与表征:反应结束后,将产物进行分离,得到二氧化钛纳米晶 体。利用光学显微镜和扫描电镜对产物进行表征,观察二氧化钛纳米晶体的形貌 和尺寸。
产物分析
产物分析
通过光学显微镜和扫描电镜观察到,二氧化钛纳米晶体呈现出球形或多面体 形貌,尺寸分布均匀。在X射线衍射和傅里叶变换红外光谱分析中,二氧化钛纳 米晶体表现出典型的锐钛矿型晶体结构和化学键合状态。
参考内容
引言
引言
纳米二氧化钛是一种重要的无机纳米材料,具有优异的物理、化学和光学性 能,在光催化、太阳能电池、光电子器件、生物医学等领域具有广泛的应用前景。 水热法是一种常用的制备纳米材料的物理化学方法,可以在高温高压条件下促进 反应的进行,制备出具有特定形貌和性能的纳米材料。本次演示将综述水热法制 备纳米二氧化钛的研究进展,以期为相关领域的研究提供参考和借鉴。
结论
结论
本次演示综述了水热法制备纳米二氧化钛的研究进展,总结了其研究现状、 存在的问题和发展趋势。水热法作为一种有效的制备纳米材料的方法,在制备纳 米二氧化钛方面具有广阔的应用前景。未来的研究方向应包括优化制备条件、降 低成本、提高形貌和性能的可控性、探索新的表面处理方法等方面。相信随着科 学技术的不断进步和完善,水热法制备纳米二氧化钛的研究将取得更大的突破和 进展。

纳米二氧化钛的制备

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性评价一、实验目的3、了解纳米半导体材料的性质。

4、了解纳米半导体光催化的原理。

二、实验原理二氧化钛,化学式为,俗称钛白粉。

多用于光触媒、化装品,能靠紫外线消毒及杀菌。

以纳米级为代表的具有光催化功能的光半导体材料,因其颗粒细小、比外表积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。

1、纳米二氧化钛的制备溶胶凝胶法中,反响物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成,脱水后即可得到。

在后续的热处理过程中,只要控制适当的温度条件和反响时间,就可以得到二氧化钛。

在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反响,钛酸四丁酯在酸性条件下,在乙醇介质中水解反响是分步进行的。

一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。

上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。

此过程中涉及的反响为:2、光催化活性评价光触媒在光照条件下〔可以是不同波长的光照)所起到的催化作用的化学反响,通称为光反响。

光催化一般是多种相态之间的催化反响。

本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反响前后的溶液的吸光度的变化算出降解率来评价制备的二氧化钛的活性。

三、实验仪器与试剂仪器:磁力搅拌器,搅拌磁子,水浴锅,PH试纸,胶头滴管,量筒,玻璃棒,烧杯,坩埚,石棉网,电炉,真空枯燥箱,量杯,充气管,自制紫外灯光催化装置,离心机。

试剂:亚甲基蓝,甲基橙,盐酸,冰醋酸,钛酸丁酯,四氯化钛,硫酸氧钛,纳米二氧化钛,无水乙醇。

四、实验步骤〔1〕二氧化钛的制备1、室温下取10ml钛酸丁酯,缓慢滴入到35ml无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。

纳米二氧化钛的制备

纳米二氧化钛的制备

纳米二氧化钛的制备随着纳米技术的不断发展,纳米材料已经成为了当今世界上研究的热点之一。

其中,纳米二氧化钛是一种应用广泛的纳米材料,它具有优异的光电性能、化学稳定性和生物相容性等特点,被广泛应用于催化、光催化、光电子、生物医学等领域。

本文将介绍纳米二氧化钛的制备方法,主要包括溶胶-凝胶法、水热法、水热微波法、水热氧化法、水热碳化法和气相法等。

1. 溶胶-凝胶法溶胶-凝胶法是一种常见的纳米二氧化钛制备方法。

该方法的主要步骤包括:将钛酸酯或钛酸盐等钛源在酸性或碱性条件下与溶剂(如水、乙醇等)混合,形成钛溶胶;然后将钛溶胶在高温下烘干,形成凝胶;最后通过煅烧过程,得到纳米二氧化钛。

该方法制备的纳米二氧化钛具有较高的比表面积、较好的结晶度和分散性。

2. 水热法水热法是一种简单、易于操作的纳米二氧化钛制备方法。

该方法的主要步骤包括:将钛源与水或乙醇等溶剂混合,加入适量的氢氧化钠或氢氧化铵等碱性物质,形成混合溶液;然后将混合溶液在高温高压的水热条件下处理,形成纳米二氧化钛。

该方法制备的纳米二氧化钛具有较小的粒径、较高的比表面积和较好的晶体结构。

3. 水热微波法水热微波法是一种高效、快速的纳米二氧化钛制备方法。

该方法的主要步骤包括:将钛源与水或乙醇等溶剂混合,加入适量的氢氧化钠或氢氧化铵等碱性物质,形成混合溶液;然后将混合溶液置于微波反应器中,在高温高压的微波辐射下处理,形成纳米二氧化钛。

该方法制备的纳米二氧化钛具有较小的粒径、较高的比表面积和较好的晶体结构。

4. 水热氧化法水热氧化法是一种环保、低成本的纳米二氧化钛制备方法。

该方法的主要步骤包括:将钛源与水或乙醇等溶剂混合,加入适量的氢氧化钠或氢氧化铵等碱性物质,形成混合溶液;然后将混合溶液在高温高压的水热条件下处理,形成纳米二氧化钛。

该方法制备的纳米二氧化钛具有较小的粒径、较高的比表面积和较好的晶体结构。

5. 水热碳化法水热碳化法是一种具有良好可控性的纳米二氧化钛制备方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京信息工程大学综合化学实验报告
学院:环境科学与工程学院
专业:08应用化学
姓名:章翔宇
潘婷
袁成
钱勇
2010年6月25号
纳米二氧化钛的制备及性质实验
1、实验目的
熟悉溶胶凝胶法制备纳米二氧化钛的方法及相关操作;
理解二氧化钛吸附实验的原理和操作;
掌握数据处理的方法
2、溶胶凝胶法制备纳米二氧化钛
2.1 需要的仪器
恒压漏斗、茄行烧瓶、量筒、移液管、铁架台、磁力搅拌、磁子、冷凝管、温度计、烘箱、研钵
2.2 需要的试剂
钛酸丁酯异丙醇浓硝酸蒸馏水
2.3 实验步骤
1.50ml钛酸丁酯溶16ml的异丙醇中,摇匀(在恒压漏斗中进行)
得到溶液A
2.取200ml 的蒸馏水,加入0.32 ml 的浓硝酸,摇匀(在茄行烧瓶中进行),得到
溶液B
3.将烧瓶固定在铁架台上,进行磁力搅拌,将溶液A 逐滴滴加至溶液B中,使两溶液
缓慢接触,并进行水解反应,得到溶液C
溶液C室温回流,记载下当时的室温
4.回流分若干天进行,保证回流时间不少于48小时,得到溶液D
5.蒸干方式:将溶液D进行水浴加热85度并不断搅拌将水分蒸发干,得E
6.将E放入烘箱100烘干
7.研磨至粉末状;
2.4 实验结果
1、回流分4天进行,总计回流时间50小时,室温为15℃。

2、经研磨,得到白色细粉末状固体。

称量得二氧化钛质量为11.233g,理论产量不小于11.785g,损失为产品转移过程中损失。

3、纳米二氧化钛性质实验
3.1 二氧化钛吸附试验
1、仪器:烧杯(500mL),容量瓶(1000mL),样品瓶(6个),电子天平,磨口瓶,超
声波清洗机,玻璃注射器,过滤器,分光光度计
2、试剂:二氧化钛粉末,染料X-3B(分子量615),蒸馏水
3、实验步骤:
1、用电子天平称取60mg染料,配成1000mL的60mg/L溶液(避光保存)。

2、将烧杯润洗后,倒入100ml染料溶液,再倒入称量好的50mg的二氧化钛粉末。

静置后置于超声波清洗机中(70℃超声40分钟,注意避光)。

剩余原液取样保存编
号。

3、超声结束后,用玻璃注射器套过滤器取液体样于样品瓶中,编号避光保存。

4、重复上述方法配制浓度为50、30、18、1
5、20、10的有色溶液,并完成吸附、
超声和取样。

5、收集好7个样品瓶和7瓶原液做分光光度实验(波长λ=525nm ) 1) 测未吸附的原液样品不同浓度对应的吸光度A ; 2) 根据吸光度值坐A--c 0标准曲线。

绘制标准曲线:
曲线拟合结果:
A=0.01872c+0.00194 R=0.99807
3) 将吸附之后的样品有低浓度到高浓度顺序做分光光度实验,得到对应吸光度; 4) 将吸光度值代入标准曲线中求的浓度值并化为mol/L 单位,计算出吸附量
n=c 0-c ,将n 与c 0取倒数列于表格中;
5) 作1/n —1/c 吸附等温曲线,并拟合,分析。

C 0(mg/L ) 50 60
A
0.203 0.251 0.255 0.335 0.551 0.940 1.130
A 0 1.13 0.94 0.551 0.335 0.255 0.251 0.203 A 0.886 0.71
0.357 0.189 0.143 0.21
0.152
C 0/(*10-5mol /L)
9.80 8.15 4.77 2.89 2.20 2.16 1.75 C'/(*10-5mo l/L)
7.68 6.15 3.08 1.62 1.23 1.81 1.30 n/(*10-6mol ) 2.12 2.00 1.69 1.27 0.97 0.36 0.44 1/C 0 0.10 0.12 0.21 0.35 0.45 0.46 0.57 1/n
0.47 0.50 0.59 0.79 1.03 2.81 2.26
111
n n kcn =+1T
n kc
n kc θ==+
考虑到低浓度区的吸附误差,对前五点进行拟合:
拟合结果1/n=1.53344*1/c+0.29877 R=0.96758
由表面吸附率:
可得:
根据曲线可知:1/n T =0.2988, 1/kn T =1.533,可得k=0.1948。

得到表面吸附率为:
C0/(*10-5) 9.80 8.15 4.77 2.89 2.20 θ(表面吸附率) 0.66
0.62
0.49 0.36 0.30
由此得到的C-θ如下:
3.2 二氧化钛光催化实验
利用实验3.1中配制好的染料溶液,检测在阳光照射下二氧化钛的降解情况。

我们选用50mg/L的染料溶液。

取100mL与烧杯中,放入50mg二氧化钛粉末,置于阳光下并水浴控温。

每10分钟取一次样,共取六次。

收集好后进行分光光度检测得到对应吸光度。

-2
t/min
A 0.824 0.782 0.754 0.730 0.685 0.654
根据上表绘制A~t曲线:
由图可知:A随时间变化递减,近似成线性关系,拟合结果为:
A=-0.00333t+0.82138 R=0.99181
4、总结
本实验通过溶胶凝胶法制得的二氧化钛粉体,颗粒细,大小均匀。

吸附试验中,考虑到吸附速率的影响,我们把原来的超声时间由20分钟增加到40分钟,得到了较好的实验效果。

吸附试验表明,二氧化钛的可在太阳光的照射下,表现出较好光催化降解染料X-3B的能力。

相关文档
最新文档