近世代数学习教材PPT课件

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

大学数学《近世代数》课件

大学数学《近世代数》课件

3.推移律:
a bb a
a a,不管a是A的哪一个元。
a b, b c a c
定义:若把一个集合A分成若干个叫做类的子集,使得A的每一个元属于而 且只属于一个类,那么这些类的全体叫做集合A的一个分类。
定理1:集合A的一个分类决定A的元间的一个等价关系。
定理2:集合A 的元间的一个等价关系决定A的一个分类。
III.
,方程 和
在G中都有解。
例1 G={g},乘法规定gg=g, 则G是一个群。
例2 G={全体整数};G中运算为普通加法,则G是一个群。
例3 G={所有非整数},G对于普通乘法不作成一个群。
定义1 同态:S , 与 T , 为两个代数系
统, :S T 为同态映射,若对 a ,b S
有:a b=ab
S , 定义2 同态满射: 与 为两个代数系统 ,
该映射为同态满射, ,
:S T
T , 为同态映射,且为满射,则 同态
S , T ,
定理1 假定,对于代数运算 和 来说, S与T 同态则:
二元代数运算“
”适合结合律和交换律
则 ai S,i 1,2,n, n个元素
a , a ,, a 1 2
n 的乘积仅与这n个元素
有关而与它们的次序无关。
例 仅满足结合律而不满足交换律:
1)矩阵乘法 2)映射的复合运算 3)字符串的复合运算 同时满足结合律与交换律:
1)普通乘法 2)集合的并、交 3)逻辑与、逻辑或 两者均不满足:
[本章主要内容]
1)群、子群及相关性质; 2)置换群、循环群; 3)子群的陪集、正规子群; 4)群的同态;
2.1半群与群的概念
定义1 设“
”时非空集合S上的一个二元

近世代数课件(全)--2-11 图形的对称变换群、群的应用

近世代数课件(全)--2-11 图形的对称变换群、群的应用
2019/1/20
nm
现在考虑二面体群 D m 对集合 的作用: 设
1 2 g i1 i 2
k
ik
m Dm im
1 2 c1 c 2
,其中
ck A
k ck
m
cm
2019/1/20
定义
g
对 的作用为
g m i1 i 2 c m c1 c 2
2019/1/20
容易看出, 正方形的对称变换有两类: 第一类: 绕中心的分别旋转90度,180 度,270度,360度的旋转, 这对应于置换 (1234), (13)(24), (1432),(1). 第二类: 关于正方形的4条对称轴的反射, 这对应于置换 (1 2)(3 4), (2 4), (1 4)(2 3), (2 4), (1 3). 所以, 正方形的对称变换群有上述 8个元素. 这是四次对称群的一个子群.
2 1
1 是一个 (12345) 5 型置换 1 2 是一个 (12)(34) (12)(34)(5) 1 2 型置换
2019/1/20
二面体群中的置换类型
0 (1), k 123 n , k 1, , n 1 0 2 n (3 n 1) , d n k 的类型是 型,其中 d ( n, k ) d n 1 k 当n是奇数时,都是 112 2 型的
D
C
2019/1/20
B
A
7:
C D

D
A
C
B
2019/1/20
B
A
8:
C D

B
C
A
D
2019/1/20

近世代数教学课件

近世代数教学课件

并运算 设 A, B是两个集合 . 由 A的一切元素和 B的一切 元素所成的集合叫做A与B的并集(简称并),记作 A B. 如图1所示.
A
A B
( x A B) ( x A或x B) ( x A B) ( x A且x B)
B
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: A B ,如图2所示.
A A
交换律 : A B B A ; A B B A 结合律 : ( A B) C A ( B C ) ; ( A B) C A ( B C) 分配律 : A B C A B A C
A B C A B A C
A是B的子集,记作:
( A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
( A B) (x : x A x B)
以集合A的所有子集为ຫໍສະໝຸດ 素的集合,称为A的幂集, 记为P(A).
如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
近世代数
第一章 基本概念
§1 §2 §3 集 合 映射与变换 代数运算
§4 §5 §6
运算率 同态与同构 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的 元素,就说a属于A,记作 a A ;如果a不是集合A 的元素,就说a不属于A,记作 a A ; 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 . A

近世代数精品课程25页PPT

近世代数精品课程25页PPT
近世代数精品课程

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
6பைடு நூலகம்最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you

近世代数引论PPT课件

近世代数引论PPT课件
域是近世代数中的一个基本概念,它是一个加法群和 一个乘法半群的组合,具有一些重要的性质。
详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。

近世代数主要知识点PPT课件

近世代数主要知识点PPT课件
• 假如运算1和1‘来说,有一个A到A’的满射的同态映射存在,同态满射 • 同构映射 一一映射的同态映射就是一个同构映射 • 自同构
第8页/共27页
等价关系与等价类
• 集合的等价关系 。Ⅱ,
对称律:a~b=>b~a Ⅲ,推移律:a~b,b~c=>a~c 同余关系
第22页/共27页
除环、域
• 除环 1, R至少包含一个而不等于零的元
的每一个不等于零的元有一个逆元
2,R有单位元
3,R
• 域 一个交换除环叫做一个域
• 在一个没有零因子的环里所有不等于零的元对于加法来说的阶都一样的
• 一个无零因子的环里的非零元的相同的阶叫做环的特征
• 整环 除环 域 的特征或是无限大 或是一个素数
(b+c)a=ba+ca
第21页/共27页
交换律、单位元、零因子、整环
• 交换环 一个环 假如 ab=ba不管a b是环的哪两个元 • 单位元 ea=ae=a 一个环未必有单位元 • 零因子 若环里a≠0,b≠0但 ab=0 那么 a是左零因子 b 右零因子 • 整环 一个环叫做整环 如果 1.乘法适合交换律:ab=ba 2 .R有单位元1:1a=a1=a 3 R没有零因子ab=0=>a=0或b=0
合D的一个映射
像 逆象,
• 映射的相同 效果相同就行
第5页/共27页
代数运算
• 定义一个A×B到D的映射叫做一个A×B到D的代数运算 • 代数运算是一种特殊的映射 描写它的符号,也可以特殊一点,一个代数运算我们用。来
表示 • 二元运算 假如。是一个A×A到A的代数运算,我们说集合A是闭的 二元运算
换群 • 定理2 一个集合的所有一一变换做成一个变换群 • 定理3 任何一个群都同一个变换群同构 证明,假定G是一个群,G的元是a,b,c ·······我们在G里任意取出一个元x来,那么‫ג‬x:

近世代数ppt

近世代数ppt
8
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射
1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
9
第5讲 基本概念之等价关系与集合的分类 ——商集
1 商集 2 等价关系 3 集合的分类 4 集合A上的等价关系与 集合A的分类之间的联系
10
第三章 群
11
第1讲 代数系统
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
第一章 绪 论
1
第1讲 绪 论
一 关于代数的观念 二 数学史的发展阶段 三 代数发展的阶段(数学发展史) 四 代数学发展的四个阶段 五 几类与近世代数的应用有关的实际
问题
2
第二章 基本概念
3
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
集合与元素的相关概念
集合的相关概念
集合的运算及运算律
集合的补充及说明
6
第2讲 基本概念之集合及其之间的关系 —对应关系(映射)(人造关系)
1 映射概念回忆
2 映射及相关定义 3 映射的充要条件
4 映射举例
5 符号说明
6 映射的合成及相关结论
7 映射及其映射相等概念的推广
8 集合及其之间的关系——特殊

近世代数课件(全)--近世代数1-0 基本概念

近世代数课件(全)--近世代数1-0 基本概念
2012-9-19
6. 数字通信的可靠性问题 现代通信中用数字代表信息,用电子设 备进行发送、传递和接收,并用计算机加以 处理。由于信息量大,在通信过程中难免会 出现错误。为了减少错误,除了改进设备 外,还可以从信息的表示方法上想办法。用 数字表示信息的方法称为编码。编码学就是 一 门 研 究 高 效 编 码 方 法 的 学 科 。 下面用两个简单的例子来说明检错码与 纠错码的概念。
2012-9-19
8. 代数方程根式求解问题 我们知道,任何一个一元二次代数方程 可用根式表示它的两个解。对于一元三次和 四次代数方程,古人们经过长期的努力也巧 妙地做到了这一点。于是人们自然要问:是 否任何次代数方程的根均可用根式表示?许 多努力都失败了,但这些努力促使了近世代 数的产生,并最终解决了这个问题:五次以 上代数方程没有根式解。
2012-9-19
2 3
1 8
4 5
7 6
例1 用黑白两种颜色的珠子做成有5颗珠子的项链
利用枚举法,得到一共8种不同类型的项链。 随着n、m的增加,用枚举法解决越来越难, 采用群论方法解决是最简单、有效的方法。
2012-9-19
2.分子结构的计数问题 在化学中研究由某几种元素可合成多少种 不同物质的问题,由此可以指导人们在大自 然中寻找或人工合成这些物质。 例2 在一个苯环上结合H原子或CH3原子团, 问可能形成多少种不同的化合物? 如果假定苯环上相邻C原子 之间的键是互相等价的,则 此问题就是两种颜色6颗珠 子的项链问题。
2012-9-19
两种颜色 (红、绿) n=2
6面红 5面红、1面绿 4面红、2面绿 3面红、3面绿 2面红、4面绿 1面红、5面绿 6面绿
1 1 2 2 2 1 1
利用枚举法,得到一共10种不同的着色法。 对于一般的情况,目前只能用群论方法解决。

《近世代数》PPT课件

《近世代数》PPT课件

例2 设 A 1 { 东} , A 2 { 西 南 } , B { 高} ,低
则 1 :A 1 A 2 B ; ( 西 , 南 ) 高 不是映射.
因为映射要满足每一个元 (a1,a2) 都要有一个像.
而 2 : A 1 A 2 B ; ( 西 , 南 ) 高 ; ( 东 , 南 ) 低 是一个映射. 7
A 1A 2 A n{a1 (,a2, an)ai A i}.
即由一切从 A1,A2, ,An 里顺序取出元素组成的元素 组 (a1,a2, an),ai Ai 组成的集合.
例 A={1,2,3}, B={4,5}, 则
AB={(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)},
A称为 的定义域,B称为 的值域.
注: (1) 映射定义中 “b”的唯一性:映射不能“一对多”,
但可以“多对一”.
(2) 记法: :A B ;ab (a ),aA .
(3) 一般情形,将A换成集合 A 1A 2.. .A n 的积,则
对 ( a 1 ,a 2 ,.a n .) .A ,1 A 2 . .A .n有 : A 1 A 2 . . . A n B ; ( a 1 , a 2 , . . . , a n ) b ( a 1 , a 2 , . . . , a n ) . 6
2. 元素(或元): 组成一个集合的事物.
如果a是集合A中的元素,记作a A ; 如果a不是集合A的元 素,记作 a A 或a A .
2
3.空集:没有元素的集合,记作 .
4.子集:设A,B是集合,则
B A (B是A的子集)是指 b B b A . 真子集:B是A的真子集是指 B A 且 aA,但aB .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8.2 代数系统常见的一些性质
(3)代数系统常见性质 1)结合律:(a b) c=a (b c) 2)交换律:a b=b a 3)分配律:a (b+c)=(a b)+(a c) 4)单位元:a 1=a 5)逆元:a a-1=1 6)零元:a 0=0
7)生成元
逆元

特殊子环 (两个二元运算:,
单位元,无零因子 整环 理想 商环
)
特殊环
两个运算的结合律、交换律、吸收律
格 两个运算的分配律 分配格 布尔代数 两个运算的单位元、逆元 两个运算有单位元 有界格 两个运算有逆元 有补格
第九章 群论
§9.1 一些群的定义
(7)半群——代数系统满足交换律
§9.2 一些群的理论与半群性质:
半群的子代数也是半群。 循环半群是可换半群。 (19)关于群的基本理论 群方程可解性:a x = b(或x a = b)对x存在唯一解; 群的消去律:a b = a c(或b a = c a)必有b = c; 任一群必与变换群同构; 与一个群同构或满同态的代数系统必为群; 一个代数系统有限群满足结合律及消去律则必为群;
第三篇 近世代数
代数系统是建立在集合论基础上以代 数运算为研究对象的学科。本篇共三章, 第五章代数系统基础介绍代数系统的一般 原理与性质, 第六章群论,主要介绍具有 代表性的代数系统-群,最后第七章其它 代数系统,介绍除群外常见的一些代数系 统,如环、域、格与布尔代数等,这三章 相互配合构成了代数系统的完整的整体。
§8.3 同构与同态
(4)同构:(X, )与(Y,)存在一一对应函
数g : XY使得如x1 , x2X,则有:g(x1 x 2)=g(x1)
g(x2)此时则称(X, )与(Y,)同构。 (5)同态:(X , )与(Y,)存在函数g : XY
使得如x1 , x2X,则有:g(x1

有单位
(23)域:环(P,+, )中,运算 交换律,有 单位元,逆元;
(24)环的基本理论 环的基本运算性质: a 0 = 0 a = 0;
b = -(a b) a (-b)=(-a)
(-a) (-b)=a

b
环中无零因子 环满足消去律; 环中子系统S是子环的充要条件是as 则必有a-1S。
第八章 代数系统
§8.1 代数系统一般概念
1.代数系统中的基本概念 ( 1 )代数系统:集合上具有封闭性的运算组成代数系统 (S , )。 (2)子代数:代数系统(S, ),(S,)满足: ① SS ② 如 a , bS,ab = a b 则称(S,)为(S, )的子代 数。
第十章 环论
§10.1 环和域

( 20 )环:( R ,+ , ),对+的可换群,对 的半群, 对+的分配律;
(21)理想:(D,+, ),环(R,+, )的子 环,满足:aR , bD,必有:a bD , b aD; (22)整环:环(R,+, )中,运算 元,无零因子;
a≤c且b≤c a∨b≤c (a≤c且b≤cc≥a∨b) a∧b≤a , a∧b≤b (a≥a∧b , b≥a∧b)
c≤a且c≤b c≤a∧b (c≤a且c≤bc≥a∧b≥c)

x2)=g(x1)g(x2)
)与(Y,)同态。 此时则称(X,
§8.4 常用代数系统
(6)代数系统的构成
交换律
可换群
生成元 (一个二元运算 ) 循环群 结合律 半群 单位元、逆元 群 子集上的群 子群 交换律 可换半群 特殊群 变换群 单位元 特殊群 单元半群 生成元 正规子群、商群 循环半群 代数系统 (两个二元运算:, ) 可换群, 半群, 对分配群 环 交换律 可换环 单位元,
(25)域的基本理论
1)域是整环; 2)有限整环必是域。
第十一章 格与布尔代数
§11.1 格与布尔代数
(26)格:(P,+,

)中,两
个运算的结合律、吸收律、交换律;
(27)布尔代数:格(B,+, )
中,两个运算的分配律、单位元、逆

元。
(28)格的基本理论
1) 一个偏序格必是一个代数格,反之亦然; 2)格的运算性质。 a≤a∨b , b≤a∨b (a∨b≥a , a∨b≥b)
(15)正规子群:( H, )是群( G, )的子群, 如对aG都有:aH = Ha则称(H,)是(G,)的正规 子群。 (16)陪集:H是G的子群,Ha={ha | hH}, aH = {ah | hH }分别称H在G中的一个右陪集或左陪集。 (17)商群:H是G的正规子群,对Ha,HbG/H, 二元运算(Ha)(Hb)=Hab构成群,则称H是G的商群。 (18)单元半群性质: 单元半群的子系统若包含单位元也是单元半群。 可列个元素的单元半群的运算组合表每行(列) 均不相同。 循环单元半群是可换单元半群。 可换单元半群的所有等幂元素是一个子单元半群。
有限群必与置换群同构;
循环群要么与(I,+)同构,要么与(Zm,+m)同构;
一个群子集H构成群(H,o)的充分必要条件:a,bH 则a bH ,aH 则a-1 H;
一个群子集H构成子群(H,o)的充分必要条件:a,b H 则a b-1 H ;
一个有限群的阶一定被它的子群的阶所等分(拉格朗日定 理); f是群(G, )与(G,)的满同态,K是f的核,则必有: (G/k , )与(G,)同构;
(8)单元半群——半群存在单位元 (9)群——半群存在单位元与逆元
(10)可换群——群满足交换律
(11)变换群——集合A上所有的变换构成的集合E (A),对于复合变换所构成的代数系统(E(A), ) 是一个群,称变换群。 (12)循环群——群有生成元。 (13)有限群:群(S, )中S为有限集。 (14)子群:群(G,)上G的子集所构成的群。
相关文档
最新文档