天然气液化工厂常用工艺流程图
lng工艺流程图
lng工艺流程图Liquefied natural gas (LNG) is a clean and efficient energy source that has gained popularity in recent years. It is produced through a complex process called LNG technology, which involves several stages. In this article, we will discuss the LNG process flow diagram in detail.The LNG production process begins with the extraction of natural gas from underground reserves. The natural gas is typically found in deep-sea or land-based reservoirs. Once extracted, it is transported to a processing facility through pipelines. At the facility, the gas is cleaned to remove impurities such as water, carbon dioxide, and sulfur compounds.The next step in the LNG process is the liquefaction of the natural gas. This is achieved by cooling the gas to extremely low temperatures, typically around -160 degrees Celsius. The cooling process is carried out in a series of heat exchangers, where the gas is cooled using specialized refrigerants. As the gas is cooled, it condenses into a liquid state.After liquefaction, the LNG is stored in large cryogenic tanks at the processing facility. These tanks are designed to keep the LNG at extremely low temperatures to prevent it from re-evaporating. The storage tanks also have safety features such as pressure relief valves to ensure the safety of the facility.Once the LNG is stored, it is ready for transportation to end-users. This is typically done using specialized LNG carriers, which are large ships specifically designed to transport LNG. The carriers areequipped with cryogenic tanks to keep the LNG at the required low temperatures during transit.Upon reaching its destination, the LNG is regasified to its gaseous state. This is done by warming the LNG using heat exchangers, where it absorbs heat from seawater or ambient air. The regasified gas is then sent to a pipeline network for distribution to consumers.It is important to note that the LNG process requires a significant amount of energy, both for liquefaction and regasification. To minimize energy consumption, many LNG facilities incorporate energy-saving measures such as using waste heat from the liquefaction process to power the regasification process.In addition, the LNG production process also generates by-products such as natural gas liquids (NGLs) and helium. These by-products have various industrial applications and can be separated from the LNG during the liquefaction process.Overall, the LNG process flow diagram involves several stages, including extraction, purification, liquefaction, storage, transportation, regasification, and by-product recovery. Each stage requires specialized equipment and technologies to ensure efficient and safe operations. LNG technology continues to evolve, with ongoing research and development aimed at improving efficiency and reducing environmental impacts.。
LNG气化站液化天然气化站工艺流程图
LNG加气站工艺流程图如图所示,LNG通过低温汽车槽车运至LNG卫星站,通过卸车台设置的卧式专用卸车增压器对汽车槽车储罐增压,利用压差将LNG送至卫星站低温LNG储罐。
工作条件下,储罐增压器将储罐内的LNG增压到0.6MPa。
增压后的低温LNG进入空温式气化器,与空气换热后转化为气态天然气并升高温度,出口温度比环境温度低10℃,压力为0.45-0.60 MPa,当空温式气化器出口的天然气温度达不到5℃以上时,通过水浴式加热器升温,最后经调压(调压器出口压力为0.35 MPa)、计量、加臭后进入城市输配管网,送入各类用户。
LNG液化天然气化站安全运行管理LNG就是液化天然气(Liquefied Natural Gas)的简称,主要成分是甲烷。
先将气田生产的天然气净化处理,再经超低温(-162℃)加压液化就形成液化天然气。
LNG无色、无味、无毒且无腐蚀性,其体积约为同量气态天然气体积的1/600,LNG的重量仅为同体积水的45%左右。
一、LNG气化站主要设备的特性①LNG场站的工艺特点为“低温储存、常温使用”。
储罐设计温度达到负196(摄氏度LNG常温下沸点在负162摄氏度),而出站天然气温度要求不低于环境温度10摄氏度。
②场站低温储罐、低温液体泵绝热性能要好,阀门和管件的保冷性能要好。
③LNG站内低温区域内的设备、管道、仪表、阀门及其配件在低温工况条件下操作性能要好,并且具有良好的机械强度、密封性和抗腐蚀性。
④因低温液体泵启动过程是靠变频器不断提高转速从而达到提高功率增大流量和提供高输出压力,所以低温液体泵要求提高频率和扩大功率要快,通常在几秒至十几秒内就能满足要求,而且保冷绝热性能要好。
⑤气化设备在普通气候条件下要求能抗地震,耐台风和满足设计要求,达到最大的气化流量。
⑥低温储罐和过滤器的制造及日常运行管理已纳入国家有关压力容器的制造、验收和监查的规范;气化器和低温烃泵在国内均无相关法规加以规范,在其制造过程中执行美国相关行业标准,在压力容器本体上焊接、改造、维修或移动压力容器的位置,都必须向压力容器的监查单位申报。
液化天然气贮罐气化站工艺流程和使用说明
浙江长荣能源有限公司液化天然气(LNG)贮罐气化站供气系统流程说明一、工艺流程图:二、槽罐车卸液操作:1、罐车停稳与连接:液化天然气的专用槽罐车开到装卸区停稳、熄火、拉手刹,用斜木垫固定车轮,防止滑移;先把装卸台上的静电接地线与LN G槽罐车可靠夹接,再用三根软管分别把卸液箱卸液口与槽罐车装卸口可靠连接;并打开卸液箱接口处排气阀,打开槽车顶部充装阀、回气阀,使气体进入软管,再从排气阀放气置换软管内空气,关闭排气阀,检查软管接头处是否密封至不漏气。
2、槽罐与贮罐压力平衡:查看槽罐车内压力和贮罐内的压力,如贮罐内的压力大于槽罐车内压力时,这时打开贮罐顶部充装管道至槽罐车增压器进液管之间的阀门和增压器进液口阀门,使贮罐内的气相与槽罐车内的液相相通,以降低贮罐内的气相压力。
当贮罐内与槽罐内的压力相同时,关闭贮罐顶部充装管至槽罐车增压器进液管之间的阀门。
3、槽罐的增压:打开槽罐车与槽罐车增压器进液管之间的阀门,以及槽罐车增压器回气至槽罐车气相管之间的阀门,通过槽罐车增压器增压以提高槽罐车内的气相压力。
4、槽罐卸液:当槽罐罐内压力大于贮罐中压力0.2Mpa左右,可逐渐打开槽罐车出液阀至全开状态。
这样槽罐车内的液化天然气通过卸液箱的软管与贮罐上的装卸口连接卸入液化天然气(LNG)贮罐。
三、贮罐的使用操作:1、贮罐的压力调整至恒压:利用贮罐自带的增压阀、节气回路、增压器把贮罐的压力调整在一定的范围内(一般控制在0.2~0.35MPa),若贮罐内的压力不够,可通过调整增压阀升高设定压力,从而获得足够的供液压力确保正常供气。
正常工作时,贮罐增压器的进液阀和出气阀需要打开,以保证贮罐增压器正常工作,确保贮罐的工作压力。
2、供气系统的供气:、管道和相关设备在首次使用液化天然气时,应使用氮气置换管道和相关设备内的空气,然后用天然气置换管道和相关设备内的氮气,以确保系统中天然气的含量后才能使用液化天然气。
正常用气时可根据车间用气量大小确定是开二台空温式气化器还是开一台空温式气化器。
lng液化工厂工艺流程
lng液化工厂工艺流程
液化天然气(LNG)的生产过程通常包括以下几个步骤:
1. 天然气采集和初步处理:首先,从地下油气田或海底油气田中开采出天然气。
然后,对天然气进行初步处理,包括除去杂质和水分。
2. 精制处理:初步处理后的天然气被送入精制处理装置,通过一系列的物理和化学处理步骤,如冷却、压缩、冷凝和去除杂质等,将天然气中的非甲烷组分、硫化氢、二氧化碳、水等杂质去除,使天然气纯度提高。
3. 加热和压缩:在精制处理装置中,将精制后的天然气加热至高温,然后通过压缩机将其压缩至高压。
4. 冷却:压缩后的天然气通过冷却装置,利用低温冷却剂(如液氮或液氩)进行冷却,使其温度迅速下降。
5. 液化:冷却后的天然气进入液化装置,通过与冷却剂的热交换,使天然气中的甲烷成分液化成LNG,并将其从气态转化为液态。
6. 储存和运输:将液态天然气(LNG)储存于大型储罐中,通常为特殊设计的钢质罐体。
LNG可以通过管道、LNG船或LNG卡车等方式进行运输。
以上为LNG液化工厂的一般工艺流程,具体的工厂可能会有不同的配置和处理步骤,具体情况还需根据项目和工厂实际情况进行确定。
天然气液化工艺
天然气液化工艺工业上,常使用机械制冷使天然气获得液化所必须的低温。
典型的液化制冷工艺大致可以分为三种:阶式(Cascade)制冷、混合冷剂制冷、带预冷的混合冷剂制冷。
一、阶式制冷液化工艺阶式制冷液化工艺也称级联式液化工艺。
这是利用常压沸点不同的冷剂逐级降低制冷温度实现天然气液化的。
阶式制冷常用的冷剂是丙烷、乙烯和甲烷。
图3-5[1]表示了阶式制冷工艺原理。
第一级丙烷制冷循环为天然气、乙烯和甲烷提供冷量;第二级乙烯制冷循环为天然气和甲烷提供冷量;第三级甲烷制冷循环为天然气提供冷量。
制冷剂丙烷经压缩机增压,在冷凝器内经水冷变成饱和液体,节流后部分冷剂在蒸发器内蒸发(温度约-40℃),把冷量传给经脱酸、脱水后的天然气,部分冷剂在乙烯冷凝器内蒸发,使增压后的乙烯过热蒸气冷凝为液体或过冷液体,两股丙烷释放冷量后汇合进丙烷压缩机,完成丙烷的一次制冷循环。
冷剂乙烯以与丙烷相同的方式工作,压缩机出口的乙烯过热蒸气由丙烷蒸发获取冷量而变为饱和或过冷液体,节流膨胀后在乙烯蒸发器内蒸发(温度约-100℃),使天然气进一步降温。
最后一级的冷剂甲烷也以相同方式工作,使天然气温度降至接近-160℃;经节流进一步降温后进入分离器,分离出凝液和残余气。
在如此低的温度下,凝液的主要成分为甲烷,成为液化天然气(LNG)。
阶式制冷是20世纪六七十年代用于生产液化天然气的主要工艺方法。
若仅用丙烷和乙烯(乙烷)为冷剂构成阶式制冷系统,天然气温度可低达近-100℃,也足以使大量乙烷及重于乙烷的组分凝析成为天然气凝液。
阶式制冷循环的特点是蒸发温度较高的冷剂除将冷量传给工艺气外,还使冷量传给蒸发温度较低的冷剂,使其液化并过冷。
分级制冷可减小压缩功耗和冷凝器负荷,在不同的温度等级下为天然气提供冷量,因而阶式制冷的能耗低、气体液化率高(可达90%),但所需设备多、投资多、制冷剂用量多、流程复杂。
图3-6[3]为阶式制冷液化流程。
为了提高冷剂与天然气的换热效率,将每种冷剂分成2~3个压力等级,即有2~3个冷剂蒸发温度,这样3种冷剂共有8~9个递降的蒸发温度,冷剂蒸发曲线的温度台阶数多,和天然气温降曲线较接近,即传热温差小,提高了冷剂与天然气的换热效率,也即提高了制冷系统的效率,见图3~7[6]。
LNG液化
LNG
21
第三章
天然气液化技术
LNG
3
LNG
28
3.1
天然气液化工艺
既然难以通过调整混合冷剂的组分来使整个液化过程都
能按冷却曲线提供所需的冷量,自然便考虑采取分段供 冷以实现制冷的方法。在MRC工艺基础上,经过改进, 开发出了第三代新型的液化工艺—带预冷的混合剂制冷 循环,预冷方式有丙烷预冷、混合工质预冷、利用氨吸 收制冷来预冷等。
胀制冷工艺流程,又称闭式膨胀机循环。
LNG
29
3.1
天然气液化工艺
带膨胀机液化流程:指利用高压制冷剂通过透平 膨胀机绝热膨胀的克劳德循环制冷实现天然气液化的 流程。流程的关键设备是透平膨胀机。 种类: 天然气膨胀液化流程 氮气膨胀液化流程
氮-甲烷膨胀液化流程
应用: 调峰型天然气液化装置。
⑶使用一台集成换热器(即MRC主换热器),在设备费 用和易于制造方面也具有显著的优势。
⑷利用节流阀降压可以减少LNG产品的蒸发损失;采用
制冷压缩机的级间分离器,可减少压缩机的操作功率。
LNG
19
3.1
天然气液化工艺
混合冷剂制冷循环(MRC)是美国空气产品和化学品公司 于20世纪60年代末开发的一项专利技术。 主要由两部分构成:密闭的制冷系统和主冷箱。 优点:1)机组设备少,流程简单,投资省,投资费用比经 典阶式(CASCADE)液化流程约低15%~20%; 2)管理方便; 3)混合制冷剂可以部分或全部从天然气本身提取与 补充。 缺点:1)混合冷剂的合理配备困难; 2)流程计算必须提供各组分可靠的平衡数据与物性 参数,计算困难。 3) 能耗较高,比阶式液化流程高10%~20%左右;
天然气液化流程工艺选择优化
天然气液化工艺流程方案选择优化液化厂的工艺系统主要包括净化工艺系统、液化工艺系统和存储系统。
工艺优化主要体现在:液化中制冷方式的优化和储存方式的优化。
一、液化制冷方式的选择:天然气液化为低温过程。
天然气液化所需冷量是靠外加制冷循环来提供,配备的制冷系统就是要使得换热器达到最小的冷、热流之温差,并因此获得极高的制冷效率。
天然气液化的制冷系统已非常成熟,常用的工艺有:阶式制冷循环、混合冷剂制冷循环、膨胀机制冷循环。
1、阶式制冷循环阶式制冷循环1939 年首先应用于液化天然气产品,装于美国的Cleveland,采用NH3、C2H4为第一、第二级制冷剂。
经典阶式制冷循环由三个独立的制冷系统组成。
级联式液化流程图第一级采用丙烷做制冷剂,经过净化的天然气在丙烷冷却器中冷却到-35~-40℃,分离出戊烷以上的重烃后进入第二级冷却。
由丙烷冷却器中蒸发出来的丙烷气体经压缩机增压,水冷却器冷却后重新液化,并循环到丙烷冷却器。
第二级采用乙烯做制冷剂,天然气在第二级中被冷却到-80~-100℃,并被液化后进入第三级冷却。
第三级采用甲烷做制冷剂,液化天然气在甲烷冷却器中被过冷到-150~-160℃,然后通过节流阀降压,温度降到-162℃后,用泵输送到LNG 贮槽。
甲烷冷却器中蒸发出来的气体经增压、水冷后,在丙烷冷却器中冷却、在乙烯冷却器中液化后,循环到甲烷冷却器。
经典阶式制冷循环,包含几个相对独立、相互串联的冷却阶段,由于制冷剂一般使用多级压缩机压缩,因而在每个冷却阶段中,制冷剂可在几个压力下蒸发,分成几个温度等级冷却天然气,各个压力下蒸发的制冷剂进入相应的压缩机级压缩。
各冷却阶段仅制冷剂不同,操作过程基本相似。
从发展来看,最初兴建LNG 装置时就用阶式制冷循环的着眼点是:能耗最低,技术成熟,无需改变即可移植用于LNG 生产。
随着发展要求而陆续兴建新的LNG 装置,这时经典的阶式制冷循环就暴露出它固有的缺点:1)经典的阶式制冷循环由三个独立的丙烷、乙烯、甲烷制冷循环复迭而成。
LNG基础知识与工艺流程图
脱水
去除原料气中的水分,防止在低温 下形成冰晶或水合物,堵塞管道和 设备。
脱汞
去除原料气中的汞等有害元素,以 保护后续的设备和管道免受腐蚀。
LNG储存与运
LNG储存
在一定压力下将LNG储存在储罐中,通常为圆柱形或球形。
LNG运输
通过专用运输船或槽车将LNG运输到接收站或销售市场。
LNG接收站
LNG的特性
总结词
LNG具有清洁、高效、安全、经济等特性。
详细描述
LNG作为燃料,燃烧后产生的二氧化碳和水蒸气较少,对环境影响较小。同时, LNG的体积约为气态天然气的1/625,便于储存和运输。此外,LNG的燃烧效 率高,安全性好,且价格相对较低。
LNG的应用领域
总结词
LNG广泛应用于城市燃气、工业用气、交通燃料等领域。
安全问题及应对措施
安全问题 安全问题
应对措施 应对措施
安全问题及应对措施
01
安全问题
02 03
应对措施 安全问题
04
应对措施
环保问题及应对措施
01 02 03 04
环保问题 应对措施 环保问题 应对措施
THANKS
感谢观看
LNG卸货
将LNG从运输船或槽车卸 到接收站的储罐中。
LNG再气化
通过再气化装置将LNG转 化为天然气,以便输送给 用户。
天然气输配
将再气化后的天然气输送 到天然气管网,分配给用 户使用。
03
LNG工艺流程图详解
原料气供应流程图
原料气供应流程图描述了天然 气从气源地经过长距离输气管 道输送到液化工厂的过程。
LNG储罐
用于储存液化后的天然气,通常采用 双层真空绝热储罐。
天然气站场工艺流程图学习
天然气站场工艺流程图学习英文回答:Natural Gas Station Process Flow Diagram.A natural gas station, also known as a compressed natural gas (CNG) station, is a facility that dispenses compressed natural gas to vehicles. CNG is a cleaner-burning alternative to gasoline and diesel fuel, and it is often used in fleet vehicles and public transportation systems.The process flow diagram for a natural gas station is as follows:1. Natural gas is delivered to the station in a high-pressure pipeline.2. The gas is compressed at the station to a high pressure (typically 2,500 to 3,600 psi).3. The compressed gas is stored in a storage tank.4. When a vehicle comes to the station to refuel, the compressed gas is dispensed into the vehicle's fuel tank.The following are some of the key components of a natural gas station:Compressor: The compressor is used to compress the natural gas to a high pressure.Storage tank: The storage tank is used to store the compressed natural gas.Dispenser: The dispenser is used to dispense the compressed natural gas into the vehicle's fuel tank.Safety equipment: Natural gas stations are equipped with a variety of safety equipment, such as pressure relief valves and gas detectors.中文回答:天然气站场工艺流程图。
焦炉煤气制液化天然气(LNG)项目工艺流程
焦炉煤气制液化天然气(LNG)项目工艺流程一、焦炉气预处理从焦化厂来的焦炉气含有多种杂质组份,特别是苯和蔡的含量较高,约为3000 mg / Nm;和300mg / Nm,该组份将对下游的净化分离工序造成危害,需要进行脱除。
采用吸附法脱除苯、蔡和焦油。
即在较低压力和温度下用吸附剂吸附苯、蔡和焦油等重质组份,之后在高温、低压下解吸再生,构成吸附剂的吸附与再生循环,达到连续分离气体的目的。
这样,可以保护后续的催化剂,又避免了蔡在升压后结晶堵塞管道和冷却器等设备。
二、氢气提纯当前工业上比较广泛应用的氢气分离技术有变压吸附和膜分离两种。
由于变压吸附技术投资少、运行费用低、产品纯度高、操作简单、灵活、环境污染小、原料气源适应范围宽,因此,进入70年代后,这项技术被广泛应用于石油化工、冶金、轻工及环保等领域。
变压吸附分离过程操作简单,自动化程度高,设备不需要特殊材料等优点。
吸附分离技术最广泛的应用是工业气体的分离提纯,氢气在吸附剂上的吸附能力远远低于CH2,N2,CO和CO2等常见的其他组分,所以变压吸附技术被广泛应用于氢气的提纯和回收领域。
为了使得产品氢气具有较高的纯度,选用变压吸附技术进行氢气的提纯。
三、甲烷化反应甲烷化反应是指气体CO和CO2在催化剂作用下,与氢气发生反应,生成甲烷的强放热化学反应。
甲烷化反应属于催化加氢反应。
其反应方程为:通常工业生成中的甲烷化反应有两种:一种是用于合成氨及制氢装置中,在催化剂作用下将合成气中少量碳氧化物(一般CO + CO2<0. 7 %)与氢反应生成水和惰性的甲烷,以削除碳氧化物对后续工序催化剂的影响。
用于上述甲烷化反应的催化剂和工艺主要是用于脱除合成气中残留的少量碳氧化物(CO和CO2),自1902年发明了用于催化甲烷化反应的镍基催化剂以来,化肥生产中用于甲烷化的催化剂和工艺绝大多数围绕这类催化剂进行研究。
另一种是人工合成天然气工艺中的甲烷化,其原料气中的碳氧化物((CO + CO2)浓度较高。
LNG基础知识与工艺流程图
低温潜液泵
输送介质:LNG 流量:340L/min 电机功率:≤11KW 转速:1500~6000r/min
1、储罐的正常工作压力由自力式增压调节阀的定压值(后 压)所限定和控制。储罐的允许最高工作压力由设置在储 罐气相出口管道上的自力式减压调节阀定压值(前压)所限 定和自动控制。
2、当储罐正常工作压力低于增压阀的开启压力时,增压阀 开启自动增压; 当储罐允许最高工作压力达到减压阀设定 开启值时,减压阀自动开启卸压,以保护储罐安全。
பைடு நூலகம்
LNG基础知识-特点
• 三、特点
• 1、低温、气液膨胀比大、能效高易于运输和储存
• A、1标准立方米的天然气热质约为9300千卡
• B、1吨LNG可产生1350标准立方米的天然气,可发电8300度。
• 2、清洁能源—LNG被认为是地球上最干净的化石能源!
• A、LNG硫含量极低,若260万吨/年LNG全部用于发电与燃煤(褐煤)
同体积的容器,LNG盛装量是CNG的3倍。 目前LNG气瓶有以下规格:50L、210L、275L、 335L、450L等。公交车选用275L气瓶,可以 行驶400公里以上,重型汽车选用450L的气瓶, 可以行驶600公里以上,也可以多个气瓶并联 使用。加气速度快(450L瓶加气时间约为 5min)节约了加气时间,减少了加气站的数 量。
• 1、LNG在储存过程中会由于储罐的“环境漏热”而缓慢蒸发,导致储 罐的压力逐步升高,最终危及储罐安全。因此,设计上采用在储罐上安 装自力式减压调节阀、压力报警手动放空、安全阀起跳三级安全保护 措施来进行储罐的超压保护。
• 2、国内普遍使用的最高工作压力为0.80MPa、单罐公称容积为 100m³的真空压力式储罐,减压阀的最高开启压力设定为0.76MPa,报 警压力设定为0.78MPa,储罐安全阀的开启压力和排放压力分别设定 为0.8MPa和0.88MPa。其保护顺序为:当储罐压力升到减压阀设定值 时,减压阀自动打开泄压;当减压阀失灵罐内压力升至压力报警值 0.78MPa时,压力报警,手动放散卸压;当减压阀失灵且未能手动放散, 罐内压力升至0.80MPa时,储罐安全阀开启,至排放压力0.88MPa时, 安全阀排放卸压。这样既保证了储罐的安全,又充分发挥了储罐的 强 度储备(储罐设计压力为0.84MPa)。随着安全阀的排放,当罐内工作压 力降低到安全阀排放压力的85%时,安全阀自动关闭将储罐密封。正常 操作中不允许安全阀频繁起跳。
工艺气流程图图例
3.3.5 流程图和系统图中,常用设备图形符号宜符合表3.3.5的规定。
3.3.6 常用管件和其他附件的图形符号宜符合表3.3.6的规定。
3.3.7 常用阀门与管路连接方式的图形符合宜符合表3.3.7的规定。
3.3.8 常用管道支座、管架和支吊架图形符号宜符合表3.3.8的规定。
3.3.9 常用检测、计量仪表的图形符号宜符合表3.3.9的规定。
3.3.10 用户工程的常用设备图形符号宜符合表3.3.10的规定。
4 图样内容及画法4.1 一般规定4.1.1 燃气工程各设计阶段的设计图纸应满足相应的设计深度要求。
4.1.2 图面应突出重点、布置匀称,并应合理选用比例,凡能用图样和图形符号表达清楚的内容不宜采用文字说明。
有关全项目的问题应在首页说明,局部问题应注写在对应图纸内。
4.1.3 图名的标注方式宜符合下列规定:1 当一张图中仅有一个图样时,可在标题栏中标注图名;2 当一张图中有两个及以上图样时,应分别标注各自的图名,且图名应标注在图样的下方正中。
4.1.4 图面布置宜符合下列规定:1 当在一张图内布置两个及以上图样时,宜按平面图在下,正剖面图在上,侧剖面图、流程图、管路系统图或详图在右的原则绘制;2 当在一张图内布置两个及以上平面图时,宜按工艺流程的顺序或下层平面图在下、上层平面图在上的原则绘制;3 图样的说明应布置在图面右侧或下方。
4.1.5 在同一套工程设计图纸中,图样线宽、图例、术语、符号等绘制方法应一致。
4.1.6 设备材料表应包括设备名称、规格、数量、备注等栏;管道材料表应包括序号(或编号)、材料名称、规格(或物理性能)、数量、单位、备注等栏。
4.1.7 图样的文字说明,宜以“注:”、“附注:”或“说明:”的形式书写,并用“1、2、3…”进行编号。
4.1.8 简化画法宜符合下列规定:1 两个及以上相同的图形或图样,可绘制其中的一个,其余的可采用简化画法;2 两个及以上形状类似、尺寸不同的图形或图样,可绘制其中的一个,其余的可采用简化画法,但尺寸应标注清楚。
液化天然气工艺流程图
液化天然气的流程与工艺研究随着“西气东输”管线的建成,沿线许多城镇将要实现天然气化,为了解决天然气的储气、调峰及偏远小城镇的供气问题, 液化天然气(英文缩写为LNG) 技术将有十分广阔的应用前景[1 ,2 ] 。
天然气液化技术涉及传热、传质、相变及超低温冷冻等复杂的工艺及设备。
在发达国家LNG 装置的设计与制造已经是一项成熟的技术。
一、天然气在进入长输管线之前,已经进行了分离、脱凝析油、脱硫、脱水等净化处理。
但长输管线中的天然气仍含有二氧化碳、水及重质气态烃和汞,这些化合物在天然气液化之前都要被分离出来,以免在冷却过程中冷凝及产生腐蚀。
因此我们需要进行预处理。
天然气的预处理包括脱酸和脱水。
一般的脱除酸气和脱水方法有吸收法、吸附法、转化法等。
1. 1 吸收法该种方法又分为化学溶剂吸收和物理溶剂吸收两类。
化学溶剂吸收是溶剂在水中同酸性气体作用,生成“络合物”,待温度升高,压力降低,络合物分解,释放出酸性气体组分,溶剂循环回用。
常用的溶剂有一乙醇胺(MEA) 和二乙醇胺(DEA) ,以上方法又叫胺法.物理吸收法的实质是溶剂对酸性气体的选择性吸收而不是起反应。
一般来说有机溶剂的吸收能力与被吸收气体的分压成正比,较新的方法是由醇胺和环丁砜加水组成的环丁砜法或苏菲诺法。
1. 2 吸附法吸附法实质上是固体干燥剂脱水。
一般采用两个干燥塔切换吸附与再生,处理量大的可用3 个或4 个塔。
固体干燥剂种类很多,例如氯化钙、硅胶、活性炭、分子筛等。
其中分子筛法是高效脱水方法,特别是抗酸性分子筛问世后,即使高酸性天然气也可以在不脱酸性气体情况下脱水。
所以分子筛是优良的脱水剂。
从长输管道来的天然气进行脱除CO2 和水后,进入液化工序。
二、天然气液化系统主要包括天然气的预处理、液化、储存、运输、利用这5 个子系统。
一般生产工艺过程是,将含甲烷90 %以上的天然气,经过“三脱”(即脱水、脱烃、脱酸性气体等) 净化处理后,采取先进的膨胀制冷工艺或外部冷源,使甲烷变为- 162 ℃的低温液体。