数字图像处理复习重点整理
《数字图像处理》知识点汇总
1.什么是图像?“图”是物体投射或反射光的分布,“像”是人的视觉系统对图的接受在大脑中形成的印象或反映。
图像是客观和主观的结合。
2.数字图像是指由被称作象素的小块区域组成的二维矩阵。
将物理图象行列划分后,每个小块区域称为像素(pixel)。
对于单色即灰度图像而言,每个像素包括两个属性:位置和灰度。
灰度又称为亮度,灰度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示。
0表示黑、255表示白。
3.彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。
通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。
4.数字图像处理就是利用计算机系统对数字图像进行各种目的的处理。
5.对连续图像f(x,y)进行数字化需要在空间域和值域进行离散化。
空间上通过图像抽样进行空间离散,得到像素。
像素亮度需要通过灰度级量化实现灰度值离散。
数字图像常用矩阵来表示。
6.从计算机处理的角度可以由高到低将数字图像分为三个层次,分别为图像处理、图像分析和图像理解。
这三个层次覆盖了图像处理的所有应用领域。
(1). 图像处理指对图像进行各种加工,以改善图像的视觉效果;强调图像之间进行的变换。
图像处理是一个从图像到图像的过程。
(2). 图像分析指对图像中感兴趣的目标进行提取和分割,获得目标的客观信息(特点或性质),建立对图像的描述;图像分析以观察者为中心研究客观世界,它是一个从图像到数据的过程。
(3). 图像理解指研究图像中各目标的性质和它们之间的相互联系,得出对图像内容含义的理解及原来客观场景的解释;图像理解以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作(符号运算)。
7.图像处理、图像分析和图像理解是处在三个抽象程度和数据量各有特点的不同层次上。
图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。
(完整版)数字图像处理知识点总结
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真。
2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0<i(x,y)<∞,反射分量0<r(x,y)<1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。
但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化。
14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
《数字图像处理》复习重点总结(杂)
出 //非几何变换:原图灰度为 f(x,y),g(x,y)=T[f(x,y)], 没有位置变化,灰度值变换 R=T(r),R,r∈(0~255)//
3 模板运算、应用(★):所谓模板就是一个系数矩阵(必须为奇数列);模板大小:经常是奇数;模板系
数: 矩阵的元素 w1 w2 w3 w4 w5 w6 w7 w8 w9。对于某图象的子图像:z1 z2 z3 z4 z5 z6 z7 z8 z9z5 的模板运
第三章:图像变换 1 图像变换、基本运算方法:加减法:C(x,y) = A(x,y) ±B(x,y) 乘法:C(x,y) = A(x,y) * B(x,y) //求反:g(x,y) = 255 - f(x,y) 异或:g(x,y) = f(x,y) ⊕ h(x,y) 或:g(x,y) = f(x,y) ∪ h(x,y)与:g(x,y) = f(x,y) ∩ h(x,y) //
腐蚀;定义:B • S =(B ⊕ S)⊗ S;结果:1)填充对象内细小空洞 2)连接邻近对象 3)在不明显改变面 积前提下,平滑对象的边缘
第六章:图像特征提取与识别 1 表示方法: ①链码,定义:1)链码是一种边界的编码表示法。2)用边界的方向作为编码依据。为简化边 界的描述。一般描述的是边界点集。②区域骨架 ,概念,反映什么特性骨架:中轴线。设:R 是一个区域,B 为 R 的边界点,对于 R 中的点 p,找 p 在 B 上“最近”的邻居。如果 p 有多于一个的邻居,称它属于 R 的中轴(骨架) 2 边界特性: ①形状数(★)形状数定义:最小差分链码。 要会算:差分链码,最小差分链码。 差分链
第五章:图像分割 1 图像分割的定义和五大特性 // 令集合 R 代表整个图像区域,对 R 的分割可看作将 R 分成 N 个满足一下五 个条件的非空子集(子区域)R1,R2…RN: ①完备性: i=1 到 N 对 Ri 求和=R②独立性(各子区互不重叠): i,j,i≠j,有 Ri∩Rj= ③单一性(同子区具有某些相同特性):对 i=1,2…N,有 P(Ri)=TRUE ④互斥性(不 同子区具有某些不同特性):对 i≠j,有 P(Ri∪Rj)=FALSE ⑤连通性(同子区像素具有连通性):对 i=1,2,...,N, Ri 是连通的区域 // 对图像的划分满足以上定义,则 Ri(i-1,2,3…n)就称为 R 的分割。 // 2 边缘检测:(★)边缘连接,模板运算的概念,和锐化模板有区别,Huff 变换。// 基于边缘检测的霍夫变换 的原理:把直线上点的坐标变换到过点的直线的系数域,通过利用共线和直线相交的关系,使直线的提取问题 转化为计数问题。 3 阈值分割:通过取灰度门限对图像像素进行分类,该方法基于:(1)同一分割区域内由灰度值相近的像素 点组成;(2)目标物和背景、不同目标物之间的灰度值有明显差异,可通过取门限区分。 // 4 区域生长(★):// 根据所用邻域方式和相似性准则的不同,区域生长法可以分为简单生长(像素+像素)、 质心生长法(区域+像素)和混合生长法(区域+区域)//①简单生长法:按时限确定的相似性准则,生长点 (种子点为第一生长点)接收(合并)其邻域(比如 4 邻域)的像素点,该区域生长。接收后的像素点成为 成长点,其值取种子点的值。重复该过程,直到不能生长为止,到此该区域生成。简单生长法的相似性准则为: |f(m,n)-f(s,t)|<T1, 其中 f(s,t)为种子(s,t)处的灰度值,f(m,n)为(s,t)邻域点(m,n)的灰度值,T1 为相似门限。F(s,t) 始终取种子点的值,因此这种方法对种子点的依赖性强 // ②质心生长法:相似性准则变为:|f(m,n)-f(s,t)|<T2, 这里的 f(s,t)(带上划线)是已生长区域内所有像素(所有生长点)的灰度平均值。即用已生成区域的像素灰度 均值(类似质心)作为基准,这样就可以客服简单生长法中过分依赖种子点的缺陷。 // √5 数学形态学方法: 1) 腐蚀:定义:E = B ⊗ S = { x,y | Sxy⊆ B};结果:使二值图像减小一圈;算法:·用 3x3 的结构元素,扫描 图像的每一个像素;·用结构元素与其覆盖的二值图像做“与”操作;·如果都为 1,结果图像该像素为 1。否则 为 0。2)膨胀:定义:E = B ⊕ S = { x,y | Sxy∩B ≠Ф};结果:使二值图像扩大一圈;算法:·用 3x3 的结构 元素,扫描图像的每一个像素;·用结构元素与其覆盖的二值图像做“与”操作; ·如果都为 0,结果图像该像素 为 0。否则为 1。3)开运算:思路:先腐蚀,再膨胀;定义:B o S = (B ⊗ S)⊕ S;结果:1)消除细小对 象 2)在细小粘连处分离对象 3)在不改变形状的前提下,平滑对象的边缘。4)闭运算:思路:先膨胀、再
数字图像处理复习整理
数字图像处理复习整理第一章1,什么是图像,模拟图像处理和数字图像处理主要区别。
图像是对客观对象的一种相似性的,生动性的描述或写真。
模拟图像:空间坐标和亮度(或色彩)都是连续性变化的图像;数字图像:空间坐标和灰度均不连续的,用离散数字(一般用整数)表示的图像。
利用光学,照相机方法对模拟图像的处理称为模拟图像处理,精度不高,稳定性差,设备笨重,操作不方便和工艺水平不高;利用计算机对数字图像进行系列操作称为数字图像处理,或计算机图像处理。
2,数字图像处理由哪些模块组成。
狭义图像处理图像分析图像理解3,数字图像处理的应用生物医学航空遥感工业应用军事公安其他第二章1,什么事图像对比度图像中最大亮度与最小亮度之比2,数字图像处理包括哪两个过程?对质量有何影响?数字图像的数据量和哪些因素有关?采样量化采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现棋盘格效应。
采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量越好,但数据量大;量化等级越多,所得图像层次越丰富,灰度分辨率越高,质量越好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,质量变差。
会出现伪轮廓现象。
采样间隔量化等级3,连续图像f(x,y)与数字图像I(r,c)中各量的含义是什么?它们有何联系和区别?答:f(x,y)表示二维图像在空间(x,y)上的幅值,数字图像I(r,c)表示位于图像矩阵上第r行,第c列的元素幅值。
I(r,c)是通过对f(x,y)抽样和量化得来的。
f(x,y)各量是连续的,I(r,c)各量是离散的。
4,什么事灰度直方图?它有哪些应用?能从中获得图像的哪些信息?灰度直方图反应的是一幅图像中各灰度级像素出现的概率之间的关系。
应用:判断图像量化知否恰当;确定图像二值化阈值;计算图像中物体的面积;计算图像信息量H(熵)灰度范围,灰度级的分布,整幅图像的平均亮度。
5,熵的计算公式,灰度范围[0,L-1]6,什么是点处理?举例说明。
《数字图像处理》期末考试重点总结(5篇材料)
《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。
(1)处理精度高,再现性好。
(2)易于控制处理效果。
(3)处理的多样性。
(4)图像数据量庞大。
(5)图像处理技术综合性强。
*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。
图像增强不存在通用理论。
图像增强的方法:空间域方法和变换域方法。
*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。
*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。
对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。
*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。
*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。
直方图均衡化变换函数必须为严格单调递增函数。
直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。
获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。
*平滑滤波器用于模糊处理和减小噪声。
平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。
优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。
负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。
数字图像处理复习
数字图像处理复习第一章概述1. 图像的概念及数字图像的概念。
图-是物体透射或反射光的分布,是客观存在的。
像-是人的视觉系统对图的接受在大脑中形成的印象或反映,图像是图和像的有机结合,是客观世界能量或状态以可视化形式在二维平面上的投影。
数字图像是物体的一个数字表示,是以数字格式存放的图像。
2. 数字图像处理的概念。
数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性。
3. 数字图像处理的优点。
精度高、再现性好、通用性、灵活性强第二章数字图像处理基础1. 人眼视觉系统的基本构造P14 图2.1人眼横截面简图2. 亮度的适应和鉴别人眼对光亮度的适应性非常高,一般情况下跨度达到10的10次方量级,从伸手不见五指到闪光灯强曝光。
3.光强度与主观亮度曲线。
P15 图2.4光强度与主观亮度的关系曲线4. 图像的数字化及表达。
(采样和量化的概念)图像获取即图像的数字化过程,包括扫描、采样和量化。
采样:将空间上连续的图像变成离散点的操作 量化:将像素灰度转换成离散的整数值的过程5. 图像采样过程中决定采样空间分辨率最重要的两个参数。
采样间隔、采样孔径6. 图像量化过程中量化级数与量化灰度取值范围之间的关系量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.7. 像素的相邻领域概念(4领域,8领域)。
设为位于坐标处的一个像素(x+1,y ),(x-1,y ),(x,y+1),(x,y-1) 组成的4邻域,用)(4p N 表示。
(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1) 像素集用)p (N D 表示)(4p N 和)p (N D 合起来称为p 的8邻域,用)(8p N 表示。
8. 领域空间内像素距离的计算。
(欧式距离,街区距离,棋盘距离) p 和q 之间的欧式距离定义为: 22)()(),(t y s x q p D e -+-=p 和q 之间的4D 距离(也叫城市街区距离)定义为: t y s x q p D -+-=),(4p 和q 之间的8D 距离(也叫棋盘距离)定义为: ),max(),(8t y s x q p D --=第三章 图像的基本运算(书后练习3.2,3.9 ) 1. 线性点运算过程中各参数表示的含义(k ,b )。
数据图像处理期末复习
数据图像处理期末复习1.1数字图像处理及特点1、什么是数字图像?什么是数字图像处理?数字图像:数字图像是物体的一个数字表示,是以数字格式存放的图像,它传递着物理世界事物状态的信息,是人类获取外界信息的主要途径。
数字图像处理:它指将图像信号转换成数字信号并利用计算机对其进行处理的过程,已提高图像的实用性,达到人们所要求的的预期结果。
2、图像处理的目的①提高图像的视觉质量,以达到赏心悦目的目的。
②提取图像中所包含的某些特征或特殊信息,便于计算机分析。
③对图像数据进行变换、编码和压缩,便于图像的存储和传输。
3、数字图像的特点①处理信息量很大②数字图像处理占用的频带较宽③数字图像中各个像素相关性大1.2数字图像处理系统1、数字图像处理系统的组成(结构)数字图像处理系统由输入设备、输出设备、存储、处理组成。
图像输入设备将图像输入的模拟物理量转变为数字化的电信号,以供计算机处理。
图像输出设备则是将图像处理的中间结果或最后结果显示或打印记录。
图像处理计算机系统是以软件方式完成对图像的各种处理和识别,是数字图像处理系统的核心部分。
由于图像处理的信息量大,还必须有存储设备。
2、数字图像处理的优点①精度高②再现性好③通用性、灵活性强1.3数字图像处理的主要研究内容1、数字图像处理的主要研究内容①图像增强②图像编码③图像复原④图像分割⑤图像分类⑥图像重建1.4数字图像处理的应用和发展1、举例说明数字图像处理有哪些应用和发展?①航天和航空技术方面的应用②生物医学工程方面的应用③通信工程方面的应用④工业和工程方面的应用⑤军事、公安方面的应用⑥文化艺术方面的应用⑦其他方面的应用2、数字图像处理领域的发展方向①图像处理的发展向着高速率、高分辨率、立体化、多媒体化、智能化和标准化方向发展。
②图像、图形结合朝着三维成像或多维成像的方向发展③结合多媒体技术,硬件芯片越来越多,把图像处理的众多功能固化在芯片上将会有更加广阔的应用领域④在图像处理领域近年来引入了一些新的理论并提出了一些新的算法,如神经网络。
数字图像处理复习提纲
A=zeros(12,12);
b = ~A;
figure, imshow(b);
b(:,4:1:6)=0;
b(:,10:1:12)=0;
figure,imshow(b);
c=b’;
figure,imshow(c);
4 设下面图像的灰度矩阵如下,请用 直方图均衡化方法修正该图像灰度 矩阵。详细写出直方图均衡化的实 现步骤和最后修正后的图像矩阵B, 并画出修正矩阵的直方图。
数字图像处理复习内容概括
第一章 数字图像处理概念与基础
1、图像的定义 2、数字图像处理的定义 3、产生图像的类别 4、数字图像处理的特点与主要方法 5、图像的类型 6、图像简单Matlab处理(读取、显示和存储、抽取、旋转, 提 取、翻转)与应用 7、图像矩阵的基本运算(算术、关系和逻辑) 8、简单函数的M文件编程
X1 X2 X3 X4 X5 X6 X7 x8
11、分别用中值滤波、四邻域法、八邻域法、sobel算子和prewitt算子编程实现对具有 10%的‘gaussian’噪声图像(image.tif) 的增强处理。
12、用低通滤波和高通滤波的方法编程实现图像(image.tif) 的增强处理。
13、应用Matlab实现的Huffman编码函数和Huffman译码函数编程实现图像(image.tif)压 缩处理。
4、主要掌握的内容
(1) 灰度变换中的线形、指数、对数增强方法分别具有什么增强特点?
(2)为什么对比度拉伸能够实现图像对比度增强? (3) 什么是图像灰度直方图?图像直方图反映了图像的什么特征? (4) 直方图均衡化图像处理主要实现思想什么?他的实现过程与matlab实现程序。 (5) 直方图规定化图像处理的主要实现思想什么?掌握处理步骤与matlab实现程序。
数字图像处理复习提纲
数字图像处理重点内容提要第一章概述1 什么是图像?图像--是人类认识世界最主要的信息源。
人类所获得信息的约70% 以上是以图像的形式通过人的视觉系统得到的。
粗略地讲,图像是某一个二维或三维景物呈现在人们心目中的影像;确切地讲,图像是光辐射能量照在物体上,经过物体的反射或透射,或由发光物体本身发出的光能量,在人的视觉器官中所重现出的物体的视觉信息。
2 数字图像:最小单位,两个特征(空间位置特征、属性特征)数字图像的最小单位是像素(像元)。
像素(像元)具有空间位置特征和属性特征3 采样和量化的定义模拟图像数字化包括采样和量化两个过程采样--将空间上连续的图像变换成离散点的操作,即位置的离散化将模拟图像按纵横两方向分割为若干个形状、大小相同的像元,各像元的位置由其所在的行和列表示量化--将像素灰度转换成离散的数值的过程,即灰度的离散化量化参数--灰度级数一幅数字图像中不同灰度值的个数称为灰度级数,用K表示。
4 数字图像处理过程的几个特点:信息量大、数据量大、重复性运算大、处理技术综合性强5 什么是遥感?根据遥感平台,可以分为哪几类?遥感--遥远的感知在远离地面的不同运载工具上(高塔、气球、飞机、火箭、人造卫星、宇宙飞船、航天飞机等),运用探测仪器(传感器),对地表各种物体的电磁波信息进行探测成像,并且经过信息数据的传输、处理、分析, 对地球资源与环境进行探测和监控的综合性技术。
根据遥感平台分类航天遥感--通过卫星、载人飞船、航天飞机等在太空中进行;航空遥感--通过飞机、气球等在空中进行;地面遥感--通过遥感车、铁塔等在地面进行。
第二章遥感图像数据基础1 遥感图像的基本原理:反映地物的平均电磁波辐射水平、数值大小变化由于地物类型变化引起。
遥感的基本原理就是通过分析遥感图像数据数值的大小与变化规律,来有效地识别不同的地物。
2 电磁波谱的定义电磁波谱--不同的电磁波其波长各不相同,将各种电磁波按照波长的大小范围,依次排列成图谱,这个图谱就是所谓的电磁波谱。
数字图像处理考试复习
1图像的数字化—采样概念采样是指将在空间上连续的图像转换成离散的采样点(即像素)集的操作由于图像是二维分布的信息,所以采样是在x轴和y轴两个方向上进行的。
一般情况下,x轴方向与y轴方向的采样间隔相同。
2.图像的数字化—采样间隔采样时的注意点是:采样间隔的选取。
采样间隔太小,则增大数据量;太大,则会发生信息的混叠,导致细节无法辨认。
3.图像的数字化—采样指标分辨率分辨率是指映射到图像平面上的单个像素的景物元素的尺寸。
单位:像素/英寸,像素/厘米(如:扫描仪的指标300dpi)分辨率或者是指要精确测量和再现一定尺寸的图像所必需的像素个数。
单位:像素*像素(如:数码相机指标30万像素(640*480))4.图像的数字化——量化概念量化是将各个像素所含的明暗信息离散化后,用数字来表示。
一般的量化值为整数充分考虑到人眼的识别能力之后,目前非特殊用途的图像均为8bit量化,即采用0 ~ 255的整数来描述“从黑到白”。
在3bit以下的量化,会出现伪轮廓现象5.量化可分为均匀量化和非均匀量化。
均匀量化是简单地在灰度范围内等间隔量化。
非均匀量化是对像素出现频度少的部分量化间隔取大,而对频度大的量化间隔取小6.一般情况下,对灰度变化比较平缓的部分用比较多的量化级,在灰度变化比较剧烈的地方用比较高的分辨率7.数字图像的灰度直方图——定义灰度直方图是灰度级的函数,是对图像中灰度级分布的统计。
有两种表示形式图形表示形式横坐标表示灰度级,纵坐标表示图像中对应某灰度级所出现的像素个数。
组表示形式数组的下标表示相应的灰度级,数组的元素表示该灰度级下的像素个数。
8.数字图像的灰度直方图——性质所有的空间信息全部丢失;每一灰度级的像素个数可直接得到9.线性对比度展宽对比度展宽的目的是:通过将亮暗差异(即对比度)扩大,来把人所关心的部分强调出来。
原理是,进行像素点对点的,灰度级的线性影射。
该影射关系通过调整参数,来实现对亮暗差异的扩大。
数字图像处理简复习重点介绍
数字图像处理简复习重点介绍第一篇:数字图像处理简复习重点介绍1、数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。
2、什么是图像识别与理解?5、简述图像几何变换与图像变换的区别。
6、图像的数字化包含哪些步骤?简述这些步骤。
7、图像量化时,如果量化级比较小会出现什么现象?为什么?8、简述二值图像与彩色图像的区别。
9、简述二值图像与灰度图像的区别。
10、简述灰度图像与彩色图像的区别。
11、简述直角坐标系中图像旋转的过程。
13、举例说明使用邻近行插值法进行空穴填充的过程。
14、举例说明使用均值插值法进行空穴填充的过程。
15、均值滤波器对高斯噪声的滤波效果如何?试分析其中的原因。
16、简述均值滤波器对椒盐噪声的滤波原理,并进行效果分析。
17、中值滤波器对椒盐噪声的滤波效果如何?试分析其中的原因。
18、使用中值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象?19、使用均值滤波器对高斯噪声和椒盐噪声的滤波结果相同吗?为什么会出现这种现象? 20、写出腐蚀运算的处理过程。
21、写出膨胀运算的处理过程。
22、为什么YUV表色系适用于彩色电视的颜色表示?23、简述白平衡方法的主要原理。
24、YUV表色系的优点是什么?25、请简述快速傅里叶变换的原理。
26、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的高通滤波中的应用原理。
27、傅里叶变换在图像处理中有着广泛的应用,请简述其在图像的低通滤波中的应用原理。
28、小波变换在图像处理中有着广泛的应用,请简述其在图像的压缩中的应用原理。
29、什么是图像的无损压缩?给出2种无损压缩算法。
2、对于扫描结果:aaaabbbccdeeeeefffffff,若对其进行霍夫曼编码之后的结果是:f=01e=11a=10b=001c=0001d=0000。
若使用行程编码和霍夫曼编码的混合编码,压缩率是否能够比单纯使用霍夫曼编码有所提高?31、DCT变换编码的主要思想是什么?32、简述DCT变换编码的主要过程。
数字图像处理-知识汇总
������−1 ������−1 ������=− ������=− 2 2
b)
定义它们的相关为
������
������(������) = ������(������)������������(������) = ∑ ������(������)������(������ + ������)
������=0 ������−1 2 ������−1 2
������−1 ������−1 2 2 ∑ ������−1 ������−1 ������(������, ������)������(������ + ������, ������ ������=− ������=− 2 2 ������−1 ������−1 ∑ 2 ������−1 ∑ 2 ������−1 ������(������, ������) ������=− ������=− 2 2
3. 4. 5.
+ ������)
6.
7.
统计平滑 这是一种非线性手段,主要基于邻域内像素值的统计特性,依照一定的规则改变像素以达到图像处理的目的, a) 中值:以邻域内像素均值替代位点像素值,用于平滑图像,消除椒盐噪声 b) 锐化:以邻域内像素极值替代位点像素,用于突出边缘轮廓 图像锐化: 锐化的目的是增强图像中被模糊的细节,与平滑的邻域求和相对,锐化的思想是邻域差分,而其核心即拉普拉 斯算子: 对应微分中的梯度,将离散差分定义为
1.
2. 3.
4.
灰度直方图是图像灰度统计上的特性: a) 灰度分布偏大,则图像亮 b) 灰度分布偏小,则图像暗 c) 灰度分布过于集中,图像对比度低 直方图处理的目的,即从直方图角度入手,改善图像的灰度分布以提升质量。 直方图均衡: 这种手段能够将原始图像的灰度均匀分布以提升其对比度,不足是有可能产生假轮廓。 大小为������ × ������的图像中,处于灰度级������的部分有������������ 个像素,按照下公式计算并合并灰度,对整个灰度范围完成 计算,则图像直方图均衡化: ∑������ ������=0 ������������ ������������ = [(������ − 1) ] ������������ 直方图规定: 将图像不同灰度级按照一个映射函数变换为另一灰度级分布, 这个过程就是直方图规定, 目的是使图像的直方 图分布倾向于一种特定的统计分布特征,一般用于处理具有通性的图像。 直方图均衡本质上是特殊的直方图规定。 ∑������ ������=0 ������(������������ ) ������������ = [(������ − 1) ] ������������
数字图像处理考试复习资料
数字图像处理考试复习资料第⼀章:图像的概念: 图像是对客观存在的物体的⼀种相似性的、⽣动的写真或描述。
图像处理:对图像进⾏⼀系列操作,达到预期⽬的处理。
数字图像处理的三个层次:(1)狭义的图像处理:(图像——图像的过程)指对图像进⾏各种操作以改善图像的视觉效果或进⾏压缩编码减少存储空间和传输时间等。
(2)图像识别与分析:(图像——数值或符号的过程)对图像中感兴趣的⽬标进⾏检测和测量,建⽴对图像的描述。
(3)图像理解:(图像——描述及解释)在图像处理与识别的基础上,基于⼈⼯智能和认知理论,研究图像中各⽬标的性质和它们之间的相互联系,对图像内容的含义加以理解以及对原来景观场景加以描述,从⽽指导和规划⾏动。
数字图像处理的特点:(1)精度⾼:对于⼀幅图像⽽⾔,数字化时不管是⽤4⽐特还是8⽐特和其它⽐特表⽰,只需改变计算机中程序的参数,处理⽅法不变。
所以从原理上讲不管对多⾼精度的数字图像进⾏处理都是可能的。
⽽在模拟图像处理中,要想使精度提⾼⼀个数量级,就必须对装置进⾏⼤幅度改进。
(2)再现性好:不管是什么数字图像,均⽤数组或数组集合表⽰。
在传送和复制图像时,只在计算机内部进⾏处理,这样数据就不会丢失或遭破坏,保持了完好的再现性。
⽽在模拟图像处理过程中,就会因为各种⼲扰因素⽽⽆法保持图像的再现性。
(3)通⽤性、灵活性强:不管是可视图像还是X光图像、热红外图像、超声波图像等不可见光图像,尽管这些图像⽣成体系中的设备规模和精度各不相同,但当把这些图像数字化后,对于计算机来说,都可同样进⾏处理,这就是计算机处理图像的通⽤性。
第⼆章图像数字化是将⼀幅画⾯转化成计算机能处理的形式——数字图像的过程。
采样:将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的⼤⼩是两个很重要的参数。
量化:将像素灰度转换成离散的整数值的过程叫量化。
⼀幅数字图像中不同灰度值的个数称为灰度级数,⽤G表⽰。
图像数字化⼀般采⽤均匀采样和均匀量化⽅式。
数字图像处理复习要点总结
数字图像处理复习要点总结1、离散的图像信息的熵:一幅图像如果有,,,…,共q 中幅度值,1s 2s 3s q s 并且出现的概率分别为,,,…,,那么每一种幅度值所具有的1P 2P 3P q P 信息量分别为,,,…,。
其平均信息1(log 12P 1(log 22P 1(log 32P )1(log 2qP 量即为熵,记为H 。
∑∑==-==q i i i qi i i P P P P H 1212log 1log 2、图像处理系统中常用的输入设备:(1)电视摄像机:摄像器件把输入的二维辐射(光学图像)信息转换为适宜处理和传输的电信号,然后经荧屏显示。
(2)飞点扫描设备:在水平和垂直两个偏转电路的控制下,CRT 的光点通过透镜光学系统在画面上逐行逐点依次扫描,与图像上亮度相对应的反射光由光电倍增管接受并转换为成比例的电流信号,经放大和A/D 变换,送计算机处理。
(3)鼓形扫描器:照片或负片安放在鼓形滚筒上,由光线照射或从内部光源透射在图像上,再由光线系统收集后送至光电倍增管,变换成电信号,经放大后送至A/D 变换器,再经高速数据接口送入计算机。
(4)微密度计:一种平台机械扫描式的光电转换图像输入设备,使用计算机控制旋转被测样片的平台,作x ,y 方向运动,可形成逐行扫描、螺旋扫描、随机扫描及跟踪扫描。
(5)其它图像输入设备:光敏二极管矩阵图像信息传感器、激光扫描器和图像位置检出器等。
3、三基色混色及色度表示原理(1)相加混色(彩色电视机)和相减混色(彩色电影、幻灯片、绘画原料);(2)相加、相减混色区别:一、相加混色是由发光体发出的光相加而产生各种颜色,而相减混色是先有白色光,尔后从中减去某些成分(吸收)得到各种颜色;二、相加混色的三基色是红、绿、蓝,而相减混色的三基色是黄、青、紫,也就是说相加混色的补色就是相减混色的基色。
(3)格拉斯曼定律:一、所有颜色都可以用互相独立的三基色混合得到;二、假如三基色的混合比例相等,则色调和色饱和度也相等;三、任意两种颜色相混合产生的新颜色与采用三基色分别合成这两种颜色的各自成分混合起来得到的结果相等;四、混合色的光亮度是原来各分量光亮度的总和。
数字图像处理复习整理
数字图像处理复习整理灰度图像分割的依据:边缘检测法,区域生长法;依据是区域内部的灰度相似性和区域之间的灰度突变型。
2D-DHT和2D-DWT的特点?1.与2D-DFT和2D-DCT类同,都是属于可分离的正交变换。
可分离变换可以使2D变换用1D变换实现,而1D也有快速算法,可以大大减少运算量。
正交变换使得反变换中避免了矩阵求逆。
2.与2D-DCT类同,都是实函数变换。
同时,由于变换核仅取+1和-1两个值,因此变换只需进行加减法。
3.正方变换形式完全相同。
4.变换核中不存在正、余弦函数,所以用计算机计算时,不会因字长有限产生附加噪声。
5.由于是正交变换,具有很好的能量集中作用。
对图像变换后,绝大多数能量都集中在左上角。
图像增强的两个目的:改善图像的视觉效果,将图像转换成一种更适合人或机器分析处理的形式。
使用中值滤波的注意事项:中值滤波对于椒盐噪声及干扰脉冲有很好的滤除作用,同时还能保持目标物的边缘。
因此,使用中值滤波时,要注意以下事项:1.中值滤波适合于滤除椒盐噪声和干扰脉冲,尤其适合于目标物形状是块状时的图像滤波。
2.具有丰富尖角几何结构的图像,一般采用十字形滤波窗,且窗口大小最好不要超过图像中最小目标物的尺寸,否则会丢失目标物的细小几何特征。
3.需要保持细线状及尖角目标物细节时,最好不要采用中值滤波。
同态滤波原理:图像是入射分量和反射分量的乘积,入射分量对应低频,反射分量对应高频。
图像细节主要由反射分量决定,所以通过对数运算将入射分量和反射分量转换为加性关系,再做高通滤波去除入射分量保留反射分量,最后通过指数运算还原反射分量。
一般数字图像处理要经过哪些步骤?有哪些内容?基本步骤包括:图像信息的获取,存储,处理,传输,输出,和显示。
主要内容包括:图像数字化,图像变换,图像增强,图像恢复,图像压缩编码,图像分割,图像分析和描述,图像识别。
解释马赫带效应?对于由一系列条带组成的灰度图像,其中每个条带内的亮度是均匀分布的,而相邻两条带的亮度相差一个固定值,但人的感觉认为每个条带内的亮度不是均匀分布的,而是感觉到所有条带的左边部分都比右边部分亮一些,这就是所谓的马赫带效应。
数字图像处理期末重点复习
1.欧氏距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的欧氏距离定义为:D e(p,q)=(x−u)2+(y−u)212。
2.街区距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的街区距离定义为:D4p,q=x−u+y−v。
3.棋盘距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的街区距离定义为:D8p,q=man(x−u,y−v)。
4.灰度数字图像有什么特点?答:灰度数字图像的特点是只有灰度(亮度)属性,没有彩色属性。
对于灰度级为L的图像,起灰度取值范围为[0,L-1].5.一副200×300的二值图像、16灰度级图像和256灰度级图像分别需要多少存储空间?答:由于存储一副M×N的灰度级为L 的数字图像所需的位数为:M ×N×L,其中L=2k。
二值图像,16灰度级图像和256灰度级图像的k值分别为1、4和8,也即存储一个像素需要的位数分别为1位、4位和8位。
所以,一副200×300的二值图像所需的存储空间为200×300×1/8=7.5kB;一副200×300的16灰度级图像所需的存储空间为200×300×4/8=30kB;一副200×300的256灰度级的图像所需的存储空间为200×300×8/8=60kB。
6.简述采样数变化对图像视觉效果的影响。
答:在对某景物的连续图像进行均匀采样时,在空间分辨率(这里指线对宽度)不变的情况下,采样数越少,即采样密度越低,得到的数字图像阵列M×N越小,也即数字图像尺寸就越小。
反之,采样数越多,即采样密度越高,得到的数字图像阵列M×N 越大,也即数字图像的尺寸就越大。
7.简述灰度级分辨率变化对图像视觉效果的影响。
答:灰度级分辨率是指在灰度级别克分辨的最小变化。
灰度级别越大,也即图像的灰度级分辨率越高,景物图像总共反映其亮度的细节就越丰富,图像质量也就越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字图像处理》复习第一章绪论数字图像处理技术的基本内容:图像变换、图像增强、图象恢复、图像压缩编码、图像分割、图像特征提取(图像获取、表示与描述)、彩色图像处理和多光谱及高光谱图像处理、形态学图像处理第二章数字图像处理基础2-1 电磁波谱与可见光1.电磁波射波的成像方法及其应用领域:无线电波(1m-10km)可以产生磁共振成像,在医学诊断中可以产生病人身体的横截面图像☆微波(1mm-1m)用于雷达成像,在军事和电子侦察领域十分重要红外线(700nm-1mm)具有全天候的特点,不受天气和白天晚上的影响,在遥感、军事情报侦察和精确制导中广泛应用可见光(400nm-700nm)最便于人理解和应用最广泛的成像方式,卫星遥感、航空摄影、天气观测和预报等国民经济领域☆紫外线(10nm-400nm)具有显微镜方法成像等多种成像方式,在印刷技术、工业检测、激光、生物学图像及天文观测X射线(1nm-10nm)应用于获取病人胸部图像和血管造影照片等医学诊断、电路板缺陷检测等工业应用和天文学星系成像等伽马射线(0.001nm-1nm)主要应用于天文观测2-2 人眼的亮度视觉特征2.亮度分辨力——韦伯比△I/I(I—光强△I—光照增量),韦伯比小意味着亮度值发生较小变化就能被人眼分辨出来,也就是说较小的韦伯比代表了较好的亮度分辨力2-3 图像的表示3. 黑白图像:是指图像的每个像素只能是黑或白,没有中间的过渡,一般又称为二值图像(黑白图像一定是二值图像,二值图像不一定是黑白图像)灰度图像:是指图像中每个像素的信息是一个量化了的灰度级的值,没有彩色信息。
彩色图像:彩色图像一般是指每个像素的信息由R、G、B三原色构成的图像,其中的R、B、G是由不同的灰度级来描述的。
4.灰度级L、位深度k L=2^k5.储存一幅M×N的数字图像所需的比特 b=M×N×k例如,对于一幅600×800的256灰度级图像,就需要480KB的储存空间(1KB=1024Byte 1Byte=8bit)2-4 空间分辨率和灰度级分辨率6.空间分辨率是图像中可分辨的最小细节,主要由采样间隔值决定,反映了数字化后图像的实际分辨率。
一种常用的空间分辨率的定义是单位距离内可分辨的最少黑白线对数目(单位是每毫米线对数),比如每毫米80线对。
对于一个同样大小的景物来说,对其进行采样的空间分辨率越高,采样间隔就越小,图片的质量就越高。
7.灰度级分辨率是指在灰度级别中可分辨的最小变化,通常把灰度级级数L称为图像的灰度级分辨率(灰度级通常是2的整数次幂)8.在图像空间分辨率不变的情况下,采样数越少,图像越小。
同时也证实了,在景物大小不变的情况下,图像阵列M×N越小,图像的尺寸就越小;随着空间分辨率的降低,图像大小尺寸不变,图像中的细节信息在逐渐损失,棋盘格似的粗颗粒像素点变得越来越明显。
由此也说明,图像的空间分辨率越低,图像的视觉效果越差;随着灰度分辨率的降低,图像的细节信息在逐渐损失,伪轮廓信息在逐渐增加。
由于伪轮廓信息的积累,图像已显现出了木刻画的效果。
由此也说明:灰度分辨率越低,图像的视觉效果越差。
2-5 像素间的关系9.图像中像素的相邻与邻域有3种:相邻像素与4邻域(N4(p))、对角相邻像素与4对角邻域(ND(p))、8邻域(N8(p))10.像素间有3种类型的邻接性:4邻接:若像素p和像素q的灰度值均属于V中的元素,且q在N4(p)中,则p和q 为4邻接8邻接:若像素p和像素q的灰度值均属于V中的元素,且q在N8(p)中,则p和q 为8邻接m邻接(混合邻接):若像素p和像素q的灰度值均属于V中的元素,如果q在N4(p)中或者q在ND(p)中且N4(p)∩N4(q)中没有值为V中元素的像素,则p和q为m邻接第三章数字图像的基本运算3-1 灰度反转1.对于灰度级为L的图像,灰度反转可以表示为g(x,y)=L-1-f(x,y)3-2 对数变换2.对原图像f(x,y)进行对数变换的解析式可表示为:g(x,y)=c·log(1+f(x,y))主要作用是对原图像的灰度值动态范围进行压缩,主要用于调高输入图像的低灰度值——拓展:幂变换:s=c·r^γ,又叫伽玛校正,和对数变换的原理差不多,可变宽带的输入像素值范围可选了,把低值带拉伸还是把高值拉伸要看伽马的设定了。
分段线性变换:分为:对比拉伸、灰度切割、位图切割3-3 灰度直方图3.灰度图像的直方图是一种表示数字图像中各级灰度值及其出现频数的关系的函数,一般用一个二维坐标来表示. 描述灰度图像直方图的二维坐标的横坐标用于表示像素的灰度级别,纵坐标用于表示该灰度出现的频数(像素的个数)。
设一幅数字图像的灰度级范围为[0,L-1],则该图像的灰度直方图可定义为:h(rk)=nk rk=0,1,2,…,L-1, 其中,rk表示第k级灰度值;nk表示图像中灰度值为rk的像素的个数; h(rk)是灰度图像的直方图函数。
4.归一化灰度图像直方图rk表示第k级灰度值;nk表示图像中灰度值为rk的像素的个数;n是图像像的像素总个数,P(rk)是rk出现概率的估计。
5.灰度直方图的特征(直方图不反映灰度值的像素在图像中位置方面的任何信息)3-5 图像的代数运算6.图像的加法:g(x,y)=f1(x,y)+f2(x,y)1)相加后做平均 2)将所有像素值相加后做等比例缩小 3)当相加超过最大时取最大值图像的减法:g(x,y)=f1(x,y)-f2(x,y)当结果小于零时一般取零3-6 图像的几何运算7.图像的放大:设原图像大小为M*N放大为k1M*k2N(k1>1,k2>1),算法步骤如下:(1)设旧图像是F(I,j),i=1,2,…,M,j=1,2,…,N;新图像是G(x,y)(2)G(x,y)= F(c1*I,c2*j) c1=1/k1,c2=1/k2例: 设已知有一个3×3的灰度图像,如下所示,请利用非整数倍放大图像的最近邻插值法将该图像放大为4×4的图像。
解:hold=3 hnew=4 wold=3 wnew=4xnew*(hold/hnew)=(0,1,2,3)*(3/4)=(0,3/4,3/2,9/4)=(0,1,2,2)oldynew*(wold/wnew)=(0,1,2,3)*(3/4)=(0,3/4,3/2,9/4)=(0,1,2,2)old即:234 38 22 2267 44 12 1289 65 63 6389 65 63 63第四章空间域图像增强4-2 基于直方图的图像增强方法1.直方图均衡化:所谓直方图均衡,就是把一已知灰度概率分布的图像,变换成具有均匀概率分布的新图像的过程设r为待增强的原图像的归一化灰度值, 0≤r≤1 ;s为增强后的新图像的归一化灰度值,且0≤s≤1;n(r)为原图像中灰度值为r的像素的个数,其概率分布密度为pr(r)。
直方图均衡即是找一种变换,使具有任意概率分布密度的直方图的图像,变换成接近于均匀概率分布密度的直方图的图像。
例:已知有一幅大小为64×64的图像,灰度级为8。
图像中各灰度级的像素数目n0=790,n1=1023,n2=850,n3=656,n4=329,n5=245,n6=122,n7=81(总数为4096)归一化灰度分布及概率:根据直方图均衡化公式求变换函数的各灰度等级值同理,s1=0.44,s2=0.65,s3=0.81,s4=0.89,s5=0.95,s6=0.98,s7=1.0将sk 值按靠近原则对应到原灰度级别中(标准):s0≈0.143=1/7,s1≈0.429=3/7,s2≈0.714=5/7,s3≈s4≈0.857=6/7,s5≈s6≈s7≈1 将所得的变换函数的各灰度等级值转化成标准的灰度级别值即得到均衡化后的新图像的直方图4-2 图像锐化2.图像锐化是一种突出和加强图像中景物边缘和轮廓的技术Sobel 算子和robert 算子是一阶导数算子拉普拉斯锐化算子是二阶微分算子一阶导和二阶导性能分析:一阶导数通常在图像中产生较厚的边缘;二阶导数对细节有较强的响应,如细线和孤立点;一阶导数通常对灰度级有较强的响应;二阶导数在灰度阶跃变化下产生双重响应。
第五章 频率与图像增强5-1 二维离散傅里叶变换1.意义:将空间域复杂的卷积运算转化为频域简单的乘积运算2.重要性质:变换系数矩阵、周期性、共轭对称性、平移性 可分离性:∑∑∑∑-=-=-=-=--=+-=10101010])2exp[),(](2exp[1])(2exp[),(1),(N x N y N x N y N yv j y x f N xu j N N yv xu j y x f N v u F πππ∑∑∑∑-=-=-=-==+=10101010)]2exp[),(](2exp[1])(2exp[),(1),(N u N v N u N v N vy j v u F N ux j N N vy ux j v u F N y x f πππ 上述的可分离表示形式说明,可以连续运用两次一维DFT 来实现一个二维DFT平均数:一幅图像的灰度平均值可表示为:∑∑-=-==10102),(1N x N y y x f N f如果将u=v=0代入F(u,v)可得:∑∑-=-==1010),(1)0,0(N x N y y x f N F所以,一幅图像的灰度平均值可由DFT 在原点处的值求得,即:)0,0(1F N f =19.04096790)(0000====∑=j j n n r Ts旋转不变性:如果引入极坐标⎩⎨⎧==⎩⎨⎧==φωv φωu θr y θr x sin cos sin cos则f(x,y)和F(u,v)分别变为f(r,θ)和 F(ω,φ). 在极坐标系中,存在以下变换对)(),(00θω,F θθr f +⇔+ϕ上式表明,如果空间域函数f(x,y)旋转θ0角度后,相应的傅立叶变换F(u,v)在频域中也旋转同θ0角度。
同理,F(u,v)在频域中旋转θ0角度,其反变换f(x,y)在空间域中也旋转θ0角度。
5-2 频率域图像处理的基本实现思路3.基本思想:由傅立叶频谱的特性可知,u 和v 同时为0时的频率成分对应于图像的平均灰度级。
当从(傅立叶)变换的原点离开时,低频对应着图像的慢变化分量,比如一幅图像中较平坦的区域;当进一步离开原点时,较高的频率开始对应图像中变化越来越快的灰度级,它们反映了一幅图像中物体的边缘和灰度级突发改变(如噪声)部分的图像成分。
频率域图像增强正是基于这种机理,通过对图像的傅立叶频谱进行低通滤波(使低频通过,使高频衰减)来滤除噪声,通过对图像的傅立叶频谱进行高通滤波(使高频通过,使低频衰减) 突出图像中的边缘和轮廓。