小学奥数举一反三六年级(全)

合集下载

小学奥数(六年级)举一反三

小学奥数(六年级)举一反三

目录目录 (1)专题1 简便运算 (2)专题2 比的应用 (5)专题3 行程问题 (8)专题4 工程问题 (11)专题5 面积计算 (14)专题6 周长、表面积和体积 (17)专题7 “牛吃草”问题 (20)专题8 浓度应用题 (23)专题9 流水行船题 (25)专题10 行程问题2 (28)专题11 工程问题2 (30)专题12 方程问题 (5)附件:小学数学基础知识整理 (33)专题1 简便运算专题简析根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的分数小数四则混合运算化繁为简、化难为易。

计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配率—提取公因式来简算,这种思考方法在四则运算中用处很大。

简便运算中,常用的方法有:找朋友,凑整法,提取公因式,分数裂项,最高的境界是抵消。

王牌例题1计算:4.75-9.63+(8.25-1.37)举一反三11. 6.73-2817+(3.27-1917) 2. 759-(3.8+159)-115王牌例题2计算:99999×11111举一反三21. 9999999999×11111111112. 66666×33333王牌例题3计算:36×1.09+1.2×67.3举一反三31. 45×2.08+1.5×37.6 2. 52×11.1+2.56×778 王牌例题4计算:112⨯+123⨯+134⨯+145⨯+…+1910⨯(提示:112⨯=1-12)举一反三41.123⨯+134⨯+145⨯+…+199100⨯2.113⨯+135⨯+157⨯+179⨯+…+19799⨯王牌例题5计算:81.5×15.8+81.5×51.8+67.6×18.5举一反三51. 53.5×35.3+53.5×43.2+78.5×46.52. 235×12.1+235×42.2-135×54.3王牌例题6计算:1234+2341+3412+4123举一反三61. 23456+34562+45623+56234+62345 王牌例题7计算:199319941 199319921994⨯-+⨯举一反三71. 548361362 362548186⨯+⨯-✈智力冲浪1. 45678+56784+67845+78456+845672. 72×2.09-1.8×73.63.113⨯+135⨯+157⨯+179⨯+…+1197199⨯4. 201220142013 201320141⨯+⨯-5. 124.68+324.68+524.68+724.68+924.68专题2 方程问题专题简析解答这类问题时,一定要耐心、细心,千万不要粗心。

小学奥数举一反三(六年级)全

小学奥数举一反三(六年级)全

小学奥数举一反三(六年级)全一、拓展提优试题1.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.5.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.6.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.7.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.8.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.9.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.10.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.11.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.12.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.13.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.14.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.15.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.【参考答案】一、拓展提优试题1.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.5.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.6.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.7.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.8.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.9.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.10.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.11.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.12.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.13.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.14.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.15.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.。

小学奥数举一反三(六年级)[1]

小学奥数举一反三(六年级)[1]

小学奥数举一反三(六年级)[1]第6讲转化单位“1”(一)一、知识要点把不同的数量当作单位“1”,得到的分率可以在一定的条件下转化。

如果甲是乙的a/b,乙是丙的c/d,则甲是丙的ac/bd;如果甲是乙的a/b,则乙是甲的b/a;如果甲的a/b等于乙的c/d,则甲是乙的c/d÷a/b=bc/ad,乙是甲的a/b÷a/b=ad/bc。

二、精讲精练【例题1】乙数是甲数的2/3,丙数是乙数的4/5,丙数是甲数的几分之几?练习1:1.乙数是甲数的3/4,丙数是乙数的3/5,丙数是甲数的几分之几?2.一根管子,第一次截去全长的1/4,第二次截去余下的1/2,两次共截去全长的几分之几?3.一个旅客从甲城坐火车到乙城,火车行了全程的一半时旅客睡着了。

他醒来时,发现剩下的路程是他睡着前所行路程的1/4。

想一想,剩下的路程是全程的几分之几?他睡着时火车行了全程的几分之几?【例题2】修一条8000米的水渠,第一周修了全长的1/4,第二周修的相当于第一周的4/5,第二周修了多少米?-1-练习2:用两种方法解答下面各题:1.一堆黄沙30吨,第一次用去总数的1/5,第二次用去的是第一次的1又1/4倍,第二次用去黄沙多少吨?2.大象可活80年,马的寿命是大象的1/2,长颈鹿的寿命是马的7/8,长颈鹿可活多少年?3.仓库里有化肥30吨,第一次取出总数的1/5,第二次取出余下的1/3,第二次取出多少吨?【例题3】晶晶三天看完一本书,第一天看了全书的1/4,第二天看了余下的2/5,第二天比第一天多看了15页,这本书共有多少页?练习3:1.有一批货物,第一天运了这批货物的1/4,第二天运的是第一天的3/5,还剩90吨没有运。

这批货物有多少吨?2.修路队在一条公路上施工。

第一天修了这条公路的1/4,第二天修了余下的2/3,已知这两天共修路1200米,这条公路全长多少米?、3.加工一批零件,甲先加工了这批零件的2/5,接着乙加工了余下的4/9。

(word完整版)小学奥数举一反三(六年级)

(word完整版)小学奥数举一反三(六年级)

第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

小学奥数举一反三(六年级)全图文百度文库

小学奥数举一反三(六年级)全图文百度文库

一、拓展提优试题1.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.2.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?3.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.4.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?5.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.6.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)7.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.8.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.9.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点A n,然后从点A n出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.10.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.11.若质数a,b满足5a+b=2027,则a+b=.12.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.13.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.14.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.15.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.16.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.17.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.18.已知两位数与的比是5:6,则=.19.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.20.等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.21.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.22.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.23.张阿姨和李阿姨每月的工资相同,张阿姨每月把工资的30%存入银行,其余的钱用于日常开支,李阿姨每月的日常开支比张阿姨多10%,余下的钱也存入银行,这样过了一年,李阿姨发现,她12个月存入银行的总额比张阿姨少了5880元,则李阿姨的月工资是元.24.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.25.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.26.宏富超市购进一批食盐,第一个月售出这批盐的40%,第二个月又售出这批盐的420袋,这时已售出的和剩下食盐的数量比是3:1,则宏富超市购进的这批食盐有袋.27.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.28.12013+22013+32013+42013+52013除以5,余数是.(a2013表示2013个a相乘)29.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.30.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.31.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.32.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.33.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.34.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.35.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.36.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.37.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.38.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)39.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.40.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.【参考答案】一、拓展提优试题1.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.2.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.3.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.4.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.5.解:==,答:这三个分数中最大的一个是.故答案为:.6.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.7.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.8.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.9.解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).10.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.11.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.12.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.13.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.14.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100015.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4016.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.17.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.18.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.19.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.20.解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.21.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.22.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.23.解:(1﹣30%)×(1+10%)=70%×110%,=77%;5880÷12÷[30%﹣(1﹣77%)]=490÷[30%﹣23%],=490÷7%,=7000(元).即李阿姨的月工资是 7000元.故答案为:7000.24.解:设A、B两校的男生、女生人数分别为8a、7a、30b、31b,由题意得:(8a+30b):(7a+31b)=27:26,27×(7a+31b)=26×(8a+30b),189a+837b=208a+780b,837b﹣780b=208a﹣189a,57b=19a,所以a=3b,所以A、B两校合并前人数的比是:(8a+7a):(30b+31b),=15a:61b,=45b:61b,=(45b÷b):(61b÷b)=45:61;答:A,B两校合并前人数比是45:61.故答案为:45:61.25.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.26.解:420÷(1﹣40%﹣)=420÷0.35=1200(袋)答:宏富超市购进的这批食盐有1200袋.故答案为:1200.27.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.28.解:多个2相乘结果个位数字有一个规律:2、4、8、6每4个2相乘一个循环,多个3相乘结果个位数字有一个规律:3、9、7、1每4个3相乘一个循环,2013÷4=503…1,所以2013个2相乘后个位数字是2,2013个3相乘后个位数字是3,2013个4相乘后个位数字是4,1的任何次方都是1,5的任何次方的个位数字都是5,1+2+3+4+5=15所以12013+22013+32013+42013+52013的个位数字是5,所以除以5的余数是0;故答案为:0.29.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.30.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.31.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.32.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.33.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.34.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.35.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.36.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.37.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.38.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.39.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.40.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.。

小学六年级奥数举一反三

小学六年级奥数举一反三

小学六年级奥数举一反三一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义’从而解答某些算式的一种运算。

解答定义新运算’关键是要正确地理解新定义的算式含义’然后严格按照新定义的计算程序’将数值代入’转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式’它使用的是一些特殊的运算符号’如;某、△、⊙等’这是与四则运算中的“+、-、某、÷”不同。

新定义的算式中有括号的’要先算括号里面的。

但它在没有转化前’是不适合于各种运算定律的。

二、精讲精练[例题1]假设a某b=(a+b)+(a-b)’求13某5和13某[5某4]。

[思路导航]这题新运算被定义为;a某b等于a和b两数之和加上两数之差。

这里“某”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此’在13某[5某4]中’就要先算小括号里的[5某4]。

练习1;1’将新运算“某”定义为;a某b=(a+b)某(a-b)’。

求27某9。

2’设a某b=a2+2b’那么求10某6和5某[2某8]。

3’设a某b=3a-b某1/2’求[25某12]某[10某5]。

[例题2]设p、q是两个数’规定;p△q=4某q-(p+q)÷2。

求3△(4△6)。

[思路导航]根据定义先算4△6。

在这里“△”是新的运算符号。

练习2;1.设p、q是两个数’规定p△q=4某q-[p+q]÷2’求5△[6△4]。

2.设p、q是两个数’规定p△q=p2+[p-q]某2。

求30△[5△3]。

3.设M、N是两个数’规定M某N=M/N+N/M’求10某20-1/4。

[例题3]如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’2/263某3=3+33+333’4某2=4+44’那么7某4=________;210某2=________。

[思路导航]经过观察’可以发现本题的新运算“某”被定义为。

因此练习3;1.如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’3某3=3+33+333’……那么4某4=________。

小学六年级奥数举一反三--比的应用

小学六年级奥数举一反三--比的应用

小学奥数举一反三比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。

运用这种方法解决一些实际问题可以化难为易,化繁为简。

二、精讲精练【例题1】甲数是乙数的2/3,乙数是丙数的4/5,甲、乙、丙三数的比是():():()。

【思路导航】甲、乙两数的比 2:3乙、丙两数的比 4:5甲、乙、丙三数的比 8:12:15答:甲、乙、丙三数的比是 8:12:15。

练习1:1.甲数是乙数的4/5,乙数是丙数的5/8,甲、乙、丙三数的比是():():()。

2.甲数是乙数的4/5,甲数是丙数的4/9,甲、乙、丙三数的比是():():()。

3.甲数是丙数的3/7,乙数是丙数的2又1/2,甲、乙、丙三数的比是():():()。

【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5。

这三个小组各有多少人?【思路导航】先求出三个小组人数的连比,再按求出的连比进行分配。

①一、二两组人数的比 2:3 二、三两组人数的比 4:5一、二、三组人数的比 8:12:15②总份数:8+12+15=35③第一组:140×8/35=32(人)④第二组:140×12/35=48(人)⑤第三组:140×15/35=60(人)答:第一小组有32人,第二小组有48人,第三小组有60人。

练习2:1.某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1。

每种作物各是多少公亩?2.黄山小学六年级的同学分三组参加植树。

第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2。

已知第一组的人数比二、三组人数的总和少15人。

六年级参加植树的共有多少人?3.科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7。

已知数学组与科技组共有69人。

【word直接打印】小学奥数举一反三(六年级)全图文百度文库

【word直接打印】小学奥数举一反三(六年级)全图文百度文库

【word直接打印】小学奥数举一反三(六年级)全图文百度文库一、拓展提优试题1.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.2.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.3.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.4.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.5.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.6.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.7.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.8.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.9.如图所示的“鱼”形图案中共有个三角形.10.已知自然数N的个位数字是0,且有8个约数,则N最小是.11.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.12.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.13.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.14.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)15.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.【参考答案】一、拓展提优试题1.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.2.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.3.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.4.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.5.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.6.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.7.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.8.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.9.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.10.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.11.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.12.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.13.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.14.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.15.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.。

小学奥数教材举一反三六年级课程40讲全整理

小学奥数教材举一反三六年级课程40讲全整理

修改整理加入目录,方便查用,六年级奥数举一反三目录第1讲定义新运算 (3)第2讲简便运算(一) (6)第3讲简便运算(二) (9)第4讲简便运算(三) (11)第5讲简便运算(四) (14)第6讲转化单位“1”(一) (17)第7讲转化单位“1”(二) (19)第8讲转化单位“1”(三) (22)第9讲设数法解题 (25)第10讲假设法解题(一) (28)第11讲假设法解题(二) (31)第12讲倒推法解题 (34)第13讲代数法解题 (37)第14讲比的应用(一) (40)第15讲比的应用(二) (43)第16讲用“组合法”解工程问题 (47)第17讲浓度问题 (50)第18讲面积计算(一) (54)第19讲面积计算(二) (59)第20讲面积计算 (64)第二十一周抓“不变量”解题 (69)第二十二周特殊工程问题 (71)第二十三周周期工程问题 (75)第二十四周比较大小 (83)第二十五周最大最小问题 (87)第26周加法、乘法原理 (90)第27周表面积与体积(一) (92)第28周表面积与体积(二) (101)第二十九周抽屉原理(一) (104)第三十周抽屉原理(二) (109)第三十一周逻辑推理(一) (114)第三十二周逻辑推理(二) (122)第三十三周行程问题(一) (129)第三十四周行程问题(二) (137)第三十五周行程问题(三) (148)第三十六周流水行船问题 (155)第三十七周对策问题 (158)第三十八周应用同余问题 (160)第三十九周“牛吃草”问题 (162)第四十周不定方程 (165)第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

小学奥数举一反三A版(六年级)

小学奥数举一反三A版(六年级)

3�3.75×735�3/8×5730�16.2×62.5
-4-
六年级数学奥数培训资料
第 3 讲 简便运算�二�
一、知识要点 计算过程中�我们先整体地分析算式的特点�然后进行一定的转化�创造条件运用乘 法分配律来简算�这种思考方法在四则运算中用处很大。 二、精讲精练 【例题 1】计算�1234�2341�3412�4123 【思路导航】整体观察全式�可以发现题中的 4 个四位数均由数 1�2�3�4 组成� 且 4 个数字在每个数位上各出现一次�于是有 原式�1×1111�2×1111�3×1111�4×1111 ��1�2�3�4�×1111 �10×1111 �11110 练习 1� 1�23456�34562�45623�56234�62345 2�45678�56784�67845�78456�84567 3�124.68�324.68�524.68�724.68�924.68 【例题 2】计算�2 又 4/5×23.4�11.1×57.6�6.54×28 【思路导航】我们可以先整体地分析算式的特点�然后进行一定的转化�创造条件运 用乘法分配律来简算。所以 原式�2.8×23.4�2.8×65.4�11.1×8×7.2 �2.8×�23.4�65.4��88.8× 7.2 �2.8×88.8�88.8×7.2 �88.8×�2.8�7.2� �88.8×10 �888 练习 2�计算下面各题� 1�99999×77778�33333×66666 2�34.5×76.5�345×6.42�123×1.45 3�77×13�255×999�510 【例题 3】计算�1993×1994�1�/�1993�1992×1994� 【思路导航】仔细观察分子、分母中各数的特点�就会发现分子中 1993×1994 可变 形为 1992�1�×1994=1992×1994�1994�同时发现 1994�1 = 1993�这样就可以把原 式转化成分子与分母相同�从而简化运算。所以 原式�【�1992�1�×1994�1】/�1993�1992×1994�

小学奥数举一反三A版(六年级)

小学奥数举一反三A版(六年级)
ห้องสมุดไป่ตู้
。________=5*8 么那
�定规�2 。________=4*4
么那……�333+33+3=3*3�2222+222+22+2=4*2�11111+1111+111+11+1=5*1 果如�1 �3 习练
__________________�名姓 料资训培数奥学数级年六
-3-
�3.76×2.1+90.1×03�×2.1� 3.76×2.1+90.1×03×2.1�式原 以所。了律配分法乘用运以可就�化转一样这。03 ×2.1 = 63�知可后征特的数察观细仔�法算便简么什有没看面表题此】航导路思【 3.76×2.1+90.1×63�算计】3 题例【 7.2×1111.0+7.0×9999.0 .4 06/1÷52.4+524×5/2 又 9 .3 57.9�67×4/3 又 9+52.0×579 .2 5/4÷2/1 又 1+�521+4/1 又 1×5.3 .1 �题各面下算计�2 习练 00000097� 097×000001� 097×�52.16666+57.83333�� 52.16666×097+097×57.83333� 52.16666×097+97×5.783333�式原�以 所。便简算计使律配分法乘和律规化变的积用利�后数小成化数分把可】航导路思【 4/1 又 16666×097+97×2/1 又 783333 算计】2 题例【 57.0��31/7 又 3+4/1 又 4��31/7 又 31 .4 521.2��02/71 又 6�8/7 又 7��51.41 .3 5/1 又 1��9/5 又 1+8.3��9/5 又 7 .2 �71/9 又 1�72.3�+71/8 又 2�37.6 �1 。题各面下算计�1 习练 2� 11�31� �73.1+36.9��31� 73.1�36.9�52.8+57.4�式原 以所。便简程过算运使� �c�b��a = c �b�a�质性的法减用运再�整凑加相 52.8 和 57.4 使�号括小掉去先】航导路思【 �73.1-52.8�+36.9-57.4 算计】1 题例【 练精讲精、二 。易为难化�简为繁化算运合混则四的杂复较些 一把以可�式公些某和质性、律定、则法算运用运活灵�征特的数和构结的式算据根 点要识知、一

小学奥数举一反三(六年级)[1]

小学奥数举一反三(六年级)[1]

小学奥数举一反三(六年级)[1]六年级数学奥数培训资料第1讲定义新运算一、科学知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

答疑定义新运算,关键就是必须正确地认知崭新定义的算式含义,然后严苛按照崭新定义的排序程序,将数值代入,转变为常规的四则运算算式展开排序。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。

崭新定义的算式中存有括号的,必须先算括号里面的。

但它在没转变前,就是不适合于各种运算定律的。

二、精讲精练【例题1】假设a*b=(a+b)+(a-b),谋13*5和13*(5*4)。

【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。

这里的“*”就代表一种新运算。

在定义新运算中同样规定了要先算小括号里的。

因此,在13*(5*4)中,就要先算小括号里的(5*4)。

练1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。

求27*9。

2.设a*b=a2+2b,那么求10*6和5*(2*8)。

3.设a*b=3a-b×1/2,求(25*12)*(10*5)。

【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。

求3△(4△6)。

【思路导航系统】根据定义先算4△6。

在这里“△”就是代莱运算符号。

练习2:1.设p、q就是两个数,规定p△q=4×q-(p+q)÷2,谋5△(6△4)。

2.设p、q就是两个数,规定p△q=p2+(p-q)×2。

谋30△(5△3)。

3.设m、n就是两个数,规定m*n=m/n+n/m,谋10*20-1/4。

【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。

小学奥数六年级举一反三

小学奥数六年级举一反三

小学奥数六年级举一反三专题简析:一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。

抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。

例1.将的分子与分母同时加上某数后得,求所加的这个数。

解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的,由此可求出新分数的分子和分母。

”分母:(61-43)÷(1-)=81分子:81×=6381-61=20或63-43=20解法二:的分母比分子多18,的分母比分子多2,因为分数的与分母的差不变,所以将的分子、分母同时扩大(18÷2=)9倍。

①的分子、分母应扩大:(61-43)÷(9-7)=9(倍)②约分后所得的在约分前是:==③所加的数是81-61=20答:所加的数是20。

练习1:1、分数的分子和分母都减去同一个数,新的分数约分后是,那么减去的数是多少?2、分数的分子、分母同加上一个数后得,那么同加的这个数是多少?3、的分子、分母加上同一个数并约分后得,那么加上的数是多少?4、将这个分数的分子、分母都减去同一个数,新的分数约分后是,那么减去的数是多少?例2:将一个分数的分母减去2得,如果将它的分母加上1,则得,求这个分数。

解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得”可知,分母比分子的倍还多2。

由“分母加1得”可知,分母比分子的倍少1,从而将原题转化成一个盈亏问题。

分子:(2+1)÷(-)=12分母:12×-1=17解法二:两个新分数在未约分时,分子相同。

①将两个分数化成分子相同的分数,且使分母相差3。

==,=②原分数的分母是:18-1=17或15+2=17 答:这个分数为。

练习2:1、将一个分数的分母加上2得,分母加上3得。

小学奥数举一反三(六年级)

小学奥数举一反三(六年级)

第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

六年级小学生奥数举一反三练习题

六年级小学生奥数举一反三练习题

六年级小学生奥数举一反三练习题L六年级小学生奥数举一反三练习题篇一股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10. 65元的价格买进一种科技股票3000股,6月26日以每月13. 86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10. 65^1%=0. 1065 (元)10. 65⅛%=0. 213 (元)10. 1065+0. 213=0. 3195 (元)0. 3195+10. 65=10. 9695 (元)13. 86^1%=0. 1386 (元)13. 86⅛%=0o 2772 (元)0. 1386+0. 2772=0. 415813.86+0.4158=14. 2758 (元)14. 2758-10. 9695=3. 3063 (元)答:老王卖出这种股票一共赚了 3.3063元。

2.六年级小学生奥数举一反三练习题篇二一列火车通过360米长的铁路桥用了24秒钟,用同样的速度通过216米长的铁路桥用16秒钟,这列火车长米。

分析:这道题让我们求火车的长度。

我们知道:车长二车速X通过时间-桥长。

其中“通过时间”和“桥长”都是已知条件。

我们就要先求出这道题的解题关键: 车速。

通过审题我们知道这列火车通过不同长度的两个桥用了不同的时间。

所以我们可以利用这两个桥的长度差和通过时间差求出车速。

解答:解:车速:(360-216) ÷(24-16)=144÷8=18 (米),火车长度:18X24-360=72 (米),或18X16-216=72 (米)。

答:这列火车长72米。

故答案为:72o3.六年级小学生奥数举一反三练习题篇三甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8: 7: 5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果, 甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40) ÷20=5人甲村需要的人数:8X5=40人,多出劳力人数:60-40二20人乙村需要的人数:7X5=35人,多出劳力人数:40-35二5人丙村需要的人数:5X5=25人或20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54X20=1080元4.六年级小学生奥数举一反三练习题篇四有一户人家,共有三个人:爸爸、妈妈和他们的独生儿子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一周 定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。

解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。

定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。

新定义的算式中有括号的,要先算括号里面的。

但它在没有转化前,是不适合于各种运算定律的。

例题1。

假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。

13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。

2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。

3.设a*b=3a -12×b ,求(25*12)*(10*5)。

例题2。

设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。

求3△(4△6). 3△(4△6).=3△【4×6-(4+6)÷2】 =3△19=4×19-(3+19)÷2 =76-11 =65 练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。

2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。

求30△(5△3)。

3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。

例题3。

如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。

那么7*4=?,210*2=?7*4=7+77+777+7777=8638 210*2=210+210210=2104201. 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,…..那么,4*4=?,18*3=?2. 规定a*b=a+aa+aaa+aaa+aaaa ……..a,那么8*5=?(b-1)个a 3. 如果2*1=12 ,3*2=133 ,4*3=1444 ,那么(6*3)÷(2*6)=?。

例题4。

规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1⑥ -1⑦ =1⑦ ×A ,那么A 是几?A =( 1⑥ -1⑦ )÷1⑦=(1⑥ -1⑦ )×⑦=⑦⑥-1 =6×7×85×6×7 -1 =35练习41. 规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……..如果1⑧ -1⑨=1⑨×A ,那么A=?。

2. 规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥=5×6×7,…..如果1⑩ +1(11)=1(11)×□,那么□=?。

3. 如果1※2=1+2,2※3=2+3+4,….5※6=5+6+7+8+9+10,那么x ※3=54中,x =?例题5设a ⊙b=4a-2b+12 ab,求x ⊙(4⊙1)=34中的未知数x 。

4⊙1=4×4-2×1+12 ×4×1=16X ⊙16=4x -2×16+12 ×x ×16=12x -32 X =5.51. 设a ⊙b=3a-2b,已知x ⊙(4⊙1)=7求x 。

2. 对两个整数a 和b 定义新运算“▽”:a ▽b=2a-b(a+b)×(a-b),求6▽4+9▽8。

3. 对任意两个整数x 和y 定于新运算,“*”:x*y =4xymx+3y(其中m 是一个确定的整数)。

如果1*2=1,那么3*12=?第二周 简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。

例题1。

计算4.75-9.63+(8.25-1.37) 原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37) =13-11 =2 练习1计算下面各题。

1. 6.73-2 817 +(3.27-1 917 ) 2. 759 -(3.8+1 59 )-1153. 14.15-(778 -61720 )-2.125 4. 13713 -(414 +3713 )-0.75例题2。

计算33338712 ×79+790×6666114原式=333387.5×79+790×66661.25=(33338.75+66661.25)×790 =100000×790 =79000000练习2计算下面各题:1. 3.5×114 +125%+112 ÷452. 975×0.25+934 ×76-9.753. 925 ×425+4.25÷160 4. 0.9999×0.7+0.1111×2.7例题3。

计算:36×1.09+1.2×67.3原式=1.2×30×1.09+1.2×67.3 =1.2×(32.7+67.3) =1.2×100 =120疯狂操练 3 计算:1. 45×2.08+1.5×37.6 2. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6例题4。

计算:335 ×2525 +37.9×625原式=335 ×2525 +(25.4+12.5)×6.4=335 ×2525 +25.4×6.4+12.5×6.4=(3.6+6.4)×25.4+12.5×8×0.8=254+80 =334 练习4计算下面各题:1. 6.8×16.8+19.3×3.22. 139×137138 +137×11383. 4.4×57.8+45.3×5.6例题5。

计算81.5×15.8+81.5×51.8+67.6×18.5 原式=81.5×(15.8+51.8)+67.6×18.5 =81.5×67.6+67.6×18.5 =(81.5+18.5)×67.6 =100×67.6 =6760 练习51. 53.5×35.3+53.5×43.2+78.5×46.52. 235×12.1+235×42.2-135×54.33. 3.75×735-38×5730+16.2×62.5答案:练一: 1、=6 2、=1 3、=11 4、=5练二: 1、=7.5 2、=975 3、=4250 4、=0.9999 练三: 1、=150 2、=2600 3、=120 4、=18练四: 1、=176 2、=1386869 3、=508练五: 1、=7850 2、=5430 3、=1620第3讲 简便运算(二)专题简析:计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大。

例题1。

计算:1234+2341+3412+4123简析 注意到题中共有4个四位数,每个四位数中都包含有1、2、3、4这几个数字,而且它们都分别在千位、百位、十位、个位上出现了一次,根据位值计数的原则,可作如下解答:原式=1×1111+2×1111+3×1111+4×1111 =(1+2+3+4)×1111 =10×1111 =11110 练习11. 23456+34562+45623+56234+623452. 45678+56784+67845+78456+845673. 124.68+324.68+524.68+724.68+924.68例题2。

计算:245 ×23.4+11.1×57.6+6.54×28原式=2.8×23.4+2.8×65.4+11.1×8×7.2 =2.8×(23.4+65.4)+88.8× 7.2 =2.8×88.8+88.8×7.2 =88.8×(2.8+7.2) =88.8×10 =888 练习2计算下面各题:1. 99999×77778+33333×666662. 34.5×76.5-345×6.42-123×1.453. 77×13+255×999+510例题3。

计算1993×1994-11993+1992×1994原式=(1992+1)×1994-11993+1992×1994=1992×1994+1994-11993+1992×1994=1 练习3计算下面各题:1. 362+548×361362×548-1862. 1988+1989×19871988×1989-13. 204+584×19911992×584-380 -1143例题4。

有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少?20012-20002=2001×2000-20002+2001=2000×(2001-2000)+2001 =2000+2001 =4001 练习4 计算:1. 19912-199022. 99992+19999 3. 999×274+6274例题5。

相关文档
最新文档