高中数学(文)统考版 复习 课时作业 18三角函数的图象与性质
三角函数:三角函数的图像与性质-高三数学二轮复习
(4)对称轴:ωx + =________.
(5)对称中心:ωx + =________.
试卷讲评课件
(6)值域:若已知三角函数y = Asin ωx + + B,且x ∈ [m, n]
①若ωx +
π
可以取到
2
+
π
2kπ和−
2
+ 2kπ,则Asin ωx + + B的最大
值为________,最小值为________;
2
2
A.1
B.2
= f x 的图象与直线
C.3
D.4
π
6
试卷讲评课件
例10.( ⋅辽宁·二模)已知函数f x = sin2x + 2 3cos2 x − 3,则下
列说法正确的是(
)
A.函数f x 的最小正周期为π
B.函数f x
π 3π
在区间[ , ]上单调递减
6 4
C.将函数f x
π
的图象向右平移 个单位长度,得到函数y
π
是y
6
π
,0
3
对称
上单调递增
= f x 图象的一条对称轴
)
试卷讲评课件
例12.( ⋅河北沧州·一模)已知函数f x = sin 2x +
且f x = f
2π
3
函数,则(
)
A. =
≤
π
2
,
− x ,若函数f x 向右平移a a>0 个单位长度后为偶
π
−
6
B.函数f x 在区间
π
C.a的最小值为
6
象
三角函数的图像和性质知识点及例题讲解
三角函数的图像和性质1、用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的图像中,五个关键点是:(0,1) (2π,0) (π,-1) (23π,0) (2π,1) 2 sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值 当22x k ππ=+时,max 1y =;当22x k ππ=- 时,min 1y =-.当2x k π=时,max 1y =;当2x k ππ=+时,min1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数. 在[]2,2k k πππ-上是增函数; 在[]2,2k k πππ+上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭上是增函数.对称性 对称中心(),0k π 对称轴2x k ππ=+对称中心,02k ππ⎛⎫+ ⎪⎝⎭对称轴x k π=对称中心,02k π⎛⎫⎪⎝⎭无对称轴函数 性质例作下列函数的简图(1)y=|sinx|,x ∈[0,2π], (2)y=-cosx ,x ∈[0,2π]例利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合:21sin )1(≥x 21cos )2(≤x3、周期函数定义:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:()()f x T f x +=,那么函数()y f x =就叫做周期函数,非零常数T 叫做这个函数的周期。
注意: 周期T 往往是多值的(如sin y x = 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做()y f x =的最小正周期(有些周期函数没有最小正周期)sin y x =, cos y x =的最小正周期为2π (一般称为周期)正弦函数、余弦函数:ωπ=2T 。
三角函数图像及性质的总结
第三节三角函数的图像与性质复习要求:1,理解正弦函数、余弦函数、正切函数的图像和性质2,理解周期函数、最小正周期的概念3,学会用五点法画图知识点:1.正弦函数、余弦函数、正切函数、余切函数的图像和性质3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。
6.对称轴与对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
高三北师大文科数学课时作业 第讲 三角函数的图像与性质 含解析
课时作业(十八) [第18讲 三角函数的图像与性质](时间:45分钟 分值:100分)基础热身1.函数f (x )=2sin x cos x 是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数2.y =sin ⎝⎛⎭⎫x -π4的图像的一个对称中心是( )A .(-π,0)B .-3π4,0C.3π2,0D.π2,0 3.函数f (x )=cos2x +2sin x 的最小值和最大值分别为( )A .3,1B .-2,2C .-3,32D .-2,324.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°能力提升5.已知a )图K18-16.[2013·杭州七校上学期期中联考] 函数y =2cos 2x 的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫0,π2C.⎝⎛⎭⎫π4,3π4D.⎝⎛⎭⎫π2,π 7.[2012·唐山模拟] 函数y =cos πx +π6的一个单调增区间是( )A .-23,13 B.13,43C .-16,56 D.56,1168.[2012·衡水检测] 将函数y =sin4x +π3的图像上各点的横坐标伸长到原来的2倍,再向左平移π6个单位,所得函数图像的一个对称中心是( )A.⎝⎛⎭⎫π6,0B.⎝⎛⎭⎫π3,0 C.⎝⎛⎭⎫π2,0 D.⎝⎛⎭⎫π4,0 9.已知命题p :函数y =2sin x 的图像向右平移π6个单位后得到函数y =2sin x +π6的图像;q :函数y =sin 2x +2sin x -1的最大值为2,则下列命题中真命题为( )A .p ∧qB .p ∨qC .p ∧(綈q )D .p ∨(綈q )10.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.11.[2012·大连双基] 若函数y =2tan ωx 的最小正周期为2π,则函数y =sin ωx +3cos ωx 的最小正周期为________.12.已知f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________.13.[2012·泉州四校联考] 设f (x )=a sin2x +b cos2x ,其中a ,b ∈R ,ab ≠0.若f (x )≤f ⎝⎛⎭⎫π6对一切x ∈R 恒成立,则①f ⎝⎛⎭⎫11π12=0;②⎪⎪⎪⎪f ⎝⎛⎭⎫7π12<⎪⎪⎪⎪f ⎝⎛⎭⎫π5; ③f (x )既不是奇函数也不是偶函数;④f (x )的单调递增区间是k π+π6,k π+2π3()k ∈Z ;⑤存在经过点(a ,b )的直线与函数f (x )的图像不相交. 以上结论正确的是________(写出所有正确结论的编号).14.(10分)设函数f (x )=3sin x cos x +cos 2x +a . (1)写出函数f (x )的最小正周期及单调递减区间;(2)当x ∈⎣⎡⎦⎤-π6,π3时,函数f (x )的最大值与最小值的和为32,求a 的值.15.(13分)设函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,-π<φ≤π)在x =π6处取得最大值2,其图像与x 轴的相邻两个交点的距离为π2.(1)求f (x )的解析式;(2)求函数g (x )=6cos 4x -sin 2x -1f ⎝⎛⎭⎫x +π6的值域.难点突破16.(12分)已知向量a =(sin x ,23sin x ),b =(2cos x ,sin x ),定义f (x )=a·b - 3. (1)求函数y =f (x ),x ∈R 的单调递减区间;(2)若函数y =f (x +θ)⎝⎛⎭⎫0<θ<π2为偶函数,求θ的值.课时作业(十八)【基础热身】1.C [解析] 因为f (x )=2sin x cos x =sin2x ,所以它的最小正周期为π,且为奇函数,选C.2.B [解析] ∵y =sin x 的对称中心为(k π,0)(k ∈Z ),令x -π4=k π(k ∈Z ),得x =kπ+π4(k ∈Z ).k =-1时,x =-34π得y =sin ⎝⎛⎭⎫x -π4的一个对称中心是⎝⎛⎭⎫-3π4,0.3.C [解析] f (x )=1-2sin 2x +2sin x=-2sin 2x -sin x +14+32=-2sin x -122+32,∴当sin x =12时,f (x )有最大值32,当sin x =-1时,f (x )有最小值-3.4.C [解析] 因为sin168°=sin(180°-12°)=sin12°,cos10°=cos(90°-80°)=sin80°,由于正弦函数y =sin x 在区间[0°,90°]上为递增函数,因此sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.【能力提升】5.D [解析] 选项A 中函数的最大值小于2,故0<a <1,而其周期大于2π,故选项A 中图像可以是函数f (x )的图像.选项B 中函数的最大值大于2,故a 应大于1,其周期小于2π,故选项B 中图像可以是函数f (x )的图像.当a =0时,f (x )=1,此时对应选项C 中图像.对于选项D ,可以看出其最大值大于2,其周期应小于2π,而图像中的周期大于2π,故选项D 中图像不可能为函数f (x )的图像.6.D [解析] y =2cos 2x =cos2x +1,检验知,选项D 正确.7.D [解析] 由余弦函数的单调区间知,函数y =cos πx +π6的单调增区间满足2k π-π≤πx +π6≤2k π,即2k -76≤x ≤2k -16,当k =1时,56≤x ≤116,所以选D.8.A [解析] 将函数y =sin4x +π3的图像上各点的横坐标伸长到原来的2倍,再向左平移π6个单位,所得函数为y =sin2x +2π3,令2x +2π3=k π,解得x =k π2-π3.当k =1时,x =π6,选A.9.B [解析] 函数y =2sin x 的图像向右平移π6个单位后得到函数y =2sin x -π6的图像,命题p 是假命题;y =sin 2x +2sin x -1=(sin x +1)2-2,当sin x =1时,此函数有最大值2,命题q 是真命题,故p ∨q 是真命题,所以选B.10.(1,3) [解析] 由题意得f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π],图像如图所示,由图像可得,若f (x )与y =k 1<k <3.11.4π [解析] ∵函数y =2tan ωx 的最小正周期为2π,∴|ω|=πT =π2π=12,∴y =sin w x +3cos w x =212sin w x +32cos w x =2sin w x +π3,∴函数y =sin ωx +3cos ωx 的最小正周期为2π12=4π. 12.143 [解析] ∵f (x )=sin ⎝⎛⎭⎫ωx +π3,且f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3, 又f (x )在区间⎝⎛⎭⎫π6,π3内只有最小值、无最大值,∴f (x )在x =π6+π32=π4处取得最小值,∴π4ω+π3=2k π-π2(k ∈Z ),∴ω=8k -103(k ∈Z ). ∵ω>0,∴当k =1时,ω=8-103=143;当k =2时,ω=383,此时在区间⎝⎛⎭⎫π6,π3内存在最大值.故ω=143.13.①②③ [解析] 因为f (x )=a sin2x +b cos2x =a 2+b 2sin(2x +θ),若f (x )≤f ⎝⎛⎭⎫π6对一切x ∈R 恒成立,则θ=π6,f (x )=a 2+b 2sin2x +π6;①f ⎝⎛⎭⎫11π12=0正确;②⎪⎪⎪⎪f ⎝⎛⎭⎫7π12<⎪⎪⎪⎪f ⎝⎛⎭⎫π5正确;③f (x )既不是奇函数也不是偶函数正确;④错误,⑤错误. 14.解:(1)f (x )=32sin2x +1+cos2x 2+a =sin ⎝⎛⎭⎫2x +π6+a +12,∴T =π.由π2+2k π≤2x +π6≤3π2+2k π(k ∈Z ), 得π6+k π≤x ≤2π3+k π(k ∈Z ). 故函数f (x )的单调递减区间是⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ).(2)∵-π6≤x ≤π3,∴-π6≤2x +π6≤5π6,∴-12≤sin ⎝⎛⎭⎫2x +π6≤1.当x ∈⎣⎡⎦⎤-π6,π3时,原函数的最大值与最小值的和⎝⎛⎭⎫1+a +12+⎝⎛⎭⎫-12+a +12=32,∴a =0.15.解:(1)由题设条件知f (x )的周期T =π,即2πω=π,解得ω=2.因为f (x )在x =π6处取得最大值2,所以A =2.从而sin ⎝⎛⎭⎫2×π6+φ=1,所以π3+φ=π2+2k π,k ∈Z .又由-π<φ≤π得φ=π6.故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π6.(2)g (x )=6cos 4x -sin 2x -12sin ⎝⎛⎭⎫2x +π2=6cos 4x +cos 2x -22cos2x=(2cos 2x -1)(3cos 2x +2)2(2cos 2x -1)=32cos 2x +1⎝⎛⎭⎫cos 2x ≠12. 因cos 2x ∈[0,1],且cos 2x ≠12,故g (x )的值域为⎣⎡⎭⎫1,74∪⎝⎛⎦⎤74,52. 【难点突破】16.解:f (x )=2sin x cos x +23sin 2x -3=sin2x +23·1-cos2x2-3=sin2x -3cos2x=2sin ⎝⎛⎭⎫2x -π3.(1)令2k π+π2≤2x -π3≤2k π+3π2,解得f (x )的单调递减区间是⎣⎡⎦⎤k π+5π12,k π+11π12,k ∈Z .(2)f (x +θ)=2sin ⎝⎛⎭⎫2x +2θ-π3,根据三角函数图像性质可知y =f (x +θ)⎝⎛⎭⎫0<θ<π2在x =0处取最值.即sin ⎝⎛⎭⎫2θ-π3=±1,∴2θ-π3=k π+π2,θ=k π2+5π12,k ∈Z .又0<θ<π2,∴θ=5π12.。
高三数学三角函数的图象与性质试题答案及解析
高三数学三角函数的图象与性质试题答案及解析1.将函数f(x)=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象关于对称,则ω的最小值是( )A.6B.C.D.【答案】D【解析】将f(x)=sinωx的图象向左平移个单位,所得图象关于x=,说明原图象关于x=-对称,于是f(-)=sin(-)=±1,故(k∈Z),ω=3k+(k∈Z),由于ω>0,故当k=0时取得最小值.选D考点:三角函数的图象与性质2.已知函数的最大值是2,且.(1)求的值;(2)已知锐角的三个内角分别为,,,若,求的值.【答案】(1);(2)【解析】(1)先由辅助角公式将化为一个的三角函数,利用最大值为2求出A,再利用列出关于的方程,解出的值;(2)由(1)可得的解析式,由可求得和,再由同角三角函数基本关系式求出,将2C代入将用C表示出来,利用三角形内角和定理及诱导公式,将化为A,B的函数,再利用两角和与差的三角公式,化为A,B的三角函数,即可求出.试题解析:(1)∵函数的最大值是2,,∴ 2分∵又∵,∴ 4分(2)由(1)可知 6分,∴ 8分∵∴, 10分∴12分考点: 辅助角公式;三角函数图像与性质;诱导公式;两角和与差的三角公式;运算求解能力3.函数的部分图象如图所示,则的值分别是()A.B.C.D.【答案】A【解析】由图知在时取到最大值,且最小正周期满足,故,,∴,∵,∴,∴,∴,∴.【考点】由三角函数图象确定函数解析式.4.设则A.B.C.D.【答案】C.【解析】故选C.【考点】1.三角函数基本关系式(商关系);2. 三角函数的单调性.5.设函数.(1)求函数f(x)的最大值和最小正周期。
(2)设A、B、C为⊿ABC的三个内角,若,,且C为锐角,求.【答案】(1);(2)【解析】(1)利用领个角的和的余弦公式、二倍角化简整理得,由可求得函数的最大值,根据求出函数的最小正周期;(2)将代入,再利用倍角公式求得,从而得到角,由,根据,求得,由结合诱导公式、两个角的和的正弦公式求出结论.(1).∴当,即(k∈Z)时,,(4分)f(x)的最小正周期,故函数f(x)的最大值为,最小正周期为π.(6分)(2)由,即,解得.又C为锐角,∴.(8分)∵,∴.∴.(12分)【考点】三角函数的和差公式、二倍角公式.6.(12分)(2011•广东)已知函数f(x)=2sin(x﹣),x∈R.(1)求f(0)的值;(2)设α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.【答案】(1)﹣1(2)【解析】(1)把x=0代入函数解析式求解.(2)根据题意可分别求得sinα和sinβ的值,进而利用同角三角函数基本关系求得cosα和cosβ的值,最后利用正弦的两角和公式求得答案.解:(1)f(0)=2sin(﹣)=﹣1(2)f(3)=2sinα=,f(3β+)=2sinβ=.∴sinα=,sinβ=∵α,β∈,∴cosα==,cosβ==∴sin(α+β)=sinαcosβ+cosαsinβ=点评:本题主要考查了两角和与差的正弦函数.考查了对三角函数基础公式的熟练记忆.7.已知命题:函数是最小正周期为的周期函数,命题:函数在上单调递减,则下列命题为真命题的是()A.B.C.D.【答案】D【解析】函数的最小正周期为,故命题为真命题;结合正切函数图象可知,正切函数在区间上是增函数,因此函数在区间上是增函数,故命题为假命题,因此命题、、为假命题,为真命题,故选D.【考点】1.三角函数的基本性质;2.复合命题8.(2013•湖北)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.【答案】B【解析】y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B9.已知函数,.(1)求函数的最小正周期;(2)若函数有零点,求实数的取值范围.【答案】(1);(2)实数的取值范围是.【解析】(1)求函数的最小正周期,需对函数化简,把它化为一个角的一个三角函数,利用来求,因此本题的关键是化简,由形式,需对三角函数降次,因此利用二倍角公式将函数化为,由,即可得,即可求出周期;(2)若函数有零点,即,有解,移项得,因此,方程有解,只要在函数的值域范围即可,因此只需求出即可.(1) 4分6分∴周期 7分(2)令,即, 8分则, 9分因为, 11分所以, 12分所以,若有零点,则实数的取值范围是. 13分【考点】三角恒等变化,三角函数的周期,值域.10.已知向量,设函数.(1)求f(x)的最小正周期;(2)求f(x)在[0,]上的最大值和最小值.【答案】(1)π(2)最大值是1,最小值是-【解析】(1)f(x)=a·b=(cosx,-)·(sinx,cos2x)=cosxsinx-cos2x=sin2x-cos2x=sin(2x-)f(x)的最小正周期为T=π,(2)∵0≤x≤,∴-≤2x-≤.由正弦函数的性质知,sin(2x-)∈[-,1]当2x-=,即x=时,f(x)取得最大值1.当2x-=-,即x=0时,f(0)=-,因此, f(x)在[0,]上的最大值是1,最小值是-.11.已知函数f(x)=(2cos2x-1)sin2x+cos4x(1)求f(x)的最小正周期及最大值。
三角函数的图像和性质讲解(定义域,值域,周期,单调性等)
三角函数的图象与性质教学目标:1、掌握正、余弦函数的定义域和值域;2、进一步理解三角函数的周期性和奇偶性的概念,会求它们的周期,会判断它们的奇偶性;3、能正确求出正、余弦函数的单调区间教学重点:正、余弦函数的性质教学难点:正、余弦函数的单调性知识要点:1、定义域:函数sin y x =及cos y x =的定义域都是(),-∞+∞,即实数集R2、值域:函数sin y x =,x R ∈及cos y x =,x R ∈的值域都是[]1,1-理解:(1)在单位圆中,正弦线、余弦线的长都是等于或小于半径的长1的,所以sin 1x ≤,cos 1x ≤,即1sin 1x -≤≤,1cos 1-≤≤。
(2)函数sin y x =在2,()2x k k Z ππ=+∈时,y 取最大值1,当22x k ππ=-,()k Z ∈时,y 取最小值-1;函数cos y x =在2x k π=,()k Z ∈时,y 取最大值1,当2x k ππ=+,()k Z ∈时,y 取最小值-1。
正弦函数s i n y x =,x R ∈和余弦函数cos y x =,x R ∈是周期函数,2k π(0)k Z k ∈≠且都是它们的周期,最小正周期是2π。
4、奇偶性正弦函数sin y x =,x R ∈是奇函数,余弦函数cos y x =,x R ∈是偶函数。
理解:(1)由诱导公式()sin sin x x -=-,cos()cos x x -=可知以上结论成立;(2)反映在图象上,正弦曲线关于原点O 对称,余弦曲线关于y 轴对称。
5、单调性(1)由正弦曲线可以看出:当x 由2π-增大到2π时,曲线逐渐上升,sin x 由-1增大到1;当x 由2π增大到32π时,曲线逐渐下降,sin x 由1减至-1,由正弦函数的周期性知道:①正弦函数sin y x =在每一个闭区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈上,都从-1增大到1,是增函数; ②在每一个闭区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k Z ∈上,都从1减小到-1,是减函数。
2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质2含解析
三角函数的图像和性质学校:___________姓名:___________班级:___________考号:___________1.函数y=lgcos x的定义域为( )A. (2k π,+2kπ)(k∈Z)B. (-+2k π,+2kπ)(k∈Z)C. (k π,+kπ)(k∈Z)D. (-+k π,+kπ)(k∈Z)2.将函数的图象向左平移个单位长度,再将得到的图象上的全部点的横坐标变为原来的2倍(纵坐标不变),最终得到函数的图象,则()A. B. C. D.3.将函数的图象上各点向右平行移动个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是()A. B.C. D.4.函数y=cos-2x的单调递增区间是()A. (k∈Z)B. (k∈Z)C. (k∈Z)D. (k∈Z)5.函数的单调递减区间为()A. B.C. D.6.函数在定义域内零点的个数为A. 3B. 4C. 6D. 77.下列函数中最小值为8的是()A. B. C . D.18.函数的图象向右平移个单位长度后得到函数g(x)的图象,且g(x)的图象的一条对称轴是直线,则ω的最小值为.9.函数的单调减区间为()A. B.C. D.10.已知函数.(1)求的最小正周期和单调递减区间;(2)试比较与的大小.1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】9.【答案】A10.【答案】解:(1),∴函数的最小正周期为.令,得,函数的单调增区间为,函数的单调减区间为,(2),.,且在上单调递增,,即.3。
高三数学专题复习-三角函数图像及其性质
三角函数及其图像性质精讲精练〔2〕【知识点回忆】【考向一】三角函数的定义域【例1】函数)3sin 2lg(cos 21+++=x x y 的定义域是_____。
【精练1】.函数y =tan ⎝⎛⎭⎫π4-x 的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠kπ-π4,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠2kπ-π4,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠kπ+π4,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠2kπ+π4,k ∈Z【解析】 ∵π4-x ≠π2+kπ,∴x ≠-π4-kπ,又∵k ∈Z ,∴A 正确.【答案】 A【考向二】三角函数的单调性【思路点拨】 y =A sin(ωx +φ)+B 解析式确实定与性质的研究借助图象或文字表达,先求A 、ω、φ、B 的值后,再依据解析式研究三角函数的单调性、值域、最值及周期性、奇偶性等性质是高考的常见题型.【例1】〔2012湖南文18〕已知函数()()⎪⎭⎫ ⎝⎛<<>∈+=20,0,sin πϕωϕωR x x A x f 的部分图像如图5所示。
〔Ⅰ〕求函数()x f 的解析式; 〔Ⅱ〕求函数()⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛-=1212ππx f x f x g 的单调递增区间。
【精练1】3.(2013·佛山模拟)函数y =2sin ⎝⎛⎭⎫π6-2x x ∈[0,π]为增函数的区间为( )A.⎣⎡⎦⎤0,π3B.⎣⎡⎦⎤π12,712πC.⎣⎡⎦⎤π3,56πD.⎣⎡⎦⎤56π,π 【解析】 因为y =-2sin ⎝⎛⎭⎫2x -π6,由π2+2k π≤2x -π6≤32π+2k π,k ∈Z 得π3+k π≤x ≤56π+k π,k ∈Z ,即函数在R 上的增区间为⎣⎡⎦⎤π3+k π,56π+k πk ∈Z ,当k =0时增区间为⎣⎡⎦⎤π3,56π.故选C. 【答案】 C【精练1】〔2012全国新课标9〕已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
高考数学一轮复习 课时作业18 三角函数的图象与性质 文-人教版高三全册数学试题
课时作业18 三角函数的图象与性质[基础达标]一、选择题1.下列函数中,周期为π的奇函数为( )A .y =sin x cos xB .y =sin 2xC .y =tan 2xD .y =sin 2x +cos 2x解析:y =sin 2x 为偶函数;y =tan 2x 的周期为π2;y =sin 2x +cos 2x 为非奇非偶函数,故B 、C 、D 都不正确.答案:A2.函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) D.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) 解析:由k π-π2<2x -π3<k π+π2(k ∈Z )得, k π2-π12<x <k π2+5π12(k ∈Z ), 所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ). 答案:B3.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎪⎫4π3,0中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2解析:∵y =3cos(2x +φ)的图象关于点⎝⎛⎭⎪⎫4π3,0对称,即3cos ⎝ ⎛⎭⎪⎫2×4π3+φ=0,∴8π3+φ=π2+k π,k ∈Z ,∴φ=-13π6+k π,∴当k =2时,|φ|有最小值π6. 答案:A4.[2020·某某调研]函数y =sin(x +π6)图象的一条对称轴方程是( ) A .x =π2 B .x =π6C .x =π3D .x =-π6解析:解法一 由x +π6=k π+π2(k ∈Z ),得x =k π+π3(k ∈Z ),所以函数y =sin x +π6的一条对称轴方程是x =π3,故选C. 解法二 因为sin(π3+π6)=sin π2=1,所以x =π3是函数y =sin(x +π6)的一条对称轴方程,故选C.解法三 因为将函数y =sin x 的图象向左平移π6个单位长度就得到函数y =sin x +π6的图象,所以y =sin x 图象的一条对称轴x =π2向左平移π6个单位长度就得到函数y =sin(x +π6)图象的一条对称轴x =π3,故选C. 答案:C5.[2019·全国卷Ⅲ]函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( )A .2B .3C .4D .5解析:由f (x )=2sin x -sin 2x =2sin x -2sin x cos x =2sin x ·(1-cos x )=0得sin x =0或cos x =1,∴x =k π,k ∈Z ,又∵x ∈[0,2π],∴x =0,π,2π,即零点有3个,故选B.答案:B二、填空题6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10. 解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10. 答案:>7.函数f (x )=sin(-2x )的单调增区间是________.解析:由f (x )=sin(-2x )=-sin 2x ,2k π+π2≤2x ≤2k π+3π2得k π+π4≤x ≤k π+3π4(k ∈Z ). 答案:⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z ) 8.若函数f (x )=sin ωx (ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=________.解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数; 当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在[0,π3]上单调递增, 在[π3,π2]上单调递减知,π2ω=π3,∴ω=32. 答案:32三、解答题9.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间. 解析:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2. ∴f (x )=sin(2x +φ). (1)当f (x )为偶函数时,φ=π2+k π,k ∈Z ,∴cos φ=0,∵0<φ<2π3,∴φ=π2. (2)f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32, 即sin ⎝ ⎛⎭⎪⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3.∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z . 10.已知f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+a +1. (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值; (2)在(1)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合.解析:(1)由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x +π6∈⎣⎢⎡⎦⎥⎤π6,76π. 当2x +π6=π2,即x =π6时,f (x )取最大值,f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4, 所以a =1.(2)由f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+2=1 可得sin ⎝⎛⎭⎪⎫2x +π6=-12, 则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z , 即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z , 又x ∈[-π,π],可解得x =-π2,-π6,π2,5π6, 所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6. [能力挑战]11.[2020·某某某某一中月考]函数y =cos 2x +sin x (-π6≤x ≤π6)最大值与最小值之和为( )A.32B .2C .0 D.34解析:y =cos 2x +sin x =-sin 2x +sin x +1,设t =sin x ,则y =-t 2+t +1,∵-π6≤x ≤π6,∴-12≤t ≤12,∵y =-t 2+t +1在区间[-12,12]上是增函数,∴当t =-12时,y 最小为14,当t =12时,y 最大为54,∴最大值与最小值的和为32,故选A. 答案:A12.[2020·某某瓦房店三中月考]函数y =2sin (π3-2x )的单调递增区间是( ) A .[k π-π12,k π+5π12](k ∈Z ) B .[k π+5π12,k π+11π12](k ∈Z ) C .[k π-π3,k π+π6](k ∈Z ) D .[k π+π6,k π+2π3](k ∈Z ) 解析:通解 由2n π+π2≤π3-2x ≤2n π+3π2(n ∈Z ),得-n π-7π12≤x ≤-n π-π12(n ∈Z ),令k =-n ,得k π-7π12≤x ≤k π-π12(k ∈Z ),又区间[k π-7π12,k π-π12](k ∈Z )和区间[k π+5π12,k π+11π12](k ∈Z )相差一个周期π,∴函数y =2sin(π3-2x )的单调递增区间是[k π+5π12,k π+11π12](k ∈Z ),故选B. 解法一 ∵y =2sin(π3-2x )=-2sin(2x -π3),∴求函数y =2sin π3-2x 的单调递增区间即求函数t =sin(2x -π3)的单调递减区间,由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),∴函数y =2sin(π3-2x )的单调递增区间是[k π+5π12,k π+11π12](k ∈Z ),故选B. 解法二 函数y =2sin(π3-2x )单调递增区间的左端点值对应的函数值是函数的最小值,区间长度为一个周期π,经验证每一个选项的区间长度均为一个周期π,只有区间左端点x =k π+5π12(k ∈Z )的相应函数值是函数的最小值-2,∴函数y =2sin(π3-2x )的单调递增区间是[k π+5π12,k π+11π12](k ∈Z ),故选B. 答案:B13.[2019·全国卷Ⅰ]关于函数f (x )=sin |x |+|sin x |有下述四个结论:①f (x )是偶函数②f (x )在区间⎝ ⎛⎭⎪⎫π2,π单调递增 ③f (x )在[-π,π]有4个零点④f (x )的最大值为2其中所有正确结论的编号是( )A .①②④ B.②④C .①④ D.①③解析:通解 f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),∴f (x )为偶函数,故①正确;当π2<x <π时,f (x )=sin x +sin x =2sin x ,∴f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减,故②不正确;f (x )在[-π,π]的图象如图所示,由图可知函数f (x )在[-π,π]只有3个零点,故③不正确;∵y =sin|x |与y =|sin x |的最大值都为1且可以同时取到,∴f (x )可以取到最大值2,故④正确.综上,正确结论的序号是①④.故选C.优解 ∵f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),∴f (x )为偶函数,故①正确,排除B ;当π2<x <π时,f (x )=sin x +sin x =2sin x ,∴f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减,故②不正确,排除A ;∵y =sin|x |与y =|sin x |的最大值都为1且可以同时取到,∴f (x )的最大值为2,故④正确.故选C.答案:C。
最新高考数学总复习 三角函数、解三角形 课时作业三角函数的图象与性质(含解析)新人教A版
课时作业 三角函数的图象与性质1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( A )A .①②③B .①③④C .②④D .①③解析:①y =cos|2x |=cos2x ,最小正周期为π;②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期T =2π2=π;④y =tan ⎝⎛⎭⎪⎫2x -π4的最小正周期T =π2. 2.关于函数y =tan ⎝ ⎛⎭⎪⎫2x -π3,下列说法正确的是( C )A .是奇函数B .在区间⎝ ⎛⎭⎪⎫0,π3上单调递减C .⎝ ⎛⎭⎪⎫π6,0为其图象的一个对称中心D .最小正周期为π解析:函数y =tan ⎝ ⎛⎭⎪⎫2x -π3是非奇非偶函数,A 错误;在区间⎝ ⎛⎭⎪⎫0,π3上单调递增,B 错误;最小正周期为π2,D 错误.∵当x =π6时,tan ⎝ ⎛⎭⎪⎫2×π6-π3=0,∴⎝⎛⎭⎪⎫π6,0为其图象的一个对称中心.3.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( C )A .2B .4C .6D .8解析:因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.4.(2019·佛山模拟)已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的一个单调递减区间是( B )A .⎝ ⎛⎭⎪⎫π6,2π3B .⎝ ⎛⎭⎪⎫π3,5π6C .⎝ ⎛⎭⎪⎫π2,π D .⎝⎛⎭⎪⎫2π3,π 解析:因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6,k ∈Z .不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2<2x -π6<2k π+3π2(k ∈Z ),得k π+π3<x <k π+56π(k ∈Z ).取k =0,得函数f (x )的一个单调递减区间为⎝ ⎛⎭⎪⎫π3,56π.5.已知函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象过点(0,3),则f (x )图象的一个对称中心是( B )A .⎝ ⎛⎭⎪⎫-π3,0B .⎝ ⎛⎭⎪⎫-π6,0C .⎝ ⎛⎭⎪⎫π6,0 D .⎝ ⎛⎭⎪⎫π12,0 解析:函数f (x )=2sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象过点(0,3),则f (0)=2sin φ=3, ∴sin φ=32,又|φ|<π2,∴φ=π3, 则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,令2x +π3=k π(k ∈Z ),则x =k π2-π6(k ∈Z ), 当k =0时,x =-π6,∴⎝ ⎛⎭⎪⎫-π6,0是函数f (x )的图象的一个对称中心.6.(2019·湖南衡阳八中月考)定义运算:a *b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .例如1]( D )A .⎣⎢⎡⎦⎥⎤-22,22 B .[-1,1] C .⎣⎢⎡⎦⎥⎤22,1 D .⎣⎢⎡⎦⎥⎤-1,22 解析:根据三角函数的周期性,我们只看两函数在一个最小正周期内的情况即可. 设x ∈[0,2π],当π4≤x ≤5π4时,sin x ≥cos x ,f (x )=cos x ,f (x )∈⎣⎢⎡⎦⎥⎤-1,22,当0≤x<π4或5π4<x ≤2π时,cos x >sin x ,f (x )=sin x ,f (x )∈⎣⎢⎡⎭⎪⎫0,22∪[-1,0]. 综上知f (x )的值域为⎣⎢⎡⎦⎥⎤-1,22. 7.已知函数f (x )=2cos(ωx +φ)+1⎝ ⎛⎭⎪⎫ω>0,|φ|<π2,其图象与直线y =3相邻两个交点的距离为2π3,若f (x )>1对任意x ∈⎝ ⎛⎭⎪⎫-π12,π6恒成立,则φ的取值范围是( B )A .⎣⎢⎡⎦⎥⎤-π6,π6B .⎣⎢⎡⎦⎥⎤-π4,0C .⎝ ⎛⎦⎥⎤-π3,-π12D .⎣⎢⎡⎦⎥⎤0,π4解析:由题意可得函数f (x )=2cos(ωx +φ)+1的最大值为3. ∵f (x )的图象与直线y =3相邻两个交点的距离为2π3,∴f (x )的周期T =2π3,∴2πω=2π3,解得ω=3,∴f (x )=2cos(3x +φ)+1.∵f (x )>1对任意x ∈⎝ ⎛⎭⎪⎫-π12,π6恒成立, ∴2cos(3x +φ)+1>1, 即cos(3x +φ)>0,对任意x ∈⎝ ⎛⎭⎪⎫-π12,π6恒成立, ∴-π4+φ≥2k π-π2且π2+φ≤2k π+π2,k ∈Z ,解得φ≥2k π-π4且φ≤2k π,k ∈Z ,即2k π-π4≤φ≤2k π,k ∈Z .结合|φ|<π2可得当k =0时,φ的取值范围为⎣⎢⎡⎦⎥⎤-π4,0. 8.(2019·烟台检测)若函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=5π6. 解析:因为f (x )为奇函数,所以φ-π3=π2+k π(k ∈Z ),φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6.9.已知关于x 的方程2sin ⎝ ⎛⎭⎪⎫x +π6+1-a =0在区间⎣⎢⎡⎦⎥⎤0,2π3上存在两个根,则实数a的取值范围是[2,3)__.解析:sin ⎝ ⎛⎭⎪⎫x +π6=a -12在⎣⎢⎡⎦⎥⎤0,2π3上存在两个根,设x +π6=t ,则t ∈⎣⎢⎡⎦⎥⎤π6,5π6,∴y =sin t ,t ∈⎣⎢⎡⎦⎥⎤π6,5π6的图象与直线y =a -12有两个交点, ∴12≤a -12<1,∴2≤a <3. 10.设函数f (x )=3sin ⎝ ⎛⎭⎪⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为2__.解析:f (x )=3sin ⎝ ⎛⎭⎪⎫π2x +π4的周期T =2π×2π=4, f (x 1),f (x 2)应分别为函数f (x )的最小值和最大值,故|x 1-x 2|的最小值为T2=2. 11.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝⎛⎭⎪⎫α+3π2的值.解:(1)f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图象关于直线x =π3对称,所以2·π3+φ=k π+π2,k =0,±1,±2,….由-π2≤φ<π2得k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝ ⎛⎭⎪⎫α2=3sin ⎝ ⎛⎭⎪⎫2·α2-π6=34,所以sin ⎝⎛⎭⎪⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6=1-⎝ ⎛⎭⎪⎫142=154.因此cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+π6=sin ⎝ ⎛⎭⎪⎫α-π6cos π6+cos ⎝ ⎛⎭⎪⎫α-π6sin π6=14×32+154×12=3+158. 12.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求函数f (x )图象的对称轴方程; (2)求f (x )的单调递增区间;(3)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4,令2x +π4=k π+π2,k ∈Z ,得x =k π2+π8,k ∈Z .所以函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z .(2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(3)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1, 所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.13.(2019·龙岩六校联考)已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π4对任意x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π6>0,则f (x )的单调递减区间是( C )A .⎣⎢⎡⎦⎥⎤k π,k π+π4(k ∈Z )B .⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z )C .⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z )D .⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析:由题意可得函数f (x )=sin(2x +φ)的图象关于直线x =π4对称,故有2×π4+φ=k π+π2,k ∈Z ,即φ=k π,k ∈Z .又f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ>0, 所以φ=2n π,n ∈Z ,所以f (x )=sin(2x +2n π)=sin2x .令2k π+π2≤2x ≤2k π+3π2,k ∈Z ,求得k π+π4≤x ≤k π+3π4,k ∈Z ,故函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4,k ∈Z ,故选C .14.设ω∈N *且ω≤15,则使函数y =sin ωx 在区间⎣⎢⎡⎦⎥⎤π4,π3上不单调的ω的个数是( C )A .6B .7C .8D .9解析:由ωx =π2+k π(k ∈Z )得函数y =sin ωx 的图象的对称轴为x =π2ω+k πω(k ∈Z ).∵函数y =sin ωx 在区间⎣⎢⎡⎦⎥⎤π4,π3上不单调,∴π4<π2ω+k πω<π3(k ∈Z ), 解得1.5+3k <ω<2+4k (k ∈Z ). 由题意ω∈N *且ω≤15,∴当k =0时,1.5<ω<2,此时ω没有正整数可取;当k =1时,4.5<ω<6,此时ω可以取5; 当k =2时,7.5<ω<10,此时ω可以取8,9; 当k =3时,10.5<ω<14,此时ω可以取11,12,13; 当k =4时,13.5<ω<18,此时ω可以取14,15.故满足题意的ω有8个,分别为5,8,9,11,12,13,14,15.故选C .15.若函数f (x )=A cos 2(ωx +φ)+1⎝ ⎛⎭⎪⎫A >0,ω>0,0<φ<π2的最大值为3,f (x )的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则f (1)+f (2)+…+f (2 018)=4_035__.解析:∵函数f (x )=A cos 2(ωx +φ)+1 =A ·1+cos 2ωx +2φ2+1=A 2cos(2ωx +2φ)+1+A2的最大值为3, ∴A2+1+A2=3,∴A =2. 根据函数图象相邻两条对称轴间的距离为2,可得函数的最小正周期为4, 即2π2ω=4,∴ω=π4. 再根据f (x )的图象与y 轴的交点坐标为(0,2), 可得cos2φ+1+1=2,∴cos2φ=0, 又0<φ<π2,∴2φ=π2,φ=π4.故函数f (x )的解析式为f (x )=cos ⎝ ⎛⎭⎪⎫π2x +π2+2=-sin π2x +2,∴f (1)+f (2)+…+f (2 017)+f (2 018)=-⎝ ⎛⎭⎪⎫sin π2+sin 2π2+sin 3π2+…+sin 2 017π2+sin 2 018π2 +2×2 018=504×0-sin π2-sinπ+4 036=-1+4 036=4 035.16.已知函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos2x -1,x ∈R .(1)求f (x )的最小正周期;(2)若h (x )=f (x +t )的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称,且t ∈(0,π),求t 的值;(3)当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,不等式|f (x )-m |<3恒成立,求实数m 的取值范围.解:(1)因为f (x )=-cos ⎝ ⎛⎭⎪⎫π2+2x -3cos2x =sin2x -3cos2x =2⎝ ⎛⎭⎪⎫12sin2x -32cos2x=2sin ⎝⎛⎭⎪⎫2x -π3, 故f (x )的最小正周期为π.(2)由(1)知h (x )=2sin ⎝ ⎛⎭⎪⎫2x +2t -π3.令2×⎝ ⎛⎭⎪⎫-π6+2t -π3=k π(k ∈Z ),得t =k π2+π3(k ∈Z ),又t ∈(0,π),故t =π3或5π6.(3)当x ∈⎣⎢⎡⎦⎥⎤π4,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤π6,2π3,所以f (x )∈[1,2]. 又|f (x )-m |<3, 即f (x )-3<m <f (x )+3, 所以2-3<m <1+3, 即-1<m <4.故实数m 的取值范围是(-1,4).。
高三数学一轮复习课时作业18:三角函数的图象与性质
§4.3 三角函数的图象与性质1.(2018·广州质检)下列函数中,是周期函数的为( )A .y =sin|x |B .y =cos|x |C .y =tan|x |D .y =(x -1)0答案 B解析 ∵cos|x |=cos x ,∴y =cos|x |是周期函数.2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22 C.22 D .0 答案 B解析 由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4, 所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1, 故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22.故选B.3.函数y =sin x 2的图象是( )答案 D解析 函数y =sin x 2为偶函数,排除A ,C ;又当x =π2时函数取得最大值,排除B ,故选D.4.(2017·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( )A .3,-1B .3,-2C .2,-1D .2,-2答案 D解析 y =cos 2x -2sin x =1-sin 2x -2sin x=-sin 2x -2sin x +1,令t =sin x ,则t ∈『-1,1』,y =-t 2-2t +1=-(t +1)2+2,所以y max =2,y min =-2.5.已知函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象过点(0,3),则f (x )图象的一个对称中心是( ) A.⎝⎛⎭⎫-π3,0 B.⎝⎛⎭⎫-π6,0 C.⎝⎛⎭⎫π6,0D.⎝⎛⎭⎫π12,0 答案 B解析 函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象过点(0,3),则f (0)=2sin φ=3, ∴sin φ=32,又|φ|<π2,∴φ=π3, 则f (x )=2sin ⎝⎛⎭⎫2x +π3,令2x +π3=k π(k ∈Z ), 则x =k π2-π6(k ∈Z ),当k =0时,x =-π6, ∴⎝⎛⎭⎫-π6,0是函数f (x )的图象的一个对称中心. 6.(2017·衡水模拟)已知函数f (x )=⎪⎪⎪⎪tan ⎝⎛⎭⎫12x -π6,则下列说法正确的是( ) A .f (x )的周期是π2B .f (x )的值域是{y |y ∈R ,且y ≠0}C .直线x =5π3是函数f (x )图象的一条对称轴 D .f (x )的单调递减区间是⎝⎛⎦⎤2k π-2π3,2k π+π3,k ∈Z 答案 D解析 函数f (x )的周期为2π,A 错;f (x )的值域为『0,+∞),B 错;当x =5π3时,12x -π6=2π3≠k π2,k ∈Z ,∴x =5π3不是f (x )的对称轴,C 错;令k π-π2<12x -π6≤k π,k ∈Z ,可得2k π-2π3<x ≤2k π+π3,k ∈Z ,∴f (x )的单调递减区间是⎝⎛⎦⎤2k π-2π3,2k π+π3,k ∈Z ,D 正确. 7.函数y =cos ⎝⎛⎭⎫π4-2x 的单调递减区间为__________.答案 ⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) 解析 因为y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4, 所以令2k π≤2x -π4≤2k π+π(k ∈Z ), 解得k π+π8≤x ≤k π+5π8(k ∈Z ), 所以函数的单调递减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ). 8.(2018·福州质检)函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最小值为____________. 答案 1-22解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =-22时,y min =1-22. 9.已知函数f (x )=2sin ⎝⎛⎭⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为________.答案 6π5解析 由函数f (x )=2sin ⎝⎛⎭⎫ωx -π6+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,∴ω=k +23,又ω∈(1,2),∴ω=53, 从而得函数f (x )的最小正周期为2π53=6π5. 10.(2018·珠海模拟)设函数f (x )=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为________.答案 2解析 |x 1-x 2|的最小值为函数f (x )的半个周期,又T =4,∴|x 1-x 2|的最小值为2.11.已知f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )图象的对称轴方程;(2)求f (x )的单调递增区间;(3)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值.解 (1)f (x )=2sin ⎝⎛⎭⎫2x +π4, 令2x +π4=k π+π2,k ∈Z , 得x =k π2+π8,k ∈Z .所以函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z . (2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 得k π-3π8≤x ≤k π+π8,k ∈Z . 故f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z . (3)当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, 所以-1≤sin ⎝⎛⎭⎫2x +π4≤22, 所以-2≤f (x )≤1,所以当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.12. (2017·武汉调研)已知函数f (x )=a ⎝⎛⎭⎫2cos 2x 2+sin x +b . (1)若a =-1,求函数f (x )的单调增区间;(2)当x ∈『0,π』时,函数f (x )的值域是『5,8』,求a ,b 的值.解 f (x )=a (1+cos x +sin x )+b=2a sin ⎝⎛⎭⎫x +π4+a +b . (1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z ), 得2k π+π4≤x ≤2k π+5π4(k ∈Z ), ∴f (x )的单调增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ). (2)∵0≤x ≤π,∴π4≤x +π4≤5π4, ∴-22≤sin ⎝⎛⎭⎫x +π4≤1.依题意知a ≠0, ①当a >0时,⎩⎪⎨⎪⎧2a +a +b =8,b =5,∴a =32-3,b =5;②当a <0时,⎩⎪⎨⎪⎧b =8,2a +a +b =5,∴a =3-32,b =8. 综上所述,a =32-3,b =5或a =3-32,b =8.13.(2018·太原模拟)若f (x )=3sin x -4cos x 的一条对称轴方程是x =a ,则a 的取值范围可以是( )A.⎝⎛⎭⎫0,π4 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π2,3π4D.⎝⎛⎭⎫3π4,π答案 D解析 因为f (x )=3sin x -4cos x =5sin(x -φ)⎝⎛⎭⎫其中tan φ=43且0<φ<π2,则sin(a -φ)=±1, 所以a -φ=k π+π2,k ∈Z ,即a =k π+π2+φ,k ∈Z ,而tan φ=43且0<φ<π2,所以π4<φ<π2,所以k π+3π4<a <k π+π,k ∈Z ,取k =0,此时a ∈⎝⎛⎭⎫3π4,π,故选D. 14.已知关于x 的方程2sin ⎝⎛⎭⎫x +π6+1-a =0在区间⎣⎡⎦⎤0,2π3上存在两个根,则实数a 的取值范围是________.答案 『2,3) 解析 sin ⎝⎛⎭⎫x +π6=a -12在⎣⎡⎦⎤0,2π3上存在两个根,设x +π6=t ,则t ∈⎣⎡⎦⎤π6,5π6, ∴y =sin t ,t ∈⎣⎡⎦⎤π6,5π6的图象与直线y =a -12有两个交点,∴12≤a -12<1,∴2≤a <3.15.已知函数f (x )=2cos(ωx +φ)+b 对任意实数x 有f ⎝⎛⎭⎫x +π4=f (-x )恒成立,且f ⎝⎛⎭⎫π8=1,则实数b 的值为( )A .-1B .3C .-1或3D .-3答案 C解析 由f ⎝⎛⎭⎫x +π4=f (-x )可知函数f (x )=2cos(ωx +φ)+b 关于直线x =π8对称,又函数f (x )在对称轴处取得最值,故±2+b =1,∴b =-1或b =3.16.(2018·兰州模拟)已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时, -5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈『-2a ,a 』, ∴f (x )∈『b,3a +b 』,又∵-5≤f (x )≤1, ∴b =-5,3a +b =1,因此a =2,b =-5.(2)由(1)得f (x )=-4sin ⎝⎛⎭⎫2x +π6-1,g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1 =4sin ⎝⎛⎭⎫2x +π6-1, 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z , 其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时, g (x )单调递增,即k π<x ≤k π+π6,k ∈Z , ∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时, g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z . ∴g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z , 单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
专题3 三角函数的图象与性质【高考文科数学】含答案
第一讲 三角函数的图象与性质1.任意角的三角函数(1)设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx.(2)各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. 2 函数 性质 y =sin xy =cos xy =tan x定义域RR{x |x ≠k π+π2,k ∈Z}图象值域[-1,1] [-1,1]R对称性对称轴:x =k π+π2(k ∈Z);对称中心:(k π,0)(k ∈Z)对称轴:x = k π(k ∈Z);对称中心: (k π+π2,0)(k ∈Z)对称中心:⎝⎛⎭⎪⎫k π2,0(k ∈Z)周期2π2ππ单调性单调增区间[2k π-π2,2k π+π2](k ∈Z); 单调减区间[2k π+π2,2k π+3π2] (k ∈Z) 单调增区间 [2k π-π,2k π]( k ∈Z);单调增区间 (k π-π2,k π+π2)(k ∈Z)奇偶性 奇 偶 奇3. y =A sin(ωx +φ)的图象及性质(1)五点作图法:五点的取法:设X =ωx +φ,X 取0,π2,π,3π2,2π时求相应的x值、y 值,再描点作图.(2)给出图象求函数表达式的题目,比较难求的是φ,一般是从“五点法”中的第一点(-φω,0)作为突破口. (3)图象变换y =sin x ―――――――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)――――――――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ).1. (2013·江西)函数y =sin 2x +23sin 2x 的最小正周期T 为________.答案 π解析 y =sin 2x +3(1-cos 2x )=2sin ⎝ ⎛⎭⎪⎫2x -π3+3, ∴T =π.2. (2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( ) A.3π4 B.π4C .0D .-π4答案 B解析 把函数y =sin(2x +φ)沿x 轴向左平移π8个单位后得到函数y =sin 2⎝ ⎛⎭⎪⎫x +φ2+π8=sin ⎝⎛⎭⎪⎫2x +φ+π4为偶函数,则φ=π4.3. (2013·四川)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3B .2,-π6C .4,-π6D .4,π3答案 A解析 34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,k ∈Z .又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3,选A. 4. (2012·课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12D .(0,2]答案 A解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,排除B ,C. 取ω=2,f (x )=sin ⎝⎛⎭⎪⎫2x +π4, 其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z , 显然⎝ ⎛⎭⎪⎫π2,π⃘⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 5. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 答案 C解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6知,当x =π6时f (x )取最值,∴f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π3+φ=±1,∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝ ⎛⎭⎪⎫π2>f (π),∴sin(π+φ)>sin(2π+φ), ∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎪⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).题型一 三角函数的概念问题例1 如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P 、Q ,已知点P 的坐标为(-35,45).(1)求sin 2α+cos 2α+11+tan α的值;(2)若OP →·OQ →=0,求sin(α+β).审题破题 (1)先根据三角函数的定义求sin α,cos α,代入求三角函数式子的值;(2)根据OP →⊥OQ →和β范围可求sin β,cos β.解 (1)由三角函数定义得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αsin α+cos αsin α+cos αcos α=2cos 2α=2×(-35)2=1825.(2)∵OP →·OQ →=0,∴α-β=π2,∴β=α-π2,∴sin β=sin(α-π2)=-cos α=35,cos β=cos(α-π2)=sin α=45.∴sin(α+β)=sin αcos β+cos αsin β=45×45+(-35)×35=725. 反思归纳 (1)三角函数的定义是求三角函数值的基本依据,如果已知角终边上的点,则利用三角函数的定义,可求该角的正弦、余弦、正切值.(2)同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式应用的条件.变式训练1 (1)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x上,则cos 2θ等于( )A .-45B .-35C.35D.45答案 B解析 依题意得tan θ=2,∴cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.(2)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边上一点P (-4,3),则cos ⎝ ⎛⎭⎪⎫π2+αsin -π-αcos ⎝ ⎛⎭⎪⎫11π2-αsin ⎝ ⎛⎭⎪⎫9π2+α的值为________.答案 -34解析 原式=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义,得tan α=y x =-34,所以原式=-34.题型二 函数y =A sin(ωx +φ)的图象及应用 例2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示.(1)求函数的解析式;(2)设0<x <π,且方程f (x )=m 有两个不同的实数根,求实数m 的取值范围以及这两个根的和.审题破题 (1)先由函数图象确定A ,ω,再代入点⎝ ⎛⎭⎪⎫π6,2求φ;(2)利用转化思想先把方程问题转化为函数问题,再利用数形结合法求解.解 (1)由图象知:A =2,34T =11π12-π6=3π4,则T =π,所以ω=2.又图象过点⎝ ⎛⎭⎪⎫π6,2, 所以2×π6+φ=π2,即φ=π6.所以所求的函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6. (2)在同一坐标系中画出y =2sin ⎝ ⎛⎭⎪⎫2x +π6和y =m (m ∈R )的图象,如图所示,由图可知,-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,故m 的取值范围为-2<m <1或1<m <2.当-2<m <1时,两根之和为4π3; 当1<m <2时,两根之和为π3.反思归纳 (1)已知图象求函数y =A sin(ωx +φ) (A >0,ω>0)的解析式时,常用的方法是待定系数法.由图中的最大、最小值求出A ,由周期确定ω,由适合解析式的点的坐标来确定φ(代点时尽量选最值点,或者搞清点的对应关系);(2)利用数形结合思想从函数图象上可以清楚地看出当-2<m <1或1<m <2时,直线y =m 与曲线有两个不同的交点,即原方程有两个不同的实数根,利用图象的对称性便可求出两根之和. 变式训练2 已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<π)的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +π4B .f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4C .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -π4D .f (x )=2sin ⎝ ⎛⎭⎪⎫12x -3π4答案 B解析 由图象可知A =2,T 2=3π2-⎝ ⎛⎭⎪⎫-π2=2π,即T =4π.又T =2πω=4π,所以ω=12,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫12x +φ.又f ⎝ ⎛⎭⎪⎫-π2=2sin ⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫-π2+φ=2,即sin ⎝ ⎛⎭⎪⎫-π4+φ=1,即-π4+φ=π2+2k π,k ∈Z ,即φ=3π4+2k π,k ∈Z ,因为-π<φ<π,所以φ=3π4,所以函数为f (x )=2sin ⎝ ⎛⎭⎪⎫12x +3π4,选B.题型三 三角函数的性质例3 已知函数f (x )=4sin ωx cos ⎝⎛⎭⎪⎫ωx +π3+3(ω>0)的最小正周期为π.(1)求f (x )的解析式;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π6上的最大值和最小值及取得最值时x 的值. 审题破题 利用和差公式、倍角公式将f (x )化为A sin(ωx +φ)的形式,然后求三角函数的最值.解 (1)f (x )=4sin ωx ⎝ ⎛⎭⎪⎫cos ωx cos π3-sin ωx sin π3+ 3=2sin ωx cos ωx -23sin 2ωx + 3=sin 2ωx +3cos 2ωx=2sin ⎝⎛⎭⎪⎫2ωx +π3. ∵T =2π2ω=π,∴ω=1.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3. (2)∵-π4≤x ≤π6,∴-π6≤2x +π3≤2π3,∴-12≤sin ⎝⎛⎭⎪⎫2x +π3≤1,即-1≤f (x )≤2, 当2x +π3=-π6,即x =-π4时,f (x )min =-1,当2x +π3=π2,即x =π12时,f (x )max =2.反思归纳 (1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)+B 的形式,然后再求解. (2)对于y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)(cos φ=a a 2+b2,sin φ=ba 2+b 2)的形式来求.(3)讨论y =A sin(ωx +φ)+B ,可以利用换元思想设t =ωx +φ,转化成函数y =A sint +B 结合函数的图象解决.变式训练3 (1)函数y =2sin ⎝⎛⎭⎪⎫π6-2x (x ∈[0,π])为增函数的区间是( ) A.⎣⎢⎡⎦⎥⎤0,π3B.⎣⎢⎡⎦⎥⎤π12,7π12C.⎣⎢⎡⎦⎥⎤π3,5π6D.⎣⎢⎡⎦⎥⎤5π6,π 答案 C解析 因为y =2sin ⎝ ⎛⎭⎪⎫π6-2x =-2sin ⎝ ⎛⎭⎪⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为⎣⎢⎡⎦⎥⎤π3+k π,5π6+k π(k ∈Z ),所以当k =0时,增区间为⎣⎢⎡⎦⎥⎤π3,5π6,选C.(2)设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数C .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为增函数D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数答案 B解析 f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+φ,其图象关于直线x =0对称,∴f (0)=±2,∴π3+φ=k π+π2,k ∈Z .∴φ=k π+π6,又|φ|<π2,∴φ=π6.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . ∴y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为减函数.题型四 三角函数的应用例4 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.审题破题 (1)首先化简f (x )再根据题意求出最小正周期,然后可求ω,即可得f (x )的表达式;(2)根据图象平移求出g (x ),然后利用换元法并结合图形求解.解 (1)f (x )=12sin 2ωx +31+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx +π3, 由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, 所以f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π6的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π6的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π6. 令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数g (x )=sin t 与y =-k 在区间⎣⎢⎡⎦⎥⎤-π6,5π6上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.所以-12<k ≤12或k =-1.反思归纳 确定函数y =g (x )的解析式后,本题解法中利用两个数学思想:整体思想(设t =2x -π6,将2x -π6视为一个整体).数形结合思想,将问题转化为g (x )=sin t 与y=-k 在⎣⎢⎡⎦⎥⎤-π6,5π6上只有一个交点的实数k 的取值范围.互动探究 在例4(2)中条件不变的情况下,求函数y =g (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调区间.解 g (x )=sin ⎝⎛⎭⎪⎫2x -π6.令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z .又0≤x ≤π2,∴函数y =g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤0,π3.令2k π+π2≤2x -π6≤2k π+32π,k ∈Z ,得k π+π3≤x ≤k π+56π,k ∈Z .又0≤x ≤π2,∴函数g (x )的单调递减区间是⎣⎢⎡⎦⎥⎤π3,π2. 变式训练4 (2013·天津一中高三月考)函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3(x ∈R )的图象为C ,以下结论正确的是________.(写出所有正确结论的编号)①图象C 关于直线x =11π12对称;②图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称;③函数f (x )在区间⎝ ⎛⎭⎪⎫-π12,5π12内是增函数; ④由y =sin 2x 的图象向右平移π3个单位长度可以得到图象C .答案 ①②③解析 当x =11π12时,f ⎝ ⎛⎭⎪⎫11π12=sin ⎝ ⎛⎭⎪⎫2×11π12-π3=sin ⎝ ⎛⎭⎪⎫11π6-π3=sin 3π2=-1,为最小值,所以图象C 关于直线x =11π12对称,所以①正确;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2×2π3-π3=sin π=0,图象C 关于点⎝ ⎛⎭⎪⎫2π3,0对称,所以②正确;当-π12≤x≤5π12时,-π2≤2x -π3≤π2,此时函数单调递增,所以③正确;y =sin 2x 的图象向右平移π3个单位长度,得到y =sin 2⎝ ⎛⎭⎪⎫x -π3=sin ⎝ ⎛⎭⎪⎫2x -2π3,所以④错误,所以正确的是①②③.典例 (12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝ ⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.规范解答解 (1)f (x )=12sin 2x sin φ+cos 2x +12cos φ-12cos φ=12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). [3分]又∵f (x )过点⎝ ⎛⎭⎪⎫π6,12, ∴12=12cos ⎝ ⎛⎭⎪⎫π3-φ,cos(π3-φ)=1. 由0<φ<π知φ=π3.[5分](2)由(1)知f (x )=12cos ⎝⎛⎭⎪⎫2x -π3.[7分]将f (x )图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到g (x )=12cos(4x -π3).[9分]∵0≤x ≤π4,∴-π3≤4x -π3≤2π3.当4x -π3=0,即x =π12时,g (x )有最大值12;当4x -π3=2π3,即x =π4时,g (x )有最小值-14.[12分]评分细则 (1)将点⎝ ⎛⎭⎪⎫π6,12代入解析式给1分;从cos ⎝ ⎛⎭⎪⎫π3-φ=1,由0<φ<π,得φ=π3得1分;(2)4x -π3范围计算正确,没有写出x 取何值时g (x )有最值不扣分. 阅卷老师提醒 (1)解决此类问题时,一般先将函数解析式化为f (x )=A sin(ωx +φ)或f (x )=A cos(ωx +φ)的形式,然后在此基础上把ωx +φ看作一个整体,结合题目要求进行求解.(2)解决图象变换问题时,要分清变换的对象及平移(伸缩)的大小,避免出现错误.1. (2013·江苏)函数y =3sin ⎝⎛⎭⎪⎫2x +π4的最小正周期为 ________. 答案 π解析 ω=2,T =2π|ω|=π.2. (2013·湖北)将函数y =3cos x +sin x (x ∈R ) 的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m ),它关于y 轴对称可得sin(π3+m )=±1,∴π3+m =k π+π2,k ∈Z , ∴m =k π+π6,k ∈Z ,∵m >0,∴m 的最小值为π6.3. 若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34B.34C.43D .-43答案 D 解析 cos α=39+y 2=35,∴y 2=16. ∵y <0,∴y =-4,∴tan α=-43.4. 设函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3(x ∈R ),则f (x )( )A .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 B .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数答案 B解析 当2π3≤x ≤7π6时,2π3+π3≤x +π3≤7π6+π3,即π≤x +π3≤3π2,此时函数y=sin ⎝ ⎛⎭⎪⎫x +π3单调递减,所以y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数,选B.5. 已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ等于( )A.π4 B.π3C.π2D.3π4答案 A解析 由题意得周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=±1, ∵0<φ<π,∴π4<φ+π4<5π4,∴φ+π4=π2,∴φ=π4.6. 函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到g (x )=sin3x 的图象,则只要将f (x )的图象( )A .向右平移π4个单位长度B .向右平移π12个单位长度C .向左平移π4个单位长度D .向左平移π12个单位长度答案 B解析 由题意,得函数f (x )的周期T =4⎝⎛⎭⎪⎫5π12-π4=2π3,ω=3,所以sin ⎝ ⎛⎭⎪⎫3×5π12+φ=-1,又|φ|<π2,所以φ=π4,所以f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x +π12,所以将函数f (x )的图象向右平移π12个单位长度可以得到函数g (x )=sin 3x 的图象.专题限时规范训练一、选择题1. 已知sin θ=k -1,cos θ=4-3k ,且θ是第二象限角,则k 应满足的条件是( )A .k >43B .k =1C .k =85D .k >1答案 C解析 根据已知(k -1)2+(4-3k )2=1,即5k 2-13k +8=0,解得k =1或k =85,由于sin θ>0,cos θ<0,所以k >43,可得k =85.2. 设tan α=33,π<α<3π2,则sin α-cos α的值为( )A .-12+32B .-12-32C.12+32D.12-32答案 A解析 由tan α=33,π<α<3π2,不妨在角α的终边上取点P (-3,-3),则|OP |=23,于是由定义可得sin α=-12,cos α=-32,所以sin α-cos α=-12+32,故选A. 3. 函数y =log 2sin x 在x ∈⎣⎢⎡⎦⎥⎤π6,π4时的值域为( ) A .[-1,0]B.⎣⎢⎡⎦⎥⎤-1,-12 C .[0,1)D .[0,1]答案 B解析 由x ∈⎣⎢⎡⎦⎥⎤π6,π4,得12≤sin x ≤22, ∴-1≤log 2sin x ≤-12.4. 设函数y =3sin(2x +φ) (0<φ<π,x ∈R )的图象关于直线x =π3对称,则φ等于( ) A.π6B.π3C.2π3D.5π6答案 D解析 由题意知,2×π3+φ=k π+π2(k ∈Z ),所以φ=k π-π6(k ∈Z ),又0<φ<π,故当k =1时,φ=5π6,选D.5. 将函数f (x )=-4sin ⎝⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的12倍,所得图象关于直线x =π4对称,则φ的最小正值为( )A.π8 B.38π C.34π D.π2答案 B解析 依题意可得y =f (x )⇒y =-4sin[2(x -φ)+π4]=-4sin[2x -(2φ-π4)]⇒y =g (x )=-4sin[4x -(2φ-π4)],因为所得图象关于直线x =π4对称,所以g ⎝ ⎛⎭⎪⎫π4=±4, 得φ=k 2π+38π(k ∈Z ),故选B.6. 已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .- 3B .-1 C. 3D .1答案 C解析 由图形知,T =πω=2(3π8-π8)=π2,ω=2.由2×3π8+φ=k π,k ∈Z ,得φ=k π-3π4,k ∈Z .又∵|φ|<π2,∴φ=π4.由A tan(2×0+π4)=1,知A =1,∴f (x )=tan(2x +π4),∴f (π24)=tan(2×π24+π4)=tan π3= 3.7. (2012·课标全国)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9答案 C解析 由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6.8. 已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[k π-π12,k π+5π12],k ∈ZB .[k π+5π12,k π+11π12],k ∈ZC .[k π-π3,k π+π6],k ∈ZD .[k π+π6,k π+2π3],k ∈Z答案 C解析 f (x )=3sin ωx +cos ωx =2sin (ωx +π6)(ω>0).∵f (x )的图象与直线y =2的两个相邻交点的距离等于π,恰好是f (x )的一个周期,∴2πω=π,ω=2.∴f (x )=2sin (2x +π6).故其单调增区间应满足2k π-π2≤2x +π6≤2k π+π2(k ∈Z ).解得k π-π3≤x ≤k π+π6(k ∈Z ).二、填空题9. 函数f (x )=3cos 25x +sin 25x 的图象相邻的两条对称轴之间的距离是________.答案 5π2解析 f (x )=3cos 25x +sin 25x =2sin(25x +π3),∴周期为T =2π25=5π,则相邻的对称轴间的距离为T 2=5π2.10.将函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为________.答案 2、-π3解析 由图可知T 4=7π12-π3=π4,∴T =π,∴ω=2.把(7π12,-1)代入y =sin (2(x +π3)+φ)得sin (7π6+2π3+φ)=-1,∴11π6+φ=2k π+3π2(k ∈Z ),φ=2k π-π3(k ∈Z ),∵|φ|<π2,∴φ=-π3.11.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6 (ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同.若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.答案 ⎣⎢⎡⎦⎥⎤-32,3 解析 ∵f (x )和g (x )的对称轴完全相同,∴二者的周期相同,即ω=2,f (x )=3sin ⎝⎛⎭⎪⎫2x -π6. ∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1, ∴f (x )∈⎣⎢⎡⎦⎥⎤-32,3. 12.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对;f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错; f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4, 故④错.故填①③. 三、解答题13.(2013·湖南)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝⎛⎭⎪⎫x -π3,g (x )=2sin 2x 2.(1)若α是第一象限角,且f (α)=335,求g (α)的值;(2)求使f (x )≥g (x )成立的x 的取值集合.解 f (x )=sin ⎝ ⎛⎭⎪⎫x -π6+cos ⎝ ⎛⎭⎪⎫x -π3=32sin x -12cos x +12cos x +32sin x =3sin x ,g (x )=2sin 2x2=1-cos x .(1)由f (α)=335,得sin α=35,又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎪⎫x +π6≥12.从而2k π+π6≤x +π6≤2k π+5π6,k ∈Z ,即2k π≤x ≤2k π+2π3,k ∈Z .故使f (x )≥g (x )成立的x 的取值集合为{x |2k π≤x ≤2k π+2π3,k ∈Z }.14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0,在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin ⎝⎛⎭⎪⎫2ωx +π6. 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin ⎝⎛⎭⎪⎫4x +π6. (2)将f (x )的图象向右平移π8个单位后,得到y =sin ⎝⎛⎭⎪⎫4x -π3的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y =sin ⎝⎛⎭⎪⎫2x -π3的图象. 所以g (x )=sin ⎝⎛⎭⎪⎫2x -π3. 因为0≤x ≤π2,所以-π3≤2x -π3≤2π3.g (x )+k =0在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个实数解,即函数y =g (x )与y =-k 在区间⎣⎢⎡⎦⎥⎤0,π2上有且只有一个交点, 由正弦函数的图象可知-32≤-k <32或-k =1. 所以-32<k ≤32或k =-1.。
高考数学总复习 课时作业(十八)第18讲 三角函数的图像
课时作业(十八)第18讲三角函数的图像与性质基础热身1.已知函数y=cosωx-的周期为π,则ω的值为()A.1B.2C.±1D.±22.已知函数f(x)=2sin-2x,则函数f(x)的单调递减区间为()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)3.已知函数f(x)=-sin x+(x∈R),则下面结论中错误的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间上是增函数C.函数f(x)的图像关于直线x=0对称D.函数f(x)是奇函数4.[2017·天水二中期中]下列函数中,最小正周期为π,且图像关于直线x=对称的是()A.y=sinB.y=sinC.y=sinD.y=sin5.函数y=的定义域是.能力提升6.[2017·太原五中段考]给出下列函数:①y=cos|2x|,②y=|cosx|,③y=sin2x+,④y=tan|x|.其中周期为π的所有偶函数为()A.①②B.①②③C.②④D.①③7.[2017·枣庄八中月考]已知函数f(x)=2sin的定义域为[a,b],值域为[-1,2],则b-a的值不可能是()A.B.2πC.D.8.[2017·许昌二模]若函数y=sin(2x+φ)0<φ<的图像的对称中心在区间,内有且只有一个,则φ的值可以是()A.B.C. D.9.[2017·龙岩六校联考]已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤f对任意x∈R恒成立,且f>0,则f(x)的单调递减区间是()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)10.已知函数f(x)=sin(ωx+φ)+cos(ωx+φ),其图像相邻的两条对称轴方程为x=0与x=,则()A.f(x)的最小正周期为2π,且在(0,π)上为增函数B.f(x)的最小正周期为2π,且在(0,π)上为减函数C.f(x)的最小正周期为π,且在上为增函数D.f(x)的最小正周期为π,且在上为减函数11.[2017·昆明三模]已知函数f(x)=sinωx+(ω>0),A,B是函数图像上相邻的最高点和最低点,若|AB|=2,则f(1)= .12.[2017·荆州中学二模]已知函数y=3cos(2x+φ)的图像关于点,0中心对称,则|φ|的最小值为.13.(15分)[2017·衡水冀州中学月考]已知函数f(x)=sin2x-.(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调递增区间;(3)当x∈0,时,求函数f(x)的最小值,并求出使y=f(x)取得最小值时相应的x值.14.(15分)[2017·安阳林州一中期中]已知函数f(x)=cos(ωx+φ)ω>0,0<φ<的最小正周期为π,且f=-.(1)求ω和φ的值;(2)若f(x)>,求x的取值范围.难点突破15.(5分)[2017·湖北部分重点中学模拟]设函数f(x)=4cos(ωx+φ)对任意的x∈R,都有f(-x)=f+x,若函数g(x)=sin(ωx+φ)-2,则g的值是()A.1B.-5或3C. D.-216.(5分)[2017·安阳林州一中期中]已知函数f(x)=2cos(ωx+φ)+1ω>0,|φ|<,其图像与直线y=3相邻两个交点的距离为,若f(x)>1对任意x∈-,恒成立,则φ的取值范围是()A.B.C.D.课时作业(十八)1.D[解析] 由T==π,得ω=±2.2.D[解析] 函数的解析式即f(x)=-2sin2x-.由2kπ-≤2x-≤2kπ+(k∈Z),得-+kπ≤x≤+kπ(k∈Z),即函数f(x)的单调递减区间为-+kπ,+kπ(k∈Z).3.D[解析] 由题意知f(x)=-cos x,可得A,B,C正确.因为f(-x)=-cos x=f(x),所以f(x)是偶函数,即D错误.4.B[解析] 由y=f(x)的最小正周期为π,可排除D.下面验证图像是否关于直线x=对称.对于A,f=sin=≠±1,故A不满足;对于B,f=sin-=sin=1,故B满足;对于C,f=sin+=sin=≠±1,故C不满足.故选B.5.,k∈Z[解析] 由tan x-1≥0,得tan x≥1,∴+kπ≤x<+kπ,k∈Z.∴函数y=的定义域是+kπ,+kπ,k∈Z.6.A[解析] 对于①,y=cos|2x|=cos 2x为偶函数,且周期为=π,满足条件;对于②,y=|cos x|的周期为π,且是偶函数,满足条件;对于③,y=sin2x+=|cos 2x|的周期为×=,且是偶函数,不满足条件;对于④,y=tan|x|不具有周期性,不满足条件.故选A.7.D[解析] 由题意可得b-a的值不可能超过一个周期,而函数f(x)=2sin的周期为4π,故b-a的值不可能是.8.D[解析] 根据题意,令2x+φ=kπ,k∈Z,得φ=kπ-2x,k∈Z.又函数f(x)图像的对称中心在区间,内有且只有一个,∴x∈,,∴-2x∈-,-,∴φ=kπ-2x∈kπ-,kπ-,k∈Z.当k=1时,φ∈,,又0<φ<,∴φ的一个可能取值是.9.C[解析] 由题意可得函数f(x)=sin(2x+φ)的图像关于直线x=对称,故有2×+φ=kπ+,k∈Z,即φ=kπ,k∈Z .又f=sin+φ>0,所以φ=2nπ,n∈Z,所以f(x)=sin(2x+2nπ)=sin 2x.令2kπ+≤2x ≤2kπ+,k∈Z,求得kπ+≤x≤kπ+,k∈Z,故函数f(x)的单调递减区间为kπ+,kπ+,k∈Z,故选C.10.D[解析] f(x)=sin(ωx+φ)+cos(ωx+φ)=2sinωx+φ+.因为其图像的两条相邻对称轴方程为x=0与x=,则T=π,即ω=2,所以f(x)=2sin2x+φ+.当x=0时,得2sin=±2,又|φ|<,所以φ=,所以f(x)=2cos 2x,则f(x)在上为减函数.11.[解析] 由题意可得=2,∴ω=,∴函数f(x)=sin x+,∴f(1)=.12.[解析] ∵函数y=3cos(2x+φ)的图像关于点,0中心对称,∴2×+φ=kπ+,k∈Z,∴φ=kπ-,k∈Z,则|φ|的最小值为.13.解:(1)对于函数f(x)=sin2x-,它的最小正周期T==π.(2)令-+2kπ≤2x-≤+2kπ,k∈Z,可得-+2kπ≤2x≤+2kπ,k∈Z,即-+kπ≤x≤+kπ,k∈Z.所以函数f(x)的单调递增区间是-+kπ,+kπ(k∈Z).(3)因为0≤x≤,所以0≤2x≤,所以-≤2x-≤.所以函数f(x)的最小值是-,此时2x-=-或2x-=,即x=0或x=.14.解:(1)因为函数f(x)=cos(ωx+φ)ω>0,0<φ<的最小正周期为π,所以T==π,所以ω=2.因为f=cos2×+φ=-,0<φ<,所以2×+φ=,解得φ=.(2)因为f(x)=cos2x+>,所以2kπ-<2x+<2kπ+,k∈Z,所以kπ-<x<kπ+,k∈Z,即x∈kπ-,kπ+,k∈Z.15.D[解析] ∵函数f(x)=4cos(ωx+φ)对任意的x∈R都有f(-x)=f+x,∴函数f(x)=4cos(ωx+φ)的图像的一条对称轴为x=,∴ω×+φ=kπ(k∈Z),∴g=sin(kπ)-2=-2.16.B[解析] 由题意可得函数f(x)=2cos(ωx+φ)+1的最大值为3.∵f (x)的图像与直线y=3相邻两个交点的距离为,∴f(x)的周期T=,∴=,解得ω=3,∴f(x)=2cos(3x+φ)+1.∵f(x)>1对任意x∈-,恒成立,∴2cos(3x+φ)+1>1,即cos(3x+φ)>0,对任意x∈-,恒成立,∴-+φ≥2kπ-且+φ≤2kπ+,k∈Z,解得φ≥2kπ-且φ≤2kπ,k∈Z,即2kπ-≤φ≤2kπ,k∈Z.结合|φ|<可得当k=0时,φ的取值范围为-,0.。
高三数学一轮复习课时作业18 三角函数的图象与性质 新
课时作业(十八) [第18讲 三角函数的图象与性质][时间:45分钟 分值:100分]基础热身1.函数y =cos x -12的定义域为( )A.⎣⎢⎡⎦⎥⎤-π3,π3 B.⎣⎢⎡⎦⎥⎤k π-π3,k π+π3,k ∈Z C.⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3,k ∈Z D .R2.[2011·枣庄模拟] 下列函数中,以π为最小正周期的偶函数,且在⎝ ⎛⎭⎪⎫π2,π上为减函数的是( )A .y =sin2x +cos2xB .y =|sin x |C .y =cos 2x D .y =tan x3.[2010·江西卷] 函数y =sin 2x +sin x -1的值域为( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-54,-1 C.⎣⎢⎡⎦⎥⎤-54,1 D.⎣⎢⎡⎦⎥⎤-1,54 4.[2010·上海卷] 函数y =12sin2x 的最小正周期T =________.能力提升5.函数y =sin ⎝ ⎛⎭⎪⎫x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上( )A .单调递增且有最大值B .单调递增但无最大值C .单调递减且有最大值D .单调递减但无最大值6.已知函数f (x )=sin ⎝⎛⎭⎪⎫2x -π6,若存在a ∈(0,π),使得f (x +a )=f (x -a )恒成立,则a 的值是( )A.π6B.π3C.π4D.π27.若x 为三角形中的最小内角,则函数y =sin x +cos x 的值域是( )A .(1,2] B.⎝⎛⎦⎥⎤0,32C.⎣⎢⎡⎦⎥⎤12,22D.⎝ ⎛⎦⎥⎤12,22 8.函数f (x )=sin πx -14x 的零点的个数是( )A .5B .6C .7D .89.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎢⎡⎦⎥⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3C .π D.4π310.函数f (x )=(sin x -cos x )2的最小正周期为________.11.函数y =lg(sin x )+cos x -12的定义域为________.12.设函数y =cos 12πx 的图象位于y 轴右侧所有的对称中心从左到右依次为A 1,A 2,…,A n ,….则A 50的坐标是________.13.给出下列命题:①正切函数的图象的对称中心是唯一的;②y =|sin x |,y =|tan x |的最小正周期分别为π,π2;③若x 1>x 2,则sin x 1>sin x 2; ④若f (x )是R 上的奇函数,它的最小正周期为T ,则f ⎝ ⎛⎭⎪⎫-T 2=0.其中正确命题的序号是________.14.(10分)[2011·朝阳二模] 已知函数f (x )=2sin x cos x -2sin 2x +1. (1)求函数f (x )的最小正周期及值域; (2)求f (x )的单调递增区间.15.(13分)[2011·湖南省“六校联考”] 已知函数f (x )=3sin2x +2cos 2x +m 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为6.(1)求常数m 的值及函数f (x )图象的对称中心;(2)作函数f (x )关于y 轴的对称图象得函数f 1(x )的图象,再把函数f 1(x )的图象向右平移π4个单位得到函数f 2(x )的图象,求函数f 2(x )的单调递减区间.难点突破16.(12分)已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝ ⎛⎭⎪⎫3π4,0对称,且在区间⎣⎢⎡⎦⎥⎤0,π2上是单调函数,求φ和ω的值.课时作业(十八)【基础热身】1.C [解析] 由题意得cos x ≥12,∴2k π-π3≤x ≤2k π+π3,k ∈Z ,故选C.2.B [解析] 由函数为偶函数,排除A 、D ;由在⎝ ⎛⎭⎪⎫π2,π上为减函数,排除C ,故选B.3.C [解析] y =sin 2x +sin x -1=⎝⎛⎭⎪⎫sin x +122-54,∵-1≤sin x ≤1,∴当sin x =-12时,y min =-54;当sin x =1时,y max =1,∴函数的值域为⎣⎢⎡⎦⎥⎤-54,1,故选C. 4.π [解析] 由周期公式得T =2π|ω|=2π2=π.【能力提升】5.A [解析] 由-π2≤x -π4≤π2,得-π4≤x ≤3π4,则函数y =sin ⎝ ⎛⎭⎪⎫x -π4在区间⎣⎢⎡⎦⎥⎤-π4,3π4上是增函数,又⎣⎢⎡⎦⎥⎤0,π2⊆⎣⎢⎡⎦⎥⎤-π4,3π4,所以函数在⎣⎢⎡⎦⎥⎤0,π2上是增函数,且有最大值22,故选A.6.D [解析] 设x -a =t ,得x =t +a ,则f (x +a )=f (x -a )可化为f (t +2a )=f (t ),即函数f (x )是周期为2a 的周期函数,又f (x )的最小正周期为π,且a ∈(0,π),∴a =π2,故选D.7.A [解析] 因x 为三角形中的最小内角,故x ∈⎝⎛⎦⎥⎤0,π3,由此可得y =sin x +cos x >1,排除错误选项B ,C ,D ,故选A.8.C [解析] 如图所示,画出函数y =sin πx 和y =14x 的图象,在[0,+∞)上,两个函数图象有4个交点,∴在(-∞,+∞)上,方程sin πx =14x 的解有7个,即函数f (x )=sin πx -14x 的零点的个数是7,故选C.9.A [解析] 画出函数y =sin x 的简图,要使函数的值域为⎣⎢⎡⎦⎥⎤-1,12,则函数定义域为⎣⎢⎡⎦⎥⎤2k π+5π6,2k π+13π6,k ∈Z 或其子集,又定义域为[a ,b ],则a ,b 在同一个k 所对应的区间内,且[a ,b ]必须含2k π+3π2,还有2k π+5π6、2k π+13π6之一,知b -a的取值范围为⎣⎢⎡⎦⎥⎤2π3,4π3,故选A.10.π [解析] f (x )=(sin x -cos x )2=sin 2x -2sin x cos x +cos 2x =1-2sin x cos x =1-sin2x ,∴函数f (x )的最小正周期为π.11.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z [解析] 要使函数有意义必须有⎩⎪⎨⎪⎧ sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z. 12.(99,0) [解析] 由12πx =π2+k π,k ≥0且k ∈Z ,得图象的对称中心横坐标为x=2k +1,k ≥0且k ∈N ,令k =49即可得A 50的坐标是(99,0).13.④ [解析] ①正切函数的对称中心是⎝ ⎛⎭⎪⎫k π2,0(k ∈Z );②y =|sin x |,y =|tan x |的最小正周期都是π;③正弦函数在定义域R 上不是单调函数;④f ⎝ ⎛⎭⎪⎫-T 2=f ⎝ ⎛⎭⎪⎫-T 2+T =f ⎝ ⎛⎭⎪⎫T2=-f ⎝ ⎛⎭⎪⎫-T 2,故f ⎝ ⎛⎭⎪⎫-T 2=0.14.[解答] (1)f (x )=sin2x +cos2x =2sin ⎝⎛⎭⎪⎫2x +π4,则函数f (x )的最小正周期是π,函数f (x )的值域是[]-2,2.(2)依题意得2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),则k π-3π8≤x ≤k π+π8(k ∈Z ),即f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ). 15.[解答] (1)f (x )=3sin2x +cos2x +1+m=2sin ⎝ ⎛⎭⎪⎫2x +π6+1+m , ∵0≤x ≤π2,∴π6≤2x +π6≤7π6,∴-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1.∴m ≤f (x )≤3+m ,∴3+m =6,m =3,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+4. 所以函数f (x )的图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π12,4,k ∈Z . (2)由f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+4, 得f 1(x )=2sin ⎝⎛⎭⎪⎫-2x +π6+4. 所以f 2(x )=2sin ⎣⎢⎡⎦⎥⎤-2⎝⎛⎭⎪⎫x -π4+π6+4=-2sin ⎝⎛⎭⎪⎫2x -2π3+4. 因为-π2+2k π≤2x -23π≤2k π+π2,k ∈Z .所以π12+k π≤x ≤7π12+k π(k ∈Z ),所以函数f 2(x )的单调递减区间是⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z . 【难点突破】16.[解答] 由f (x )是偶函数,得f (-x )=f (x ), 即sin(-ωx +φ)=sin(ωx +φ),所以-cos φsin ωx =cos φsin ωx 对任意x 都成立. 又ω>0,∴cos φ=0.依题设0≤φ≤π,所以φ=π2,∴f (x )=cos ωx ,其对称中心为(π2+k πω,0)(k ∈Z ).∵f (x )的图象关于点M ⎝ ⎛⎭⎪⎫3π4,0对称,∴令π2+k πω=3π4, ∴ω=23(2k +1),k =0,1,2,….当k =0时,ω=23,f (x )=sin ⎝ ⎛⎭⎪⎫23x +π2在⎣⎢⎡⎦⎥⎤0,π2上是减函数;当k =1时,ω=2,f (x )=sin ⎝⎛⎭⎪⎫2x +π2在⎣⎢⎡⎦⎥⎤0,π2上是减函数; 当k ≥2时,ω≥103,f (x )=sin ⎝⎛⎭⎪⎫ωx +π2在⎣⎢⎡⎦⎥⎤0,π2上不是单调函数. 综上得ω=23或ω=2.。
2019学年年高考数学一轮复习课时分层训练18三角函数的图像与性质文北师大版08
k∈
Z.]
28
三、解答题 9.(2016 ·北京高考 ) 已知函数 f ( x) = 2sin ω xcos ω x+ cos 2 ωx( ω >0) 的最小正周期为
π. (1) 求 ω 的值;
(2) 求 f ( x) 的单调递增区间. [ 解 ] (1) 因为 f ( x) = 2sin ω xcos ω x+ cos 2 ω x
π
π
π
7.已知函数 f ( x) = 2sin( ω x+φ ) ,对于任意 x 都有 f 6 + x = f 6 - x ,则 f 6 的值为
第 2页 共 6页
会当凌绝顶,一览众山小
________ .
2 或- 2
[ ∵f
π 6+
x
=f
π 6-
x
,
∴ x= π 是函数 f ( x) = 2sin( ω x+ φ ) 的一条对称轴, 6
2x
+
π 4
,最小正周期为
π,为非奇非偶函数,不
符合题意;
D 项, y= sin x+ cos x= 2sin
x+ π 4
,最小正周期为
2π ,为非奇非偶函数,不符
合题意. ]
4.若函数
y= cos
π ωx+ 6
( ω ∈ N*) 图像的一个对称中心是
π 6
,
0
,则 ω 的最小值为
(
)
A. 1 C. 4
D. R
C
[ 由 cos
3 x- 2 ≥0,得
cos
x≥
3 2 ,∴
2kπ
-
π 6
≤x≤2kπ
π +6
,
k∈
Z.]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x 的单调递增区间即求函数t =sin(2x -π
3)的单调递减区间,由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),∴函数y
=2sin(π3-2x )的单调递增区间是[k π+5π12,k π+11π
12](k ∈Z ),故选B.
解法二 函数y =2sin(π
3-2x )单调递增区间的左端点值对应的函数值是函数的最小值,区间长度为一个周期π,经验证每一个选项的
区间长度均为一个周期π,只有区间左端点x =k π+5π
12(k ∈Z )的相应
函数值是函数的最小值-2,∴函数y =2sin(π
3-2x )的单调递增区间是
[k π+5π12,k π+11π
12](k ∈Z ),故选B.
答案:B 13.[2019·全国卷Ⅰ]关于函数f (x )=sin |x |+|sin x |有下述四个结论:
①f (x )是偶函数
②f (x )在区间⎝ ⎛⎭
⎪⎫π2,π单调递增 ③f (x )在[-π,π]有4个零点 ④f (x )的最大值为2
其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④ D .①③ 解析:通解 f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),
∴f (x )为偶函数,故①正确;当π
2<x <π时,f (x )=sin x +sin x =2sin x ,
∴f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减,故②不正确;f (x )在[-π,π]的图象如图所示,由图可知函数f (x )在[-π,π]只有3个零点,故③不正确;∵y =sin|x |与y =|sin x |的最大值都为1且可以同时取到,∴f (x )可以取到最大值2,故④正确.综上,正确结论的序号是①④.故选C.。