矩阵分析-哈尔滨工业大学(深圳)年-考试重点知识交流

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明一个映射是线性映射。

(P24,例1.4.9)
给定入口基及出口基,写出线性映射对应的矩阵表示。

求线性映射在不同基上的矩阵表示。

求最简形。

先通过初等行列变换化为阶梯形。

同时记录行变换(相当于左乘),列变换(右乘)。

即对In做变换。

记住Q是m*m,P是n*n,同时化为最简形时得到的是Q逆,还需要再进行变化得到Q。

所得结果也是该最简形在不同线性空间的基。

λ矩阵的行列式因子,不变因子和初等因子。

单位模阵。

求λ矩阵的Smith标准型。

两个矩阵相似的定义。

矩阵相似的三个条件。

求复数域上的矩阵的Jordan标准型。

内积-欧几里德空间
证明*是内积空间(欧几里得空间)
证明一个向量组是正交向量组。

施密特正交化化标准正交组。

复矩阵的奇异值和奇异值分解
复矩阵的奇异值分解
总结下:
A = UDV H ;AA H求U,A H A求V,注意维数问题,D和A同维度。

此外不够记住还有特征值为0的特征向量。

V=A H UD-H
(对于复数问题,记得转置;求λI n-AA H时,注意符号,对角线不为0的变负)
点到平面的距离:
A是平面(α1α2)投影矩阵得P,P=A(A T A)-1A T b,b表示一个向量,接着b-P即为距离,再套用距离公式计算长度。

正规矩阵酉相似对角化。

相关文档
最新文档