数形结合在平面向量中的应用
高中数学教案《平面向量及其应用》
教学设计:《平面向量及其应用》一、教学目标1.知识与技能:使学生理解平面向量的基本概念,包括向量的定义、表示方法(有向线段、坐标表示)、向量的模、方向角等;掌握向量的加法、减法、数乘及数量积的运算法则和几何意义;能运用向量知识解决简单的几何与物理问题。
2.过程与方法:通过观察、实验、推理等数学活动,培养学生的空间想象能力和逻辑推理能力;引导学生运用数形结合的思想,理解向量运算的几何背景,提高解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和勇于探索的精神;通过团队合作解决问题,增强学生的沟通能力和团队协作能力。
二、教学重点和难点●重点:平面向量的基本概念、向量的基本运算(加法、减法、数乘、数量积)及其几何意义。
●难点:理解向量数量积的概念、性质及其在解决实际问题中的应用;向量运算的坐标表示法及其应用。
三、教学过程1.导入新课o情境创设:通过展示风力发电机叶片的运动、航海中的航向与速度变化等实例,引出向量的概念,说明向量在现实生活中的应用价值。
o问题引入:提问学生如何描述这些运动中的方向和大小,引导学生思考向量的必要性。
o概念引入:正式给出平面向量的定义,强调其作为“有方向的量”的特性。
2.新知讲授o基本概念讲解:详细解释向量的表示方法(有向线段、坐标表示)、模长、方向角等概念,并通过图示加深理解。
o向量运算教学:●加法与减法:通过“平行四边形法则”和“三角形法则”演示向量的加法与减法,强调其几何意义。
●数乘:讲解数乘的定义,通过伸缩变换的直观演示,理解数乘对向量方向和大小的影响。
●数量积:引入数量积的概念,通过投影长度的计算,讲解其计算公式和性质,强调其在度量角度、判断方向等方面的应用。
3.例题解析o选取典型例题,覆盖向量运算的所有类型,逐步引导学生分析、解题,重点讲解解题思路和方法。
o强调解题过程中向量运算的几何背景,促进学生数形结合思维的发展。
4.学生活动o小组讨论:分组讨论向量在日常生活或专业领域的应用实例,每组选代表分享,增强课堂互动性。
数形结合思想在初中数学解题中的应用
数形结合思想在初中数学解题中的应用数形结合思想是指在解决数学问题时,通过将数学概念与几何图形相互结合,相互转化和应用的思考方法。
在初中数学的教学中,数形结合思想被广泛地应用。
本文将从初中数学的各个章节对其应用进行探讨。
1. 直线与圆在初中数学的直线与圆章节中,学生需要掌握直线与圆之间的基本关系,如切线、割线等,并学习如何运用这些关系解决问题。
数形结合思想在这一章节的应用体现在,通过将直线与圆相互结合,将抽象的数学概念转化为具体的几何图形,从而帮助学生更好地理解题意和解决问题。
例如,解决“过圆O外一点P作切线,过点P作另一条直线割圆于A、B两点,连接OP 并延长交圆于C点,求证:∠OAC=∠OBC”的问题时,我们可以通过画图,在圆上标出切线和割线,将几何图形与数学概念相互联系来解决问题。
2. 三角函数在初中数学的三角函数章节中,学生需要学习正弦、余弦、正切等三角函数的基本概念和运用。
例如,在解决“证明:sin2A+cos2A=1”的问题时,我们可以画出一个以A为顶点的直角三角形,将正弦、余弦与三角形的边相互对应,从而帮助学生理解三角函数的定义和性质。
3. 平面向量例如,在解决“ABCD为平行四边形,设向量AB=a,向量AD=b,求向量AC的坐标表示”的问题时,我们可以画出平行四边形ABCD的几何图形,并通过图形将向量的定义和运算法则转化为数学表示式。
4. 二次函数例如,在解决“已知二次函数y=x²+px+q的图像过点(1,3),且在x轴上的零点为-2和3,求p、q”的问题时,我们可以通过画出二次函数的图像,并通过图像求出零点和顶点,进而求出p、q的值。
结语数形结合思想在初中数学的教学中具有重要的应用价值,可以帮助学生更好地理解数学知识,提高解题能力和思维能力。
教师在教学中应该注重将数学概念与几何图形相互联系,设计具体、形象的教学案例,引导学生积极思考、用图解题,从而达到提高教学质量和学生学习水平的目的。
平面向量基本定理教案(精选10篇)
平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。
微重点 平面向量的最值与范围问题
微重点 平面向量的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.考点一 求参数的最值(范围)例1 (1)(2022·沈阳质检)在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG →=λCB →+μCD →(λ,μ∈R ),则λ+μ的取值范围是________. 答案 [1,4]解析 根据题意,不妨设正六边形ABCDEF 的边长为23,以O 为原点建立平面直角坐标系,如图所示,则F (-23,0),D (3,3),C (23,0),B (3,-3), 设点G 的坐标为(m ,n ),则CG →=(m -23,n ), CB →=(-3,-3),CD →=(-3,3), 由CG →=λCB →+μCD →可得,m -23=-3λ-3μ,即λ+μ=-33m +2, 数形结合可知m ∈[-23,3], 则-33m +2∈[1,4],即λ+μ的取值范围为[1,4]. (2)设非零向量a ,b 的夹角为θ,若|a |=2|b |,且不等式|2a +b |≥|a +λb |对任意θ恒成立,则实数λ的取值范围为( ) A .[-1,3] B .[-1,5] C .[-7,3] D .[5,7]答案 A解析 ∵非零向量a ,b 的夹角为θ,若|a |=2|b |, a ·b =|a ||b |cos θ=2|b |2cos θ,不等式|2a +b |≥|a +λb |对任意θ恒成立, ∴(2a +b )2≥(a +λb )2,∴4a 2+4a ·b +b 2≥a 2+2λa ·b +λ2b 2, 整理可得(13-λ2)+(8-4λ)cos θ≥0恒成立, ∵cos θ∈[-1,1],∴⎩⎪⎨⎪⎧13-λ2+8-4λ≥0,13-λ2-8+4λ≥0, ∴⎩⎪⎨⎪⎧-7≤λ≤3,-1≤λ≤5,∴-1≤λ≤3. 规律方法 利用共线向量定理及推论 (1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.跟踪演练1 (2022·滨州模拟)在△ABC 中,M 为BC 边上任意一点,N 为线段AM 上任意一点,若AN →=λAB →+μAC →(λ,μ∈R ),则λ+μ的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤13,12 C .[0,1] D .[1,2]答案 C解析 由题意,设AN →=tAM →(0≤t ≤1),如图.当t =0时,AN →=0, 所以λAB →+μAC →=0,所以λ=μ=0,从而有λ+μ=0;当0<t ≤1时,因为AN →=λAB →+μAC →(λ,μ∈R ), 所以tAM →=λAB →+μAC →, 即AM →=λt AB →+μt AC →,因为M ,B ,C 三点共线,所以λt +μt =1,即λ+μ=t ∈(0,1].综上,λ+μ的取值范围是[0,1].考点二 求向量模、夹角的最值(范围)例2 (1)已知e 为单位向量,向量a 满足:(a -e )·(a -5e )=0,则|a +e |的最大值为( ) A .4 B .5 C .6 D .7 答案 C解析 可设e =(1,0),a =(x ,y ), 则(a -e )·(a -5e )=(x -1,y )·(x -5,y ) =x 2-6x +5+y 2=0, 即(x -3)2+y 2=4, 则1≤x ≤5,-2≤y ≤2, |a +e |=(x +1)2+y 2=8x -4, 当x =5时,8x -4取得最大值为6, 即|a +e |的最大值为6.(2)在平行四边形ABCD 中,AB →|AB →|+2AD →|AD →|=λAC→|AC →|,λ∈[2,2],则cos ∠BAD 的取值范围是________. 答案 ⎣⎡⎦⎤-34,-14 解析 因为AB →|AB →|+2AD →|AD →|=λAC→|AC →|,且AB →+AD →=AC →,所以|AB →|∶|AD →|∶|AC →|=1∶2∶λ, 不妨设|AB →|=1,则|AD →|=2,|AC →|=λ, 在等式AB →|AB →|+2AD →|AD →|=λAC→|AC →|两边同时平方可得5+4cos ∠BAD =λ2,则cos ∠BAD =λ2-54,因为λ∈[2,2],所以cos ∠BAD =λ2-54∈⎣⎡⎦⎤-34,-14.易错提醒 找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π]; 若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线,同理若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.跟踪演练2 (2022·马鞍山模拟)已知向量a ,b 满足|a -3b |=|a +3b |,|a +b |=4,若向量c =λa +μb (λ+μ=1,λ,μ∈R ),且a ·c =b ·c ,则|c |的最大值为( ) A .1 B .2 C .3 D .4 答案 B解析 由|a -3b |=|a +3b |得a ·b =0, 所以a ⊥b .如图,设OA →=a ,OB →=b ,|OA →|=m ,|OB →|=n , 由a ⊥b 可知OA ⊥OB , 所以|AB →|=|b -a |=|a +b |=4,即m 2+n 2=16,所以2mn ≤16,则mn ≤8,当且仅当m =n 时取得等号.设OC →=c , 由c =λa +μb (λ+μ=1), 可知A ,B ,C 三点共线,由a ·c =b ·c 可知(a -b )·c =0,所以OC ⊥AB , 由等面积法可得, 12|OA →|·|OB →|=12|AB →|·|OC →|, 得|OC →|=|OA →|·|OB →||AB →|=mn 4≤2,所以|c |的最大值为2.考点三 求数量积的最值(范围)例3 (1)(2022·福州质检)已知平面向量a ,b ,c 均为单位向量,且|a -b |=1,则(a -b )·(b -c )的最大值为( ) A.14 B.12 C .1 D.32答案 B解析 ∵|a -b |2=a 2-2a ·b +b 2 =2-2a ·b =1, ∴a ·b =12,∴(a -b )·(b -c )=a ·b -a ·c -b 2+b ·c =12-1-(a -b )·c =-12-|a -b |·|c |cos 〈a -b ,c 〉=-12-cos 〈a -b ,c 〉,∵cos 〈a -b ,c 〉∈[-1,1], ∴(a -b )·(b -c )∈⎣⎡⎦⎤-32,12, 即(a -b )·(b -c )的最大值为12.(2)(2022·广州模拟)已知菱形ABCD 的边长为2,∠ABC =60°,点P 在BC 边上(包括端点),则AD →·AP →的取值范围是________. 答案 [-2,2]解析 如图所示,以C 为原点,BC →为x 轴正方向,过点C 垂直向上的方向为y 轴,建立平面直角坐标系.因为菱形ABCD 的边长为2,∠ABC =60°, 则B (-2,0),C (0,0),D (1,3),A (-1,3). 因为点P 在BC 边上(包括端点), 所以设P (t ,0),其中t ∈[-2,0]. 所以AD →=(2,0),AP →=(t +1,-3), 所以AD →·AP →=2t +2∈[-2,2].规律方法 向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.跟踪演练3 已知AB 是半圆O 的直径,AB =2,等腰△OCD 的顶点C ,D 在半圆弧AB ︵上运动,且∠COD =120°,点P 是半圆弧AB ︵上的动点,则PC →·PD →的取值范围为( ) A.⎣⎡⎦⎤-34,34 B.⎣⎡⎦⎤-34,1 C.⎣⎡⎦⎤-12,1 D.⎣⎡⎦⎤-12,12 答案 C解析 以点O 为原点,AB 为x 轴,垂直于AB 的直线为y 轴,建立平面直角坐标系,如图所示,不妨取C (1,0),则D ⎝⎛⎭⎫-12,32,设P (cos α,sin α)(α∈[0,π]), PC →·PD →=(1-cos α,-sin α)·⎝⎛⎭⎫-12-cos α,32-sin α =12-32sin α-12cos α=12-sin ⎝⎛⎭⎫α+π6. 因为α∈[0,π],所以α+π6∈⎣⎡⎦⎤π6,7π6, 所以sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1, 所以12-sin ⎝⎛⎭⎫α+π6∈⎣⎡⎦⎤-12,1,即PC →·PD →的取值范围为⎣⎡⎦⎤-12,1. 专题强化练1.(2022·山东省实验中学诊断)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( )A .4B .6C .8D .9 答案 C解析 由题意得,AB →=OB →-OA →=(a -1,1), AC →=OC →-OA →=(-b -1,2),∵A ,B ,C 三点共线,∴AB →=λAC →且λ∈R ,则⎩⎪⎨⎪⎧a -1=-λ(b +1),2λ=1,可得2a +b =1, ∴1a +2b =⎝⎛⎭⎫1a +2b (2a +b )=4+b a +4ab ≥4+2b a ·4ab=8, 当且仅当b =2a =12时,等号成立.∴1a +2b的最小值为8. 2.设A ,B ,C 是半径为1的圆O 上的三点,且OA →⊥OB →,则(OC →-OA →)·(OC →-OB →)的最大值为( ) A .1+ 2 B .1- 2 C.2-1 D .1答案 A解析 如图,作出OD →,使OA →+OB →=OD →, 则(OC →-OA →)·(OC →-OB →)=OC →2-OA →·OC →-OB →·OC →+OA →·OB → =1-(OA →+OB →)·OC →=1-OD →·OC → =1-2cos 〈OD →,OC →〉,当cos 〈OD →,OC →〉=-1时,(OC →-OA →)·(OC →-OB →)取得最大值为1+ 2.3.(2022·杭州模拟)平面向量a ,b 满足|a |=1,⎪⎪⎪⎪b -32a =1,记〈a ,b 〉=θ,则sin θ的最大值为( )A.23B.53C.12D.32 答案 A解析 因为|a |=1,⎪⎪⎪⎪b -32a =1, 所以⎪⎪⎪⎪b -32a 2=|b |2-3a ·b +94|a |2=1, |b |2-3|a |·|b |cos θ+94-1=0,即|b |2-3|b |cos θ+54=0,所以cos θ=|b |2+543|b |=|b |3+512|b |≥2536=53, 当且仅当|b |=52时,等号成立, 因为〈a ,b 〉=θ,θ∈[0,π], 所以sin θ=1-cos 2θ≤1-59=23, 即sin θ的最大值为23.4.如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,BC =2,P 是线段AB 上的动点,则|PC →+4PD →|的最小值为( )A .35B .6C .25D .4答案 B解析 如图,以点B 为坐标原点,BC ,BA 所在直线为x 轴、y 轴,建立平面直角坐标系,设AB =a ,BP =x (0≤x ≤a ),因为AD =1,BC =2,所以P (0,x ),C (2,0),D (1,a ), 所以PC →=(2,-x ),PD →=(1,a -x ), 4PD →=(4,4a -4x ),所以PC →+4PD →=(6,4a -5x ),所以|PC →+4PD →|=36+(4a -5x )2≥6,所以当4a -5x =0,即x =45a 时,|PC →+4PD →|的最小值为6.5.(多选)已知向量a ,b ,单位向量e ,若a ·e =1,b ·e =2,a ·b =3,则|a +b |的可能取值为( ) A .3 B.10 C.13 D .6答案 CD解析 设e =(1,0),a =(x 1,y 1),b =(x 2,y 2), 由a ·e =1得x 1=1, 由b ·e =2得x 2=2,由a ·b =x 1x 2+y 1y 2=3,可得y 1y 2=1, 则|a +b |=(a +b )2=(x 1+x 2)2+(y 1+y 2)2=11+y 21+y 22≥11+2y 1y 2=13,当且仅当y 1=y 2=1时取等号.6.(多选)(2022·武汉模拟)正方形ABCD 的边长为2,E 是BC 的中点,如图,点P 是以AB 为直径的半圆上任意一点,AP →=λAD →+μAE →(λ,μ∈R ),则( )A .λ的最大值为12B .μ的最大值为1 C.AP →·AD →的最大值为2 D.AP →·AE →的最大值为5+2 答案 BCD解析 如图,以AB 的中点O 为原点建立平面直角坐标系,则A (-1,0),D (-1,2),E (1,1), 连接OP ,设∠BOP =α(α∈[0,π]), 则P (cos α,sin α), AP →=(cos α+1,sin α), AD →=(0,2),AE →=(2,1), 由AP →=λAD →+μAE →,得2μ=cos α+1且2λ+μ=sin α,α∈[0,π], 所以λ=14(2sin α-cos α-1)=54sin(α-θ)-14≤5-14,故A 错误; 当α=0时,μmax =1,故B 正确; AP →·AD →=2sin α≤2,故C 正确; AP →·AE →=sin α+2cos α+2=5sin(α+φ)+2≤5+2,故D 正确.7.(2022·广东六校联考)已知菱形ABCD 的边长为2,∠BAD =60°,E 是边CD 的中点,连接AE 并延长至点F ,使得AE =2EF ,若H 为线段BC 上的动点,则FH →·AH →的取值范围为______________. 答案 ⎣⎡⎦⎤-17764,-32 解析 方法一 连接AC ,BD 交于点O ,以点O 为坐标原点,以BD 所在直线为x 轴,AC 所在直线为y 轴,建立如图所示的平面直角坐标系,则A (0,3),B (-1,0),C (0,-3),D (1,0),E ⎝⎛⎭⎫12,-32. 设F (x 0,y 0),因为AE →=2EF →,所以⎝⎛⎭⎫12,-332=2⎝⎛⎭⎫x 0-12,y 0+32 =()2x 0-1,2y 0+3, 所以2x 0-1=12,2y 0+3=-332, 所以x 0=34,y 0=-534, 所以F ⎝⎛⎭⎫34,-534. 易知直线BC 的方程为y =-3x -3,设H (x ,-3x -3)(-1≤x ≤0),则AH →=(x ,-3x -23),FH →=⎝⎛⎭⎫x -34,-3x +34, 所以FH →·AH →=⎝⎛⎭⎫x -34x +⎝⎛⎭⎫3x -34(3x +23)=4x 2+92x -32, 因为-1≤x ≤0,所以FH →·AH →∈⎣⎡⎦⎤-17764,-32.方法二 设BH →=tBC →(0≤t ≤1),则AH →=AB →+BH →=AB →+tBC →=AB →+tAD →. 连接AC (图略),因为E 为CD 的中点, 所以AE →=12(AC →+AD →)=12(AB →+2AD →), AF →=AE →+EF →=32AE →=34(AB →+2AD →), 所以FH →·AH →=(AH →-AF →)·AH →=AH →2-AF →·AH →=(AB →+tAD →)2-34(AB →+2AD →)·(AB →+tAD →)=4+4t 2+4t -34(4+2t +4+8t ) =4+4t 2+4t -6-15t 2=4t 2-72t -2. 设y =4t 2-72t -2,0≤t ≤1,根据二次函数的图象与性质可知,函数y =4t 2-72t -2,0≤t ≤1的最小值在t =716处取得,为-17764,最大值在t =1处取得,为-32, 所以FH →·AH →的取值范围是⎣⎡⎦⎤-17764,-32. 8.已知向量a ,b 满足|a |=1,|b |=3,则|2a +b |+|2a -b |的最小值是________,最大值是________.答案 6 213解析 ∵|2a +b |+|2a -b |≥|2a +b +2a -b |=4|a |=4,且|2a +b |+|2a -b |≥|2a +b -2a +b |=2|b |=6,∴|2a +b |+|2a -b |≥6,当且仅当2a +b 与2a -b 反向时取等号.此时|2a +b |+|2a -b |的最小值为6.∵|2a +b |+|2a -b |2≤|2a +b |2+|2a -b |22 =|2a |2+|b |2=13, ∴|2a +b |+|2a -b |≤213,当且仅当|2a +b |=|2a -b |时取等号, ∴|2a +b |+|2a -b |的最大值为213.。
平面向量的应用重难点解析版
突破6.4 平面向量的应用一、学情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的 运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高 考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、学法指导与考点梳理考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2),b ≠0 垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。
考点二 正弦定理和余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C常见 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解重难点题型突破1 平面向量在平面几何中的应用(奔驰定理)例1、(1).(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】 【分析】利用三角形面积公式,推出点O 到三边距离相等。
高中数学_《平面向量的概念及其线性运算》教学设计学情分析教材分析课后反思
《平面向量的概念及其线性运算》教学设计一、教材分析:本节课对平面向量的概念及其线性运算的复习,是对学生所学知识的融通和运用,也是学生对学习平面向量的总结和探索。
正确理解和熟练掌握平面向量的概念及其线性运算是之后学好空间向量的关键。
二、学情分析:本节课是在学习平面向量的概念及其线性运算,继续深入学习,是一节复习课。
学生已经掌握了平面向量的概念及其线性运算的基础知识,,这为本节课的学习提供了一定的知识保障,在此基础上,本节课将继续加深学生对基础知识的理解,加强平面向量的线性运算,这也是为后面学习空间向量内容做好知识储备的课.为了让学生能更加直观、形象地理解平面向量的概念及其线性运算,将采用多媒体课件进行演示,以提高学生的学习兴趣,使之能达到良好的教学效果。
三、教学目标:1、了解向量的实际背景;2、理解平面向量的概念,理解两个向量相等的含义;3、理解向量的几何表示;4、掌握向量加法、减法的运算,并理解其几何意义;5、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;6、了解向量线性运算的性质及其几何意义;四、教学重点和教学难点:(一)教学重点:1、理解平面向量的概念,理解两个向量相等的含义;2、理解向量的几何表示;3、掌握向量加法、减法的运算,并理解其几何意义;4、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;5、了解向量线性运算的性质及其几何意义;(二)教学难点:平面向量的线性运算以及共线定理的应用五、教学工具:多媒体、粉笔等。
六、教学过程:向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba+=+;(2)结合律:cbacba++=++)()(减法求a与b的相反向量-b的和的运算)(baba-+=-相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量的相反向量为0教师展示表格,布置任务学生加深学生对新知识的理解共线.其中错误说法的序号是________. 考点二 平面向量的线性运算(基础之翼练牢固)[题组练通]1.在△ABC 中,D 为AB 的中点,点E 满足EC EB 4=,则ED = ( ) A. AD AB 3465- B. AD AB 6534- C. AD AB 3465+ D. AD AB 6534+2.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE 等于 ( )A.AD AB 2132+ B.AD AB 3221+ C.AD AB 3165+ D.AD AB 6531+ 3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若BC AB AO μλ+=,其中λ,μ∈R ,则λ+μ等于 ( )教师板书讲题过程教师提出问题学生自主完成,并回答问题培养学生语音表达能力,激发学生七、板书设计:平面向量的概念及其线性运算一、知识梳理二、典例分析1、向量的有关概念考点一:2、向量的线性运算考点二:3、共线向量定理考点三:八、教学反思:总体情况良好,基本满意,大多数学生可以换换掌握!九、作业反馈:分析作业中存在的问题,查找原因,并进行总结和反馈。
数形结合在初中数学的应用
数形结合在初中数学的应用
数形结合是初中数学中非常重要的一个概念,它是指在分析解决数学问题时,既可以运用数学知识,也可以利用几何图形来帮助解决问题。
数形结合在初中数学的应用非常广泛,例如:
1.求解面积和体积问题:我们可以通过利用几何图形来求解各种面积和体积问题,例如求解长方形、正方形、圆形、三角形等图形的面积,以及球、圆柱、圆锥等图形的体积。
2.利用相似三角形求解问题:我们可以通过数形结合的方法,利用相似三角形来解决各种数学问题,例如求解直角三角形的斜边长度、求解比例问题等等。
3.利用图形坐标系求解问题:我们可以通过建立图形坐标系,将数学问题转化为几何问题,利用几何图形来解决各种问题,例如求解直线方程、解决距离问题等。
4.利用平面向量求解问题:我们可以通过利用平面向量的性质和特点,来解决各种数学问题,例如求解向量的模长、向量的方向、向量的加减等等。
总之,数形结合在初中数学中的应用是非常广泛的,它能够帮助我们更好地理解和掌握各种数学知识,提高我们的数学思维和解决问题的能力。
- 1 -。
数形结合思想在数学教学中的运用论文
毕业论文〔设计〕材料题目:数形结合思想在数学教学中的应用
学生姓名:
学生学号:
系别:
专业:
届别:
指导教师:
2021年12月10日
填写说明
1、本材料包罗淮南师范学院本科毕业论文〔设计〕任务书、开题陈述以及毕业论文〔设计〕评审表三局部内容。
2、本材料填写挨次依次为:
〔1〕指导教师下达毕业论文〔设计〕任务书;
〔2〕学生按照毕业论文〔设计〕任务书的要求,在文献查阅的根底上撰写开题陈述,送交指导教师审阅并签字承认;
〔3〕毕业论文〔设计〕工作后期,学生填写毕业论文〔设计〕主要内容,连同毕业论文〔设计〕全文一并送交指导教师审阅,指导教师按照学生实际完成的论文〔设计〕质量进行评价;
〔4〕指导教师将此表连同学生毕业论文〔设计〕全文一并送交评阅教师评阅。
3、指导教师、评阅教师对学生毕业论文〔设计〕的成就评定均采用百分制。
4、毕业论文〔设计〕辩说记录不包罗在此表中。
一、毕业论文〔设计〕任务书
二、毕业论文〔设计〕开题陈述
三、毕业论文〔设计〕评审表。
数形结合,巧学向量——《数学》第七章“平面向量”教学建议
面
平 面 向量 的 内积
丽面
平 面 向 量 内 积 的运 算
三、 教 学 建 议 向量是现实世界的重要数学模型 。 教 学 过 程 中教 师
2 . 概念 核心 要素 : 向量是 既有 大小 又有 方 向 的量 。 “ 大 小” 反映 向量 “ 数” 的特 征 , “ 方 向” 反 映 向量 “ 形” 的特征 。 3 . 思 考交 流 ( 教材 第 3 4页 ) 能够得 到 的结论 是 : 向
第 2课 时
本课 学习基 于向量 的概 念及其 表示方 法等 内容的
学 习。
1 . 探究 : 在 对 现 实模 型 思 考 的基 础 上 引 出 和 向量 平 行四边形法则 , 通过实践 、 思 考 发 现 两 种 法 则 之 间 的 区
1 . 探究 : 通 过 探 究 表 示 运 动 各 过 程 向量 的 大小 与 方 向之 间 的 关 系 , 思考: ( 1 ) 当 两个 向量 大小 相 同 , 方 向相 同 与 相 反 这 两 种 不 同情 况 下 两 个 向 量 之 间 的 关 系 ; ( 2 )
自 由 向量 的 概 念 , 让 学生通过 探究 、 观察 、 类 比、 实 践 感 受 向量 在 保 持 大 小 和 方 向 不 变 的情 况 下 是 可 以 自由 移 动 的这 一 事 实 。 本 节 的 例 题 习 题 设计 注 重 学 生 动手 能 力 的培 养 , 通过 “ 练” 巩 固对 概 念 的 理 解 。运 用 探 究 、 发现、 归纳、 类 比等方法 , 让 学 生 发 现 向量 在 现 实 生 活 中 的 意 义 和作 用 , 激 发 学 生 学 习 向量 的 兴 趣 与 热 情 . 为 后 面 的 学 习奠 定 基 础 。
21 平面向量中最值、范围问题-备战2018高考技巧大全之高中数学黄金解题模板含解析
【高考地位】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如:向量的模、数量积、夹角及向量的系数.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中高档题. 【方法点评】方法一 利用基本不等式求平面向量的最值使用情景:一般平面向量求最值问题解题模板:第一步 利用向量的概念及其基本运算将所求问题转化为相应的等式关系;第二步 运用基本不等式求其最值问题; 第三步 得出结论。
例1.已知点A 在线段BC 上(不含端点),O 是直线BC 外一点,且20OA aOB bOC --=,则221a ba b b+++的最小值是___________ 【答案】222例2 如右图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,N M 两点,且,AM x AB AN y AC ==,则2x y +的最小值为( )A .2B .13C .3223+ D .34【答案】C【变式演练1】如图所示,已知点G 是ABC ∆的重心,过点G 作直线与,AB AC 两边分别交于,M N 两点,且,AM x AB AN y AC ==,则x y +的最小值为( )A .2B .13C .43D .34【答案】CMNA BGQ考点:向量共线,基本不等式求最值【变式演练2】已知点A(1, 1),B(4,0),C(2,2).平面区域D由所有满足AP AB ACλμ=+(1≤≤a,1≤≤b)的点P(x,y)组成的区域.若区域D的面积为8,则a+b的最小值为.【答案】4考点:1、平面向量的线性运算;2、基本不等式. 【变式演练3】平行四边形ABCD 中,60,1,2,BAD AB AD P ∠===为平行四边形内一点,且22AP =,若),(R AD AB AP ∈+=μλμλ,则2u λ+的最大值为 . 6【解析】试题分析:对),(R AD AB AP ∈+=μλμλ两边平方可得()()22AP AB AD λμ=+可化为222222APAB AB AD ADλλμμ=+⋅⋅+,据已知条件可得22122λμ=+≥,即λμ≤,又()22212223λλμ=++=+≤,则λ+≤. 考点:向量的数量积运算;基本不等式方法二 利用向量的数量积m n m n ⋅≤求最值或取值范围使用情景:涉及数量积求平面向量最值问题解题模板:第一步 运用向量的加减法用已知向量表示未知向量;第二步 运用向量的数量积的性质求解; 第三步 得出结论。
高三数学大一轮复习 5.2平面向量基本定理及坐标表示教案 理 新人教A版
§5.2 平面向量基本定理及坐标表示2014高考会这样考 1.考查平面向量基本定理的应用;2.考查向量的坐标表示和向量共线的应用.复习备考要这样做 1.理解平面向量基本定理的意义、作用;2.运用定理表示向量,然后再进行向量运算. 1. 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2. 平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3. 平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0. [难点正本 疑点清源] 1. 基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a 都可被这个平面的一组基底e 1,e 2线性表示,且在基底确定后,这样的表示是唯一的.2. 向量坐标与点的坐标的区别在平面直角坐标系中,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与a 的坐标统一为(x ,y ),但应注意其表示形式的区别,如点A (x ,y ),向量a =OA →=(x ,y ).当平面向量OA →平行移动到O 1A 1→时,向量不变即O 1A 1→=OA →=(x ,y ),但O 1A 1→的起点O 1和终点A 1的坐标都发生了变化.1. 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案 43解析 因为AC →=AB →+AD →,又AE →=AD →+12AB →,AF →=AB →+12AD →,所以AC →=λAE →+μAF →=⎝ ⎛⎭⎪⎫λ+12μAD →+⎝ ⎛⎭⎪⎫12λ+μAB →,得到λ+12μ=1,12λ+μ=1,两式相加得λ+μ=43.2. 在▱ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),则向量BD →的坐标为__________.答案 (-3,-5)解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=BC →-AB →=(-3,-5).3. 已知向量a =(1,2),b =(-3,2),若k a +b 与b 平行,则k =________.答案 0解析 由k a +b 与b 平行得-3(2k +2)=2(k -3),∴k =0. 4. 若向量a =(1,1),b =(-1,1),c =(4,2),则c 等于( ) A .3a +b B .3a -b C .-a +3bD .a +3b答案 B解析 由已知可设c =x a +y b ,则⎩⎪⎨⎪⎧4=x -y 2=x +y ,∴⎩⎪⎨⎪⎧x =3y =-1.5. (2011·广东)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( )A.14B.12C .1D .2答案 B解析 a +λb =(1,2)+λ(1,0)=(1+λ,2),而c =(3,4),由(a +λb )∥c 得4(1+λ)-6=0,解得λ=12.题型一 平面向量基本定理的应用例1 已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM →=xAB →,AN →=yAC →,求1x +1y的值.思维启迪:以AB →,AC →为基底来表示向量,建立x ,y 的关系. 解 根据题意知G 为三角形的重心, 故AG →=13(AB →+AC →),MG →=AG →-AM →=13(AB →+AC →)-xAB →=⎝ ⎛⎭⎪⎫13-x AB →+13AC →,GN →=AN →-AG →=yAC →-AG →=yAC →-13(AB →+AC →)=⎝ ⎛⎭⎪⎫y -13AC →-13AB →,由于MG →与GN →共线,根据共线向量定理知 MG →=λGN →⇒⎝ ⎛⎭⎪⎫13-x AB →+13AC →=λ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫y -13AC →-13AB →,∵AB →,AC →不共线, ∴⎩⎪⎨⎪⎧13-x =-13λ13=λ⎝ ⎛⎭⎪⎫y -13⇒13-x -13=13y -13⇒x +y -3xy =0, 两边同除以xy 得1x +1y=3.探究提高 利用基底表示未知向量,实质就是利用向量的加、减法及数乘进行线性运算;向量的表示是向量应用的前提.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为_____.答案311解析 设|BP →|=y ,|PN →|=x ,则AP →=AN →+NP →=14AC →-x x +yBN →,①AP →=AB →+BP →=AB →+y x +yBN →,②①×y +②×x 得AP →=x x +y AB →+y 4x +yAC →,令y 4x +y =211,得y =83x ,代入得m =311.题型二 向量坐标的基本运算例2 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b ,(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M 、N 的坐标及向量MN →的坐标.解 由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.(3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN →=ON →-OC →=-2b ,∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N (9,2).∴MN →=(9,-18).探究提高 向量的坐标运算主要是利用加、减、数乘运算法则进行.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则.已知平行四边形的三个顶点分别是A (4,2),B (5,7),C (-3,4),则第四个顶点D 的坐标是__________________.答案 (-4,-1)或(12,5)或(-2,9) 解析 设顶点D (x ,y ).若平行四边形为ABCD ,则由AB →=(1,5), DC →=(-3-x,4-y ),得⎩⎪⎨⎪⎧-3-x =1,4-y =5,所以⎩⎪⎨⎪⎧x =-4,y =-1;若平行四边形为ACBD ,则由AC →=(-7,2), DB →=(5-x,7-y ),得⎩⎪⎨⎪⎧5-x =-7,7-y =2,所以⎩⎪⎨⎪⎧x =12,y =5;若平行四边形为ABDC ,则由AB →=(1,5), CD →=(x +3,y -4),得⎩⎪⎨⎪⎧x +3=1,y -4=5,所以⎩⎪⎨⎪⎧x =-2,y =9.综上所述,第四个顶点D 的坐标为(-4,-1)或(12,5)或(-2,9). 题型三 共线向量的坐标表示例3 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1),请解答下列问题:(1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ;(3)若d 满足(d -c )∥(a +b ),且|d -c |=5,求d . 思维启迪:(1)向量相等对应坐标相等,列方程解之. (2)由两向量平行的条件列方程解之.(3)设出d =(x ,y ),由平行关系列方程,由模为5列方程,联立方程组求解. 解 (1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎪⎨⎪⎧-m +4n =32m +n =2,得⎩⎪⎨⎪⎧m =59n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k )-(-5)(2+k )=0, ∴k =-1613.(3)设d =(x ,y ),d -c =(x -4,y -1),a +b =(2,4),由题意得⎩⎪⎨⎪⎧4x -4-2y -1=0x -42+y -12=5,解得⎩⎪⎨⎪⎧x =3y =-1或⎩⎪⎨⎪⎧x =5y =3,∴d =(3,-1)或d =(5,3).探究提高 (1)运用向量的坐标表示,使向量的运算完全代数化,将数与形有机的结合. (2)根据平行的条件建立方程求参数,是解决这类题目的常用方法,充分体现了方程思想在向量中的应用.(2011·北京)已知向量a =(3,1),b =(0,-1),c =(k ,3).若(a -2b )与c 共线,则k =________. 答案 1解析 a -2b =(3,1)-2(0,-1)=(3,3), 又∵(a -2b )与c 共线,∴(a -2b )∥c , ∴3×3-3×k =0,解得k =1.忽视平面向量基本定理的使用条件致误典例:(12分)已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,设t ∈R ,如果3a =c,2b =d ,e=t (a +b ),那么t 为何值时,C ,D ,E 三点在一条直线上?易错分析 本题可以根据向量共线的充要条件列出等式解决,但在得出等式后根据平面向量基本定理列式解决时,容易忽视平面向量基本定理的使用条件,出现漏解,漏掉了当a ,b 共线时,t 可为任意实数这个解. 规范解答解 由题设,知CD →=d -c =2b -3a ,CE →=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE →=kCD →,即(t -3)a +t b =-3k a +2k b , 整理得(t -3+3k )a =(2k -t )b .[4分] ①若a ,b 共线,则t 可为任意实数;[7分]②若a ,b 不共线,则有⎩⎪⎨⎪⎧t -3+3k =0,2k -t =0,解之得t =65.[10分]综上,可知a ,b 共线时,t 可为任意实数;a ,b 不共线时,t =65.[12分]温馨提醒 平面向量基本定理是平面向量知识体系的基石,在解题中有至关重要的作用,在使用时一定要注意两个基向量不共线这个条件. 方法与技巧1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 2.向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键,通过坐标运算可将一些几何问题转化为代数问题处理,从而向量可以解决平面解析几何中的许多相关问题.3.在向量的运算中要注意待定系数法、方程思想和数形结合思想的运用. 失误与防范1.要区分点的坐标和向量坐标的不同,向量的坐标等于表示向量的有向线段的终点坐标减始点坐标;向量坐标中既有大小的信息,又有方向的信息.2.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,所以应表示为x 1y 2-x 2y 1=0.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分) 1. 与向量a =(12,5)平行的单位向量为( )A.⎝⎛⎭⎪⎫1213,-513B.⎝ ⎛⎭⎪⎫-1213,-513C.⎝ ⎛⎭⎪⎫1213,513或⎝ ⎛⎭⎪⎫-1213,-513D.⎝ ⎛⎭⎪⎫±1213,±513答案 C解析 设e 为所求的单位向量, 则e =±a |a |=±⎝ ⎛⎭⎪⎫1213,513. 2. 如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A解析 由题意知OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13.3. 已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32bB.12a -32b C .-32a -12bD .-32a +12b答案 B解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎪⎨⎪⎧-1=λ+μ2=λ-μ,∴⎩⎪⎨⎪⎧λ=12μ=-32,∴c =12a -32b .4. 在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)答案 B解析 BC →=3PC →=3(2PQ →-PA →)=6PQ →-3PA → =(6,30)-(12,9)=(-6,21). 二、填空题(每小题5分,共15分)5. 若三点A (2,2),B (a,0),C (0,b ) (ab ≠0)共线,则1a +1b的值为________.答案 12解析 AB →=(a -2,-2),AC →=(-2,b -2), 依题意,有(a -2)(b -2)-4=0, 即ab -2a -2b =0,所以1a +1b =12.6. 已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.答案 12解析 因为a =(1,2),b =(x,1),u =a +2b ,v =2a -b , 所以u =(1,2)+2(x,1)=(2x +1,4),v =2(1,2)-(x,1)=(2-x,3),又因为u ∥v ,所以3(2x +1)-4(2-x )=0, 即10x =5,解得x =12.7. 在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足OC →=23OA →+13OB →,则|AC →||AB →|=________.答案 13解析 ∵OC =23OA →+13OB →,∴OC →-OA →=-13OA →+13OB →=13(OB →-OA →),∴AC →=13AB →,∴|AC →||AB →|=13.三、解答题(共22分)8. (10分)已知a =(1,2),b =(-3,2),是否存在实数k ,使得k a +b 与a -3b 共线,且方向相反? 解 若存在实数k ,则k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4).若向量k a +b 与向量a -3b 共线,则必有(k -3)×(-4)-(2k +2)×10=0,解得k =-13. 这时k a +b =⎝ ⎛⎭⎪⎫-103,43,所以k a +b =-13(a -3b ). 即两个向量恰好方向相反,故题设的实数k 存在.9. (12分)如图所示,M 是△ABC 内一点,且满足条件AM →+2BM →+3CM →=0,延长CM 交AB 于N ,令CM →=a ,试用a 表示CN →. 解 因为AM →=AN →+NM →,BM →=BN →+NM →, 所以由AM →+2BM →+3CM →=0,得 (AN →+NM →)+2(BN →+NM →)+3CM →=0, 所以AN →+3NM →+2BN →+3CM →=0.又因为A ,N ,B 三点共线,C ,M ,N 三点共线,由平面向量基本定理,设AN →=λBN →,CM →=μNM →, 所以λBN →+3NM →+2BN →+3μNM →=0. 所以(λ+2)BN →+(3+3μ)NM →=0.由于BN →和NM →不共线,由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2=0,3+3μ=0,所以⎩⎪⎨⎪⎧λ=-2,μ=-1.所以CM →=-NM →=MN →,CN →=CM →+MN →=2CM →=2a .B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于( ) A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)答案 A解析 方法一 设b =(x ,y ),由已知条件⎩⎪⎨⎪⎧x 2+y 2=35,x -2y5 x 2+y2=-1,整理得⎩⎪⎨⎪⎧x 2+y 2=45,x -2y =-15.解得⎩⎪⎨⎪⎧x =-3,y =6,∴b =(-3,6).方法二 设b =(x ,y ),由已知条件⎩⎨⎧x 2+y 2=35,y +2x =0,解得⎩⎪⎨⎪⎧x =-3,y =6,或⎩⎪⎨⎪⎧x =3,y =-6,(舍去),∴b =(-3,6).方法三 ∵|a |=5,∴1|a |a =⎝ ⎛⎭⎪⎫15,-25,则b =-35⎝⎛⎭⎪⎫1|a |a =(-3,6). 2. 已知平面向量a =(1,2),b =(-2,m ),且a∥b ,则2a +3b 等于( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)答案 C 解析 由a =(1,2),b =(-2,m ),且a∥b ,得1×m =2×(-2)⇒m =-4,从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).3. 已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4,设OC →= λOA →+OB →(λ∈R ),则λ的值为( ) A .1B.13C.12D.23答案 D解析 过C 作CE ⊥x 轴于点E (图略).由∠AOC =π4,知|OE |=|CE |=2, 所以OC →=OE →+OB →=λOA →+OB →,即OE →=λOA →,所以(-2,0)=λ(-3,0),故λ=23. 二、填空题(每小题5分,共15分)4. △ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若p =(a +c ,b ),q =(b -a ,c -a ),且p∥q ,则角C =________.答案 60°解析 因为p∥q ,则(a +c )(c -a )-b (b -a )=0,所以a 2+b 2-c 2=ab ,a 2+b 2-c 22ab =12, 结合余弦定理知,cos C =12, 又0°<C <180°,∴C =60°.5. 已知A (7,1)、B (1,4),直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a =________. 答案 2解析 设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎪⎨⎪⎧ x -7=21-x y -1=24-y ,解得⎩⎪⎨⎪⎧ x =3y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2. 6. 设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A 、B 、C三点共线,则1a +2b的最小值是________. 答案 8解析 据已知得AB →∥AC →,又∵AB →=(a -1,1),AC →=(-b -1,2),∴2(a -1)-(-b -1)=0,∴2a +b =1,∴1a +2b=2a +b a +4a +2b b =4+b a +4a b ≥4+2b a ·4a b=8, 当且仅当b a =4a b ,即a =14,b =12时取等号, ∴1a +2b的最小值是8. 三、解答题7. (13分)已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →.(1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.(1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2).当点M 在第二或第三象限时,有⎩⎪⎨⎪⎧ 4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →,∴A 、B 、M 三点共线.(3)解 当t 1=a 2时,OM →=(4t 2,4t 2+2a 2).又AB →=(4,4),OM →⊥AB →,∴4t 2×4+(4t 2+2a 2)×4=0,∴t 2=-14a 2,故OM →=(-a 2,a 2). 又|AB →|=42,点M 到直线AB :x -y +2=0的距离 d =|-a 2-a 2+2|2=2|a 2-1|.∵S △ABM =12, ∴12|AB |·d =12×42×2|a 2-1|=12, 解得a =±2,故所求a 的值为±2.。
平面向量二级结论集合 (1)
有关垂直的结论(数形结合):满足BD和CF垂直的时候,有下列的数量关系:向量绝对值不等式:求数量积的两个重要模型:后续再利用条件进行化简。
极化恒等式三角形模型:极化恒等式的作用主要在于:它可以将两个向量的数量积转化为这两个向量的“和向量”与“差向量”,因此,当两个向量的“和向量”或“差向量”为定向量时,常常可以考虑利用极化恒等式进行转化求解.公式变形:向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的极化恒等式平行四边形模型:平行四边形两条对角线的平分和等于两条邻边平分和的两倍.矩形的两个小性质:对角线向量定理:需要说明的是,对角线向量定理①和后文所出现的式子②③既适用于平面向量也适用于空间向量。
当用于空间向量的适合,大家把这个图形想象成为三棱锥D-ABC即可,AC和BD成为三棱锥的一组对棱,如下图所示。
这就是对角线向量定理,它表明四边形的两条对角线对应向量的数量积可用四条边的长度表示。
推论1:式子②表明,当对角线相互垂直时,四边形两组对边的平方和相等。
推论2:向量中三点共线的结论:举个栗子:向量等和线(“爪”字型图及性质):之前基础上的拓展定比分点公式的向量表示与坐标表示:向量与三角形四心:(1)重心三角形三条中线交点。
三角形的重心分中线两段线段长度比为2:1,且分的三个三角形面积相等(2)垂心(3)内心(4)外心垂直平分线的交点,到三个顶点的距离相等。
(5)外心和垂心结合奔驰定理:梅涅劳斯(Menelaus)定理简介(作为平面几何内容对向量很有贡献):如果一直线顺次与三角形ABC的三边AB、BC、CA或其延长线交于M、N、K三点,则:证明:过顶点B作AC的平行线与截线交于E,则有:。
数形结合在高中数学教学中的巧妙应用
数形结合在高中数学教学中的巧妙应用数形结合是高中数学教学中的一个重要部分,它是数学与几何的深度融合,也是把具体图形化为数学概念的一种实用技巧。
数形结合在高中数学教学中的应用非常广泛,可以帮助学生深刻理解各种数学概念和定理,增强学生对数学的兴趣和学科钻研能力,下面将来介绍数形结合在高中数学教学中的详细应用。
1.平面向量与几何关系的数形结合平面向量是高中数学中的一个重要概念,它与几何关系的数形结合可以帮助学生更直观地理解平面向量的性质和作用。
例如,在解平面向量共线性问题时,我们可以将向量作为几何图形表示出来,通过数学分析这些图形之间的几何关系,来判断向量是否共线;在证明平面向量的一些基本定理时,我们也可以利用图形直观地验证定理的正确性。
这种数形结合的方法既可以提高学生的几何直观能力,又可以加深其对平面向量理论的认识和理解。
2.集合论中的数形结合集合论是高中数学中的重要分支,它研究集合和元素的关系,是数学中最基本和最抽象的概念之一。
在集合论中,我们可以利用数形结合来进一步深入理解集合和元素之间的关系。
例如,在研究集合的交、并、差等操作时,我们可以用图形表示出它们之间的集合关系,通过直观的方式来理解集合操作的本质。
同时,在研究包含问题时,我们也可以利用集合的图形来方便地表示出它们之间的元素关系。
3.函数图像的数形结合函数是高中数学中的重要概念,它是用来描述自变量和因变量之间的对应关系。
在研究函数图像时,我们可以利用数形结合方法来增加学生的视觉感受力,使得学生更加直观地理解函数的性质和特点。
例如,在研究一元一次和二次函数的图像时,我们可以用几何图形代表函数的性质和特点,来直观地理解函数的增减性、单调性、零点、极值以及对称轴等特征,从而提高学生的图像思维能力和实际应用能力。
立体几何是高中数学中的一项重要内容,它是数学与空间结合的一种具体体现。
在研究立体几何的问题时,我们可以利用数形结合的方法来进行分析和推理。
第二章平面向量及其应用章末总结提升课件高一下学期数学北师大版
中同样适用,但是这里的“同类项”“公因式”是指向量,实数看作是向量的系
数.
(2)方程法:向量也可以通过列方程来解,把所求向量当作未知数,利用解方
程的方法求解,同时在运算过程中多注意观察,恰当地运用运算律,简化运
算.
变式训练 1(1)如图所示,在正方形 ABCD 中,M 是 BC 的中点,若
的侵袭.
规律方法
用向量观点解题,关键在于找到好的切入点,如果题中的速度
(既有大小,又有方向)、距离都可以用向量表达.本题可根据台风中心与城
市间的距离不超过台风侵袭的半径来建立向量不等式,再根据模长公式,求
出时间.
变式训练4一艘船以5 km/h的速度向垂直于对岸的方向行驶,该船实际航行
方向与水流方向成30°角.求水流速度与船的实际速度.
和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸
显最本质的特征,它是解决问题时常用的方法.在解决平面向量的实际问题
时,结合题目情景,可将问题抽象出一个几何图形(一般利用三角形、平行
四边形、矩形为主),可以直观形象地反映问题中的元素和量的关系,有助
于提升学生的直观想象的思维能力.
【例3】 已知向量a与b不共线,且|a|=|b|≠0,则下列结论一定正确的是( A)
所以 − =λ( − ),又 2 = ,
所以 =(1-λ)+λ=3(1-λ)+λμ =3(1-λ)a+λμb,由于 =
所以
3
1
3(1-λ)=4,λμ=4,解得
3
1
λ=4,μ=3.
3
1
a+4b,
2014高考新课标数学考点总动员 考点4 数形结合,灵活多变,畅游平面向量的世界
一.专题综述平面向量融数、形于一体,具有几何与代数的“双重身份”,从而它成为了中学数学知识交汇和联系其他知识点的桥梁.平面向量的运用可以拓宽解题思路和解题方法.在高考试题中,其一主要考查平面向量的性质和运算法则,以及基本运算技能,考查考生掌握平面向量的和、差、数乘和内积的运算法则,理解其几何意义,并能正确的进行计算;其二是考查向量的坐标表示,向量的线性运算;其三是和其它数学知识结合在一起,如和曲线、数列等知识结合.向量的平行与垂直,向量的夹角及距离,向量的物理、几何意义,平面向量基本定理,向量数量积的运算、化简与解析几何、三角、不等式、数列等知识的结合,始终是命题的重点.二.考纲解读1.理解平面向量的概念和向量相等的含义.理解向量的几何表示.掌握向量加法、减法的运算,并理解其几何意义.2.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.了解向量线性运算的性质及其几何意义.3.理解平面向量的基本定理及其意义.掌握平面向量的正交分解及其坐标表示.会用坐标表示平面向量的加法、减法与数乘运算.理解用坐标表示的平面向量共线的条件.4.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.掌握数量积的坐标表达式,会进行平面向量数量积的运算.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.三.2012年高考命题趋向1.对向量的加减运算及实数与向量的积的考查向量的加减运算以及实数与向量的积是高考中常考查的问题,常以选择题的形式考查,特别是以平面几何为载体综合考查向量加减法的几何意义,以及实数与向量的积的问题经常出现在高考选择、填空题中,但是难度不大,为中、低档题.2.对向量与其他知识相结合问题的考查平面向量与三角、解析几何等知识相交汇的问题是每年高考的必考内容,并且均出现在解答题中,所占分值较高.其中向量与三角相结合的问题较容易,属中、低档题;而向量与解析几何等知识的结合问题则有一定难度,为中、高档题. 3.在复习中要把知识点、训练目标有机结合.重点掌握相关概念、性质、运算公式、法则等.明确平面向量具有几何形式和代数形式的双重身份,能够把向量的非坐标公式和坐标公式进行有机结合,注意“数”与“形”的相互转换.在复习中要注意分层复习,既要复习基本概念、基本运算,又要能把向量知识和其它知识(如曲线、数列、函数、三角等)进行横向联系,以体现向量的工具性.四.高频考点解读考点一向量的几何运算例1 [2011·四川卷] 如图1-2,正六边形ABCDEF 中,BA →+CD →+EF →=( )图1-2A .0 B.BE → C.AD → D.CF → 【答案】D【解析】 BA →+CD →+EF →=BA →+AF →-BC →=BF →-BC →=CF →,所以选D. 【解题技巧点睛】当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量MN ON OM =-(其中O 为我们所需要的任何一个点),这个法则就是终点向量减去起点向量.考点三 向量平行与垂直例4[2011·广东卷] 已知向量a =(1,2),b =(1, 0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12C .1D .2 【答案】B【解析】 因为a +λb =(1,2)+λ(1,0)=(1+λ,2),又因为(a +λb )∥c ,所以(1+λ)×4-2×3=0,解得λ=12.例5[2011·课标全国卷] 已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k =________. 【答案】1 【解析】 由题意,得(a +b )·(k a -b )=k ||a 2-a ·b +k a ·b -||b 2=k +(k -1)a ·b -1=(k -1)(1+a ·b )=0,因为a 与b 不共线,所以a ·b ≠-1,所以k -1=0,解得k =1.考点四 向量的数量积、夹角与模例6[2011·广东卷] 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c·(a +2b )=( )A .4B .3C .2D .0 【答案】D【解析】 因为a ∥b 且a ⊥c ,所以b ⊥c ,所以c·(a +2b )=c·a +2b·c =0.例7[2011·湖南卷] 在边长为1的正三角形ABC 中,设BC →=2BD →,CA →=3CE →,则AD →·BE →=________.【答案】-14【解析】 由题知,D 为BC 中点,E 为CE 三等分点,以BC 所在的直线为x 轴,以AD 所在的直线为y 轴,建立平面直角坐标系,可得A ⎝⎛⎭⎫0,32,D (0,0),B ⎝⎛⎭⎫-12,0,E ⎝⎛⎭⎫13,36,故AD →=⎝⎛⎭⎫0,-32,BE →=⎝⎛⎭⎫56,36,所以AD →·BE →=-32×36=-14.例8[2011·江西卷] 已知|a |=|b |=2,(a +2b )·(a -b )=-2,则a 与b 的夹角为________.【答案】 π3【解析】 设a 与b 的夹角为θ,由(a +2b )(a -b )=-2得|a |2+a ·b -2|b |2=4+2×2×cos θ-2×4=-2,解得cos θ=12,∴θ=π3.例9[2011·课标全国卷] 已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎡⎭⎫0,2π3;p 2:|a +b |>1⇔θ∈⎝⎛⎦⎤2π3,π p 3:|a -b |>1⇔θ∈⎣⎡⎭⎫0,π3;p 4:|a -b |>1⇔θ∈⎝⎛⎦⎤π3,π. 其中的真命题是( )A .p 1,p 4B .p 1,p 3C .p 2,p 3D .p 2,p 4 【答案】A【解析】 因为||a +b >1⇔||a 2+2a ·b +||b 2>1⇔a ·b >-12⇔||a ||b cos θ=cos θ>-12⇔θ∈⎣⎡⎭⎫0,2π3,所以p 1为真命题,p 2为假命题.又因为||a -b >1⇔||a 2-2a ·b +||b 2>1⇔a ·b <12⇔||a ||b cos θ=cos θ<12⇔θ∈⎝⎛⎦⎤π3,π,所以p 4为真命题,p 3为假命题. 【解题技巧点睛】求向量的数量积的公式有两个:一是定义式a ·b=|a||b|cos θ;二是坐标式a ·b=x 1x 2+y 1y 2.定义式的特点是具有强烈的几何含义,需要明确两个向量的模及夹角,夹角的求解方法灵活多样,一般通过具体的图形可确定,因此采用数形结合思想是利用定义法求数量积的一个重要途径.坐标式的特点是具有明显的代数特征,解题时需要引入直角坐标系,明确向量的坐标进行求解,即向量问题“坐标化”,使得问题操作起来容易、方便.考点五 向量的应用例10[2011·山东卷] 设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2,已知平面上的点C ,D 调和分割点A ,B ,则下面说法正确的是( ) A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点 C .C 、D 可能同时在线段AB 上D .C 、D 不可能同时在线段AB 的延长线上 【答案】D【解析】 若C 、D 调和分割点A ;B ,则AC →=λAB →(λ∈R ),AD →=μAB →(μ∈R ),且1λ+1μ=2.对于A :若C 是线段AB 的中点,则AC →=12AB →⇒λ=12⇒1μ=0,故A 选项错误;同理B 选项错误;对于C :若C 、A 同时在线段AB 上,则0<λ<1,0<μ<1⇒1λ+1μ>2,C 选项错误;对于D :若C 、D 同时在线段AB 的延长线上,则λ>1,μ>1⇒1λ+1μ<2,故C 、D 不可能同时在线段AB 的延长线上,D 选项正确.例11[2011·福建卷] 已知O 是坐标原点,点A (-1,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则OA →·OM →的取值范围是( ) A .[-1,0] B .[0,1] C .[0,2] D .[-1,2] 【答案】C【解析】 画出不等式组表示的平面区域(如图1-2), 又OA →·OM →=-x +y ,取目标函数z =-x +y ,即y =x +z ,作斜率为1的一组平行线,当它经过点C (1,1)时,z 有最小值,即z min =-1+1=0; 当它经过点B (0,2)时,z 有最大值,即z max =-0+2=2.∴ z 的取值范围是[0,2],即OA →·OM →的取值范围是[0,2],故选C. 例12[2011·陕西卷] 叙述并证明余弦定理.【解答】 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .证法一:如图1-9,a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →) =AC →2-2AC →·AB →+AB →2 =AC →2-2|AC →|·|AB →|cos A +AB →2 =b 2-2bc cos A +c 2, 即a 2=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .证法二:已知△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,以A 为原点,AB 所在直线为x 轴建立直角坐标系(如图1-10),则C (b cos A ,b sin A ),B (c,0),∴a 2=|BC |2=(b cos A -c )2+(b sin A )2 =b 2cos 2A -2bc cos A +c 2+b 2sin 2A =b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 【解题技巧点睛】平面向量的综合运用主要体现在三角函数和平面解析几何中.在三角函数问题中平面向量的知识主要是给出三角函数之间的一些关系,解题的关键还是三角函数问题,这类问题可以和三角函数中的一些题型相互对比;解析几何中向量知识只要是给出一些几何量的位置和数量关系,在解题中要善于根据向量知识分析解析几何中的几何量之间的关系,最后的解题还得落实到解析几何方面.考点六 与向量相关的最值问题例12[2011·全国卷] 设向量a ,b ,c 满足|a |=|b |=1,a ·b =-12,〈a -c ,b -c 〉=60°,则|c |的最大值等于( )A .2 B. 3 C. 2 D .1 【答案】A 【解析】 设向量a ,b ,c 的起点为O ,终点分别为A ,B ,C ,由已知条件得,∠AOB =120°,∠ACB =60°,则点C 在△AOB 的外接圆上,当OC 经过圆心时,|c |最大,在△AOB 中,求得AB =3,由正弦定理得△AOB 外接圆的直径是3sin120°=2,||c 的最大值是2,故选A.例13[2011·辽宁卷] 若a ,b ,c 均为单位向量,且a·b =0,(a -c )·(b -c )≤0,则|a +b -c |的最大值为( )A.2-1 B .1 C. 2 D .2 【答案】 B【解析】 |a +b -c |=(a +b -c )2=a 2+b 2+c 2+2a ·b -2a ·c -2b ·c ,由于a ·b =0,所以上式=3-2c ·(a +b ),又由于(a -c )·(b -c )≤0,得(a +b )·c ≥c 2=1,所以|a +b -c |=3-2c ·(a +b )≤1,故选B. 例14[2011·天津卷] 已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P是腰DC 上的动点,则|P A →+3PB →|的最小值为________. 【答案】5【解析】 建立如图1-6所示的坐标系,设DC =h ,则A (2,0),B (1,h ).设P (0,y ),(0≤y ≤h ) 则P A →=(2,-y ),PB →=(1,h -y ),∴||P A →+3PB →=25+(3h -4y )2≥25=5.例15[2011·浙江卷] 若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________.【答案】⎣⎡⎦⎤π6,5π6【解析】 由题意得:||α||βsin θ=12,∵||α=1,||β≤1,∴sin θ=12||β≥12.又∵θ∈(0,π),∴θ∈⎣⎡⎦⎤π6,5π6.【解题技巧点睛】平面向量中的最值和范围问题,是一个热点问题,也是难点问题,这类试题的基本类型是根据给出的条件求某个量的最值、范围,如一个向量模的最值、两个向量夹角的范围等.最值和范围问题都是在变动的情况下,某个量在一个特殊情况上取得极端值,也就是在动态的情况下确定一个静态的情况,使得这个情况下某个量具有特殊的性质(如最大、最小、其余情况下都比这个量大等).在数学上解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,这个思想在平面向量的最值、范围问题中也是适用的,但平面向量兼具“数”与“形”的双重身份,解决平面向量最值、范围问题的另一个基本思想是数形结合.针对训练一.选择题1.【湖北省孝感市2011—2012学年度高中三年级第一次统一考试】设向量31(,cos ),(sin ,),//,23a b a b θθθ==向量且则锐角为 ( )A .60°B .30°C .75°D .45°答案:D .解析:31,cos sin 0,sin 2 1.(0,90),290,45.23a b θθθθθθ∴⨯-⨯=∴=∈∴=∴= ∥2.【2012届江西省重点中学协作体高三第一次联考】已知()()2,1,1,3-=-=,若()()k ++-∥2,则实数k 的值是( )A. -17B. 21- C. 1819 D.35 答案:B解析: 由已知得2(7,4)a b -+=- ,(3,12)a kb k k +=-+-,又因为两向量平行,所以7(12)4(3)k k -=--+,计算可得实数k 的值是12-。
高中数学2.5平面向量应用举例(教、学案)
2. 5平面向量应用举例一、教材分析向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。
二、教学目标1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐 标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的 积极主动的探究意识,培养创新精神。
三、教学重点难点重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题. 难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决. 四、学情分析在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。
五、教学方法1.例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。
2.学案导学:见后面的学案3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的 应用2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时 八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标教师首先提问:(1)若O 为ABC ∆重心,则OA +OB +OC =0(2)水渠横断面是四边形ABCD ,DC =12AB ,且|AD |=|BC |,则这个四边形为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系?(3) 两个人提一个旅行包,夹角越大越费力.为什么?教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。
高考数学专题二 微专题19 平面向量的数量积及最值与范围问题
微专题19
平面向量的数量积 及最值与范围问题
考情分析
平面向量的数量积有关的最值和范围问题是高考的热点之一, 其基本题型是根据已知条件求某个变量的范围、最值,比如向 量的模、数量积、夹角、系数的范围等.解决思路是建立目标 函数的解析式,转化为求函数(二次函数、三角函数)等的最值 或应用基本不等式.同时向量兼顾“数”与“形”的双重身份, 所以还有一种思路是数形结合,应用图形的几何性质.一般难 度较大.
=x-322+(y-2)2-245.
又x-322+(y-2)2 表示圆 x2+y2=1 上一点到点32,2距离的平方,圆 心(0,0)到点32,2的距离为52, 所以P→A·P→B∈52-12-245,52+12-245, 即P→A·P→B∈[-4,6].
跟踪训练2 (1)如图,已知 AOB 是半径为 4,圆心角为π2的扇形,点 E,
(2)已知向量 a,b 满足a-b=3,a=2b,设 a-b 与 a+b 的夹角为 θ, 则 cos θ 的最小值为
A.45
√B.35
C.13
D.25
令b2=t,则a2=4b2=4t, 则a-b2=(a-b)2=a2-2a·b+b2=9,2a·b=5t-9, 由 5t-9=2a·b≤2ab=4t 得 t≤9, 由 5t-9=2a·b≥-2ab=-4t 得 t≥1, 所以 1≤t≤9,a+b= a+b2= a2+2a·b+b2= 10t-9, 所以 cos θ=aa++bb·aa--bb= 1a02t--b92×3= 10tt-9= 10tt-2 9, 令 y=10tt-2 9,显然 y>0,t2-10yt+9y=0,
解得1≤z≤3,所以z的最大值是3,即λ+μ的最大值是3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uuur
区 域 = P 0 r P Q R, r R .若 C I
为两段分离的曲线,则
A.1 r R 3 C .r 1 R 3
B.1 r 3 R D .1 r 3 R
Q( 2 , 2)
Q( 2 , 2)
练一练 (2014年湖南理)
3.在平面直角坐标系中,O是原点,A1, 0,
2sin4
当=时, cr 2 2.
4
max
C1 B
b
aA
思考:还有其它解答本题的方法吗?
Q 法cr 二-ar、-br
ar
r -b
cr
-ar
r -b
2
ar -br
2
即
c -a -b
2
-
a-b
2
=0
c-2a c-2b =0
rr
2b c
B1
C
C1
2b
2ar cr
2a
A1
r
c OA1 cossin2
给自己一个目标,让生命为他燃烧!
数形结合在平面向量中的应用
高三平面向量复习
1.构建圆模型,解决与向量有关的范围问题
(2013年湖南理)
rr
r
例 1.已 知 a , b 是 相 互 垂 直 的 单 位 向 量 , 若 c 满
rrr
r
足 c-a-b= 1 , 则 c的 取 值 范 围
A. 21,21 C.1,21
uuur uuur 2 ,OA,OB = 3 .
B
O
A
D
练一练
r r r r
r
4.已知平面向量a, b ab满足a2,且
rr r
rr
a, b-a =120o,tR,则1-tatb的取
值范围是 3,+).
Br r
ab
b
D
O
A
a
3.构建函数模型,解决与向量有关的范围 问题
例 4. 正方形 ABCD 是边长为 4 ,动点 P 在以 AB
uuur
B 0,3 ,C3, 0,动点D满足CD=1,则
uuur uuur uuur
OAOBOD的最大值是
.
B D C
A
2.构建三角形模型,解决与向量有关的范围问题 uuur uuur
例3.已知OA 4,OB 6,AOB是钝角,
uuur uuur
若f tOAtOB的最小值是2 3,则
t的值是
1 3
为直径的圆弧 APB 上,则 PC PD 的取值范围
是
.
y
x O
练一练
y x
解:设A 0,0,B 1,0,C 1,1
D
0,1
,
E
1 2
,0
,
P
cos
,sin
uuur AP
cos,sin
uuur
,DE
1 2
, -1
Q
uuur AC
1 2
, -1
cos,sin
1,1
2co3ssi+nsin12cos3+sin
22c3os6c+ossin
令
f
3 6cos 2cos +sin
,
0, 2
f
'
3 6cos 2cos +sin
'
3 2 2 sin cos 2cos +sin 2
Q 0,2
f ' 0
即 f 在 0, 2 单 调 递 增
f f 0 3
m in
2
2 3 1 .
B. 21,22 D.1,22
C C1
B
D
b
C2
aA
r c 21
max
r c 21
min
思考:还有其它解答本题的Leabharlann 法吗?变式提升:rr
r
1.已 知 a, b为 单 位 向 量 , 若 向 量 c满 足
c r-a r-b ra r-b r, 则 c r的 最 大 值 是 2 2 .
r
c 2OAcossin2
r
则 c的 取 值 范 围 是
1,2
2 .
r r r r r r r r r rr
2.已 知a, b, c满 足a=1, a-b=b, a-c b-c=0, 若
r
对 每 一 确 定 的 b, c的 最 大 值 和 最 小 值 分 别 为 m和 n,
r
1
则 对 任 意 的 向 量 b, m-n的 最 小 值 为 2
m in
22
小结
1.可从数和形两方面出发解决向量问题. 2.数形结合的关键是构造几何图形,关注向量 的大小(模)、方向(夹角)、可平移性.
转化思想 3.两个思想
建模思想
4.三个方法:坐标法、代数法、几何法
.
(2014年安徽理)
例 2.在 平 面 直 角 坐 标 系 xoy 中 , 已 知 向 量
r r r r
uuur
rr
a = b =1,a b = 0 , 点 Q 满 足 O Q 2 a b .
uuur r
r
曲 线 C P O P a c o s b s in ,0 2 ,
2sin4
当=时, cr 2 2.
4
max
rr r
rr
2. 已知a, b, c为单位向量,且ab0,
r r r r
rrr
a-c b-c 0,则c-a-b的最大值是
1.
ab
B
D
b
C
aA
练一练
1.设 向 量 a r, b r, c r满 足 a r=b r=1, a rb r=-1, a r-c r, b r-c r =60o,