8常用数学方法-配方法、待定系数法、换元法

合集下载

初中数学解题技巧与方法

初中数学解题技巧与方法

初中数学解题技巧与方法初中数学常用解题法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

不同题型的解题法选择题:在做选择题可运用各种解题的方法:如直接法、特殊值法、排除法、验证法、图解法、假设法、动手操作法(比如折一折,量一量等方法),对于选择题中有“或”的选项一定要警惕,看看要不要取舍。

数学解题10种常用的方法

数学解题10种常用的方法

数学的解题方法是随着对数学对象的研究的深入而发展起来的。

教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。

下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。

1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

初中数学里常用的几种经典解题方法介绍

初中数学里常用的几种经典解题方法介绍

2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等 的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、 换元、待定系数等等。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂 直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有 两个;唯一/至少有两个。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面 积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法

因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)

因式分解方法归纳总结第一部分:方法介绍初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍.、提公因式法.:ma+mb=m(a+b)、运用公式法.(1) (a+b)(a -b) = a 2-b2 ---------- a 2-b2=(a+b)(a -b);, 2 2, 2 2 , 2,2(2) (a ± b) = a ± 2ab+b ----------------- a ± 2ab+b =(a ± b);(3) (a+b)(a 2-ab+b2) =a 3+b3------ a 3+b3=(a+b)(a 2-ab+b2);2 2、33 3 3 2 2、(4) (a -b)(a +ab+b ) = a -b -------------- a -b =(a -b)(a +ab+b ).F面再补充两个常用的公式:(5) a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;3,3 3 2,2 2(6) a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca);例.已知a, b, c是ABC的三边,且a2 b2 c2则ABC的形状是()(二)分组后能直接运用公式ab bc ca,A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解: a2 b2 c2 ab bc ca 2 2 22a 2b 2c 2ab 2bc 2ca(a b)2 2 2(b c) (c a)三、,分组分解法例 2、分解因式:2ax 10ay 5by解法一:第、二项为一组;第三、四项为一组。

解:原式=(2ax 10ay) (5by bx)= 2a(x 5y) b(x 5y)=(x 5y)(2a b)bx解法二:第一、四项为一组;第二、三项为一组。

原式=(2ax bx) ( 10ay 5by) =x(2a b)5y(2a b) =(2a b)(x 5y)练习:分解因式1、a2 ab ac bc 2、xy x y 1例3、分解因式:x2 y2 ax ay分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。

待定系数法、配方法、消元法教学中的应用

待定系数法、配方法、消元法教学中的应用

待定系数法、配方法、消元法教学中的应用近几年中考题减少了繁琐的运算,着力考察学生的逻辑思维与直觉思维能力,以及观察、分析、比较、简洁的运算方法和推理技巧,突出了对学生数学素质的考察,试题运算量不大,以认识型和思维性的题目为主,许多题目既可用通性、通法直接求解,也可用特殊方法求解。

其中,配方法、待定系数法、换元法等是常用的数学解题方法,它们是数学思想的具体体现,是解决问题的手段。

它们不仅有明确的内涵,而且具有可操作性,有实施的步骤和做法,事半功倍是它们的共同效果。

根据多年的教学经验,谈一下它们在初中数学中的应用。

一、换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

换元法的实质是转化,关键是构造元和设元。

理论依据是等量代换,目的是变换研究对象,将问题移至新的对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化、化生为熟、化已知为未知,使问题容易解决。

它可以化高次为低次,化分式为整式,化无理式为有理式,在探讨方程、不等式、函数等问题中有广泛的应用。

例1:解方程:126222=+-+xxxx解:设x2+2x=y,原方程为:y-6/y=1,整理得:y2-y-6=0, 解之得y=-2或3。

当y=-2时,即x2+2x=-2,方程无解;当y=3时,即x2+2x=3,解得x1=1,x2=-3,经检验,x1=1,x2=-3是原方程的解。

∴原方程的解为x1=1,x2=-3,例2、已知(x+y)(x+y+2)-8=0,求x+y的值.若设x+y=a,则原方程可变为___________________,所以求出a的值即为x+y的值.所以x+y的值为___________________.二、待定系数法:要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法。

其理论依据是多项式恒等,或依据两个多项式各同类项的系数对应相等。

待定系数法解题的关键是依据已知,正确列出等式或方程。

八年级数学:《因式分解-待定系数法、换元法、添项拆项法》知识点归纳

八年级数学:《因式分解-待定系数法、换元法、添项拆项法》知识点归纳

初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 初中数学 / 八年级数学教案编订:XX文讯教育机构《因式分解-待定系数法、换元法、添项拆项法》知识点归纳教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中八年级数学科目, 学习后学生能得到全面的发展和提高。

本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

知识体系梳理◆添项拆项法有的多项式由于“缺项”,或“并项”因此不能直接分解。

通过进行适当的添项或拆项后利用分组而分解的方法称为添项、拆项法。

一般来说,添项拆项后要能运用提公因式法、公式法、十字相乘法、分组分解法分解。

如果添项拆项后,不能运用四种基本方法分解,添项拆项也是无用的。

◆待定系数法有些多项式不能直接分解因式,我们可以先假设它已分解成几个含有待定系数因式的乘积形式。

然后再把积乘出来。

用等号两边同次项次系数相等的方法把这些待定系数求出来,进而得出因式分解结果,这种分解因式的方法叫做待定系数法分解因式。

◆换元法所谓换元,即对结构比较复杂的代数式,把其中某些部分看成一个整体,用新的字母代替(即换元),则能使复杂的问题简单化、明朗化,象这种利用换元来解决复杂问题的方法,就叫。

换元法在减少代数式的项数、降低多项式结构复杂程度等方面都有着独到的作用。

(1)、使用换元法时,一定要有意识,即把某些相同或相似的部分看成一个。

(2)、换元法的种类有:单个换元、多个换元、局部换元、整体换元、特殊值换元和几何换元。

(3)、利用换元法解决问题时,最后要让原有的数或式“回归”。

★★典型例题、方法导航◆方法一:添项拆项法【例1】分解因式:分析:此多项式是三次三项式,缺项不能直接分解。

可考虑添项拆项法分解。

从它的最高次项看是三次,因此我们可以猜想它最多可分解成三个一次二项式的积,即,再看常数项可分解成±1、±2,因此我们可猜想分解的结果可能是或或 ,但的中间项是 ,因此是不可能的,因此只可能是前面两种的其中一种。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些
初中数学思想方法从接受的难易程度可分为三个层次:
一是基本具体的数学方法,如配方法、换元法、待定系数法、归纳法与演绎法等;
二是科学的逻辑方法,如观察、归纳、类比、抽象概括等方法,以及分析法、综合法与反证法等逻辑方法;
三是数学思想,如数形结合的思想、函数与方程的思想、分类讨论的思想及化归与转化的思想。

例如:
1、数形结合思想。

数形结合思想就是根据数学题目所给的条件和结论之间的内在关系,即分析其代数的意义,又分析其几何的意义,把题目所展示出的数量关系与图形(画图)相结合起来,利用这样的结合,找到解题的思路,使问题得到解决。

2、分类讨论思想。

在数学中,有时候根据题目所给出的条件,可能存在各种不同的情况,这时候就需要通过分类讨论,将所有可能出现的情况整合在一起,得出最后的结果,这种分类思考的方法,是一种重要的数学思想方法,也是一种重要的解题策略。

3、换元法。

在解决题目的过程过程中,将一个或者某个字母的式子看成一个整体,用一个新的字母来表示,达到简化式子的目的。

换元法可以把一个比较复杂的式子化简,把问题归结为比原来更基本的问题,达到化繁为简、化难为易的效果。

4、配方法。

将一个式子设法构成平方式,然后再进行所需要的转化。

当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。

5、待定系数法法。

当我们所研究的数学式子具有某种特定形式时,要确定它,就需要求出式子中待定的字母的值;为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。

初中数学常用十种解题方法

初中数学常用十种解题方法

初中数学常用的十种解题方法数学的解题方法是随着对数学对象的研究的深入而发展起来的。

教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。

下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。

1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

常用的数学思想方法有哪些

常用的数学思想方法有哪些

常用的数学思想方法有哪些数学思想较之于数学基础知识及常用数学方法又处于更高层次,它来源于数学基础知识及常用的数学方法, 在运用数学基础知识及方法处理数学问题时,具有指导性的地位。

<一>常用的数学方法:配方法,换元法,消元法,待定系数法;<二>常用的数学思想:数形结合思想,方程与函数思想,分类讨论思想和化归与转化思想等。

<三>数学思想方法主要来源于:观察与实验,概括与抽象,类比,归纳和演绎等一、常用的数学思想(数学中的四大思想)1.函数与方程的思想用变量和函数来思考问题的方法就是函数思想。

函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。

深刻理解函数的图象和性质是应用函数思想解题的基础。

运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。

2.数形结合思想在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形”在一定条件下可以相互转化、相互渗透。

3.分类讨论思想在数学中,我们常常需要根据研究对象性质的差异。

分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略 。

引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论。

分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复 ;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论。

4.等价转化思想等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现。

初中数学常用的十一种思想方法介绍

初中数学常用的十一种思想方法介绍

初中数学常用的十一种思想方法介绍初中数学常用的十一种思想方法介绍数学的思想和方法是初中数学的基础知识。

数学学习中要提高我们分析问题的能力,形成用数学的意识决问题,这些都离不开数学思想和数学方法。

我们在初中的数学学习中,学到了很多处理数学问题的思想和方法,下面,本人就教学过程中常用的数学思想方法介绍如下:一、数形结合思想根据数学问题的条件和结论之间内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起一,并充分得用这种结合,寻求解题思路,使问题得到解决。

二、联系与转化的思想事物之间是相互联系,相互制约的。

是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化特殊与一般的转化、具体抽象的转化、部分与整体的转化、动与静的转化等等。

三、分类讨论的思想在数学中,我们常常需要根据研究对象性质的差异,分各种不同的情况予以考查,这种分类思考的方法是一一种重要的.数学思想方法。

同时也是一种重要的解题策略。

四、待定系数法当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以,为此,把已知道条件代入特定形式的式子中,往往会得到含待定字母的方和或方程组就使问题得到解决。

待定系数法是一种重要的数学解题方法,在代数式恒等变形及研究函数中有着广泛的应用。

五、配方法把一个代数式设法构造成平方式,然后再进行所需要的变形,配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

六、换元法在解题过程中,把某个(或某些)字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题从而过到化繁为简、化难为易的目的。

七、分析法在研究或证明一个命题时,由结论向己知条件追溯,即从结论升始,推求它成立的充分条件,这个条件的成立如果还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件(或己知的事实)为止,从而使命题得到证明,这种方法叫佬分析法。

八年级数学(上册)-因式分解的方法汇总

八年级数学(上册)-因式分解的方法汇总

(3)原式=
x4 2x2 1 2x(x2 1) x2 (x2 1)2 2x(x2 1) x2 (x2 x 1)2
方法八:待定系数法
对所给的数学问题,根据已知条件和要求,先设出问题 的多项式表达形式(含待定的字母系数),然后利用已 知条件,确定或消去所设待定系数,使问题获解的这种 方法叫待定系数法,用待定系数法解题目的一般步骤是:
解法三:将三次项 x3 拆成 9x3 8x3
解法四:添加两项 x2 x2
对应练习
分解因式:
(1)x9 x6 x 3 3
(2)(m2 1)(n2 1) 4mn
方法七:配方法
把一个式子或一个式子的部分写成完全 平方式或几个完全平方式的和的形式, 这种方法叫配方法。配方法的关键是通 过拆项或添项,将原多项式配上某些需 要的项,以便得到完全平方式 ,然后在 此基础上分解因式。
(1999x 1)(x 1999)
(5)原式= (x y)2 2(x y) 2xy(x y) 4xy (xy)2 2xy 1
(x y xy)2 2(x y xy) 1 (x y xy 1)2 (x 1)2 ( y 1)2
因式分解的方法
一、提公因式法; 二、公式法; 三、十字相乘法; 四、换元法; 五、分组分解法; 六、拆项、添项法; 七、配方法; 八、待定系数法。
方法一:提分因式法
这是因式分解的首选方法。也是最基本 的方法。在分解因式时一定要首先认真 观察等分解的代数式,尽可能地找出它 们的分因数(式)
方法二:公式法

=a(m+n)+b(m+n)

=(a+b)(m+n)

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳

《因式分解---待定系数法、换元法、添项拆项法》知识点归纳

因式分解—待定系数法、换元法、添项拆项法引言因式分解是初中数学中的一个重要知识点,也是解决代数式化简、解方程等问题的基础方法。

在因式分解中,待定系数法、换元法和添项拆项法是常用的三种方法。

本文将分别介绍这三种方法的基本思想、操作步骤和应用场景。

一、待定系数法1. 基本思想待定系数法是一种通过猜测待定系数的方法来进行因式分解的技巧。

在待定系数法中,我们假设因式分解的结果中存在未知系数,并通过代数运算和方程求解的方法确定这些未知系数的值,从而完成因式分解过程。

2. 操作步骤待定系数法的操作步骤如下:1.根据给定的代数式,猜测待定系数的形式,通常选择简单的常数作为待定系数;2.将猜测出的待定系数带入原代数式中,得到待定系数的方程组;3.解方程组,确定待定系数的值;4.将确定的待定系数带入原代数式中进行验证;5.若验证正确,将原代数式分解为因式的乘积,其中包含待定系数。

3. 应用场景待定系数法常用于分解小数项的平方差式、三项立方差式等情况。

通过猜测待定系数的形式,可以简化复杂的因式分解过程,并在解题过程中培养学生的逻辑思维和方程求解能力。

二、换元法1. 基本思想换元法是一种通过引入新的变量来进行因式分解的方法。

通过适当选择新的变量,可以将原代数式转化为较简单的形式,从而便于因式分解。

2. 操作步骤换元法的操作步骤如下:1.分析原代数式的结构和特点,选取适当的新变量;2.对原代数式进行变量替换,将原代数式转化为新变量的代数式;3.对新的代数式进行因式分解;4.将因式分解的结果转化回原变量,得到最终的因式分解形式。

3. 应用场景换元法常用于分解含有平方根、分数等特殊形式的代数式。

通过适当的变量替换,可以将原代数式转化为一次方程、二次方程等常见形式,从而简化因式分解的过程。

三、添项拆项法1. 基本思想添项拆项法是一种通过添加、拆分代数式中的项来进行因式分解的方法。

通过适当添加一些项,并进行合并和拆分,可以将原代数式转化为更简单的形式,从而便于因式分解。

数学常用的几种经典解题方法

数学常用的几种经典解题方法

数学常用的几种经典解题方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2bxc=0a、b、c属于R,a≠0根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程组,解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程组、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

高中数学解题的七种常用方法

高中数学解题的七种常用方法
解题宝典
高中数学解题的 七种常用方法
张晓娇
高中数学相对于初中数学,不仅要学习 掌握的内容数量增加了许多,而且内容难度 也加大了,所以学生需要掌握更多的数学思 想以及常见的解题方法。对于高中生而言,掌 握并熟练运用这些数学方法,可以在解题过 程中快速解决问题,得出正确答案。
一、配方法 在高中数学的学习中,学生首先掌握的 数学方法就是配方法。这是一种广泛运用的 数学方法,主要运用在已知或者未知中存在 二次方程、二次函数,或者二次不等式等,还 有在曲线平移等问题中被作为基础方法运 用。配方法是对数学式子进行定向变形,找到 已知与未知数量关系的联系,最终达到化繁 为简的目的。在配方过程中运用裂项和添项, 巧凑和巧拼,实现配方,所以也被称为“凑配 法”。例如已知 sinα+cosα=2,则 sinαcosα 的 值为 ______。这道题就需要通过配方法进行 解答,将 sinα+cosα=2 进行配方,最终得到(sinα+ cosα)2-2sinαcosα,最终得到 sinαcosα 的值。 二、换元法 换元法也是比较常用的数学解题方法, 就是通过将一个式子看作一个整体,用另一 个变量进行替换,使问题得以简化,快速找到 解答方法。其实,换元从本质上讲就是转化, 通过造元和设元,进行等量代换,将问题转移 到熟悉的环境下进行解决。从复杂到简单,由 非标准变成标准。这种方法主要运用于高次 降为低次,分式变成整式,将无理变成有理, 将复杂变成简单,适用函数、三角、不等式和 数列等问题中。例如,设实数 x、y 满足 x+xy- 3=0,则 x+y 的取值范围是多少。运用换元法, 将 x+y 设置成“k”,然后运用“△”进行求解, 最终得出 k 的取值范围,从而得到 x+y 的取 值范围。
六、参数法 数学参数法就是在解题过程中引入一些 与题目相关联的新变量。通过该变量进行分 析和解答,最终消除参数,得出答案。这种方 数 法在直线与二次曲线之间的关系中比较常 学 用。参数法充分体现出事物普遍的联系,而通 篇 过参数法就能找出联系,从而找出事物的本 质。参数法体现出运动与变化的思想,其观点 42 被运用在数学的各个方面。运用参数法时需

初二数学常用的几种经典解题方法

初二数学常用的几种经典解题方法

初⼆数学常⽤的⼏种经典解题⽅法 在解题活动中,掌握解题⽅法⽐解决问题更为重要。

初⼆数学有哪⼏种经典常⽤的解题⽅法呢?接下来是店铺为⼤家带来的关于初⼆数学常⽤的⼏种经典解题⽅法,希望会对⼤家有所帮助。

初⼆数学常⽤的⼏种经典解题⽅法 1、配⽅法。

所谓配⽅,就是把⼀个解析式利⽤恒等变形的⽅法,把其中的某些项配成⼀个或⼏个多项式正整数次幂的和形式。

通过配⽅解决数学问题的⽅法叫配⽅法。

其中,⽤的最多的是配成完全平⽅式。

配⽅法是数学中⼀种重要的恒等变形的⽅法,它的应⽤⼗分⾮常⼴泛,在因式分解、化简根式、解⽅程、证明等式和不等式、求函数的极值和解析式等⽅⾯都经常⽤到它。

2、因式分解法因式分解,就是把⼀个多项式化成⼏个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的⼀个有⼒⼯具、⼀种数学⽅法在代数、⼏何、三⾓等的解题中起着重要的作⽤。

因式分解的⽅法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、⼗字相乘法等外,还有如利⽤拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是初中数学中⼀个⾮常重要⽽且应⽤⼗分⼴泛的解题⽅法。

我们通常把未知数或变数称为元,所谓换元法,就是在⼀个⽐较复杂的数学式⼦中,⽤新的变元去代替原式的⼀个部分或改造原来的式⼦,使它简化,使问题易于解决。

4、判别式法与韦达定理⼀元⼆次⽅程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅⽤来判定根的性质,⽽且作为⼀种解题⽅法,在代数式变形,解⽅程(组),解不等式,研究函数乃⾄⼏何、三⾓运算中都有⾮常⼴泛的应⽤。

韦达定理除了已知⼀元⼆次⽅程的⼀个根,求另⼀根;已知两个数的和与积,求这两个数等简单应⽤外,还可以求根的对称函数,计论⼆次⽅程根的符号,解对称⽅程组,以及解⼀些有关⼆次曲线的问题等,都有⾮常⼴泛的应⽤。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,⽽后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从⽽解答数学问题,这种解题⽅法称为待定系数法。

高考中常用数学的方法 配方法、待定系数法、换元法

高考中常用数学的方法 配方法、待定系数法、换元法

高考中常用数学的方法配方法、待定系数法、换元法一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法.配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决.待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数.换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化.二、例题解析例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ).(A )32(B )14(C )5(D )6分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是配方法.故)(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25∴5222=++z y x ,应选C .例2.设F 1和F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则ΔF 1PF 2的面积是( ).(A )1(B )25(C )2(D )5 分析及解:欲求||||212121PF PF S F PF ⋅=∆ (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2221=+PF PF(2),又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即16||||2||||||||||212221221=⋅-+=-PF PF PF PF PF PF ,故2421)16|||(|21||||222121=⨯=-+=⋅PF PF PF PF ∴1||||212121=⋅=∆PF PF S F PF ,∴ 选(A ). 注:配方法实现了“平方和”与“和的平方”的相互转化.例3.设双曲线的中心是坐标原点,准线平行于x 轴,离心率为25,已知点P (0,5)到该双曲线上的点的最近距离是2,求双曲线方程.分析及解:由题意可设双曲线方程为12222=-bx a y ,∵25=e ,∴a =2b ,因此所求双曲线方程可写成:2224a x y =- (1),故只需求出a 可求解.设双曲线上点Q 的坐标为(x ,y ),则|PQ |=22)5(-+y x (2),∵点Q (x ,y )在双曲线上,∴(x ,y )满足(1)式,代入(2)得|PQ |=222)5(44-+-y a y (3),此时|PQ |2表示为变量y 的二次函数,利用配方法求出其最小值即可求解.由(3)式有45)4(45||222a y PQ -+-=(y ≥a 或y ≤-a ).二次曲线的对称轴为y =4,而函数的定义域y ≥a 或y ≤-a ,因此,需对a ≤4与a >4分类讨论.(1)当a ≤4时,如图(1)可知函数在y =4处取得最小值,∴令4452=-a ,得a 2=4 ∴所求双曲线方程为1422=-x y . (2)当a >4时,如图(2)可知函数在y =a 处取得最小值,∴令445)4(4522=-+-a a ,得a 2=49, ∴所求双曲线方程为14944922=-x y . 注:此题是利用待定系数法求解双曲线方程的,其中利用配方法求解二次函数的最值问题,由于二次函数的定义域与参数a 有关,因此需对字母a 的取值分类讨论,从而得到两个解,同学们在解答数习题时应学会综合运用数学思想方法解题.例4.设f (x )是一次函数,且其在定义域内是增函数,又124)]([11-=--x x ff,试求f (x )的表达式.分析及解:因为此函数的模式已知,故此题需用待定系数法求出函数表达式.设一次函数y =f (x )=ax +b (a >0),可知)(1)(1b x ax f -=-, ∴124)(11])(1[1)]([2211-=+-=--=--x b ab ax a b b x a a x f f.比较系数可知: ⎪⎪⎩⎪⎪⎨⎧=+>=)2(12)(1)1()0(4122b ab a a a 且解此方程组,得 21=a ,b =2,∴所求f (x )=221+x . 例5.如图,已知在矩形ABCD 中,C (4,4),点A 在曲线922=+y x (x >0,y >0)上移动,且AB ,BC 两边始终分别平行于x 轴,y 轴,求使矩形ABCD 的面积为最小时点A 的坐标.分析及解:设A (x ,y ),如图所示,则=ABCD S (4-x )(4-y )(1)此时S 表示为变量x ,y 的函数,如何将S 表示为一个变量x (或y )的函数呢?有的同学想到由已知得x 2+y 2=9,如何利用此条件?是从等式中解出x (或y ),再代入(1)式,因为表达式有开方,显然此方法不好.如果我们将(1)式继续变形,会得到S =16-4(x +y )+xy (2)这时我们可联想到x 2+y 2与x +y 、xy 间的关系,即(x +y )2=9+2xy .因此,只需设t =x +y ,则xy =292-t ,代入(2)式得 S =16-4t +27)4(212922+-=-t t (3)S 表示为变量t 的二次函数,∵0<x <3,0<y <3,∴3<t <23,∴当t =4时,S ABCD 的最小值为27. 此时⎪⎩⎪⎨⎧==+,27,4xy y x )222,222()222,222(-++-或的坐标为得A 注:换元前后新旧变量的取值X 围是不同的,这样才能防止出现不必要的错误. 例6.设方程x 2+2kx +4=0的两实根为x 1,x 2,若212221)()(x xx x +≥3,求k 的取值X 围. 解:∵2]2)([2)()()(22122121221212221--+=-+=+x x x x x x x x x x x x ≥3,以k x x 221-=+,421=x x 代入整理得(k 2-2)2≥5,又∵Δ=4k 2-16≥0,∴⎪⎩⎪⎨⎧≥-≥-045|2|22k k 解得k ∈(-52,+-∞)∪[52+,+∞].例7.点P (x ,y )在椭圆1422=+y x 上移动时,求函数u =x 2+2xy +4y 2+x +2y 的最大值. 解:∵点P (x ,y )在椭圆1422=+y x 上移动, ∴可设⎩⎨⎧==θθsin cos 2y x 于是y x y xy x u 24222++++==θθθθθθsin 2cos 2sin 4cos sin 4cos422++++=]1sin cos )sin [(cos 22++++θθθθ 令t =+θθsin cos , ∵)4sin(2cos sin πθθθ+=+,∴|t |≤2.于是u =23)21(2)1(222++=++t t t ,(|t |≤2). 当t =2,即1)4sin(=+πθ时,u 有最大值.∴θ=2k π+4π(k ∈Z )时,226max +=u . 例8.过坐标原点的直线l 与椭圆126)3(22=+-y x 相交于A ,B 两点,若以AB 为直径的圆恰好通过椭圆的左焦点F ,求直线l 的倾斜角.解:设A (x 1,y 1),B (x 2,y 2)直线l 的方程为y =kx ,将它代入椭圆方程整理得 036)31(22=+-+x x k (*) 由韦达定理,221316k x x +=+(1),221313kx x +=(2) 又F (1,0)且AF ⊥BF ,∴1-=⋅BF AF k k , 即1112211-=-⋅-x yx y , 将11kx y =,22kx y =代入上式整理得 1)1(21212-+=⋅+x x x x k , 将(1)式,(2)式代入,解得 312=k . 故直线l 的倾斜角为6π或65π. 注:本题设交点坐标为参数,“设而不求”,以这些参数为桥梁建立斜率为k 的方程求解. 例9.设集合A ={R x a x x x∈=+-+,024|1}(1)若A 中有且只有一个元素,某某数a 的取值集合B ;(2)当a ∈B 时,不等式x 2-5x -6<a (x -4)恒成立,求x 的取值X 围. 解:(1)令t =2x,则t >0且方程0241=+-+a x x 化为t 2-2t +a =0 (*),A 中有且只有一个元素等价于方程(*)有且只有一个正根,再令f (t )=t 2-2t +a ,则Δ=0或⎩⎨⎧≤>∆0)0(0f 即a =1或a ≤0,从而B =(-∞,0]∪{1}.(2)当a =1时,113-<x <3+11,当a ≤0,令g (a )=a (x -4)-(x 2-5x -6),则当a ≤0时不等式 )4(652-<+-x a x x 恒成立,即当a ≤0时,g (a )>0恒成立,故 x x g <-⇒⎩⎨⎧≤->1040)0(≤4.综上讨论,x 的取值X 围是(113-,4).。

例谈求解函数问题的几个基本方法

例谈求解函数问题的几个基本方法

知识导航贾培知识导航可设定一些尚待确定的系数(或参数)来表示,这些待确定的系数(或参数),被称作待定系数.在运用待定系数法解题时,需要首先明确函数的类型,如一次函数、二次函数、指数函数、对数函数等,然后设出待定的系数,结合题意建立关系式,求得系数的值,即可解题.例4.已知二次函数y=ax2+bx+c的最大值是2,图象的顶点在直线y=x+1上,并且图象经过点M(3,-6),求此二次函数的解析式.解:∵二次函数的最大值是2,∴抛物线顶点的纵坐标为2,又∵抛物线的顶点在直线y=x+1上,∴当y=2时,x=1,故顶点坐标为(1,2),可设二次函数的解析式为y=a(x-1)2+2.又函数的图象经过点(3,-6),∴-6=a(3-1)2+2,解得a=-2,∴所求二次函数的解析式为:y=-2(x-1)2+2,即y=-2x2+4x.解答本题,要先根据已知条件求出顶点坐标(1,2),然后采用二次函数的顶点式,设一个待定系数a,将已知的点M代入解析式中便可求出a的值,进而求得函数的解析式.五、消元法消元法是指将多个关系式中的若干个元素(或参数)通过有限次的变换,消去其中的某些元素(或参数),从而使问题获得解答的方法.在解题的过程中,可通过等量代换,将一些与所求目标无关的量消去,求得结果.例5.已知函数f(x)满足f(x)+2f(1x)=2x+1,求函数f(x)的解析式.解:已知f(x)+2f(1x)=2x+1,(1)以1x代换上式中的x,得f(1x)+2f(x)=2x+1,(2)由(1)-2(2)可得f(x)=4+x-2x23x.对于这类已知一个条件中含有两个未知式(f(x),f(1x))的问题,通常采用赋值代换的方式再构造一个等式,通过联立方程组、消元求得结果.六、最值法对于恒成立或存在性问题,我们往往采用最值法来解答.一般地,可将恒成立或存在性问题转化为求函数最值问题:(1)对任意x∈R,f(x)>g(m)恒成立⇔f(x)min>g(m);(2)对任意x∈R,f(x)<g(m)都成立⇔f(x)max<g(m);(3)若存在x∈R,使f(x)>g(m)成立⇔f(x)max>g(m);(4)若存在x∈R,使f(x)<g(m)成立⇔f(x)min<g(m).只要求得对应函数的最值,找到问题中某个式子恒成立或某个量存在的条件,就可以解出.例6.已知函数f(x)=x2+ax+3-a,若x∈[-2,2],f(x)≥2恒成立,求实数a的取值范围.解:若x∈[-2,2],f(x)≥2恒成立等价于对任意x∈[-2,2],f(x)min≥2.而函数f(x)图象的对称轴x=-a2,则问题等价于ìíîïï-a2≤2,f(x)min=f(-x)=7-3a≥2,或ìíîïï-2≤-a2≤2,f(x)min=f(-a2)=3-a-a24≥2,解得-5≤a≤22-2,故a的取值范围为[-5,-2+22].这里直接将恒成立问题转化为“对任意x∈[-2,2],f(x)min≥2”,求得函数f(x)的最小值,并使其大于或等于2,便可求得a的取值范围.七、分离参变量法分离参变量法是通过恒等变换将含有变元(参变量)的式子与不含变元(参变量)的式子分离开的方法.一般地,可将含有某个变元(参变量)的式子放在不等式(或方程)的一端,不含变元(参变量)的式子放在不等式(或方程)的另一端,求得不含变元(参变量)的式子的最值,便可得到参数的取值范围.例7.若函数f(x)=x2-3x-2a在x∈[-1,3]上有f(x)≤x+2a2-5a+3恒成立,求实数a的取值范围.解:在x∈[-1,3]上有f(x)≤x+2a2-5a+3恒成立⇔在x∈[-1,3]上有x2-4x-3≤2a2-3a恒成立,记g(x)=x2-4x-3(x∈[-1,3]),则g(x)max=g(-1)=2,于是2≤2a2-3a,解得a≤-12或a≥2.故实数a的取值范围为(-∞,-12]⋃[2,+∞).(下转76页)Why do you think so ?(引导学生思考,你对自己的校园生活为什么会产生如此的感受,比如对老师、同学以及日常生活的感受等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲 高考中常用数学的方法 ------配方法、待定系数法、换元法一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法.配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决.待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数.换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化.二、例题解析例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ).(A )32(B )14(C )5(D )6分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得:2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是配方法.故)(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25 ∴ 5222=++z y x ,应选C .例2.设F 1和F 2为双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则ΔF 1PF 2的面积是( ).(A )1(B )25 (C )2 (D )5分析及解:欲求||||212121PF PF S F PF ⋅=∆ (1),而由已知能得到什么呢?由∠F 1PF 2=90°,得20||||2221=+PF PF(2),又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即16||||2||||||||||212221221=⋅-+=-PF PF PF PF PF PF ,故2421)16|||(|21||||222121=⨯=-+=⋅PF PF PF PF ∴1||||212121=⋅=∆PF PF S F PF ,∴ 选(A ). 注:配方法实现了“平方和”与“和的平方”的相互转化.例3.设双曲线的中心是坐标原点,准线平行于x 轴,离心率为25,已知点P (0,5)到该双曲线上的点的最近距离是2,求双曲线方程.分析及解:由题意可设双曲线方程为12222=-bx a y ,∵25=e ,∴a =2b ,因此所求双曲线方程可写成:2224a x y =- (1),故只需求出a 可求解.设双曲线上点Q 的坐标为(x ,y ),则|PQ |=22)5(-+y x (2),∵点Q (x ,y )在双曲线上,∴(x ,y )满足(1)式,代入(2)得|PQ |=222)5(44-+-y a y (3),此时|PQ |2表示为变量y 的二次函数,利用配方法求出其最小值即可求解.由(3)式有45)4(45||222a y PQ -+-=(y ≥a 或y ≤-a ).二次曲线的对称轴为y =4,而函数的定义域y ≥a 或y ≤-a ,因此,需对a ≤4与a >4分类讨论.(1)当a ≤4时,如图(1)可知函数在y =4处取得最小值,∴令4452=-a ,得a 2=4 ∴所求双曲线方程为1422=-x y . (2)当a >4时,如图(2)可知函数在y =a 处取得最小值,∴令445)4(4522=-+-a a ,得a 2=49, ∴所求双曲线方程为14944922=-x y . 注:此题是利用待定系数法求解双曲线方程的,其中利用配方法求解二次函数的最值问题,由于二次函数的定义域与参数a 有关,因此需对字母a 的取值分类讨论,从而得到两个解,同学们在解答数习题时应学会综合运用数学思想方法解题.例4.设f (x )是一次函数,且其在定义域内是增函数,又124)]([11-=--x x f f ,试求f (x )的表达式.分析及解:因为此函数的模式已知,故此题需用待定系数法求出函数表达式.设一次函数y =f (x )=ax +b (a >0),可知 )(1)(1b x ax f -=-,∴124)(11])(1[1)]([2211-=+-=--=--x b ab ax a b b x a a x f f .比较系数可知: ⎪⎪⎩⎪⎪⎨⎧=+>=)2(12)(1)1()0(4122b ab a a a且解此方程组,得 21=a ,b =2,∴所求f (x )=221+x . 例5.如图,已知在矩形ABCD 中,C (4,4),点A 在曲线922=+y x (x >0,y >0)上移动,且AB ,BC 两边始终分别平行于x 轴,y 轴,求使矩形ABCD 的面积为最小时点A 的坐标.分析及解:设A (x ,y ),如图所示,则=ABCD S (4-x )(4-y ) (1)此时S 表示为变量x ,y 的函数,如何将S 表示为一个变量x (或y )的函数呢?有的同学想到由已知得x 2+y 2=9,如何利用此条件?是从等式中解出x (或y ),再代入(1)式,因为表达式有开方,显然此方法不好.如果我们将(1)式继续变形,会得到S =16-4(x +y )+xy (2) 这时我们可联想到x 2+y 2与x +y 、xy 间的关系,即(x +y )2=9+2xy .因此,只需设t =x +y ,则xy =292-t ,代入(2)式得S =16-4t +27)4(212922+-=-t t (3)S 表示为变量t 的二次函数, ∵0<x <3,0<y <3,∴3<t <23,∴当t =4时,S ABCD 的最小值为27. 此时⎪⎩⎪⎨⎧==+,27,4xy y x )222,222()222,222(-++-或的坐标为得A 注:换元前后新旧变量的取值范围是不同的,这样才能防止出现不必要的错误. 例6.设方程x 2+2kx +4=0的两实根为x 1,x 2,若212221)()(x xx x +≥3,求k 的取值范围.解:∵2]2)([2)()()(22122121221212221--+=-+=+x x x x x x x x x x x x ≥3, 以k x x 221-=+,421=x x 代入整理得(k 2-2)2≥5,又∵Δ=4k 2-16≥0,∴⎪⎩⎪⎨⎧≥-≥-045|2|22k k 解得k ∈(-52,+-∞)∪[52+,+∞].例7.点P (x ,y )在椭圆1422=+y x 上移动时,求函数u =x 2+2xy +4y 2+x +2y 的最大值.解:∵点P (x ,y )在椭圆1422=+y x 上移动, ∴可设⎩⎨⎧==θθsin cos 2y x 于是 y x y xy x u 24222++++==θθθθθθsin 2cos 2sin 4cos sin 4cos 422++++ =]1sin cos )sin [(cos 22++++θθθθ令t =+θθsin cos , ∵)4sin(2cos sin πθθθ+=+,∴|t |≤2. 于是u =23)21(2)1(222++=++t t t ,(|t |≤2).当t =2,即1)4sin(=+πθ时,u 有最大值.∴θ=2k π+4π(k ∈Z )时,226max +=u . 例8.过坐标原点的直线l 与椭圆126)3(22=+-y x 相交于A ,B 两点,若以AB 为直径的圆恰好通过椭圆的左焦点F ,求直线l 的倾斜角.解:设A (x 1,y 1),B (x 2,y 2)直线l 的方程为y =kx ,将它代入椭圆方程整理得 036)31(22=+-+x x k (*) 由韦达定理,221316k x x +=+(1),221313k x x +=(2) 又F (1,0)且AF ⊥BF ,∴1-=⋅BF AF k k , 即1112211-=-⋅-x yx y , 将11kx y =,22kx y =代入上式整理得 1)1(21212-+=⋅+x x x x k,将(1)式,(2)式代入,解得 312=k . 故直线l 的倾斜角为6π或65π. 注:本题设交点坐标为参数,“设而不求”,以这些参数为桥梁建立斜率为k 的方程求解.例9.设集合A ={R x a x x x ∈=+-+,024|1}(1)若A 中有且只有一个元素,求实数a 的取值集合B ;(2)当a ∈B 时,不等式x 2-5x -6<a (x -4)恒成立,求x 的取值范围.解:(1)令t =2x ,则t >0且方程0241=+-+a x x 化为t 2-2t +a =0 (*),A 中有且只有一个元素等价于方程(*)有且只有一个正根,再令f (t )=t 2-2t +a ,则Δ=0 或⎩⎨⎧≤>∆0)0(0f 即a =1或a ≤0,从而B =(-∞,0]∪{1}.(2)当a =1时,113-<x <3+11,当a ≤0,令g (a )=a (x -4)-(x 2-5x -6),则当a ≤0时不等式 )4(652-<+-x a x x 恒成立,即当a ≤0时,g (a )>0恒成立,故 x x g <-⇒⎩⎨⎧≤->1040)0(≤4. 综上讨论,x 的取值范围是(113-,4).。

相关文档
最新文档