一元二次方程单元综合测试题(含答案)

合集下载

九年级上学期数学《一元二次方程》单元综合检测题(含答案)

九年级上学期数学《一元二次方程》单元综合检测题(含答案)
∴△=B2﹣4A C=(﹣2)2﹣4×k×1=4﹣4k≥0,
解得:k≤1.
∵k是二次项系数不能为0,k≠0,即k≤1且k≠0.
∵k为非负整数,
∴k=1.
故选B.
[点睛]考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
7.如果关于x的一元二次方程x2+2x+6﹣B=0有两个相等的实数根x1=x2=k,则直线y=kx+B必定经过的象限是( )
A.m< B.m C.m= D.m=
6.已知关于x的一元二次方程 有实数根,若k为非负整数,则k等于( )
A.0B.1C.0,1D.2
7.如果关于x的一元二次方程x2+2x+6﹣B=0有两个相等的实数根x1=x2=k,则直线y=kx+B必定经过的象限是( )
A.一、二、三B.一、二、四C.二、三、四D.一、三、四
当A=B时,△=(-6)2-4×(n-1)=0,解得n=10,
所以n为10.
点睛:一元二次方程Ax2+Bx+C=0(A≠0)的根与△=B2-4A C有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
17.若关于x的方程x2+2x+k﹣1=0的一个根是0,则k=_____.
C. D.
[答案]B
[解析]
设场地的长为x米,则宽为(x﹣12)米,根据面积可列方程,
x(x﹣12)=210,
故选B.
5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为( )
A. m< B. m C. m= D. m=

一元二次方程单元综合测试题含答案

一元二次方程单元综合测试题含答案

方圆学校九年级第21章一元二次方程单元综合测试题一、填空题〔每题2分,共20分〕1.方程,x〔x—3〕=5〔x—3〕的根是___________ .22.以下方程中,是关于x的一元二次方程的有.[1] 2y2+y-1=0;〔2〕x〔2x—1〕=2x2;〔3〕∖—2x=l;〔4〕ax2+bx+c=0;〔5〕x- —x2=0 ・23.把方程[l-2x] [l+2x] =2χ2-l化为一元二次方程的一般形式为.1 2 14.如果一7 ——— 8=0,那么一的值是_________ .X" X X5.关于x的方程[m2-1] x2+〔m—1〕x+2m-1=0是一元二次方程的条件是6.关于x的一元二次方程χ2—χ-3m=0有两个不相等的实数根,那么m的取值围是定_______________ .7. X2-5 | x | ÷4=0的所有实数根的和爰_____________ .8.方程χ4-5χ2+6=0,设y=χ2,那么原方程变形原方程的根为.9.以一1为一根的一元二次方程可为〔写一个即可〕.10.代数式1χ2+8x+5的最小值爰 ___________ .2二、选择题〔每题3分,共18分〕11.假设方程〔a—b〕x2+ [b-c] x+ [c-a] =0是关于x的一元二次方程,那么必有〔〕.B. 一根为1 C∙ 一根为一1 D.以上都不对A∙ a=b=cχ2 —χ-()12.假设分式~的值为0,那么x的值为〔〕.x -3x + 2A. 3 或一2B. 3C. -2D. -3 或213. [x2÷y2+l] [x2÷y2÷3] =8,那么区?+/的值为〔〕.A. -5 或1B. 1C. 5D. 5 或一114.方程χ2+px+q=0的两个根分别是2和一3,那么χ2-pχ+q可分解为〔〕.A. [x+2] [x÷3]B.〔x—2]〔x—3〕C.〔x-2]〔x+3〕D.〔x+2〕〔x—3]15α, 0是方程χ2+2006x+l=0 的两个根,那么[1+2008(1+/] [l÷2008β+β2]的值为〔〕.A. 1B. 2C. 3D. 416.三角形两边长分别为2和4,第三边是方程χ2-6x+8=0的解,那么这个三角形的周长是〔〕.A. 8 .B. 8 或10C. 10D. 8 和10三、用适当的方法解方程〔每题4分,共16分〕17.〔1〕2 tx÷2j 2-8=0; 〔2〕x〔x-3〕=x;〔3〕∖∣3 X2=6X—Λ∕3; 〔4〕〔x+3〕2÷3 fx+3] —4=0.四、解答题[18, 19, 20, 21题每题7分,22, 23题各9分,共46分〕X18.如果χ2 — 10x+y2-16y+89=0,求一的值.)'19.阅读下面的材料,答复以下问题:解方程χ4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设χ2=y,那么χ4=y2,于是原方程可变为y2—5y+4=0 ①,解得%=1, y2=4.当y=l 时,x2=l, .,.x=±lj当y=4 时,X2=4,.*.X=±2J万程有四个根:Xi=l, X2~ - 1, X3=2, X4=-2.〔1〕在由原方程得到方程①的过程中,利用法到达的目的,表达了数学的转化思想.⑵ 解方程(x2+x] 2-4 [x2+x] -12=0.20.如图,是市统计局公布的2000〜2003年全社会用电量的折线统计图.(1)填写统计表:2000 -2003年市全社会用电量统计表:年份200020012002200313.33全社会用电量〔单位:亿kW-h〕〔2〕根据市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率〔保存两个有效数字〕.用电量(亿kW ∙ h)2520151052000 2001 2002 2003 年份21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.〔1〕假设商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?〔2〕试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a, b, c是4ABC的三条边,关于x的方程Lx?+括x+c—'a=0有两个2 2相等的实数根,方程3cx+2b=2a的根为x=0.〔1〕试判断4ABC的形状.〔2〕假设a, b为方程χ2+mχ-3m=0的两个根,求m的值.23.关于x的方程fχ2+〔2a-l〕x+l=0有两个不相等的实数根5, x2.⑴求a的取值围;〔2〕是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.解:〔1〕根据题意,得△=[2a-1] 2-4a2>0,解得av'.4・•・当a<0时,方程有两个不相等的实数根.2a— 1 〔2〕存在,如果方程的两个实数根X],X2互为相反数,那么X1÷X2=--=0a ①,解得经检验,&二;是方程①的根.当a=:时,方程的两个实数根羽与X2互为相反数.a上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A、B、C、D为矩形的4个顶点,AB = 16cm, BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm∕s的速度向点B移动,一直到达点B为止;点Q以2cm∕s的速度向点B移动,经过多长时间P、Q两点之间的距离是10cm?25、如图,在aABC 中,ZB = 90° , BC=12cm, AB = 6cm,点P 从点A 开场段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒,〔1〕当t为何值时,ZiAPQ与4AOB相似?24〔2〕当t为何值时,ZXAPQ的面积为一个平方单位?2、有一边为5cm的正方形ABCD和等腰三角形PQR, PQ=PR=5cm, QR=8cm, 点B、C、Q、R在同一直线1上,当C、Q两点重合时,等腰三角形PQR以lcm/s 的速度沿直线1按箭头方向匀速运动,〔1〕t秒后正方形ABCD与等腰三角形PQR重合局部的面积为5,求时间t;〔2〕当正方形ABCD与等腰三角形PQR重合局部的面积为7,求时间t;B QC R3、如下图,在平面直角坐标中,四边形OABC 是等腰梯形,CB H OA, OA=7, AB=4, ZCOA=60°,点P 为x 轴上的一个动点,点P 不与点0、点A 重合.连结CP,过点P 作PD 交AB 于点D,⑴求点B 的坐标沐⑵当点P 运动什么位置且鲁《求这时点P 的坐标;答案:1. Xι=3, X2=102,〔5〕 点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3. 6χ2-2=04. 4 —2点拨:把一看做一个整体.X5. m≠ ± 16. m>-- 点拨:理解定义是关键.127. 0点拨:绝对值方程的解法要掌握分类讨论的思想. 8. y2 — 5y+6=0 Xi — ^∖∕2 f X2二一Λ∕2 , X3- , X4~ 一 Λ∕3 9. x 2-x=0〔答案不唯一〕 10. -2711. D 点拨:满足一元二次方程的条件是二次项系数不为0. 12. A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13. B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意χ2+F 式子本身的属性.14. C 点拨:灵活掌握因式分解法解方程的思想特点是关键. 15. D 点拨:此题的关键是整体思想的运用.16. C 点拨:此题的关键是对方程解的概念的理解和三角形三边关系定理的运用. 17. ⑴ 整理得〔x+2〕2=4,即 0+2〕=±2,.*.x 1=0, x 2=~4〔2〕x 〔x —3〕— x=0,x 〔x —3—1〕=0, x 〔x —4〕=0, ∙*∙ Xl =0 9 X2=4 9〔3〕整理得 G χ2+ \/3 — 6χ=0,时,4OCP 为等腰三角形,求这时点P 的坐标;(3)当求P 率动什幺住聂时,使<ZCPD=ZOAB,DX2—2λ∕3 x+l=0,由求根公式得X1= V3 + λ∕2 , X2= \/3 — V2 .〔4〕设x+3=y,原式可变为y2+3y-4=0,解得力二-4, y2=l,即x+3=—4, x= —7.由x+3=l,得x=-2.二原方程的解为xi= -7, x2=-2.18.由x2- 10x+y2- 16y+89=0,得〔x—5〕2+〔y—8〕2=0,x 5∕.x=5, y=8,> 819.〔1〕换元降次〔2〕设χ2+x=y,原方程可化为y2-4y-12=0,解得yι=6, y2= -2∙由x2+x=6,得xi= -3, X2=2.由x2+x= — 2,得方程X2÷X+2=0,b2-4ac=l-4×2=-7<0,此时方程无解.所以原方程的解为、二-3, X2=2.20.⑴〔2〕设2001年至2003年平均每年增长率为x,那么2001年用电量为14.73亿kW ∙ h,2002 年为14.73 [l+x]亿kW ∙ h,2003 年为14.73 [l+xj 2亿kW ∙ h.那么可列方程:14.73 [l+x] 2=21.92, 1+X=±1.22,∕.xι=0.22=22%, x2=-2.22〔舍去〕.那么2001〜2003年年平均增长率的百分率为22%.21. [1]设每件应降价x元,由题意可列方程为〔40-x〕∙〔30+2x〕=1200,解得X]=0, X2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.〔2〕设商场每天盈利为W元.W=〔40—x〕(30+2x] =-2X2+50X+1200=-2[X2-25X] +1200=-2 [χ-12.5] 2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22. ∙.∙,χ2+扬x+c-'a=0有两个相等的实数根,2 2判别式=[y[b ] 2—4×一[c -------------- a] =0,2 2整理得a+b-2c=0 ①,又3cx+2b=2a 的根为x=0,**- a—b ②.把②代入①得a=c,Λa=b=c, ∙∙∙4ABC为等边三角形.〔2〕a, b是方程x2+mx-3m=0的两个根,所以I∏2-4X〔一3m〕=0,即f∏2+12m=0,∕.t∏ι=0, m2=-12.当m=0时,原方程的解为x二O〔不符合题意,舍去〕,∕.m=12.23.上述解答有错误.〔1〕假设方程有两个不相等实数根,那么方程首先满足是一元二次方程,二.&2壬0 且满足〔2a-1〕2—4a2>0, .,.a< 一且a#0.4〔2〕a不可能等于!.2〔1〕中求得方程有两个不相等实数根,同时a的取值围是av,且aK0,4而a=—> 一〔不符合题意〕2 4所以不存在这样的&值,使方程的两个实数根互为相反数.。

一元二次方程单元测试卷含答案

一元二次方程单元测试卷含答案

一元二次方程单元测试卷含答案一元二次方程单元测试卷一、选择题(每题2分,共30分)1.下列关于x的方程中,一元二次方程是()A。

x-y=2B。

2x2+x=C。

x3+1=D。

(m+2)x/(11-m-3mx)=2.方程(m+2)x2/(11-m-3mx)+1=是关于x的一元二次方程,则()A。

m=±2B。

m=2C。

m=-2D。

m≠±23.将一元二次方程-3x2-2=-4x化成一般形式ax2+bx+c=(a≠0)后,一次项和常数项分别是()A。

-4,2B。

-4x,2C。

4x,-2D。

-3x2,24.方程x2=4x的根是()A。

x=4B。

x=1/2,x=4C。

x=0,x=4D。

x=1,x=35.一元二次方程y2-y-3/4=0配方后可化为()A。

(y+2)/2=1B。

(y-2)/2=1C。

(y+1)/3=1D。

(y-1)/3=16.已知x=1是方程x2+px+1=0的一个实数根,则P的值是()A。

0B。

1C。

2D。

-27.x=1关于x的一元二次方程x2+ax+2b=0的解,则2a+4b=()A。

-2B。

-3C。

-1D。

-68.若关于x的一元二次方程x2-4x+m+2=0有两个不相等实数根,且m为正整数,则此方程的解为()A。

x1=-1,x2=3B。

x1=-1,x2=-3C。

x1=1,x2=3D。

x1=1,x2=-39.若x-2px+3q=0的两根分别是-3和5,则多项式2x-4px+6q可以分解为()A。

(x+3)(x-5)B。

(x-3)(x+5)C。

2(x+3)(x-5)D。

2(x-3)(x+5)10.某市决定改善城市容貌,绿化环境,计划经过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A。

20%B。

11%C。

22%D。

44%11.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A。

(完整版)_一元二次方程单元测试题(含答案)

(完整版)_一元二次方程单元测试题(含答案)

第二章一元二次方程测试题(1)姓名学号一、选择题(每题 3 分,共 30 分)1.以下方程属于一元二次方程的是().( A )( x2- 2)·x=x 2 (B ) ax2 +bx+c=01( D )x2=0 ( C)x+ =5x2.方程 x( x-1 ) =5( x-1 )的解是().(A)1 (B)5 (C)1或 5 ( D)无解3.已知 x=2 是对于 x 的方程 3 x2- 2a=0 的一个根,则2a-1 的值是().2(A)3(B)4(C)5(D)64.把方程 x2-4x-6=0 配方,化为( x+m )2=n 的形式应为().( A)( x-4 )2=6 ( B)( x-2 )2=4 ( C)( x-2 )2=0 (D)( x- 2)2=10 5.以下方程中,无实数根的是().( A) x2+2x+5=0 ( B) x2-x-2=0 ( C) 2x2+x-10 =0 ( D) 2x2-x-1=06.今世数式 x2+3x+5 的值为 7 时,代数式3x2+9x-2 的值是().(A)4 (B)0 (C)-2 (D)-47.方程( x+1)( x+2) =6 的解是().( A )x =- 1, x =- 2 ( B )x =1, x =- 4 ( C) x =- 1, x =4 ( D) x =2 , x =31 2 1 2 1 2 1 28.假如对于 x 的一元二次方程 2 的两根分别为 1 2 ,?那么这个一元二次x +px+q=0 x =3 ,x =1 方程是().( A )x2+3x+4=0 ( B) x2-4x+3= 0 ( C) x2+4x-3= 0 (D ) x2+3x -4=09.某市计划经过两年时间,绿地面积增添44% , ?这两年均匀每年绿地面积的增添率是().(A ) 19% ( B) 20% ( C)21% (D ) 22% 10.在一幅长80cm,宽 50cm 的矩形景色画的周围镶一条金色纸边, ?制成一幅矩形挂图,如下图.假如要使整个挂图的面积是 5 400cm2,设金色纸边的宽为 xcm, ?那么 x 知足的方程是().( A) x2+130x-1 40 0=0 ( B) x2+65x-350=0( C) x2-130x-1 400=0 ( D) x2-65x-350=0二、填空题(每题 3 分,共 24 分)11.方程 2x2-x-2=0 的二次项系数是 ________,一次项系数是 ________, ?常数项是 ________.12.若方程ax2+bx+c=0 的一个根为 -1 ,则 a-b+c=_ ______.13.已知 x2-2x-3与x+7的值相等,则x 的值是 ________.14.请写出两根分别为-2 , 3 的一个一元二次方程_________.15.假如( 2a+2b+1)( 2a+2b-1 ) =63,那么 a+b 的值是 ________.16.已知 x2+y2-4x+6y+13=0 , x, y 为实数,则x y=_________.17.已知三角形的两边分别是 1 和 2,第三边的数值是方程2x2 -5x+3=0 的根,则这个三角形的周长为 _______.18.若 -2 是对于 x 的一元二次方程(k2-1 ) x2+2kx+4=0 的一个根,则k=________ .三、解答题(共46 分)19.解方程:8x2=24x(x+2) 2=3x+6(7x-1) 2 =9x2(3x-1)2=10x2+6x=1-2x2+13x-15=0 .x2 2 2x 2 2 x21x 136 2 20.(此题 8 分)李先生计入银行 1 万元,先存一个一年按期,?一年后将本息自动转存另一个一年按期,两年后共得本息 1.045 5 万元.存款的年利率为多少?(?不考虑利息税)21.(此题 8 分)现将进货为 40 元的商品按 50 元售出时,就能卖出 500 件. ?已知这批商品每件涨价 1 元,其销售量将减少 10 个.问为了赚取 8 000 元收益,售价应定为多少?这时应进货多少件?第二章一元二次方程测试题(2)一、选择题(每题 3 分,共 30 分)1 .方程( y+8)2 =4y+(2y-1 )2 化成一般式后 a,b,c 的值是()A .a=3,b=-16 ,c=-63;B . a=1,b=4,c=(2y-1 )2C .a=2,b=-16 ,c=-63;D . a=3,b=4,c=(2y-1 )22 .方程 x2-4x+4=0 根的状况是()A .有两个不相等的实数根 ;B .有两个相等的实数根 ;C .有一个实数根 ;D .没有实数根3 .方程 y2+4y+4=0 的左侧配成完整平方后得()A .(y+4)2 =0B .(y-4 )2 =0C .(y+2)2=0D .( y-2 )2=04 .设方程 x2+x-2=0 的两个根为α,β,那么(α -1 )(β -1 )的值等于()A.-4B.-2 C .0 D .25 .以下各方程中,无解的方程是()A . x 2 =-1B . 3( x-2 )+1=0C .x2-1=0D .x=2 x 16 .已知方程 x x 3 =0,则方程的实数解为()A.3 B.0 C.0,1 D .0,37 .已知 2y 2+y-2 的值为 3,则 4y 2+2y+1 的值为( ) 8 A .10 B .11 C .10或 11 D .3或 11) .方程 x 2有两个不相等的实根,则 , 知足的关系式是( +2px+q=0 p q A .p 2-4q>0 B .p 2-q ≥0 C .p 2-4q ≥ 0 D . p 2-q>09 .已知对于 x 的一元二次方程( m-1)x 2+x+m 2+2m-3=0的一个根为 0,则 m 的值为( )A .1B .-3C .1 或-3D .不等于 1 的随意实数10 .已知 m 是整数,且知足2m1 0,则对于 x 的方程 m 2x 2-4x-2= ( m+2)5 2m 1x 2+3x+4 的解为( )6D .x 13 或 A .x 1 , 2=- 3 B .x 1 , 2 = 3 C . x=- , 2=-2 x 2 =2 x 2=-2x =27x=673 分,共 30 分)二、填空题(每题11.一元二次方程 x 2+2x+4=0的根的状况是 ________.12.方程 x 2( x-1 )( x-2 )=0 的解有 ________个. 13.假如( 2a+2b+1)( 2a+2b-2) =4,那么 a+b 的值为 ________.14.已知二次方程 3x 2-(2a-5 )x-3a-1=0 有一个根为 2,则另一个根为 ________. 15.对于 x 的一元二次方程 x 2 +bx+c=0的两根为 -1 ,3,则 x 2+bx+c?分解因式的结果为 _________.16.若方程 x 2-4x+m=0有两个相等的实数根,则 m 的值是 ________. 17.若 b (b ≠0)是方程 x 2+cx+b=0 的根,则 b+c 的值为 ________.18.一元二次方程( 1-k )x 2-2x-1=?0? 有两个不相等的实根数, ?则 k?的取值范围是 ______.19.若对于 x 的一元二次方程 x 2+bx+c=0 没有实数根,则切合条件的一组 b , c 的实数值能够是 b=______,c=_______.20.等腰三角形 ABC 中, BC=8,AB , AC 的长是对于 x 的方程 x 2-10x+m=0 的两根,则 m?的值是 ________. 三、解答题21.(12 分)采用适合的方法解以下方程:(1)(x+1)( 6x-5 ) =0; ( 2) 2x 2+ 3 x-9=0 ;(3)2(x+5)2=x ( x+5);(4) 2 x 2-4 3 x-2 2 =0.22.(5 分)不解方程,鉴别以下方程的根的状况:(1)2x 2+3x-4=0;(2)16y 2+9=24y ;(3) 3 x 2- 2 x+2=0;(4)3t 2-3 6 t+2=0 ;(5)5(x 2+1) -7x=0 .23.(4 分)已知一元二次方程 ax 2+bx+c=0(a ≠0)的一个根是 1,且 a ,b 满 足 b= a 2 + 2 a -3 ,?求对于 y 的方程 1y 2-c=0 的根.424.(4 分)已知方程 x 2+kx-6=0 的一个根是 2,求它的另一个根及 k 的值. 25.(4 分)某村的粮食年产量,在两年内从 60 万千克增添到 72.6 万千克,问 均匀每年增添的百分率是多少?26.(5 分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了 使用“峰谷电”的政策及收费标准(见表) .已知王老师家 4 月份使用“峰谷 电”95kMh ,缴电费 43.40 元,问王老师家 4 月份“峰电”和“谷电”各用了 多少 kMh ?峰电 08:00 —22:00 元 /kWh 谷电 22:00 —08:00元 /kWh27.(6 分)印刷一张矩形的张贴广告(如图) ,?它的印刷面积是 32dm 2,?上 下空白各 1dm ,两边空白各,设印刷部分从上到下的长是 xdm ,周围空白处的面积为 Sdm 2.( 1)求 S 与 x 的关系式;2( 2)当要求周围空白的面积为 18dm 时,求用来印刷这张广告的纸张的长和宽各是多少?。

数学九年级上学期《一元二次方程》单元综合检测题(含答案)

数学九年级上学期《一元二次方程》单元综合检测题(含答案)

九年级上册数学《一元二次方程》单元测试卷[考试时间:90分钟 满分:120分]一.选择题1.(2020•顺平县一模)关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( )A .0a >B .1a >-C .1a <D .1a <且0a ≠2.(2020•安徽二模)某企业因生产转型,二月份产值比一月份下降了20%,转型成功后产值呈现良好上升势头,四月份比一月份增长15.2%,若三、四、五月份的增长率相同,则五月份与一月份相比增长的百分数约为( ) A .32%B .34%C .36%D .38%3.(2020•安徽一模)某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为( ) A .10%B .20%C .25%D .40%4.(2019春•鲤城区校级期末)已知一元二次方程2()0(0)a x m n a ++=≠的两根分别为3-,1,则方程2(2)0(0)a x m n a +-+=≠的两根分别为( ) A .1,5B .1-,3C .3-,1D .1-,55.(2018•鞍山)若关于x 的一元二次方程210kx x -+=有实数根,则k 的取值范围是( ) A .14k >且0k ≠ B .14k <且0k ≠ C .14k且0k ≠ D .14k <6.(2018秋•高阳县期末)我市某楼盘准备以每平方9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方7290元的均价开盘销售,则平均每次下调的百分率是( ) A .8%B .9%C .10%D .11%7.(2018秋•老河口市期末)关于x 的一元二次方程225320x x m m ++-+=有一根为0,则另一根等于() A .1B .2C .1或2D .5-8.(2019秋•丰南区期中)关于x 的一元二次方程2(1)410m x x ---=总有实数根,则m 的取值范围( ) A .5m 且1m ≠B .3m -且1m ≠C .3m -D .3m >-且1m ≠二.填空题9.(2020•成都)关于x 的一元二次方程232402x x m -+-=有实数根,则实数m 的取值范围是 . 10.(2020•浙江自主招生)关于x 的方程22(31)220x k x k k -+++=,若等腰三角形ABC ∆一边长为6a =,另两边长b ,c 为方程两个根,则ABC ∆的周长为 . 11.(2019秋•皇姑区期末)设α、β是方程2202020x x +-=的两根,则22(20201)(20202)ααββ+-++= .12.(2020春•文登区期中)已知关于x 的一元二次方程22(21)20x k x k +++-=的两根1x 和2x ,且21121222x x x x x -+=,则k 的值是 .13.(2020春•雨花区校级月考)一个等腰三角形的底边长是6,腰长是一元二次方程27120x x -+=的一个根,则此三角形的周长是 .14.(2002•内江)如果m ,n 是两个不相等的实数,且满足221m m -=,221n n -=,那么代数式222441999m n n +-+= .15.(2013•锦江区模拟)已知a 是方程2201310x x -+=一个根,求22201320121a a a -++的值为 . 16.(2009春•丽水期末)已知a ,b 是方程2(2)10x m x +++=的两根,则22(1)(1)a ma b mb ++++的值为 . 三.解答题17.(2020•西城区校级三模)关于x 的一元二次方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)写出一个m 的值,使得该方程有两个不相等的实数根,并求此时方程的根. 18.(2020春•玄武区期末)解一元二次方程: (1)2210x x +-=; (2)2(3)26x x -=-.19.(2020春•高邮市期末)为了满足市场上的口罩需求,某厂购进A 、B 两种口罩生产设备若干台,已知购买A 种口罩生产设备共花费360万元,购买B 种口罩生产设备共花费480万元.购买的两种设备数量相同,且两种口罩生产设备的单价和为140万元. (1)求A 、B 两种口罩生产设备的单价;(2)已知该厂每生产一盒口罩需要各种成本40元,如果按照每盒50元的价格进行销售,每天可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每天减少20盒,要保证每天销售口罩盈利6000元,且规避过高涨价风险,则每盒口罩可涨价多少元?20.(2019秋•浉河区期末)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同 (1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?21.(2020春•潜山市期末)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤. (1)若将这种水果每斤的售价降低x 元,则每天的销售量是多少斤(用含x 的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?22.(2020•师宗县一模)已知关于x 的一元二次方程:21(21)4()02x k x k -++-=. (1)求证:这个方程总有两个实数根;(2)若等腰ABC ∆的一边长4a =,另两边长b 、c 恰好是这个方程的两个实数根,求ABC ∆的周长. 23.(2020•郫都区模拟)某商店将进货价为8元/件的商品按10元/件售出,每天可售200件,通过调查发现,该商品若每件涨0.5元,其销量就减少10件. (1)请你帮店主设计一种方案,使每天的利润为700元. (2)将售价定为多少元时,能使这天利润最大?最大利润是多少元?24.(2019秋•覃塘区期中)某商店从厂家以每件21元的价格购进一批商品.若每件商品的售价为x 元,则可卖出(35010)x -件,但物价局限定每件商品的售价不能超过进价的120%.若该商店计划从这批商品中获取400元利润(不计其他成本),问需要卖出多少件商品,此时的售价是多少?25.(2019秋•慈利县期中)如图,在矩形ABCD 中,10AB cm =,8AD cm =,点P 从点A 出发沿AB 以2/cm s 的速度向点终点B 运动,同时点Q 从点B 出发沿BC 以1/cm s 的速度向点终点C 运动,它们到达终点后停止运动.(1)几秒后,点P 、D 的距离是点P 、Q 的距离的2倍; (2)几秒后,DPQ ∆的面积是224cm .26.(2019秋•青羊区校级期中)已知:如图所示,在ABC ∆中,90B ∠=︒,5AB cm =,7BC cm =,点P 从点A 开始沿AB 边向点B 以1/cm s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2/cm s 的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P 、Q 分别从A 、B 同时出发,那么几秒后,PBQ ∆的面积等于24cm ? (2)在(1)中,PQB ∆的面积能否等于27cm ?请说明理由.答案与解析一.选择题1.(2020•顺平县一模)关于的一元二次方程有两个不相等的实数根,则的取值范围是A .B .C .D .且[解答]解:关于的一元二次方程有两个不相等的实数根, 且△,解得:且. 故选:.2.(2020•安徽二模)某企业因生产转型,二月份产值比一月份下降了,转型成功后产值呈现良好上升势头,四月份比一月份增长,若三、四、五月份的增长率相同,则五月份与一月份相比增长的百分数约为 A .B .C .D .[解答]解:设一月份产值为,从三月份开始,每月的增长率为, 由题意得,解得,(不合题意,舍去)所以.故选:.3.(2020•安徽一模)某地区2007年投入教育经费2500万元,预计2009年投入3600万元.则这两年投入教育经费的年平均增长率为 A .B .C .D .[解答]解:设增长率为,根据题意得, 解得:,(舍去),答:这两年投入教育经费的年平均增长百分率是. 故选:.x 2104ax x -+=a ()0a >1a >-1a <1a <0a ≠x 2104ax x -+=0a ∴≠2214(1)4104b ac a a =-=--⨯⨯=->1a <0a ≠D 20%15.2%()32%34%36%38%a x 2(120%)(1)(115.2%)a x a-+=+10.220%x ==2 2.2x =-(115.2%) 1.2100%38%a aa +⨯-⨯≈D ()10%20%25%40%x 22500(1)3600x +=10.220%x ==2 2.2x =-20%B4.(2019春•鲤城区校级期末)已知一元二次方程的两根分别为,1,则方程的两根分别为 A .1,5B .,3C .,1D .,5[解答]解:一元二次方程的两根分别为,1,方程中或,解得:或3, 即方程的两根分别为和3,故选:.5.(2018•鞍山)若关于的一元二次方程有实数根,则的取值范围是 A .且 B .且 C .且 D . [解答]解:关于的一元二次方程有实数根,且△,解得:且.故选:.6.(2018秋•高阳县期末)我市某楼盘准备以每平方9000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方7290元的均价开盘销售,则平均每次下调的百分率是 A .B .C .D .[解答]解:设平均每次下调的百分率为, 由题意,得,解得:,(舍去).答:平均每次下调的百分率为. 故选:.2()0(0)a x m n a ++=≠3-2(2)0(0)a x m n a +-+=≠()1-3-1-2()0(0)a x m n a ++=≠3-∴2(2)0(0)a x m n a +-+=≠23x -=-21x -=1x =-2(2)0(0)a x m n a +-+=≠1-B x 210kx x -+=k ()14k >0k ≠14k <0k ≠14k0k ≠14k <x 210kx x -+=0k ∴≠2(1)40k =--14k0k ≠C ()8%9%10%11%x 29000(1)7290x -=10.1x =2 1.9x =10%C7.(2018秋•老河口市期末)关于的一元二次方程有一根为0,则另一根等于A .1B .2C .1或2D .[解答]解:设方程的另一个根是, 则由根与系数的关系得:, 解得:, 故选:.8.(2019秋•丰南区期中)关于的一元二次方程总有实数根,则的取值范围A .且B .且C .D .且[解答]解:关于的一元二次方程总有实数根,且△,即,解得.的取值范围为且.故选:. 二.填空题9.(2020•成都)关于的一元二次方程有实数根,则实数的取值范围是 .[解答]解:关于的一元二次方程有实数根, △,解得:, 故答案为:.10.(2020•浙江自主招生)关于的方程,若等腰三角形一边长为,另两边长,为方程两个根,则的周长为 16或22 . [解答]解:根据题意得△,所以,则,,当时,解得,则、的长为2,而,不合题意舍去;x 225320x x m m ++-+=()5-a 05a +=-5a =-D x 2(1)410m x x ---=m ()5m 1m ≠3m -1m ≠3m -3m >-1m ≠x 2(1)410m x x ---=10m ∴-≠0164(1)(1)0m -+⨯-3m -m ∴3m -1m ≠B x 232402x x m -+-=m 72m x 232402x x m -+-=∴23(4)42()1681202m m =--⨯⨯-=-+72m72m x 22(31)220x k x k k -+++=ABC ∆6a =b c ABC ∆222(31)4(22)(1)0k k k k =+-+=-31(1)21k k x +±-=⨯11x k =+22x k =12k k +=1k =b c 226+<当时,解得,则,此时三角形的周长为; 当时,解得,则,此时三角形的周长为. 综上所述,的周长为16或22. 故答案为16或22.11.(2019秋•皇姑区期末)设、是方程的两根,则4 .[解答]解:、是方程的两根,,,.故答案为4.12.(2020春•文登区期中)已知关于的一元二次方程的两根和,且,则的值是 或 .[解答]解:,, ,,或.①如果,那么,将代入,16k +=5k =210k =661022++=26k =3k =14k +=66416++=ABC ∆αβ2202020x x +-=22(20201)(20202)ααββ+-++=αβ2202020x x +-=2202020αα∴+-=2202020ββ+-=220202αα∴+=220202ββ+=22(20201)(20202)ααββ∴+-++(21)(22)4=-+=x 22(21)20x k x k +++-=1x 2x 21121222x x x x x -+=k 2-94-21121222x x x x x -+=211212220x x x x x -+-=1121(2)(2)0x x x x ---=112(2)()0x x x --=120x ∴-=120x x -=120x -=12x =2x =22(21)20x k x k +++-=得,整理,得,解得; ②如果,则△.解得:.所以的值为或. 故答案为:或.13.(2020春•雨花区校级月考)一个等腰三角形的底边长是6,腰长是一元二次方程的一个根,则此三角形的周长是 14 .[解答]解:解方程得:或4,当腰为3时,三角形的三边为3,3,6,,此时不符合三角形三边关系定理,此时不行; 当腰为4时,三角形的三边为4,4,6,此时符合三角形三边关系定理,三角形的周长为, 故答案为:14.14.(2002•内江)如果,是两个不相等的实数,且满足,,那么代数式 2013 .[解答]解:由题意可知:,是两个不相等的实数,且满足,,所以,是两个不相等的实数根,则根据根与系数的关系可知:,又,,则242(21)20k k +++-=2440k k ++=2k =-120x x -=22(21)4(2)0k k =+--=94k =-k 2-94-2-94-27120x x -+=27120x x -+=3x =336+=44614++=m n 221m m -=221n n -=222441999m n n +-+=m n 221m m -=221n n -=m n 2210x x --=2m n +=221m m =+221n n =+222441999m n n +-+2(21)4(21)41999m n n =+++-+.故填空答案:2013.15.(2013•锦江区模拟)已知是方程一个根,求的值为 2012 . [解答]解:是方程的一个根,, ,原式.故答案为:2012.16.(2009春•丽水期末)已知,是方程的两根,则的值为 4 .[解答]解:,是方程的两根, ,,,,,,.三.解答题17.(2020•西城区校级三模)关于的一元二次方程有两个实数根.(1)求的取值范围;(2)写出一个的值,使得该方程有两个不相等的实数根,并求此时方程的根.4284419994()2005m n n m n =+++-+=++4220052013=⨯+=a 2201310x x -+=22201320121a a a -++a 2201310x x -+=2201310a a ∴-+=220131a a ∴=-∴201312013120121201311a a a a a =--+=+--+211a a +=-2013111a a -+=-20131=-2012=ab 2(2)10x m x +++=22(1)(1)a ma b mb ++++a b 2(2)10x m x +++=(2)a b m ∴+=-+1ab =2(2)10a m a +++=2(2)10b m b +++=21(2)a m a∴+=-+21(2)b m b+=-+22(1)(1)[(2)][(2)](2)(2)4414a ma b mb m a ma m b mb a b ab ∴++++=-++-++=--==⨯=x 22(21)10x m x m +++-=m m[解答]解:(1)关于的一元二次方程有两个实数根,,解得:, 即的取值范围是; (2)由(1)知:当时,方程有两个不相等的实数根, 取, 则方程为,解得:,,即当时,方程的解是,.18.(2020春•玄武区期末)解一元二次方程:(1);(2).[解答]解(1),,,,,(2),,,,,x 22(21)10x m x m +++-=2224(21)4(1)450b ac m m m ∴-=+--=+54m -m 54m -54m >-∴1m =230x x +=13x =-20x =1m =13x =-20x =2210x x +-=2(3)26x x -=-2210x x +-=221x x ∴+=22111x x ∴++=+2(1)2x ∴+=1x ∴+=11x ∴=-21x =-2(3)26x x -=-(3)2(3)0x x ∴---=(3)(32)0x x ∴---=30x ∴-=320x --=,.19.(2020春•高邮市期末)为了满足市场上的口罩需求,某厂购进、两种口罩生产设备若干台,已知购买种口罩生产设备共花费360万元,购买种口罩生产设备共花费480万元.购买的两种设备数量相同,且两种口罩生产设备的单价和为140万元.(1)求、两种口罩生产设备的单价;(2)已知该厂每生产一盒口罩需要各种成本40元,如果按照每盒50元的价格进行销售,每天可以售出500盒.后来经过市场调查发现,若每盒口罩涨价1元,则口罩的销量每天减少20盒,要保证每天销售口罩盈利6000元,且规避过高涨价风险,则每盒口罩可涨价多少元?[解答]解:(1)设种口罩生产设备的单价为万元,则种口罩生产设备的单价为万元,依题意有, 解得,经检验,是原方程的解,且符合题意,则.答:种口罩生产设备的单价为60万元,则种口罩生产设备的单价为80万元;(2)设每盒口罩可涨价元,依题意有,解得,(舍去).故每盒口罩可涨价5元.20.(2019秋•浉河区期末)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?[解答]解:(1)设每次下降的百分率为,根据题意,得:,解得:(舍或,13x ∴=25x =A B A B A B A x B (140)x -360480140x x=-60x =60x =1401406080x -=-=A B m (5040)(50020)6000m m -+-=15m =210m =a 250(1)32a -=1.8a =)0.2a =答:每次下降的百分率为;(2)设每千克应涨价元,由题意,得,整理,得,解得:,,因为要尽快减少库存,所以符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.21.(2020春•潜山市期末)一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低元,则每天的销售量是多少斤(用含的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?[解答]解:(1)将这种水果每斤的售价降低元,则每天的销售量是(斤;(2)根据题意得:, 解得:,,当时,销售量是;当时,销售量是(斤.每天至少售出260斤,.答:水果店需将每斤的售价降低1元.22.(2020•师宗县一模)已知关于的一元二次方程:.(1)求证:这个方程总有两个实数根;(2)若等腰的一边长,另两边长、恰好是这个方程的两个实数根,求的周长. 20%x (10)(50020)6000x x +-=215500x x -+=15x =210x =5x =x x x 100201002000.1x x +⨯=+)(42)(100200)300x x --+=112x =21x =12x =11002002002602+⨯=<1x =100200300+=)1x ∴=x 21(21)4()02x k x k -++-=ABC ∆4a =b c ABC ∆[解答](1)证明:△,无论取什么实数值,,△,无论取什么实数值,方程总有实数根;(2)解:,,, ,恰好是这个方程的两个实数根,设,,当、为腰,则,即,解得,此时三角形的周长; 当、为腰时,,此时,故此种情况不存在.综上所述,的周长为10.23.(2020•郫都区模拟)某商店将进货价为8元件的商品按10元件售出,每天可售200件,通过调查发现,该商品若每件涨0.5元,其销量就减少10件.(1)请你帮店主设计一种方案,使每天的利润为700元.(2)将售价定为多少元时,能使这天利润最大?最大利润是多少元?[解答]解:(1)设涨价元,,解得,,此时的售价为或,答:售价为13元或15元时,每天的利润可得到700元;(2)利润为:,21(21)414()2k k =+-⨯⨯-24129k k =-+2(23)k =-k 2(23)0k -∴0∴k 21(23)2k k x +±-=121x k ∴=-22x =b c 21b k =-2c =a b 4a b ==214k -=52k =44210=++=b c 2b c ==b c a +=ABC ∆//x (108)(20020)700x x +-⨯-=13x =25x =∴10313+=10515+=22(108)(20020)2016040020(4)720x x x x x +-⨯-=-++=--+,当涨价4元时即售价为14元时,利润最大,为720元.24.(2019秋•覃塘区期中)某商店从厂家以每件21元的价格购进一批商品.若每件商品的售价为元,则可卖出件,但物价局限定每件商品的售价不能超过进价的.若该商店计划从这批商品中获取400元利润(不计其他成本),问需要卖出多少件商品,此时的售价是多少?[解答]解:根据题意,得整理,得解得,因为,即售价不能超过25.2元,所以不合题意,应舍去.故,从而卖出件,答:需要卖出100件商品,每件售价是25元.25.(2019秋•慈利县期中)如图,在矩形中,,,点从点出发沿以的速度向点终点运动,同时点从点出发沿以的速度向点终点运动,它们到达终点后停止运动.(1)几秒后,点、的距离是点、的距离的2倍;(2)几秒后,的面积是.[解答]解:(1)设秒后点、的距离是点、距离的2倍,,四边形是矩形,,,,, 20a =-∴x (35010)x -120%(21)(350)400x x --=2567750x x -+=125x =231x =21120%25.2⨯=31x =25x =3501025100-⨯=ABCD 10AB cm =8AD cm =P A AB 2/cm s B Q B BC 1/cm s C P D P Q DPQ ∆224cm t P D P Q 2PD PQ ∴=ABCD 90A B ∴∠=∠=︒222PD AP AD ∴=+222PQ BP BQ =+24PD =2PQ, 解得:,;时,,答:3秒后,点、的距离是点、的距离的2倍;(2)设秒后的面积是, 则,整理得解得,答:4秒后,的面积是.26.(2019秋•青羊区校级期中)已知:如图所示,在中,,,,点从点开始沿边向点以的速度移动,点从点开始沿边向点以的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果、分别从、同时出发,那么几秒后,的面积等于?(2)在(1)中,的面积能否等于?请说明理由.22228(2)4[(102)]t t t ∴+=-+13t =27t =7t =1020t -<3t ∴=P D P Q x DPQ ∆224cm 11182(102)(8)108024222x x x x ⨯⨯+-+-⨯=-28160x x -+=124x x ==DPQ ∆224cm ABC ∆90B ∠=︒5AB cm =7BC cm =P AAB B 1/cm s Q B BC C 2/cm s P Q A B PBQ ∆24cm PQB ∆27cm[解答]解:(1)设经过秒以后面积为,根据题意得,整理得:,解得:或(舍去).答:1秒后的面积等于;(2)仿(1)得.整理,得,因为,所以,此方程无解.所以的面积不可能等于. x PBQ ∆24cm 1(5)242x x -⨯=2540x x -+=1x =4x =PBQ ∆24cm 1(5)272x x -=2570x x -+=2425280b ac -=-<PBQ ∆27cm。

九年级上册数学《一元二次方程》单元综合检测题(含答案)

九年级上册数学《一元二次方程》单元综合检测题(含答案)

人教版数学九年级上学期《一元二次方程》单元测试(满分120分,考试用时120分钟)一、单选题(共10题;共30分)1.方程x2-2x=0的解为( )A. x1=0,x2=2B. x1=0,x2=-2C. x1=x2=1D. x=22.设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是()A. 2B. ﹣2C.D. ﹣3.用因式分解法解一元二次方程时,原方程可化为()A. B. C. D.4.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )A. 180(1+x%)=300B. 180(1+x%)2=300C. 180(1-x%)=300D. 180(1-x%)2=3005.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A. (x+4)2=13B. (x﹣4)2=19C. (x﹣4)2=13D. (x+4)2=196.一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情况是()A. 该方程有两个不相等的实数根B. 该方程有两个相等的实数根C. 该方程有实数根D. 该方程没有实数根7.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()A. y2+5y-6=0B. y2+5y+6=0C. y2-5y+6=0D. y2-5y-6=08.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A. x2﹣7x+12=0B. x2+7x+12=0C. x2﹣9x+20=0D. x2+9x+20=09.设a是方程x2+2x﹣2=0的一个实数根,则2a2+4a+2016的值为()A. 2016B. 2018C. 2020D. 202110.如图,△ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为( )A. 40 cm2B. 20 cm2C. 25 cm2D. 10 cm2二、填空题(共10题;共30分)11.已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.12.一元二次方程x2﹣4x+4=0的解是________.13.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.14.已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.15.一元二次方程x2+5x﹣6=0的两根和是________.16.若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是_____.(写出一个符合要求的方程)17.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.18.(3分)已知关于x的方程有两个实数根,则实数a的取值范围是.19.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.20.已知a、b是一元二次方程的两个实数根,则代数式的值等于.三、解答题(共8题;共60分)21.解下列方程(1)2x2-x=0(2)x2-4x=422.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).23.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.24.给定关于的二次函数,学生甲:当时,抛物线与轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;请判断学生甲、乙的观点是否正确,并说明你的理由.25.阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=_____,x2=_______,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?26.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?27.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?28.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB 方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x 秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.参考答案一、单选题(共10题;共30分)1.方程x2-2x=0的解为()A. x1=0,x2=2B. x1=0,x2=-2C. x1=x2=1D. x=2【答案】A【解析】分析:利用因式分解法解方程即可.详解:x(x-2)=0,x=0或x-2=0,所以x1=0,x2=2.故选A.点睛:本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.2.设x1、x2是方程2x2﹣4x﹣3=0的两根,则x1+x2的值是()A. 2B. ﹣2C.D. ﹣【答案】A【解析】试题解析:∵,是方程的两根,根据一元二次方程根与系数的关系得:+=2故选A.3.用因式分解法解一元二次方程时,原方程可化为()A. B. C. D.【答案】B【解析】由x(x−3)=x−3,x(x−3)−(x−3)=0,(x−3)(x−1)=0,故选B.4.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是( )A. 180(1+x%)=300B. 180(1+x%)2=300C. 180(1-x%)=300D. 180(1-x%)2=300【答案】B【解析】试题解析:当商品第一次提价x%时,其售价为180+180x%=180(1+x%),当商品第二次提价x%后,其售价为180(1+x%)+180(1+x%)x%=180(1+x%)2.∴180(1+x%)2=300.故选B.5.用配方法解方程x2﹣8x+3=0,下列变形正确的是()A. (x+4)2=13B. (x﹣4)2=19C. (x﹣4)2=13D. (x+4)2=19【答案】C【解析】解:x2﹣8x=﹣3,x2﹣8x+16=13,(x﹣4)2=13.故选C.6.一元二次方程(k﹣2)x2+kx+2=0(k≠2)的根的情况是()A. 该方程有两个不相等的实数根B. 该方程有两个相等的实数根C. 该方程有实数根D. 该方程没有实数根【答案】C【解析】【分析】根据方程的系数结合根的判别式,即可得出△=(k-4)≥0,由此即可得出该方程有实数根,此题得解.【详解】解:在方程(k﹣2)x2+kx+2=0(k≠2)中,A=k-42(k-2)=k-8k+16=(k-4)≥0,.该方程有实数根.所以C选项是正确的.【点睛】本题主要考查一元二次方程由根的判别式判别根的情况.7.以方程x2+2x-3=0的两个根的和与积为两根的一元二次方程是()A. y2+5y-6=0B. y2+5y+6=0C. y2-5y+6=0D. y2-5y-6=0【答案】B【解析】【分析】先设α、β是方程x2+2x-3=0的两个根,根据根与系数的关系可求α+β、αβ,再根据根与系数的关系易求与的值,进而可求二次项系数为1的方程.【详解】解:设α、β是方程x2+2x-3=0的两个根,那么α+β=-2,αβ=-3,=-2-3=-5, =-2x(-3)=6,若a=1,则b=5,c=6,所求方程是y2+5y+6=0.所以B选项是正确的.【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.8.若一个关于x的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是()A. x2﹣7x+12=0B. x2+7x+12=0C. x2﹣9x+20=0D. x2+9x+20=0【答案】C【解析】【分析】将已知数据从小到大顺序排列:2,3,4,4,5,5,5;根据众数和中位数的定义求出众数和中位数,再根据根与系数的关系造出方程即可.【详解】解:将已知数据从小到大顺序排列,得:2,3,4,4,5,5,5;共7个数据,处于中间的数据是第4个数据4,出现最多的数据是5,因此,这组数据的中位数是4,众数是5,以4,5为根的一元二次方程是x2-9x+20=0,所以C选项是正确的.【点睛】本题主要考查了众数,中位数的概念,根与系数的关系,掌握众数和中位数的求法是解题的关键.9.设a是方程x2+2x﹣2=0的一个实数根,则2a2+4a+2016的值为()A. 2016B. 2018C. 2020D. 2021【答案】C【解析】【分析】首先由已知可得a2+2a-2=0,即a2+2a=2.然后化简代数式,注意整体代入,从而求得代数式的值.【详解】解:把x=a代入得到a2+2a-2=0,则a2+2a=2.又2a2+4a=2(a2+2a),把a2+2a=2代入2a2+4a+2016=2(a2+2a)+2016=22+2016=2020所以C选项是正确的.【点睛】本题主要考查一元二次方程的解及整体代入计算整式的值.10.如图,△ABC是一块锐角三角形材料,高线AH长8 cm,底边BC长10 cm,要把它加工成一个矩形零件,使矩形DEFG的一边EF在BC上,其余两个顶点D,G分别在AB,AC上,则四边形DEFG的最大面积为( )A. 40 cm2B. 20 cm2C. 25 cm2D. 10 cm2【答案】B【解析】【分析】设矩形DEFG的宽DE=x,根据相似三角形对应高的比等于相似比列式求出DG,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【详解】如图所示:设矩形DEFG的宽DE=x,则AM=AH-HM=8-x,∵矩形的对边DG∥EF,∴△ADG∽△ABC,∴,即,解得DG=(8-x),四边形DEFG的面积=(8-x)x=-(x2-8x+16)+20=-(x-4)2+20,所以,当x=4,即DE=4时,四边形DEFG最大面积为20cm2.故选:B.【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG的宽表示出长是解题的关键.二、填空题(共10题;共30分)11.已知两个数的差为3,它们的平方和等于65,设较小的数为x,则可列出方程________.【答案】【解析】由较小的数为x可知较大的数为x+3,故它们的平方和为x2+(x+3)2再根据它们的平方和是65可得x2+(x+3)2=65,故答案为:x2+(x+3)2=65.12.一元二次方程x2﹣4x+4=0的解是________.【答案】x1=x2=2【解析】【分析】根据配方法即可解方程.【详解】解:x2﹣4x+4=0(x-2)2=0∴x1=x2=2【点睛】本题考查了用配方法解一元二次方程,属于简单题,选择配方法是解题关键.13.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.【答案】-2【解析】试题分析:把x=1代入+3mx+n=0得:1+3m+n=0,3m+n=﹣1,∴6m+2n=2(3m+n)=2×(-1)=﹣2考点:整体思想求代数式的值.14.已知x1,x2是方程x2-4x+2=0的两根,求:(x1-x2)2=_____________.【答案】8【解析】【分析】易得到两根之和与两根之积的具体数值,利用(x1-x2)2=(x1+x2)2-4x1x2代入相应的数值进行计算即可得.【详解】∵x1,x2是方程x2-4x+2=0的两根,∴x1+x2=4,x1x2=2,∴(x1-x2)2=(x1+x2)2-4x1x2=42-4×2=8,故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,解决本题的关键是把所求的代数式整理成与根与系数有关的形式.15.一元二次方程x2+5x﹣6=0的两根和是________.【答案】-5【解析】试题分析:设x1、x2为一元二次方程x2+5x﹣6=0的两根,则由根与系数的关系得:x1+x2=-=﹣5.考点:根与系数的关系16.若关于x的一元二次方程的两个根x1,x2满足x1+x2=3,x1x2=2,则这个方程是_____.(写出一个符合要求的方程)【答案】答案不唯一,如【解析】分析:根据根与系数的关系得到满足条件的方程可为x2-3x+2=0.详解:∵x1+x2=3,x1x2=2,∴以x1,x2为根的一元二次方程x2-3x+2=0.故选答案不唯一,如.点睛:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−,x1x2=.17.关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.【答案】1【解析】试题解析:∵关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,∴k≠0且△>0,即(-2)2-4×k×(-1)>0,解得k>-1且k≠0.∴k的取值范围为k>-1且k≠0.故k的最小整数值为1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.18.(3分)已知关于x的方程有两个实数根,则实数a的取值范围是.【答案】a≤1.【解析】试题分析:∵方程有两个实数根,∴△=4﹣4a≥0,解得:a≤1,故答案为:a≤1.考点:根的判别式.19.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.【答案】5【解析】试题分析:根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=5考点:根与系数的关系20.已知a、b是一元二次方程的两个实数根,则代数式的值等于.【答案】-1【解析】分析:欲求(a-b)(a+b-2)+ab的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:∵a、b是一元二次方程x2-2x-1=0的两个实数根,∴ab=-1,a+b=2,∴(a-b)(a+b-2)+ab=(a-b)(2-2)+ab,=0+ab,=-1,故答案为:-1.三、解答题(共8题;共60分)21.解下列方程(1)2x2-x=0(2)x2-4x=4【答案】(1)x1=0,x2=;(2)x1=2+2,x2=2-2.【解析】【分析】(1)结合提取公因式法分解因式解方程;(2)利用配方法求出方程的根即可.【详解】(1)解:2x2-x=0,x(2x-1)=0,x=0或2x-1=0,则x1=0,x2=.(2)解:方程两边同时+4,得x2-4x+4=4+4,(x-2)2=8,x-2=±2 ,则x1=2+2,x2=2-2.【点睛】此题主要考查了配方法以及因式分解法解方程,正确分解因式是解题关键.22.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).【答案】(1)证明见解析;(2)5.【解析】试题分析:(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.试题解析:(1)∵关于x的一元二次方程x2-(2m+1)x+m(m+1)=0.∴△=(2m+1)2-4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=-1,∵(2m-1)2+(3+m)(3-m)+7m-5=4m2-4m+1+9-m2+7m-5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=-1代入3m2+3m+5得:3m2+3m+5=3×1-3+5=5.考点:1.根的判别式;2.一元二次方程的解.23.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6﹣b=0有两个相等的实数根,求△ABC的周长.【答案】△ABC的周长是12.【解析】试题分析:若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.试题解析:∵关于x的方程有两个相等的实数根,∴△=,即;解得,(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5﹣2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;故△ABC的周长是12.考点:1.根与系数的关系;2.三角形三边关系;3.等腰三角形的性质.24.给定关于的二次函数,学生甲:当时,抛物线与轴只有一个交点,因此当抛物线与轴只有一个交点时,的值为3;学生乙:如果抛物线在轴上方,那么该抛物线的最低点一定在第二象限;请判断学生甲、乙的观点是否正确,并说明你的理由.【答案】甲错误,乙正确【解析】试题分析:甲的观点是错误的,乙的观点是正确的.分别求出抛物线y=2x2+(6-2m)x+3-m与x轴只有一个交点时m的值以及抛物线在x轴上方时该抛物线的最低点的位置即可.试题解析:甲的观点是错误的.理由如下:当抛物线与轴只有一个交点时即:解得或即或时抛物线与轴只有一个交点乙的观点是正确的理由如下:当抛物线在轴上方时,由上可得即:∴而对于开口向上的抛物线最低点为其顶点顶点的横坐标为,且抛物线在轴上方,即抛物线的最低点在第二象限【点睛】本题考查了抛物线和x轴交点问题以及和二次函数有关的性质,求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.25.阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=_____,x2=_______,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【答案】(1)2,;(2)不存在,理由见解析;(3)(m+n)2-8mn≥0,理由见解析.【解析】试题分析:(1)直接利用求根公式计算即可;(2)参照(1)中的解法解题即可;(3)解法同上,利用根的判别式列不等关系可求m,n满足的条件.试题解析:(1)由上可知(x-2)(2x-3)=0,∴x1=2,x2=.(2)不存在,理由如下:设所求矩形的两边分别是x和y,由题意,得,消去y化简,得2x2-3x+2=0.∵△=9-16<0,∴不存在矩形B.(3)(m+n)2-8mn≥0,理由如下设所求矩形的两边分别是x和y,由题意,得,消去y化简,得2x2-(m+n)x+mn=0.△=(m+n)2-8mn≥0,即(m+n)2-8mn≥0时,满足要求的矩形B存在.考点:一元二次方程的应用.26.某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?【答案】人行道的宽度为2米【解析】设人行道的宽度为x米,则矩形绿地的长度为:,宽度为:8-2x,根据两块绿地的面积之和为60 平方米,列方程求解.解:根据题意,得.整理得.解得,.∵不符合题意,舍去,.答:人行通道的宽度是2米.“点睛”本题考查了一元二次方程法应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.27.“低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?【答案】(1)新投放的共享单车1250辆;(2)为使利润最大,该商城应购进60辆A型车和40辆B型车. 【解析】【分析】(1)设平均增长率为x,根据1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆列出方程,再求解即可;(2)设购进A型车y辆,则购进B型车100-y辆,根据不超过70000元的资金再购进A,B两种规格的自行车100辆,列出不等式,求出y的取值范围,然后求出利润W的表达式,根据一次函数的性质求解即可.【详解】(1)解:设平均增长率为x,根据题意得:640=1000;解得:x=0.25=25%或x=-2.25(舍去);∴四月份的销量为:1000(1+25%)=1250(辆);答:新投放的共享单车1250辆.(2)解:设购进A型车y辆,则购进B型车100-y辆;根据题意可得:500y+1000(100-y)≤70000;解得:y≥60;∴利润W=(700-500)y+(1300-1000)(100-y)=200y+300(100-y)=-100y+30000∵-100<0,∴W随着x的增大而减小;∴当y=60时,利润最大=-100×60+30000=2400(元);答:为使利润最大,该商城应购进60辆A型车和40辆B型车.【点睛】本题考查了一元二次方程、一元一次不等式和一次函数的应用,解题关键是读懂题意,根据题意列出方程或不等式.28.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB 方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x 秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.【答案】(1) y=-x2+9x(0<x≤4)(2)20【解析】解:(1)∵,PB=AB-AP=18-2x,BQ=x,∴y=(18-2x)x,即y=-x2+9x(0<x≤4).(2)由(1)知:y=-x2+9x=.∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,.∴△PBQ的最大面积是20cm2.(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解. (2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.。

一元二次方程单元检测题(含参考答案)

一元二次方程单元检测题(含参考答案)

九年级数学阶段质量监测题(一)(一元二次方程)测试时间:90分钟第Ⅰ卷 [基础测试卷]一、单项选择题(每小题2分,共20分)1.下列方程是一元二次方程的是 ( )A.y x =-12B.562=xC.xx 12=D.2)2)(1(x x x =++ 2.一元二次方程122=-x x 的常数项为 ( ) A.-1 B.1 C.0 D.1± 3.若方程013)2(=+++mx xm m是关于x 的一元二次方程,则 ( )A.2±=mB.2=mC.2-=mD.2±≠m4.在方程)0(02≠=++a c bx ax 中,若有0=+-c b a ,则方程必有一根为 ( )A.1B.1-C.1±D.05.一元二次方程032=+x x 的根为 ( ) A.-3 B.0,3 C.0,-3 D.36.将方程0462=+-x x 配方,其正确的结果是 ( )A.9)3(2=-xB.5)3(2=-xC.13)3(2=-xD.5)3(2=+x7.已知关于x 的一元二次方程0122=++x mx 有两个不相等的实数根,则m 的取值范围是 ( ) A.1-<m B.1>m C.1<m 且0≠m D.1->m 且0≠m8.若方程0132=--x x 的两根为1x 、2x ,则1211x x +的值为 ( ) A.3 B.-3 C.13D.13-9. 已知一个三角形的两边长分别为3和6,第三边的长是方程0862=+-x x 的一个根,则这个三角形的周长是 ( ) A.11 B.13 C.11或13 D.11和1310.关于x 的方程0)2(222=+++k x k x 的两实数根之和不小于-4,则k 的取值范围是( )A.1->kB.0<kC.01<<-kD.01≤≤-k 二、填空题(每小题2分,共20分) 1.关于x 的方程03)3(12=+---x x m m是一元二次方程,则=m .2.一元二次方程x x 6122=-的一般式是 ,其中一项系数是 . 3.方程032=-x x 的根是 ,方程0)2)(1(=-+x x 的是 . 4. 关于x 的一元二次方程02=+-k x x 的一个根是2,则k = ,另一个根为 . 5.已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是 . 6.关于x 的一元二次方程032=--m x x 有两个不相等的实数根,则m 的取值范围是______________.7.小华在解一元二次方程042=-x x 时,只得出一个根是x =4,则被他漏掉的另一个根是x = .8.如果21x x 、是方程0482=-+x x 的两个根,那么21x x += ,2221x x += . 9.直角三角形两条直角边长分别为1+x ,3+x ,斜边长为x 2,那么x = . 10.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=*+x 的解是 .三.按指定的方法解方程(每小题4分,共16分)1.4)1(2=-x (直接开平方法); 2.0542=-+x x (配方法);3.0652=+-x x (因式分解法);4.012222=+-x x (公式法).四.用适当的方法解方程(每小题4分,共8分)1.x x x =-)3(;2.06)32(2=++-x x .五.解答题(每小题6分,共18分)1.已知2+3是方程042=+-c x x 的一个根,求方程的另一个根及c 的值.2.若关于x 的方程0342=+-+a x x 有实数根. (1)求a 的取值范围;(2)当a 为符合条件的最小整数,求此时方程的根.3.设a 、b 、c 是△ABC 的三条边,关于x 的方程021212=-++a c x b x 有两个相等的实数根,方程a b cx 223=+的根为0=x .(1)试判断△ABC 的形状;(2)若a 、b 为方程032=-+m mx x 的两个根,求m 的值.六、应用题(每小题6分,共18分)1.某城2014年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2016年底增加到363公顷,求平均每年的增长率.2.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1 200元,每件衬衫应降价多少元?3.如图,A,B,C,D为矩形的四个顶点,AB=16 cm,BC=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s的速度向点D移动.当点P 运动到点B停止时,点Q也随之停止运动.问几秒时点P和点Q的距离是10 cm?第Ⅱ卷[实践操作卷]一、猜一猜,算一算(10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?二、想一想,试一试(10分)今要对一块长60m、宽40m的矩形荒地ABCD进行绿化和硬化,设计方案如图所示,已知矩形P,Q为两块绿地,其余为硬化路面,P,Q两块绿地周围的硬化路面宽都相等.若使两块绿地面积的和为矩形ABCD面积的14,求P,Q两块绿地周围的硬化路面的宽.九年级数学阶段质量监测题(一)参考答案第Ⅰ卷一、选择题:二、填空题:1. 3-;2.01622=--x x ,-6;3.0或3,-1或2;4.-2,-1;5.062=-+x x ;6. 41->m ;7.0; 8.8-,72; 9.5;10.-7或3. 三、1.3或-1;2.1或-5;3.2或3;4.2221==x x . 四、1.0,4;2.2,3.五、1.1=c ,另一根为32-;2.(1)1-≥a ,(2)221-==x x ;3.(1)△ABC 是等边三角形,(2)12-=m .六、1.10%;2.每件衬衫应降价20元.3.85s 或245s . 第Ⅱ卷一、m 20==BC AB .二、两块绿地周围的硬化路面的宽都为10m.。

初中数学《一元二次方程》单元测试(含答案)

初中数学《一元二次方程》单元测试(含答案)

一元二次方程单元测试一、选择题:(3分×8=24分)1. 在4(1)(2)5x x -+=,221x y +=,25100x -=,2280x x +=0,213x x=+中,是一元二次方程的个数为 ( ) A .3 个 B.4 个 C. 5 个 D. 6 个 ⒉ 方程21242x x -=-化为一般式后,,,a b c 的值依次为( ) A.12,-4,-2 B.12,-4, 2 C. 12,4,-2 D.1, -8, -4 3.2260x -=的解是( )A.3x =±B.x =x =无实根4. 20=2=的解( )A.都是零B.都不相等C.有一个相等的根1x =D.有一个相等的根0x = 5. 方程2410mx x -+=的根是( )A.14B. D.以上都不对6. 方程2230x x --=的解是( )A.3±B.3,1±±C.1,3--D.1,3- 7. 方程)0()(2>=-b b a x 的根是 ( )A b a ±B )(b a +±C b a +±D b a ±±8. 方程:①230x -=, ②291210x x --=, ③2121225xx += ,④22(51)3(51)x x -=-,较简便的解法( ) A .依次为直接开平方法,配方法,公式法和因式分解法 B.①用直接开平方法,②用公式法,③④用因式分解法 C. 依次为因式分解法,公式法,配方法和直接开平方法 D. ①用直接开平方法,②③用公式法,④用因式分解法二、填空题: (2分×10=20分)1.把方程9)2)(2()1(3+-+=-x x x x 化成一般式为_________________________.2.方程212y y =的二次项系数是________,一次项系数是_________,常数项是_________.3.方程0162=-x 的根是______________, 方程2120y y +-=的根是 ;4.已知256y x x =-+,当x=_______时,y=0; 当y=_______时,x=0.5.223____(_____)x x x -+=-; 2226____2(_____)x x x -+=-6.若关于x 的一元二次方程240x x m +-=2,那么m =____________.7. ,则x =____________. 8. 一元二次方程20ax bx c ++=若有两根1和-1,那么a b c ++=________,a b c -+=____9.220b c ++=时,则20ax bx c ++=的解为____________________.10.当_____m =时, 关于x 的方程2(80m m x mx -+=是一元二次方程. 三、按要求解下列方程: ( 5分×4=20分)1. 229()525x -=(直接开平方法) 2. 0362=+-x x (配方法)3. 0672=+-x x (因式分解法) 4. 2230x x +-= (求根公式法)四、用适当的方法解下列各题:( 5分×4=20分)1.(1)(3)12x x -+= 2.224(3)25(2)x x +=-3.2(23)3(23)40x x +-+-= 4.221(1)0x x k x -+--=五、解答下列个题:( 5分×2+6分=16分)(1) 已知方程258(2)4k k k x -+-=是一元二次方程,求k 的值.(2)当,a b 为何值时,关于x 的方程2210ax bx ++=和230ax bx -+=都有一个根2 ?(3)某村计划修一条横断面为等腰梯形的渠道,断面面积为10.52米,上口比底宽3米,比深多2米,求上口应挖多宽? 附加题:一、填空题: ( 3分×4=12分)1、 若代数式(5)(3)x x -+的值为0,则x 的值为____________.2、 已知235x x ++的值为7,则2392x x +-的值为_____________. 3、 若2225120x xy y --=,则xy=________________. 4、 观察下列等式: 73452331210122222222=-=-=-=-、、、,用含自然数n 的等式表示这种规律为_____________________. 二、解答题: ( 4分×2=8分)1、 当k 是什么数时,222(1)5x k x k -+++是完全平方式.2、 解关于x 的方程:2(1)2(3)80m x m x ----=(提示:分1,1m m =≠两种情况讨论)参考答案一.ABCD DAAB二. 1.22350x x --= 2.1,1,02- 3.124;3,4x y y =±==- 4.2或3;6 5. 9393,;,42226. 1- 7.2或128.0;0 9.1210,2x x ==10.三.1.1211,5x x ==- 2.1233x x ==3.121,6x x == 4.1231,2x x ==- 四.1.123,5x x ==- 2.12164,37x x == 3.1212,2x x =-=4.121,1x x k ==+ 五.1.解:2122,35803220k k k k k k k ==⎧-+=⎧⇒⇒=⎨⎨≠-≠⎩⎩2.解:由题意得:4221034230 4.5a b a a b a ++==-⎧⎧⇒⎨⎨-+==-⎩⎩ 3.解:设上口应挖x 米,则:()()13210.52x x x +-⋅-=⎡⎤⎣⎦ ()1235,2x x ∴==-舍 答:上口应挖5米。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 3x + 2 = 0B. 2x - 5 = 0C. 3y^2 + y = 7D. x^3 - 4x^2 + x - 6 = 02. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ 的值是多少?A. 1B. 25C. 49D. 03. 方程 x^2 + 4x + 4 = 0 有几个实数解?A. 0B. 1C. 2D. 34. 如果一元二次方程 ax^2 + bx + c = 0 的一个解是 x = 2,那么2a + b 的值是多少?A. aB. -cC. a - bD. c5. 用配方法解方程 x^2 - 6x + 5 = 0 的解是什么?A. x = 1, 5B. x = 2, 3C. x = 3, 4D. x = 4, 56. 方程 2x^2 - 8x + 5 = 0 的解的和是多少?A. 0B. 4C. 8D. 167. 方程 x^2 + 2x + 1 = 0 的解是:A. x = -1B. x = 1C. x = -1, 1D. 无实数解8. 一元二次方程的一般形式是:A. ax + b = 0B. ax^2 + bx + c = 0C. a(x - b)^2 = cD. ax^2 + bx = c9. 如果一元二次方程的系数 a = 1,b = -6,c = 5,那么方程的根的情况是:A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 一个实数根10. 解方程 3x^2 - 12x + 10 = 0 的判别式Δ 的值是:A. 36B. 0C. -4D. 4二、填空题(每题4分,共20分)11. 方程 2x^2 - 3x + 1 = 0 的判别式Δ = ____。

12. 方程 x^2 - 4x + __ = 0 是完全平方。

13. 如果一元二次方程的解为x = 3 ± 2√2,那么 a = ____,b = ____。

一元二次方程》单元测试题及答案

一元二次方程》单元测试题及答案

一元二次方程》单元测试题及答案一元二次方程单元测试题一、选择题(共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列方程中不一定是一元二次方程的是()A.(a—3)x^2=8(a≠3)。

B.ax^2+bx+c=0.C。

(x+3)(x-2)=x+5.D.3x^2+x-2=572改写为:下列方程中不是一元二次方程的是()2.下列方程中,常数项为零的是()A.x^2+x=1B.2x^2-x-12=0C.2(x^2-1)=3(x-1)D.2(x^2+1)=x+2改写为:下列方程中,常数项为零的是()3.一元二次方程2x^2-3x+1=0化为(x+a)^2=b的形式,正确的是()A.(x-1/2)^2=16.B.2(x-2)^2=4.C.(x-1)^2=1/4.D.以上都不对改写为:将一元二次方程2x^2-3x+1=0化为(x+a)^2=b 的形式,正确的是()4.关于x的一元二次方程(a-1)x^2+x+a^2-1=0的一个根是√3,则a值为()A.1B.-1C.1或-1D.1/2改写为:关于x的一元二次方程(a-1)x^2+x+a^2-1=0的一个根是√3,则a值为()5.已知三角形两边长分别为2和9,第三边的长为二次方程x^2-14x+48=0的一根,则这个三角形的周长为()A.11B.17C.17或19D.19改写为:已知三角形两边长分别为2和9,第三边的长为二次方程x^2-14x+48=0的一根,则这个三角形的周长为()6.已知一个直角三角形的两条直角边的长恰好是方程2x^2-8x+7=0的两个根,则这个直角三角形的斜边长是()A.3B.3√2C.6D.9改写为:已知一个直角三角形的两条直角边的长恰好是方程2x^2-8x+7=0的两个根,则这个直角三角形的斜边长是()7.使分式的值等于零的x是()A.6B.-1或6C.-1D.-6改写为:使分式的值等于零的x是()8.若关于y的一元二次方程ky^2-4y-3=3y+4有实根,则k 的取值范围是()A.k。

数学九年级上册《一元二次方程》单元综合测试题(附答案)

数学九年级上册《一元二次方程》单元综合测试题(附答案)

人教版数学九年级上学期 《一元二次方程》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)已知关于x 的方程:(1)20ax bx c ++=;(2)240x x -=;(3)1+(x-1)(x+1)=0;(4)23(2)(3)x x x -=-+;(5)210x x-=其中是一元二次方程有( )个. A.1个B.2个C.3个D.4个2.(2019·南山第二外国语学校集团海德学校初三期中)关于x 的一元二次方程的两根分别为13x =-,22x =,则这个方程可以为( ) A.(2)(3)0x x --= B.(2)(3)0x x ++= C.(2)(3)0x x +-=D.(2)(3)0x x -+=3.(2019·厦门市第五中学初三期中)方程226x =的根是( )和 B.0和3C.3和3-4.(2019·湖北初三期中)向阳村2016年的人均收入为12000元,2018年的人均收入为14520元,则人均收入的年平均增长为( ) A.10%或-210%B.12.1%C.11%D.10%5.(2019·湖北初三期中)一元二次方程x 2-1=1的常数项是( ) A.-1B.1C.0D.-26.方程2(2)3(2)x x -=-的解为( ) A.2x =B.5x =C.12x =,25x =D.12x =,23x =7.(2019·山东初三期中)已知关于x 的一元二次方程x 2-2x =m 有两个不相等的实数根,则m 的取值范围是( ) A.m <1B.m <-2C.m =0D.m >-18.(2019·广东初三期中)已知一元二次方程260x x c -+=有一根为2,另一根为( ) A.5B.4C.3D.29.(2019·青浦区华新中学初二月考)已知三角形的两条边分别是2和4,第三边是方程29180x x -+=的根,则这个三角形的周长为( ) A.9或12B.9C.12D.不能确定10.(2019·江苏东绛实验学校初三期中)某校初三篮球联赛中采用了单循环赛制(即参赛的每两个队之间都要比赛一场),根据场地和时间等条件,赛程计划为7天,每天安排4场比赛.设有x 个队参加比赛,根据题意可列出方程( ) A.x (x +1)=2B.x (x -1)=28C.12x (x +1)=28 D.12x (x -1)=28 二、填空题(每小题4分,共24分) 11.关于x 的方程()221150aa a x --++=是一元二次方程,则a =_________.12.(2019·湖北初三期中)关于x 的方程(x+n)2=p 有两个相等的实数根,则p 的取值是__________. 13.(2019·湖北初三期中)实数x ,y 满足(x+y)2+x+y -2=0, 则2x+2y 值为_________.14.(2019·江苏初三期中)某型号的冰箱连续两次降价,每台售价由原来的2370元降到了1160元,若设平均每次降价的百分率为x ,则可列出的方程是__________________________________.15.(2019·江西省宜春实验中学初三期中)一元二次方程2410x x --=的两个根为12,,x x ,且2212x x +=____。

《一元二次方程》 单元测试卷 (含答案)

《一元二次方程》  单元测试卷 (含答案)

《一元二次方程》单元检测题一、选择题(每小题只有一个正确答案)1. 把方程23402x x ++=左边配成一个完全平方式后,所得方程是( ). (A )2355()416x += (B )2315()24x +=- (C )2315()24x += (D )2355()416x +=- 2.已知方程260x x q -+=可以配方成2()7x p -=的形式, 那么262x x q -+=可以配方成下列的 ( )(A) 2()5x p -= (B) 2()9x p -=(C) 2(2)9x p -+= (D) 2(2)5x p -+=3.一元二次方程2230x x --=的两个根分别为( ).(A)X l =1, x 2=3 (B)X l =1, x 2=-3(C)X 1=-1,X 2=3 (D)X I =-1, X 2=-34. 若2222()(1)60m n m n +--+=,则22m n +的值为( ).(A )3 (B )-2 (C )3或-2 (D )-3或25. 方程(3)x x x +=的根是( ).(A )-2 (B )0 (C )无实根 (D )0或-2 6. 已知x 满足方程2310x x -+=,则1x x+的值为( ). (A )3 (B )-3 (C )32 (D )以上都不对 7. 要使分式2544x x x -+-的值为0,x 等于( ). (A )1 (B )4或1 (C )4 (D )-4或-18. 关于x 的方程22(2)0a a x ax b --++=是一元二次方程的条件是( ).(A )2a ≠-且1a = (B )2a ≠ (C )2a ≠-且1a =- (D )1a =-二、填空题 9. 222(_____)[(____)]3y y y -+=+.10. x =__________.11. 若代数式2713x x -+的值为31,则x =_________________.12.用公式法解方程2815x x =--,其中24b ac -=__________,1x =__________,2x =_______________.13. 一元二次方程x 2-2x-1=0的根是__________.14. 若方程x 2-m=0的根为整数,则m 的值可以是________(只填符合条件的一个即可)15. 若(2x+3y )2+3(2x+3y )-4=0,则2x+3y 的值为_________.16. 请写出一个根为x= 1, 另一根满足-1< x< 1 的一元二次方程_______.三、计算题17.用配方法解下列方程:(1)210257x x -+=; (2)261x x +=;(3)23830x x +-=;(4)2310x x -+=.18.用公式法解下列方程:(1)27180x x --=;(2)22980x x -+=;(3)29610x x ++=;(4)21683x x +=.19.用因式分解法解下列方程:(1)(41)(57)0x x -+=; (2)3(1)22x x x -=-;(3)2(23)4(23)x x +=+; (4)222(3)9x x -=-.20. 阅读材料,解答问题:材料:为解方程(x 2-1)2-5(x 2-1)+4=0我们可以将x 2-1视为一个整体,然后设x 2-1=y ,•则(x 2-1)2=y 2,原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=;当y=4时,x 2-1=4,∴x 2=5,∴x=x 1,x 2,x 3x 4解答问题:(1)填空,在解原方程得到①的过程中利用_________法达到了降次的目的,体现了_______•数学思想;(2)利用上述方法解方程x 4-x 2-6=0.21. 若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b=4ab ,例如2※6=4•×2•×6=48(1)求3※5的值;(2)求x ※x+2※x-2※4=0中x 的值;(3)若无论x 是什么数,总有a ※x=x ,求a 的值.参考答案:一、选择题1.D ;2.B ;3.C ;4.A ;5.D ;6.A ;7.A ;8.C ;二、填空题 9. 19,13-; 10. -5或3;11.9或-2;12.4,-3,-5;13. x 1;x 2;14.如4 , 提示:m 应是一个整数的平方,此题可填的数字很多.15. -•4或1;16.略;三计算题17.(1)15x =25x =(2)13x =-23x =-(3)113x =,23x =-;(4)132x +=,2x =; 18.(1)19x =,22x =-;(2)194x +=,294x =; (3)1213x x ==-; (4)114x =,234x =-; 19.(1)175x =-,214x =;(2)12 3x=-,21x=;(3)13 2x=-,21 2x=;(4)13x=,29x=.20. (1)换元,转化;(2)x=21. (1)3※5=4×3×5=60,(2)由x※x+2※x-2※4=0得4x2+8x-32=0,即x2+2x-8=0,∴x1=2,x2=-4,(3)由a*x=x得4ax=a,无论x为何值总有4ax=x,∴a=14.。

初中数学一元二次方程单元综合测试题(含答案)

初中数学一元二次方程单元综合测试题(含答案)

初中数学一元二次方程单元综合测试题(含答案)一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x-2x=1;(4)ax 2+bx+c=0;(5)12x 2=0. 3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________. 6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x 2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x 2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a -b )x 2+(b -c )x+(c -a )=0是关于x 的一元二次方程,则必有( ).A .a=b=cB .一根为1C .一根为-1D .以上都不对12.若分式22632x x x x ---+的值为0,则x 的值为( ).A .3或-2B .3C .-2D .-3或2 13.已知(x 2+y 2+1)(x 2+y 2+3)=8,则x 2+y 2的值为( ). A .-5或1 B .1 C .5 D .5或-1 14.已知方程x 2+px+q=0的两个根分别是2和-3,则x 2-px+q 可分解为( ). A .(x+2)(x+3) B .(x -2)(x -3) C .(x -2)(x+3) D .(x+2)(x -3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x;(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.(1)填写统计表:2000~2003年丽水市全社会用电量统计表:年份2000 2001 2002 2003全社会用电量(单位:亿kW·h)13.33(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).21.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a,b,c是△ABC的三条边,关于x的方程12x2b x+c-12a=0有两个相等的实数根,•方程3cx+2b=2a的根为x=0.(1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值. 23.已知关于x 的方程a 2x 2+(2a -1)x+1=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a 2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x 1,x 2互为相反数,则x 1+x 2=-21a a=0①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x 1与x 2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?25、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?C QP B D A C1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点时间为t 秒,(1)当t为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?2、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;(3)当点P 运动什么位置时,使得∠C PD=∠OAB, 且58BD BA ,求这时点P 的坐标;C BQ R A D lP参考答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把1x看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-5y+6=0 x1x2=,x3x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.15.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(326x=0,x2-x+1=0,由求根公式得x1,x2.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20(则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意. 故每件衬衫应降价25元. (2)设商场每天盈利为W 元.W=(40-x )(30+2x )=-2x 2+50x+1200=-2(x 2-25x )+1200=-2(x -12.5)2+1512.5 当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x 2x+c -12a=0有两个相等的实数根,∴判别式=)2-4×12(c -12a )=0,整理得a+b -2c=0 ①,又∵3cx+2b=2a 的根为x=0, ∴a=b ②.把②代入①得a=c ,∴a=b=c ,∴△ABC 为等边三角形. (2)a ,b 是方程x 2+mx -3m=0的两个根, 所以m 2-4×(-3m )=0,即m 2+12m=0, ∴m 1=0,m 2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去), ∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程, ∴a 2≠0且满足(2a -1)2-4a 2>0,∴a<14且a ≠0. (2)a 不可能等于12. ∵(1)中求得方程有两个不相等实数根,同时a 的取值范围是a<14且a ≠0, 而a=12>14(不符合题意) 所以不存在这样的a 值,使方程的两个实数根互为相反数.。

一元二次函数单元测试卷(含答案)

一元二次函数单元测试卷(含答案)

一元二次函数单元测试卷(含答案)一元二次函数单元测试卷(含答案)一、选择题(每题4分,共40分)1. 已知一元二次函数的图像是开口向上的抛物线,那么函数的开口方向是:A. 向上B. 向下C. 不确定D. 无法确定答案:A2. 若一元二次函数的顶点是(2,3),则它的对称轴方程为:A. x = 2B. x = 3C. y = 2D. y = 3答案:A3. 函数y = x^2 - 4x + 3的判别式的值为:A. -4B. -3C. 4D. 3答案:C4. 已知函数y = ax^2 + bx + c的判别式为0,那么函数的图像与x轴的交点个数为:A. 0个B. 1个C. 2个D. 无法确定答案:B5. 函数y = 2x^2 - 6x + 4的对称轴方程为:A. x = -3/2B. x = 3/2C. y = 3/2D. y = -3/2答案:A6. 函数y = x^2 + px + q的顶点坐标为(-1,2),则p和q的值分别为:A. p = -1, q = 2B. p = 1, q = 2C. p = 2, q = 1D. p = -2, q = -1答案:A7. 若函数y = ax^2 + bx + c的图像与x轴相切,那么判别式的值为:A. -b/aB. -4acC. b^2 - 4acD. 无法确定答案:C8. 已知函数的图像过点(1,4)和(3,4),则函数的表达式为:A. y = x^2 + 2x + 3B. y = 2x^2 - 4x + 4C. y = -2x^2 + 8x - 3D. y = 2x^2 - 6x + 3答案:B9. 函数y = x^2 + 2x - 3的最小值为:A. -3B. -2C. 3D. 2答案:A10. 函数y = x^2 - 4x + 4的判别式的值为:A. 0B. 4C. -4D. 16答案:A二、填空题(共20分)1. 函数y = 2x^2 - 3x + 1的顶点坐标为(x, y) = (_____, _____)。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程测试题 【1 】一、填空题:(本大题共10小题,每小题3分,共30分)1.已知两个数的差等于4,积等于45,则这两个数为和.2.当m 时,方程()05122=+--mx x m 不是一元二次方程,当m 时,上述方程是一元二次方程. 3.用配办法解方程0642=--x x ,则___6___42+=+-x x ,所以_______,21==x x . 4.假如()4122++-x m x 是一个完整平方公式,则=m . 5.当≥0时,一元二次方程02=++c bx ax 的求根公式为.6.假如21x x 、是方程06322=--x x 的两个根,那么21x x +=,21x x ⋅=.7.若方程032=+-m x x 有两个相等的实数根,则m =,两个根分离为.8.若方程0892=+-x kx 的一个根为1,则k =,另一个根为.9.以-3和7为根且二次项系数为1的一元二次方程是.10.关于x 的一元二次方程0322=+++m m x mx 有一个根为零,那m 的值等于.二、选择题(本大题共8小题,每小题3分,共24分)1.下列方程中,一元二次方程是( ) (A ) 221x x +(B ) bx ax +2(C ) ()()121=+-x x (D ) 052322=--y xy x2.方程()()1132=-+x x 的解的情形是( )(A )有两个不相等的实数根 (B )没有实数根(C )有两个相等的实数根 (D )有一个实数根3.假如一元二次方程()012=+++m x m x 的两个根是互为相反数,那么有( ) (A )m =0 (B )m =-1 (C )m =1 (D )以上结论都不合错误4.已知21x x 、是方程122+=x x 的两个根,则2111x x +的值为( )(A )21-(B )2 (C )21(D )-2 5.不解方程,01322=-+x x 的两个根的符号为( )(A )同号 (B )异号 (C )两根都为正 (D )不克不及肯定6.已知一元二次方程()002≠=+m n mx ,若方程有解,则必须( ) A.0=n B.同号mn C.的整数倍是m n D.异号mn7.若的值为则的解为方程10522++=-+a a ,x x a ( ) A.12 B.6 C.9 D.168.某超市一月份的营业额为200万元,三月份的营业额为288万元,假如每月比上月增加的百分数雷同,则平均每月的增加率为( )A.%10B.%15C.%20D.%25三、解下列方程(本大题共4小题,每小题4分,共16分)1.0152=+-x x (用配办法)2.()()2232-=-x x x 3.052222=--x x 4.()()22132-=+y y 四、(8分)当m 为何值时,一元二次方程()()033222=-+-+m x m x 有两个不相等的实数根? 五、(10分)已知x 1x 2是方程x 2-2x-1=0的两根,则x 11+x 21是若干?六.(10分)如图,一块长和宽分离为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.七1.(10分)将进货单价40元的商品按50元出售,能卖出500个,已知这种商品每涨价1元,就会少发卖10个.为了赚得8000元的利润,售价应定为若干?这时应进货若干个.2.(12分)如图,在s cmB AB A p ,B ,ABC 190以向点开始沿边从点点中︒=∠∆的速度移动,与此同时,点Q 从点B 开端沿边BC 向点C 以s cm 2的速度移动.假如P.Q 分离从A.B 同时动身,经由几秒,PBQ ∆的面积等于28cm (AB=6cm,BC=8cm )汇智教导九年级第二单元一元二次方程测试卷答案一填空题1.9或-9 5或-5 Q P CBA2.等于正负1 .不等于正负13..4 4 2+102-102-4ac a acb b 242-±- 6.23-3 7.49238.1 82-4x-21=0二选择题三:解方程 1.421425x 5x 2=+- 2. ()()02x x 2x 32=--- 2215x 42125x 12+==⎪⎭⎫ ⎝⎛-()()3x 2x 0x 6x 32x 21===---2215x 2-=新课标第一网3.()482548=⨯-⨯-=∆4.()()01y 32y 22=--+ 24822x 1+=或24822x 2-=()()0y 231y 4=-+ 2322x 1+=或2322x 1-=23y 41y 21=-=, 四 解:当()m m 4322--=∆>0 时 即124912422+-+-m m m >0m <47五 解:212x ,x 02x 7x 的两个根为=--则 2x x ,7x x 2121-==+()()8x 2x 2,14x 22x 2121-==+08y 14y 2=-+六 解:21x ,x 设两根分别为()4k x x 2k 2x x 22121+=⋅--=+则()()()1621k 214k 42k 4x x 4x x x x 2x x 2221221212221-==+--=⋅-+=⋅-+以题意得七 解:(1)设售价定x 50- 元 则 售出x 10500- 有 ()()0x 10500x 10=-+10x 30x 21==,50+30=80 或 50+10=60当售价为80元时 应进200个当售价为60元时 应进400个(2)设经由x 秒则 ()()821x 6x 2=⨯-4x 2x 21==,经由2秒或4秒∆PBQ 的面积等于8CM 2。

九年级上学期数学《一元二次方程》单元综合检测含答案

九年级上学期数学《一元二次方程》单元综合检测含答案
九年级上册数学《一元二次方程》单元测试卷
(满分120分,考试用时120分钟)
一、选择题(本题共计10小题,每题3分 ,共计30分 )
1.如果关于x 方程(m﹣3) ﹣x+3=0是关于x的一元二次方程,那么m的值为( )
A.±3B.3C.﹣3D.都不对
2.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为( )
D、方程x(x+2)(x-3)=0的实数根是x=0或x=-2或x=3,共3个.故本选项正确;
故选D.
[点睛]本题考查了解一元二次方程的方法,一元二次方程的一般形式.
一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式Ax2+Bx+C=0(A≠0).这种形式叫一元二次方程的一般形式.
其中Ax2叫做二次项,A叫做二次项系数;Bx叫做一次项;C叫做常数项.一次项系数B和常数项C可取任意实数,二次项系数A是不等于0的实数,这是因为当A=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.
16.已知 , 分别是一元二次方程 的两个实数根,则 ________.
17.已知关于 的一元二次方程 的一个根是 ,则 ________.
18.若把代数式 化为 形式,其中 , 为常数,则 ___.
19.把关于 的方程 配方成为 的形式,得___.
20.要给一幅长 ,宽 的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占的面积为照片面积的四分之一,设镜框边的宽度为 ,则依据题意,列出的方程是:_____.
[详解]把x=2代入 得,4-6+k=0,
解得k=2.
故答案为B.
[点睛]本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程单元综合测试题(含答案)精心整理,用心做精品2第二章 一元二次方程单元综合测试题 一、填空题(每题2分,共20分)1.方程12x (x -3)=5(x -3)的根是_______.2.下列方程中,是关于x 的一元二次方程的有________.(1)2y 2+y -1=0;(2)x (2x -1)=2x 2;(3)21x -2x=1;(4)ax 2+bx+c=0;(5)12x 2=0.3.把方程(1-2x )(1+2x )=2x 2-1化为一元二次方程的一般形式为________.4.如果21x -2x -8=0,则1x 的值是________.5.关于x 的方程(m 2-1)x 2+(m -1)x+2m -1=0是一元二次方程的条件是________.6.关于x 的一元二次方程x 2-x -3m=0•有两个不相等的实数根,则m•的取值范围是定______________.7.x 2-5│x │+4=0的所有实数根的和是________. 8.方程x 4-5x 2+6=0,设y=x2,则原方程变形_________ 原方程的根为________.9.以-1为一根的一元二次方程可为_____________(写一个即可).10.代数式12x2+8x+5的最小值是_________.二、选择题(每题3分,共18分)11.若方程(a-b)x2+(b-c)x+(c-a)=0是关于x的一元二次方程,则必有().A.a=b=c B.一根为1 C.一根为-1 D.以上都不对12.若分式22632x xx x---+的值为0,则x的值为().A.3或-2 B.3 C.-2 D.-3或213.已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为().A.-5或1 B.1 C.5 D.5或-114.已知方程x2+px+q=0的两个根分别是2和-3,则x2-px+q可分解为().A.(x+2)(x+3) B.(x-2)(x-3)C.(x-2)(x+3) D.(x+2)(x-3)15已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1 B.2 C.3 D.416.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,•则这个三角形的周长是().精心整理,用心做精品3A.8 B.8或10 C.10 D.8和10三、用适当的方法解方程(每小题4分,共16分)17.(1)2(x+2)2-8=0;(2)x(x-3)=x;(3)2=6x(4)(x+3)2+3(x+3)-4=0.四、解答题(18,19,20,21题每题7分,22,23题各9分,共46分)18.如果x2-10x+y2-16y+89=0,求xy的值.19.阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0 ①,解得y1=1,y2=4.精心整理,用心做精品4当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用___________法达到________的目的,•体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.20.如图,是丽水市统计局公布的2000~2003年全社会用电量的折线统计图.填写统计表:2000~2003年丽水市全社会用电量统计表:(2)根据丽水市2001年至2003年全社会用电量统计数据,求这两年年平均增长的百分率(保留两个有效数字).精心整理,用心做精品5精心整理,用心做精品621.某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.22.设a ,b ,c 是△ABC 的三条边,关于x 的方程12x 2b x+c -12a=0有两个相等的实数根,•方程3cx+2b=2a 的根为x=0. (1)试判断△ABC 的形状.(2)若a ,b 为方程x 2+mx -3m=0的两个根,求m 的值.精心整理,用心做精品723.已知关于x 的方程a2x2+(2a -1)x+1=0有两个不相等的实数根x1,x2.(1)求a 的取值范围;(2)是否存在实数a ,使方程的两个实数根互为相反数?如果存在,求出a 的值;如果不存在,说明理由.解:(1)根据题意,得△=(2a -1)2-4a2>0,解得a<14.∴当a<0时,方程有两个不相等的实数根.(2)存在,如果方程的两个实数根x1,x2互为相反数,则x1+x2=-21a a =0 ①,解得a=12,经检验,a=12是方程①的根.∴当a=12时,方程的两个实数根x1与x2互为相反数.上述解答过程是否有错误?如果有,请指出错误之处,并解答.24、如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?QPBDAC精心整理,用心做精品825、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动(不与B 点重合),动直线QD 从AB 开始以2cm/s 速度向上平行移动,并且分别与BC 、AC 交于Q 、D 点,连结DP ,设动点P 与动直线QD 同时出发,运动时间为t 秒,(1)试判断四边形BPDQ 是什么特殊的四边形?如果P 点的速度是以1cm/s ,则四边形BPDQ 还会是梯形吗?那又是什么特殊的四边形呢?(2)求t 为何值时,四边形BPDQ 的面积最大,最大面积是多少?1、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点的时间为t 秒,(1)当t 为何值时,△APQ 与△AOB 相似?(2)当t 为何值时,△APQ 的面积为524个平方单位?CA BP QD←↑精心整理,用心做精品92、有一边为5cm 的正方形ABCD 和等腰三角形PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一直线l 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/s 的速度沿直线l 按箭头方向匀速运动,(1)t 秒后正方形ABCD 与等腰三角形PQR 重合部分的面积为5,求时间t ; (2)当正方形ABCD 与等腰三角形PQR 重合部分的面积为7,求时间t ;3、如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB ∥OA ,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D ,(1)动什么位置时,△OCP 为等腰三角形,求这时点P 么位置时,使得∠CPD=∠OAB ,且58BD BA ,求这时点P 的坐标;C BQ RADlP答案:1.x1=3,x2=102.(5)点拨:准确掌握一元二次方程的定义:即含一个未知数,未知数的最高次数是2,整式方程.3.6x2-2=04.4 -2 点拨:把看做一个整体.5.m≠±16.m>-112点拨:理解定义是关键.7.0 点拨:绝对值方程的解法要掌握分类讨论的思想.8.y2-x2=,x4=9.x2-x=0(答案不唯一)10.-2711.D 点拨:满足一元二次方程的条件是二次项系数不为0.12.A 点拨:准确掌握分式值为0的条件,同时灵活解方程是关键.13.B 点拨:理解运用整体思想或换元法是解决问题的关键,同时要注意x2+y2式子本身的属性.14.C 点拨:灵活掌握因式分解法解方程的思想特点是关键.精心整理,用心做精品1015.D 点拨:本题的关键是整体思想的运用.16.C 点拨:•本题的关键是对方程解的概念的理解和三角形三边关系定理的运用.17.(1)整理得(x+2)2=4,即(x+2)=±2,∴x1=0,x2=-4(2)x(x-3)-x=0,x(x-3-1)=0,x(x-4)=0,∴x1=0,x2=4.(36x=0,x2-,由求根公式得,.(4)设x+3=y,原式可变为y2+3y-4=0,解得y1=-4,y2=1,即x+3=-4,x=-7.由x+3=1,得x=-2.∴原方程的解为x1=-7,x2=-2.18.由已知x2-10x+y2-16y+89=0,得(x-5)2+(y-8)2=0,∴x=5,y=8,∴xy=58.19.(1)换元降次(2)设x2+x=y,原方程可化为y2-4y-12=0,解得y1=6,y2=-2.由x2+x=6,得x1=-3,x2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无解.所以原方程的解为x1=-3,x2=2.20.(1)(2)设2001年至2003年平均每年增长率为x,则2001年用电量为14.73亿kW·h,2002年为14.73(1+x)亿kW·h,2003年为14.73(1+x)2亿kW·h.则可列方程:14.73(1+x)2=21.92,1+x=±1.22,∴x1=0.22=22%,x2=-2.22(舍去).则2001~2003年年平均增长率的百分率为22%.21.(1)设每件应降价x元,由题意可列方程为(40-x)·(30+2x)=1200,解得x1=0,x2=25,当x=0时,能卖出30件;当x=25时,能卖出80件.根据题意,x=25时能卖出80件,符合题意.故每件衬衫应降价25元.(2)设商场每天盈利为W元.W=(40-x)(30+2x)=-2x2+50x+1200=-2(x2-25x)+1200=-2(x-12.5)2+1512.5当每件衬衫降价为12.5元时,商场服装部每天盈利最多,为1512.5元.22.∵12x+c-12a=0有两个相等的实数根,∴判别式=)2-4×12(c-12a)=0,整理得a+b-2c=0 ①,又∵3cx+2b=2a的根为x=0,∴a=b ②.把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形.(2)a,b是方程x2+mx-3m=0的两个根,所以m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=12.23.上述解答有错误.(1)若方程有两个不相等实数根,则方程首先满足是一元二次方程,∴a2≠0且满足(2a-1)2-4a2>0,∴a<14且a≠0.(2)a不可能等于1 2.∵(1)中求得方程有两个不相等实数根,同时a的取值范围是a<14且a≠0,而a=12>14(不符合题意)所以不存在这样的a值,使方程的两个实数根互为相反数.。

相关文档
最新文档