(完整)初中数学七年级绝对值练习题

合集下载

(完整版)初一绝对值练习(含例题、基础、拨高)

(完整版)初一绝对值练习(含例题、基础、拨高)

综合练习题一1、有理数的绝对值一定是( )A 、正数B 、整数C 、正数或零D 、自然数 2、绝对值等于它本身的数有( )A 、0个B 、1个C 、2个D 、无数个 3、下列说法正确的是( ) A 、—|a |一定是负数B 只有两个数相等时它们的绝对值才相等C 、若|a|=|b |,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数 4、比较21、31、41的大小,结果正确的是( ) A 、21<31<41 B 、21<41<31 C 、41<21<31 D 、31<21<415 )A 、a 〉|b |B 、a<bC 、|a |〉|b |D 、|a|〈|b | 6、判断。

(1)若|a|=|b |,则a=b 。

(2)若a 为任意有理数,则|a|=a 。

(3)如果甲数的绝对值大于乙数的绝对值,那么甲数一定大于乙数( ) (4)|31_|和31_互为相反数。

( ) 7、相反数等于-5的数是______,绝对值等于5的数是________。

8、-4的倒数的相反数是______.9、绝对值小于∏的整数有________。

10、若|-x|=2,则x=____;若|x-3|=0,则x=______;若|x-3|=1,则x=_______。

11、实数|b|的大小关系是_______。

12、比较下列各组有理数的大小。

(1)—0。

6○-60 (2)-3.8○—3。

9(3)0○|-2| (4)43-○54-13、已知|a|+|b|=9,且|a|=2,求b的值.14、已知|a|=3,|b|=2,|c|=1,且a〈b〈c,求a、b、c的值.绝对值综合练习题二一、选择题1、 如果m 〉0, n<0, m 〈|n|,那么m ,n ,-m, -n 的大小关系( ) A.-n>m>-m 〉n B.m>n>-m 〉-n C 。

—n 〉m 〉n 〉—m D.n>m 〉-n 〉—m2、绝对值等于其相反数的数一定是…………………( ) A .负数 B .正数 C .负数或零 D .正数或零3、给出下列说法:①互为相反数的两个数绝对值相等; ②绝对值等于本身的数只有正数; ③不相等的两个数绝对值不相等; ④绝对值相等的两数一定相等.其中正确的有…………………………………………( ) A .0个 B .1个 C .2个 D .3个 4、如果,则的取值范围是 ………………………( )A .>OB .≥OC .≤OD .<O5、绝对值不大于11.1的整数有………………………………( )A .11个B .12个C .22个D .23个 6、绝对值最小的有理数的倒数是( )A 、1B 、-1C 、0D 、不存在 7、在有理数中,绝对值等于它本身的数有( )A 、1个B 、2个C 、3个D 、无数多个 8、下列各数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32C 、│-32│和23D 、│-32│和329、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数10、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数11、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。

(完整)初中绝对值数学试题

(完整)初中绝对值数学试题

初中绝对值数学试卷一、选择题(共29题)1.设有理数.在数轴上对应的位置如图所示,化简的结果是()A.B.C.D.2.若两个数绝对值之差为,则这两个数()A. 相等B. 互为相反数C. 都为D. 相等或互为相反数3.下列说法中,正确的是()A. 正有理数和负有理数统称有理数B. 既不是整数也不是分数C. 绝对值等于本身的数只有D. 有理数包括整数和分数4.如果是关于一元一次方程,则的值为()A.B.C. 或D. 或5.若、互为相反数,、互为倒数,的绝对值是,是有理数且既不是正数也不是负数,则的值为()A.B.C.D.6.下列说法正确的有()①0是绝对值最小的数②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数④两个数比较大小,绝对值大的反而小.A. 个B. 个C. 个D. 个7.如图,已知数轴上点、、所表示的数分别为、、,点是线段的中点,且,如果原点的位置在线段上,那么等于()A.B.C.D.8.若,且,则的值是()A.B. 或C. 或D. 或9.如果,则的取值范围是().A.B.C.D.10.如图,数轴上的点所表示的数为,化简的结果为()A.B.C.D.11.已知且则的值为()A.B.C. 或D. 或12.等于()A.B.C.D.13.如图,化简的结果等于()A.B.C.D.14.的绝对值为()A.B.C.D.15.下列数轴上的点都表示实数,其中,一定满足的是()A. ①③B. ②③C. ①④D. ②④16.绝对值小于的整数有().A. 个B. 个C. 个D. 个17.若,则为()A.B.C. 和D. 和18.已知有理数、所对应的点在数轴上如图所示,化简得()A.B.C.D.19.,则一定是()A. 负数B. 正数C. 零或负数D. 非负数20.数轴上与原点距离不大于的整数点有()A. 个B. 个C. 个D. 个21.已知,且,则的值等于()A.B.C.D. 或22.若、都是不为零的数,则的结果为()A. 或B. 或C. 或D. 或或23.绝对值不大于的整数有()A. 个B. 个C. 个D. 个24.若在数轴上点表示的数是,点表示的数是,则点之间的距离是()A.B.C.D.25.下列说法中,正确的是()A. 对于任意的有理数,如果,则B. 对于任意的有理数,如果,,则C. 对于任意的有理数,如果,则D. 若,,则26.代数式的所有可能的值有()A. 个B. 个C. 个D. 个27.满足的整数的个数有()A. 个B. 个C. 个D. 个28.如果表示有理数,那么的值()A. 不可能是负数B. 可能是零或者负数C. 必定是零D. 必定是正数29.的绝对值是()A.B.C.D.二、填空题(共14题)30.下列说法:①互为相反数的两个数相加为;②符号不同绝对值相等的两个数互为相反数;③如果两个数的绝对值相等,那么这两个数也相等;④已知:,,那么;⑤若,那么与符号相同.其中,正确的个数是________个.31.如,则的值为________.32.如果、、是非零有理数,且,那么的所有可能的值为________.33.若,则化简的结果为________.34.已知,则________.35.若,则________(填或).36.________.37.若,则________.38.若,则的取值范围是________39.已知,且,则________.40.绝对值大于并且不大于的整数是________.41.已知,且,则________.42.绝对值小于的非负整数有________.43.若,则化简的结果是________.三、材料题(共5题,8小题)44. 已知数轴上点、表示的数分别为、,为数轴上一动点,其表示的数为.1. 是否存在点,使?若存在,写出的值;若不存在,请说明理由;45. 如图,点、在数轴上分别表示有理数、、两点之间的距离表示为,在数轴上、两点之间的距离.利用数形结合思想回答下列问题.1. 若表示一个有理数,化简:;46. 阅读下面材料并解决有关问题:我们知道:.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式时,可令和,分别求得(称分别为与的零点值).在实数范围内,零点值和可将全体实数分成不重复且不遗漏的如下种情况:①;②;③.从而化简代数式可分以下种情况:①当时,原式;②当时,原式;③当时,原式.综上讨论,原式.通过以上阅读,请你解决以下问题:1. 化简代数式.2. 求的最大值.47. 结合数轴与绝对值的知识回答下列问题:1. 数轴上表示和的两点之间的距离是____;表示和两点之间的距离是____;一般地,数轴上表示数和数的两点之间的距离等于.如果表示数和的两点之间的距离是,那么________.2. 若数轴上表示数的点位于与之间,求的值.3. 当取何值时,的值最小,最小值是多少?请说明理由.48. 如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为(大于)秒.1. 点表示的数为________.四、解答题(共3题)49.已知且,求的值.50.已知,求的值.51.若实数满足,且求的值.参考答案一、选择题(共29题)1.【答案】D2.【答案】D3.【答案】D4.【答案】B5.【答案】D6.【答案】A7.【答案】D8.【答案】B9.【答案】A10.【答案】A11.【答案】D12.【答案】D13.【答案】C14.【答案】C15.【答案】B16.【答案】B17.【答案】D18.【答案】D19.【答案】C20.【答案】D21.【答案】D22.【答案】B23.【答案】A24.【答案】D25.【答案】A26.【答案】C27.【答案】D28.【答案】A29.【答案】C二、填空题(共14题)30.【答案】431.【答案】-632.【答案】033.【答案】34.【答案】或35.【答案】36.【答案】37.【答案】38.【答案】39.【答案】或40.【答案】41.【答案】或42.【答案】、、43.【答案】-2三、材料题(共5题,8小题)44.解析45.解析46.解析(1)(2)47.解析(1)3,5,1或-5(2)(3)48.答案:1四、解答题(共3题)49.解析50.解析51.解析第 11 页,共 11 页。

初一数学《绝对值》专项练习(含答案)

初一数学《绝对值》专项练习(含答案)

绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。

七年级绝对值题目

七年级绝对值题目

七年级绝对值题目一、绝对值基础概念类题目。

1. 绝对值的定义是什么?- 解析:绝对值是指一个数在数轴上所对应点到原点的距离,用“”来表示。

例如,数a的绝对值记作a,5表示5这个数在数轴上到原点0的距离是5,3表示-3在数轴上到原点的距离是3。

2. 求| - 7|的值。

- 解析:根据绝对值的定义,-7到原点的距离是7,所以| - 7|=7。

3. 求| 0|的值。

- 解析:0到原点的距离就是0本身,所以| 0| = 0。

4. 若| x|=5,求x的值。

- 解析:因为绝对值是5,根据绝对值的定义,到原点距离为5的数有两个,即x = 5或者x=-5。

5. 已知| a| = 3,| b|=4,且a < b,求a、b的值。

- 解析:由| a| = 3可得a=±3,由| b|=4可得b = ±4。

因为a < b,当a = 3时,b = 4满足条件;当a=-3时,b = 4也满足条件。

所以a = 3,b = 4或者a=-3,b = 4。

二、绝对值的运算类题目。

6. 计算| - 2|+|3|。

- 解析:先分别求出绝对值,| - 2|=2,|3| = 3,然后进行加法运算2 + 3=5。

7. 计算| - 5|-| - 2|。

- 解析:先求绝对值,| - 5| = 5,| - 2|=2,再进行减法运算5-2 = 3。

8. 计算|2 - 5|。

- 解析:先计算括号内的值2-5=-3,然后求| - 3|,根据绝对值定义,| - 3|=3。

9. 计算| - 3|×|4|。

- 解析:分别求出绝对值,| - 3| = 3,|4| = 4,然后进行乘法运算3×4 = 12。

10. 计算(| - 8|)/(2)。

- 解析:先求| - 8| = 8,再进行除法运算(8)/(2)=4。

三、绝对值与有理数大小比较类题目。

11. 比较-3和| - 2|的大小。

- 解析:先求| - 2| = 2,因为-3<2,所以-3<| - 2|。

初一数学绝对值专项练习带答案解析

初一数学绝对值专项练习带答案解析

绝对值一.选择题(共16小题)1.相反数不不小于它自身旳数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数旳是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数旳一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不对旳旳是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数旳数是()A.a3和b3B.a2和b2C.﹣a和﹣b D .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数旳一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣旳相反数是()A.﹣ B.C.±D .﹣8.﹣旳相反数是()A.B.﹣C .D .﹣9.下列各组数中,互为相反数旳是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴旳单位长度为1.如果点B,C表达旳数旳绝对值相等,那么点A表达旳数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所相应旳点,其中有一点是原点,并且MN=NP=PR=1.数a相应旳点在M与N之间,数b相应旳点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么如下判断对旳旳是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上旳位置如图所示,其相应旳数分别是a和b.对于如下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中对旳旳是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上旳位置如图所示,则下列各式中错误旳是()A.b<aB.|b|>|a|C.a+b>0 D.ab<016.﹣3旳绝对值是()A.3 B.﹣3 C .D .二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|旳值为.18.已知|x|=4,|y |=2,且xy<0,则x﹣y旳值等于.19.﹣2旳绝对值是,﹣2旳相反数是.20.一种数旳绝对值是4,则这个数是.21.﹣旳绝对值是.22.如果x、y都是不为0旳有理数,则代数式旳最大值是.23.已知+=0,则旳值为.24.计算:|﹣5+3|旳成果是.25.已知|x|=3,则x旳值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们懂得,|m|=.目前我们可以用这一结论来化简具有绝对值旳代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|旳零点值).在实数范畴内,零点值m=﹣1和m=2可将全体实数提成不反复且不漏掉旳如下3种状况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分如下3种状况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m ﹣1.综上讨论,原式=通过以上阅读,请你解决如下问题:(1)分别求出|x﹣5|和|x﹣4|旳零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|旳最小值.28.同窗们都懂得|5﹣(﹣2)|表达5与(﹣2)之差旳绝对值,也可理解为5与﹣2两数在数轴上所对旳两点之间旳距离,试摸索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件旳整数x,使得|x+5|+|x﹣2|=7成立旳整数是.(3)由以上摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|与否有最小值?如果有,写出最小值;如果没有,阐明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x ﹣y)旳值.30.求下列各数旳绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值旳知识回答问题:(1)探究:①数轴上表达5和2旳两点之间旳距离是;②数轴上表达﹣2和﹣6旳两点之间旳距离是;③数轴上表达﹣4和3旳两点之间旳距离是;(2)归纳:一般地,数轴上表达数m和数n旳两点之间旳距离等于|m﹣n|.(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表达数a旳点位于﹣4与3之间,求|a+4|+|a﹣3|旳值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|旳值最小,最小值是多少?请阐明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表达旳数分别为﹣3,0,1,点P为数轴上任意一点,其表达旳数为x.(1)如果点P到点A,点B旳距离相等,那么x=;(2)当x=时,点P到点A,点B旳距离之和是6;(3)若点P到点A,点B旳距离之和最小,则x旳取值范畴是;(4)在数轴上,点M ,N表达旳数分别为x1,x2,我们把x1,x2之差旳绝对值叫做点M,N之间旳距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度旳速度从点O沿着数轴旳负方向运动时,点E以每秒1个单位长度旳速度从点A沿着数轴旳负方向运动、点F 以每秒4个单位长度旳速度从点B沿着数轴旳负方向运动,且三个点同步出发,那么运动秒时,点P 到点E,点F旳距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表达有理数a、b,则A、B两点之间旳距离可以表达为|a﹣b|.根据阅读材料与你旳理解回答问题:(1)数轴上表达3与﹣2旳两点之间旳距离是.(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为.(3)代数式|x+8|可以表达数轴上有理数x与有理数所相应旳两点之间旳距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|旳最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a旳值.36.如图,数轴上旳三点A,B,C分别表达有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求旳值;(2)若b≠0,且,求旳值.参照答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21..22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|旳零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式旳最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范畴内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范畴内不成立)∴综上所述,符合条件旳整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)旳摸索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表达5和2旳两点之间旳距离是3,②数轴上表达﹣2和﹣6旳两点之间旳距离是4,③数轴上表达﹣4和3旳两点之间旳距离是7;(3)应用:①如果表达数a和3旳两点之间旳距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表达数a旳点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间旳距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B旳距离之和是6,∴点P在点A旳左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B旳右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B旳距离之和最小,因此x旳取值范畴是﹣3≤x≤1;(4)设运动时间为t,点P表达旳数为﹣3t,点E表达旳数为﹣3﹣t,点F表达旳数为1﹣4t,∵点P到点E,点F旳距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所相应两点之间旳距离用绝对值符号可以表达为|x﹣7|,(3)代数式|x+8|可以表达数轴上有理数x与有理数﹣8所相应旳两点之间旳距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|旳最小值即|1007﹣(﹣1008)|=.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,由于a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,由于a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,由于a﹣b=﹣10<0,符题意;因此a+b=﹣6;④当a=﹣8,b=﹣2时,由于a﹣b=﹣6<0,符题意,因此a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一种0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。

(完整版)初中数学七年级绝对值练习题

(完整版)初中数学七年级绝对值练习题

《绝对值》练习一.选择题1. -3的绝对值是( )(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是A .负数B .正数C .负数或零D .正数或零3. 若│x│+x=0,则x 一定是 ( )A .负数B .0C .非正数D .非负数5.绝对值最小的数( )A .不存在B .0C .1D .-16.当一个负数逐渐变大(但仍然保持是负数)时( )A .它的绝对值逐渐变大B .它的相反数逐渐变大C .它的绝对值逐渐变小D .它的相反数的绝对值逐渐变大7.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个12.______7.3=-;______0=;______3.3=--;______75.0=+-.(2)若x x =-1,求x .2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?拓展题1.7=x ,则______=x ; 7=-x ,则______=x .2.若2<a<4,化简|2-a|+|a -4|.3. 已知|4-a|+|2-5b|=0, 求a+b5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|四、解答题1.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.3.(1)若x x =1,求x .(2)若x x=-1,求x .2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:(1)如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数, 则必有x+y=0.现已知:|a|+a=0,求a的取值范围。

七年级数学上绝对值专项练题

七年级数学上绝对值专项练题

七年级数学上绝对值专项练题一、绝对值专项练习题。

1. 求下列各数的绝对值:- 5- -3- 0- -(2)/(3)解析:- 根据绝对值的定义,正数的绝对值是它本身,所以|5| = 5。

- 负数的绝对值是它的相反数,所以| - 3|=3。

- 0的绝对值是0,即|0| = 0。

- |-(2)/(3)|=(2)/(3)。

2. 已知| a| = 3,求a的值。

解析:- 因为| a| = 3,根据绝对值的定义,绝对值等于3的数有两个,一个是3,另一个是-3,所以a = 3或a=-3。

3. 比较大小:| - 5|与4。

解析:- 先求出| - 5| = 5。

- 因为5>4,所以| - 5|>4。

4. 计算:| - 2|+|3|。

解析:- 先分别求出绝对值,| - 2| = 2,|3| = 3。

- 然后计算2 + 3=5。

5. 计算:| - 4|-| - 2|。

解析:- 先求绝对值,| - 4| = 4,| - 2| = 2。

- 再计算4-2 = 2。

6. 若| x - 1| = 0,求x的值。

解析:- 因为| x - 1| = 0,根据绝对值的性质,只有0的绝对值是0,所以x - 1 = 0,解得x = 1。

7. 已知| a|=| - 2|,求a的值。

解析:- 先求出| - 2| = 2。

- 因为| a| = 2,所以a = 2或a=-2。

8. 计算:| - 3|×| - 2|。

解析:- 先求绝对值,| - 3| = 3,| - 2| = 2。

- 然后计算3×2 = 6。

9. 计算:(| - 6|)/(|2|)。

解析:- 先求绝对值,| - 6| = 6,|2| = 2。

- 再计算(6)/(2)=3。

10. 若| a| = 5,| b| = 3,且a < b,求a、b的值。

解析:- 因为| a| = 5,所以a = 5或a=-5;因为| b| = 3,所以b = 3或b=-3。

完整版)初一数学绝对值经典练习题

完整版)初一数学绝对值经典练习题

完整版)初一数学绝对值经典练习题绝对值的经典练1.判断题:⑴、对⑵、对⑶、错。

正确的是 |-3^2|=3^2=9⑷、对⑸、对⑹、错。

正确的是如果 a=4,那么 a 或 -a 都可以⑺、对⑻、错。

正确的是 -2,-1,0,1,2⑼、错。

正确的是 a 可以是 0 或负数⑽、错。

正确的是如果 a=b 或 a=-b,那么 |a|=|b|⑾、对⑿、错。

正确的是只有 1 的倒数等于 1⒀、对⒁、对⒂、错。

正确的是这个数既可以是正数也可以是负数2.填空题:⑴、当 a0⑵、当 a>0 时,a>0⑶、当 a0⑷、当a≠0 时,|a|>0⑸、当 a>0 时,-a<a⑹、当 a=0 时,-a=a⑺、当 a<0 时,|a|=-a⑻、绝对值小于 4 的整数有 -3,-2,-1,0,1,2,3⑼、如果 mn⑽、当 k+3=0 时,|k|=3⑾、如果 a、b 都是负数,且 |a|>|b|,则 a<b⑿、如果 |m-2|=1,则 m=3 或 m=1⒀、如果 |x|=x,则x≥0⒁、倒数和绝对值都等于它本身的数是 1 或 -1⒂、|a|=3,|b|=1⒃、-2/3 的相反数是 2/3,倒数是 -3/2,绝对值是 2/3⒄、绝对值小于 10 的整数有 19 个,其中最小的一个是 -9⒅、一个数的绝对值的相反数是 -0.04,这个数是 0.04 或-0.04⒆、如果 a、b 互为相反数,则 |a|=|b|⒇、如果 |a|=|b|,则 a 可以等于 b 或 -b3.选择题:⑴、选 D。

+5 和 -5 的绝对值相等。

⑵、选 C。

|a|=|b| 表示 a 和 b 的距离相等,所以它们互为相反数。

⑶、选 C。

绝对值最小的有理数是 0,但是它不是一个负数。

4、计算下列各题:⑴、|-8|-|-5|=8-5=3⑵、(-3)+|-3|= -3+3=0⑶、|-9|×(+5)= 45D、15÷|-3|= -55、填表a -a |a|1 -1 13 -3 357 57 571 -1 12 2 24 -4 41/12 -1/12 1/1212 12 120.1) 0.1 0.16、比较下列各组数的大小:⑴、-3< -2⑵、-0.5<|-2.5|⑶、-π<-3.14⑷、-0.2731<-2/57、把下列各数用“‹”连接起来:⑴、5‹|-3|‹-3‹|-3|‹-8‹-8⑵、1‹-5‹-6⑶、|-5|‹-6‹-5‹-10‹10⑷(|∆|+|∆|)×(-O)=-10,求O、∆,其中O和∆表示整数.10/-O,因为绝对值为正数,所以-10/-O必须为正数,即O>0.因此,O只能为1,此时|∆|+|∆|=10,∆只能为5.所以,O=1,∆=5.2.该公式表示:当a不等于b时,c等于d减去a与b之差的绝对值加上1,2或3,否则c等于3或1,取决于a是否大于等于1或小于等于-2.改写:这个公式描述了一个条件语句,如果a不等于b,则c等于d减去a和b之间的差的绝对值加上1、2或3.如果a等于b,则c等于3或1,具体取决于a是否大于等于1或小于等于-2.3.这个问题是一个选择题,答案分别是B、D、B、A、C、D、D、C、A、D、C。

初中数学初中七年级绝对值练习题

初中数学初中七年级绝对值练习题

《绝对值》练习一.选择题1. -3的绝对值是( )(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是A .负数B .正数C .负数或零D .正数或零3. 若│x│+x=0,则x 一定是 ( )A .负数B .0C .非正数D .非负数5.绝对值最小的数( )A .不存在B .0C .1D .-16.当一个负数逐渐变大(但仍然保持是负数)时( )A .它的绝对值逐渐变大B .它的相反数逐渐变大C .它的绝对值逐渐变小D .它的相反数的绝对值逐渐变大7.下列说法中正确的是( )A .a -一定是负数B .只有两个数相等时它们的绝对值才相等C .若b a =则a 与b 互为相反数D .若一个数小于它的绝对值,则这个数是负数8.绝对值不大于11.1的整数有( )A .11个B .12个C .22个D .23个12.______7.3=-;______0=;______3.3=--;______75.0=+-.(2)若x x =-1,求x .2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:+15 -10 +30 -20 -40指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?拓展题1.7=x ,则______=x ; 7=-x ,则______=x .2.若2<a<4,化简|2-a|+|a -4|.3. 已知|4-a|+|2-5b|=0, 求a+b5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|四、解答题1.若|x -2|+|y+3|+|z -5|=0,计算:(1)x ,y ,z 的值.(2)求|x|+|y|+|z|的值.2.若2<a<4,化简|2-a|+|a -4|.3.(1)若x x =1,求x .(2)若x x =-1,求x .2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少3.阅读下列解题过程,然后答题:(1)如果两个数互为相反数,则这两个数的和为0,例如,若x 和y 互为相反数,则必有x+y=0.现已知:|a |+a=0,求a 的取值范围。

初一(七年级)数学绝对值练习题及答案解析

初一(七年级)数学绝对值练习题及答案解析

初一(七年级)数学上册绝对值同步练习题基础检测:1.-8的绝对值是,记做。

2.绝对值等于5的数有。

3.若︱a︱= a ,则 a 。

4.的绝对值是2004,0的绝对值是。

5一个数的绝对值是指在上表示这个数的点到的距离。

6.如果x <y < 0, 那么︱x︱︱y︱。

7.︱x - 1 ︱=3 ,则x=。

8.若︱x+3︱+︱y -4︱= 0,则x +y = 。

9.有理数a ,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。

10.︱x ︱<л,则整数x = 。

11.已知︱x︱-︱y︱=2,且y =-4,则x =。

12.已知︱x︱=2,︱y︱=3,则x+y= 。

13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x︱+︱y︱=。

14.式子︱x +1 ︱的最小值是,这时,x值为。

15.下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C任何数的绝对值一定是正数D任何数的绝对值都不是负数16.下列说法错误的个数是( )(1)绝对值是它本身的数有两个,是0和1(2)任何有理数的绝对值都不是负数(3)一个有理数的绝对值必为正数(4)绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1 D 2拓展提高:18.如果a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子 a b a b c+++ + m -c d 的值。

19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞) +10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2) 据记录的情况,你能否知道该车送完最后一个乘客是,他在A 地的什么方向?距A 地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个 乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是8,记做︱-8︱。

初一有理数绝对值题50练

初一有理数绝对值题50练

初一有理数绝对值题50练一、基础概念理解1、绝对值的定义:数轴上表示一个数的点与原点的距离叫做这个数的绝对值。

正数的绝对值是它本身,负数的绝对值是它的相反数,0 的绝对值是 0。

例如,5 的绝对值是 5,-3 的绝对值是 3,0 的绝对值是 0。

练习 1:求下列各数的绝对值:(1)-7 (2)8 (3)0 (4)-12练习 2:若一个数的绝对值是 4,求这个数。

练习 3:绝对值等于本身的数是()A 正数B 负数C 非负数D 非正数二、简单计算2、计算绝对值的运算。

例如:| 5 + 3 |=| 2 |= 2练习 4:计算:(1)| 7 9 |(2)| 3 + 8 |(3)| 5 12 |练习 5:已知| a |= 3,| b |= 5,且 a < b,求 a + b 的值。

练习 6:若| x 2 |= 5,求 x 的值。

三、比较大小3、利用绝对值比较有理数的大小。

两个负数比较大小,绝对值大的反而小。

例如:比较 3 和 5 的大小。

因为| 3 |= 3,| 5 |= 5,3 <5,所以 3 > 5。

练习 7:比较下列各组数的大小:(1) 1 和 4 (2)0 和 2 (3) 05 和 2练习 8:如果 a < 0,b < 0,且| a |<| b |,那么 a 和 b 的大小关系是()A a > bB a = bC a < bD 无法确定练习 9:有理数 a、b 在数轴上的位置如图所示,比较| a |和| b |的大小。

(数轴略)四、综合应用4、绝对值在实际问题中的应用。

例如:出租车的收费标准是起步价 8 元(3 千米以内),超过 3 千米的部分每千米 15 元。

某人乘坐出租车行驶了 x 千米(x > 3),则应付车费为 8 + 15(| x 3 |)元。

练习 10:某工厂生产一种零件,规定零件的尺寸误差不能超过±05毫米,若生产的零件尺寸为 x 毫米,用绝对值表示零件尺寸的误差范围。

练习 11:一足球队在一场比赛中的胜负情况可以用净胜球数来表示,若净胜球数为正数,则表示赢球;若净胜球数为负数,则表示输球;若净胜球数为 0,则表示平局。

初一数学绝对值经典练习题2份

初一数学绝对值经典练习题2份

初一数学绝对值经典练习题2份题目1:解决绝对值方程和不等式的练习题1. 解方程:|2x-5|=9解:我们可以将这个绝对值方程分解为两个可能情况:1) 当2x-5>0时,我们有2x-5=9,解得x=7。

2) 当2x-5<0时,我们有-(2x-5)=9,解得2x-5=-9,解得x=-2。

因此,解集为{x=7,x=-2}。

2. 解不等式:|3x-4|<7解:我们可以将这个绝对值不等式分解为两个可能情况:1) 当3x-4>0时,我们有3x-4<7,解得3x<11,解得x<11/3。

2) 当3x-4<0时,我们有-(3x-4)<7,解得3x-4>-7,解得3x>-3,解得x>-1。

因此,解集为{-1<x<11/3}。

3. 解方程:|x+3|=5x-1解:我们可以将这个绝对值方程分解为两个可能情况:1) 当x+3>0时,我们有x+3=5x-1,解得4x=4,解得x=1。

2) 当x+3<0时,我们有-(x+3)=5x-1,解得-x-3=5x-1,解得6x=4,解得x=2/3。

因此,解集为{x=1,x=2/3}。

题目2:绝对值不等式的练习题1. 解不等式:|4-3x|>7解:我们可以将这个绝对值不等式分解为两个可能情况:1) 当4-3x>0时,我们有4-3x>7,解得-3x>3,解得x<-1。

2) 当4-3x<0时,我们有-(4-3x)>7,解得-4+3x>7,解得3x>11,解得x>11/3。

因此,解集为{x<-1或x>11/3}。

2. 解不等式:|2x-1|≥3解:我们可以将这个绝对值不等式分解为两个可能情况:1) 当2x-1>0时,我们有2x-1≥3,解得2x≥4,解得x≥2。

2) 当2x-1<0时,我们有-(2x-1)≥3,解得-2x+1≥3,解得-2x≥2,解得x≤-1。

初一数学综合算式绝对值练习题

初一数学综合算式绝对值练习题

初一数学综合算式绝对值练习题1. 将下列各组数按照从小到大的顺序排列,并计算每组数的绝对值:a) -5, 3, -2, 7b) 9, -1, 0, -7c) -3, -8, 6, -4d) 2, 4, -6, -1, 0解答:a) -5, -2, 3, 7绝对值:5, 2, 3, 7b) -7, -1, 0, 9绝对值:7, 1, 0, 9c) -8, -4, -3, 6绝对值:8, 4, 3, 6d) -6, -1, 0, 2, 4绝对值:6, 1, 0, 2, 42. 计算下列各式的值,结果应取绝对值:a) |-6 + 2|b) |3 - 8|c) |5 - 2 + 4|d) |-11 + 5 + 8|解答:a) |-6 + 2| = |-4| = 4b) |3 - 8| = |-5| = 5c) |5 - 2 + 4| = |7| = 7d) |-11 + 5 + 8| = |2| = 23. 求解下列绝对值方程:a) |2x + 3| = 7b) |x - 4| = 2c) |5 - x| = 9d) |3x - 1| = 10解答:a) 当2x + 3 = 7 或 2x + 3 = -7 时,方程成立。

解得:x = 2 或 x = -5b) 当x - 4 = 2 或 x - 4 = -2 时,方程成立。

解得:x = 6 或 x = 2c) 当5 - x = 9 或 5 - x = -9 时,方程成立。

解得:x = -4 或 x = 14d) 当3x - 1 = 10 或 3x - 1 = -10 时,方程成立。

解得:x = 11/3 或 x = -9/3 = -34. 求下列数的绝对值和相反数:a) 7b) -2c) 0d) -9解答:a) 绝对值:|7| = 7相反数:-7b) 绝对值:|-2| = 2相反数:2c) 绝对值:|0| = 0相反数:0d) 绝对值:|-9| = 9相反数:9通过以上练习题,我们复习了数的大小比较、绝对值的概念以及绝对值的运算性质。

初一数学绝对值计算题

初一数学绝对值计算题

初一数学绝对值计算题一、基础计算类1. 计算| -5|- 嘿呀,绝对值呢,就是一个数在数轴上离原点的距离。

那-5离原点的距离是多少呢?就是5个单位长度呀,所以| -5| = 5。

2. 计算| 3 - 7|- 先算括号里的3 - 7=-4。

然后再求| -4|,就像前面说的,-4离原点的距离是4,所以| 3 - 7|=| -4| = 4。

3. 计算| -2|+| 3|- 先分别求绝对值。

| -2| = 2,| 3| = 3。

然后把它们加起来,2 + 3=5,所以| -2|+| 3| = 5。

二、含有字母的绝对值计算(简单情况)1. 已知a = -3,计算| a|- 因为a=-3,| a|就是-3离原点的距离,那肯定是3啦,所以| a|=| -3| = 3。

2. 若x = 5,计算| x - 8|- 先把x = 5代入式子,得到| 5 - 8|=| -3|,-3离原点的距离是3,所以| x - 8| = 3。

三、稍复杂一点的混合计算1. 计算| -2|×| 3|-| -6|- 先算绝对值,| -2| = 2,| 3| = 3,| -6| = 6。

然后按照式子的顺序计算,2×3 - 6,先算乘法2×3 = 6,再算减法6 - 6 = 0,所以| -2|×| 3|-| -6| = 0。

2. 计算(| -12|)/(4)-| -3|- 先求| -12| = 12,那么(| -12|)/(4)=(12)/(4)=3。

再求| -3| = 3。

最后做减法3 - 3 = 0,所以(| -12|)/(4)-| -3| = 0。

七年级绝对值习题附答案

七年级绝对值习题附答案

七年级绝对值习题附答案七年级绝对值习题附答案在数学学习中,绝对值是一个非常重要的概念。

它可以帮助我们理解数轴上的正数和负数之间的距离,并解决一些实际问题。

在七年级数学课程中,我们通常会遇到一些关于绝对值的习题。

本文将为大家提供一些七年级绝对值习题,并附上答案,希望能帮助大家更好地理解和掌握这个概念。

1. 求下列各式的值:a) |-3| = 3b) |5| = 5c) |-7| = 72. 求下列各式的值:a) |2 + 3| = |5| = 5b) |-4 - 6| = |-10| = 10c) |-8 + 12| = |-4| = 43. 求下列各式的值:a) |6 - 9| = |-3| = 3b) |-2 - 7| = |-9| = 9c) |-5 + 4| = |-1| = 14. 求下列各式的值:a) |2 × (-3)| = |-6| = 6b) |-4 × 5| = |-20| = 20c) |(-8) × (-2)| = |16| = 165. 求下列各式的值:a) |-2 ÷ 4| = |-0.5| = 0.5b) |-6 ÷ (-3)| = |2| = 2c) |8 ÷ (-4)| = |-2| = 2通过以上习题的解答,我们可以总结出一些规律和性质:1. 对于任意的实数a,有|a| ≥ 0,即绝对值的值一定是非负数。

2. 当a ≥ 0时,有|a| = a;当a < 0时,有|a| = -a。

3. 对于任意的实数a和b,有|a + b| ≤ |a| + |b|,即绝对值的加法不等式。

4. 对于任意的实数a和b,有|a - b| ≥ ||a| - |b||,即绝对值的减法不等式。

5. 对于任意的实数a和b,有|ab| = |a| × |b|,即绝对值的乘法性质。

6. 对于任意的实数a和b(b ≠ 0),有|a ÷ b| = |a| ÷ |b|,即绝对值的除法性质。

(完整)初中数学绝对值专项练习100题

(完整)初中数学绝对值专项练习100题

绝对值专项练习100题28.在有理数中,绝对值等于它本身的数有()A .1个B.2个C.3个D.无穷多个29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1 D.33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与_________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.。

初一数学绝对值经典练习题

初一数学绝对值经典练习题

初一数学绝对值经典练习题绝对值是数学中常见的概念之一,初一阶段学生学习绝对值也是很重要的一部分。

下面我将给你提供一些初一数学中关于绝对值的经典练习题,并解答每个题目。

1.计算以下绝对值:a) |3| b) |-5| c) |0| d) |-3| e) |10|解答:a) |3| = 3b) |-5| = 5c) |0| = 0d) |-3| = 3e) |10| = 102.计算下列绝对值:a) |7 - 9|b) |12 - 7|c) |5 - 5|d) |-9 + 9|e) |11 - 17|解答:a) |7 - 9| = |-2| = 2b) |12 - 7| = |5| = 5c) |5 - 5| = |0| = 0d) |-9 + 9| = |0| = 0e) |11 - 17| = |-6| = 63.解方程:a) |x - 5| = 3b) |2x + 1| = 7c) |7 - x| = 4d) |5x - 3| = 0e) |x + 1| = |x - 1|解答:a) |x - 5| = 3当x - 5 > 0时,x - 5 = 3,解得x = 8;当x - 5 < 0时,-(x - 5) = 3,解得x = 2;所以方程的解为x = 8或x = 2。

b) |2x + 1| = 7当2x + 1 > 0时,2x + 1 = 7,解得x = 3;当2x + 1 < 0时,-(2x + 1) = 7,解得x = -4;所以方程的解为x = 3或x = -4。

c) |7 - x| = 4当7 - x > 0时,7 - x = 4,解得x = 3;当7 - x < 0时,-(7 - x) = 4,解得x = 11;所以方程的解为x = 3或x = 11。

d) |5x - 3| = 0当5x - 3 > 0时,5x - 3 = 0,解得x = 0.6;当5x - 3 < 0时,-(5x - 3) = 0,解得x = 0.6;所以方程的解为x = 0.6。

初一数学绝对值练习题完整版

初一数学绝对值练习题完整版

初一数学绝对值练习题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】绝对值经典练习1、 判断题:⑴ 、|-a|=|a|. ⑵ 、-|0|=0. ⑶ 、|-312|=-312.⑷ 、-(-5)-|-5|.⑸ 、如果a=4,那么|a|=4. ⑹ 、如果|a|=4,那么a=4.⑺ 、任何一个有理数的绝对值都是正数. ⑻ 、绝对值小于3的整数有2,1,0. ⑼ 、-a 一定小于0.⑽ 、如果|a|=|b|,那么a=b.⑾ 、绝对值等于本身的数是正数. ⑿ 、只有1的倒数等于它本身. ⒀ 、若|-X|=5,则X=-5.⒁ 、数轴上原点两旁的点所表示的两个数是互为相反数.⒂ 、一个数的绝对值等于它的相反数,那么这个数一定是负数.2、 填空题:⑴ 、当a_____0时,-a?0; ⑵⑶ 、当a_____0时,1a 0; ⑷⑸ 、当a_____0时,-1a 0; ⑹⑺ 、当a_____0时,|a|?0; ⑻ 、当a_____0时,-a?a; ⑼⑽ 、当a_____0时,-a=a; ⑾ 、当a?0时,|a|=______;⑿ 、绝对值小于4的整数有_____________________________; ⒀ 、如果mn0,那么|m|____|n|; ⒁⒂ 、当k+3=0时,|k|=_____;⒃、若a 、b 都是负数,且|a|?|b|,则a____b;⒄ 、|m-2|=1,则m=_________;⒅ 、若|x|=x,则x=________;⒆ 、倒数和绝对值都等于它本身的数是__________;⒇ 、有理数a 、b 在数轴上的位置如图所示,则|a|=___;|b|=____; 21 、-223的相反数是_______,倒数是______,绝对值是_______; 22 、绝对值小于10的整数有_____个,其中最小的一个是_____; 23 、一个数的绝对值的相反数是-0.04,这个数是_______; 24 、若a 、b 互为相反数,则|a|____|b|;25、若|a|=|b|,则a 和b 的关系为__________.3、 选择题:⑴ 、下列说法中,错误的是_____A .+5的绝对值等于5B.绝对值等于5的数是5 C .-5的绝对值是5D.+5、-5的绝对值相等 ⑵、如果|a|=| 1b |,那么a 与b 之间的关系是A.a 与b 互为倒数B.a与b互为相反数C.a?b=-1 D.ab=1或ab=-1 ⑶、绝对值最小的有理数是_______A .1B.0C.-1D.不存在⑷、如果a+b=0,下列格式不一定成立的是_______A .a=1b B.|a|=|b|C.a=-bD.a ≤0时,b ≤0⑸、如果a <0,那么_______A .|a|?0B.-(-a) 0C.|a|?0D.-a?0⑹、有理数a 、b 在数轴上的对应点的位置,分别在原点的两旁,那么|a|与|b|之间的大小关系是_______A .|a|?|b|B.|a|?|b|C.|a|=|b|D.无法确定 ⑺、下列说法正确的是________A .一个数的相反数一定是负数B.两个符号不同的数叫互为相反数 C .|-(+x)|=xD.-|-2|=-2 ⑻、绝对值最小的整数是_______A .-1B.1C.0D.不存在⑼、下列比较大小正确的是_______A .−56<−45B.-(-21)+(-21)C.-|-1012|?823D.-|-723|=-(-723)⑽、绝对值小于3的负数的个数有______A.2B.3C.4D.无数⑾、若a 、b 为有理数,那么下列结论中一定正确的是_____A .若ab,则|a||b|B.若ab,则|a||b|C.若a=b,则|a|=|b|D.若a ≠b,则|a|≠|b|4、计算下列各题:⑴ 、|-8|-|-5|⑵、(-3)+|-3|⑶、|-9|×(+5)D 、15÷|-3|5、填表6、比较下列各组数的大小:⑴ 、-3与-12;⑵、-0.5与|-2.5|;⑶、0与-|-9|;⑷、|-3.5|与-3.57、把下列各数用“”连接起来:⑴、5,0,|-3|,-3,|- 13|,-(-8),-[−(−8)]; ⑵ 、123,-512,0,-614;⑶ 、|-5|,-6,-(-5),-(-10),-|-10|⑷ (||+||)×(-O)=-10,求O、,其中O 和表示整数.8、比较下列各组数的大小:⑴、-(-912)与-(-812);⑵、|-572|与50%⑶、-π与-3.14⑷、- 311与-0.273绝对值经典练习答案:1.⑴、√⑵、√⑶、×⑷、√⑸、√⑹、×⑺、×⑻、×⑼、×⑽、×⑾、×⑿、×⒀、×⒁、×⒂、×2.⑴?⑵?⑶?⑷≠⑸?⑹=⑺-a ⑻±1,±2,±3,0⑼、>⑽3⑾?⑿3或1⒀≧0⒁1⒂-a 、b ⒃223 −38 223⒄19-9⒅±0.04⒆=⒇相等或互为相反数3.⑴B ⑵D ⑶B ⑷A ⑸C ⑹D ⑺D ⑻C ⑼A ⑽D ⑾C4.⑴3⑵0⑶45⑷57.⑴[−(−8)]-30|- 13||-3|5-(-8);⑵-614-5120123;⑶-|-10|-6-|-5||-5|-(-10);⑷5,5,1或1,1,5或-1,-1,5或-5,-5,1 8.⑴?⑵?⑶?⑷?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《绝对值》练习
一.选择题
1. -3的绝对值是( )
(A )3 (B )-3 (C )13 (D )-13 2. 绝对值等于其相反数的数一定是
A .负数
B .正数
C .负数或零
D .正数或零
3. 若│x│+x=0,则x 一定是 ( )
A .负数
B .0
C .非正数
D .非负数
5.绝对值最小的数( )
A .不存在
B .0
C .1
D .-1
6.当一个负数逐渐变大(但仍然保持是负数)时( )
A .它的绝对值逐渐变大
B .它的相反数逐渐变大
C .它的绝对值逐渐变小
D .它的相反数的绝对值逐渐变大
7.下列说法中正确的是( )
A .a -一定是负数
B .只有两个数相等时它们的绝对值才相等
C .若b a =则a 与b 互为相反数
D .若一个数小于它的绝对值,则这个数是负数
8.绝对值不大于11.1的整数有( )
A .11个
B .12个
C .22个
D .23个
12.______7.3=-;______0=;______3.3=--;______75.0=+-.
(2)若x x =-1,求x .
2.正式排球比赛,对所使用的排球的重量是严重规定的,检查5个排球的重量,超过规定重量的克数记为正数,不足规定重量的克数记作负数,检查结果如下表:
+15 -10 +30 -20 -40
指出哪个排球的质量好一些(即重量最接近规定重量)?你怎样用学过的绝对值知识来说明这个问题?
拓展题
1.7=x ,则______=x ; 7=-x ,则______=x .
2.若2<a<4,化简|2-a|+|a -4|.
3. 已知|4-a|+|2-5b|=0, 求a+b
5.b <c <0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|
四、解答题
1.若|x -2|+|y+3|+|z -5|=0,计算:
(1)x ,y ,z 的值.
(2)求|x|+|y|+|z|的值.
2.若2<a<4,化简|2-a|+|a -4|.
3.(1)若
x x =1,求x .
(2)若x x
=-1,求x .
2.(1)对于式子|x|+13,当x 等于什么值时,有最小值?最小值是多少?
(2)对于式子2-|x|,当x 等于什么值时,有最大值?最大值是多少
3.阅读下列解题过程,然后答题:
(1)如果两个数互为相反数,则这两个数的和为0,例如,若x和y互为相反数, 则必有x+y=0.现已知:|a|+a=0,求a的取值范围。

(2)已知:|a-1|+(a-1)=0,求a的取值范围.
4.(1)已知|x|=3 ,|y|=1,且x-y<0, 求x+y
(2)已知|a|=3,|b|=5 ,且a<b, 求a-b
(3)已知∣a-4∣+∣B-2∣=0,求a,b的值
(4)已知|4+a|+|2-5b|=8, 求a+b
3.a<b<0<c,化简:
(1)|2a-b|+2|b-c|-2|c-a|+3|b|
(2)|a-b|+|b|+|c-a|
4.c<b<0<a,化简|a+c|-|a-b-c|-|b-a|+|b+c|
5.b<c<0<a,化简|a+c|+| b+c|-|a-b|+|2a-c|
9.某企业生产瓶装食用调和油,根据质量要求,净含量(不含包装)可以有0.002L误差.现抽查6瓶食用调和油,超过规定净含量的升数记作正数,不足规定净含量的升数记作负数.检
请用绝对值知识说明:
(1)哪几瓶是合乎要求的(即在误差范围内的)?
(2)哪一瓶净含量最接近规定的净含量?。

相关文档
最新文档