最新九年级数学知识点:圆的认识知识点

合集下载

圆的综合知识点九年级

圆的综合知识点九年级

圆的综合知识点九年级圆的综合知识点圆是我们生活中常见的几何形状之一,它具有许多独特的性质和特点。

在初中数学的学习中,我们需要了解并掌握圆的相关知识,包括圆的定义、圆的性质、圆的测量等。

在本文中,将对圆的综合知识点进行详细论述。

一、圆的定义和基本概念1. 圆的定义:圆是平面上所有到一个固定点距离相等的点的集合。

这个固定点称为圆心,到圆心的距离称为半径。

2. 相关关系:圆心、半径、直径和弧长是圆的一些重要概念。

圆心到圆上任意一点的距离称为半径,圆心到圆上任意两点的距离称为直径。

直径的长度是半径的两倍。

圆上的一段弧称为弦,若弦的两个端点与圆心相重合,则称之为直径。

二、圆的性质1. 圆周角:圆周角是圆上的一个弧所对的圆心角。

在同一个圆上,对等弧所对的圆周角也是相等的。

我们可以根据扇形的角度来计算圆周角的大小,公式为:圆周角 = 弧度 / 圆周长 × 360°。

2. 圆的切线:切线是与圆相切的直线,切点为切线与圆的交点。

切线与半径的关系是切线和半径的交点与圆心相连时垂直。

切线与半径的夹角度数是90°。

3. 弦的性质:在圆内,一条弦所对的圆周角等于它所对的弧所对的圆周角的一半。

而在圆外,一条弦所对的圆周角等于它所对的弧所对的圆周角的补角。

4. 弧的性质:同样长的弧所对的圆周角相等。

当两个弧等长时,它们所对的圆周角相等。

而且,同样长的两个弧所对的弦相等。

5. 圆的内切和外切:一个圆内切于一个三角形,当且仅当这个圆的圆心与三角形的三条边的垂心共线。

相反,一个圆外切于一个三角形,当且仅当这个圆的圆心与三角形的三条边的三等分线交于一点。

三、圆的测量1. 圆的周长:圆的周长也称为圆周长,可以通过公式C=2πr来计算,其中C表示圆周长,r表示半径。

π(pi)是一个数学常数,约等于3.14159。

将圆周长除以直径,可以得到一个重要的结果:C/d = π。

2. 圆的面积:圆的面积可以通过公式A=πr²来计算,其中A表示面积,r表示半径。

圆的认识知识点总结

圆的认识知识点总结

圆的认识知识点总结一、圆的定义和基本性质1. 圆的定义:圆是平面上的一组点,到一个确定的点距离相等。

2. 圆的元素:圆心、半径、直径、圆周。

3. 圆的性质:圆的半径相等,圆的直径是两倍的半径。

圆周上的任意两点与圆心的距离相等。

圆心到圆周的距离是半径。

4. 圆的定理:圆心角定理、弧长定理、切线定理等。

二、圆的相关角度和单位1. 角度的定义:角度是一个衡量平面角的单位。

2. 角度的度量单位:度、弧度。

3. 圆周角和对应角:圆周角是指圆的圆心角度数,对应角是指相等的角。

4. 角度的运算和转换:角度的加减、角度和弧度的转换。

三、圆的周长和面积1. 圆的周长公式:周长=2πr,r为半径。

2. 圆的面积公式:面积=πr²。

3. 圆的周长和面积的应用:在解决实际问题时,常常利用圆的周长和面积公式进行计算和推导。

四、圆的相关定理和推论1. 圆的同位角定理:同位角相等的定理。

2. 圆的相交定理:相交弦定理、外接角定理、内接角定理等。

3. 圆的切线定理和切线角定理:切线和切线角的性质和应用。

五、圆的相关方程和函数1. 圆的标准方程:圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

2. 圆的一般方程:圆的一般方程是x²+y²+Dx+Ey+F=0,其中D,E,F为常数。

3. 圆的相关函数和图像:三角函数的正弦曲线和余弦曲线与圆的关系。

六、圆的应用1. 圆的应用领域:几何学、物理学、工程学等。

2. 圆的应用案例:圆的运动、圆的工程设计、圆的运动学分析等。

3. 圆的应用技术:在计算机图形学、图像处理、地理信息系统等领域有广泛的应用。

总结:圆是一个很基础却又富有深刻意义的几何图形,它在数学和自然界中都有着广泛的应用和影响。

通过对圆的认识知识点的总结和概述,有助于我们更好地理解圆的性质和定理,提高数学素养和解决实际问题的能力。

圆的相关知识和技能对于我们的学习和工作都有着重要的意义。

圆数学九年级知识点

圆数学九年级知识点

圆数学九年级知识点圆是我们学习数学中非常重要的一个几何图形,它在我们的生活中随处可见。

本文将介绍九年级数学学科中涉及的一些基本的圆的知识点。

一、圆的定义与性质1. 圆的定义:圆是由平面上与一个定点距离相等于定长的所有点组成的图形。

这个定点叫做圆心,定长叫做半径。

2. 圆的性质:(1) 圆心到圆上任意一点的距离都相等。

(2) 圆上的点到圆心的距离都等于半径的长度。

(3) 圆的直径是通过圆心并且两端点都在圆上的一条线段,直径的长度等于半径的两倍。

二、圆的元素及其关系1. 弧:由圆上的两点确定的一段弧线。

2. 弦:连接圆上的两点的线段。

3. 弧长:弧的长度,通常用字母l表示。

4. 弧度制:用弧长与半径的比值来度量角,简称弧度。

一个圆周的弧长等于半径的2π倍,记作2π。

5. 弧度与度数的相互转换:(1) 角度转弧度:弧度 = 角度× π/180。

(2) 弧度转角度:角度 = 弧度× 180/π。

三、圆与直线的关系1. 切线与切点:切线是与圆只有一个交点的直线,这个交点称为切点。

2. 弦的性质:(1) 弦等长定理:圆上两个弦等长的充要条件是这两个弦对应的弧相等。

(2) 弦心角定理:圆上两个弦对应的弧所对的圆心角相等的充要条件是这两个弦等长。

(3) 直径所对的圆心角是直角。

(4) 圆上的任意弧所对的圆心角等于其所对的弧的两倍。

四、圆与角的关系1. 圆心角:以圆心为顶点的角叫做圆心角。

2. 弧所对的圆心角:圆上的弧所对的圆心角等于这个弧的两倍。

五、圆的面积和弧长1. 圆的面积公式:圆的面积等于半径的平方乘以π,即A = πr²。

2. 弧长公式:弧长等于圆心角度数除以360度再乘以圆周的长度。

六、圆的平行线与切线1. 平行线与切线的关系:若直线与圆相切,则直线与圆的切点连线垂直于直线。

2. 切线定理:与同一圆相切的两条切线所切圆的切点与切线的连线垂直。

综上所述,圆是数学中一个重要的几何图形,掌握圆的定义、性质以及与直线、角的关系,对于九年级学生来说是非常重要的。

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结一、圆的概念1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长r的点的集合)。

2.圆心O、半径r、直径d:使圆上任意一点与定点O的距离等于r的动点O叫做圆心,连接圆心与圆上任意一点的线段叫做半径,圆心O与定点A之间的距离叫做直径。

二、圆的性质1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等。

2.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

4.圆内接四边形的对角互补。

三、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

四、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

五、点和圆的三种位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:1.d>r 点P在⊙O外;2.d=r 点P在⊙O上;3.d<r 点P在⊙O内。

六、直线和圆的三种位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有:1.d>r 直线l与⊙O相离;2.d=r 直线l与⊙O相切;3.d<r 直线l与⊙O相交。

七、正多边形和圆各边相等,各内角都相等的多边形叫做正多边形。

在平面内,各边相等,各内角也都相等的多边形叫做正多边形。

正多边形的外接圆的半径叫做半径;正多边形的中心叫做中心;正多边形的内切圆的半径叫做内心;正多边形的一组邻边的垂直平分线的交点叫做中心。

正n边形的中心角公式:360°/n;正n边形一条边的长度公式:2rsin(180°/n)。

九年级数学圆知识点梳理

九年级数学圆知识点梳理

九年级数学圆知识点梳理一、圆的定义与特点圆是由平面上离定点(圆心)距离相等的点构成的图形。

圆的特点有:1. 圆心:圆中心点的位置。

2. 半径:连接圆心和圆上任意一点的线段的长度,即半径。

3. 直径:通过圆心的两个点所构成的线段,即直径。

直径的长度是半径的两倍。

4. 弧:连接圆上两点的弧。

5. 圆周:由圆上所有点组成的曲线,也叫圆周。

二、圆的计算公式1. 圆的周长公式:C = 2πr,其中C代表圆的周长,r代表圆的半径。

π取近似值3.14。

2. 圆的面积公式:S = πr²,其中S代表圆的面积,r代表圆的半径。

三、圆的相交关系1. 相离:两个圆没有任何公共点,彼此之间没有交集。

2. 外切:两个圆相切于一点,且外切的圆没有穿过另一个圆。

3. 相交:两个圆有公共点,且相交的圆穿过另一个圆。

4. 内切:一个圆刚好位于另一个圆内部,并且两圆相切于一点。

5. 同心圆:有相同的圆心,但半径不同的圆。

四、圆的性质和定理1. 弧与角度的关系:圆心角是以圆心为顶点的角,圆心角的度数等于其所对应的弧所对角的度数。

2. 弧长公式:弧长等于圆周的$\frac{1}{n}$,其中n是圆周上被划分的几等分,m是圆周上的弧所对应的角的角度。

3. 弧与切线的关系:圆上的切线与切点处的弧垂直。

4. 切线定理:当一条直线与圆相切时,切点与切线的连线垂直于半径。

5. 弦的性质:如果两个弦在圆内或圆外相交,那么穿过内圆或外圆的弦的两边相乘的和等于其他穿过的弦的两边相乘的和。

6. 弧度制:以圆心为顶点的角所对应的弧长与半径的比值等于一个常数,即弧度制。

7. 平行切线定理:平行于切线的直线也是切线。

8. 平行弦定理:当两个弦平行时,两个弦的长度之比等于两个弦所对应的弧的长度之比。

五、圆的应用1. 几何画图:根据已知的圆心、半径、弦、切线等元素要求画出几何图形。

2. 圆的作图:根据已知条件画出满足要求的圆。

3. 物体的运动轨迹:物体在圆周运动时,物体的位置与时间的关系可表示为圆。

圆的认识知识点总结

圆的认识知识点总结

圆的认识知识点总结圆是我们数学中的一个基本几何概念,在日常生活中也经常遇到。

本文将对圆的定义、性质及相关定理进行总结,希望能够更好地帮助大家理解和应用圆的相关知识。

一、圆的定义及基本术语1. 圆的定义:圆是平面上到一个固定点的距离等于定长的点的集合。

2. 圆心:圆形的中心点称为圆心,通常用大写字母O表示。

3. 半径:连接圆心和圆上任意一点的线段称为半径,通常用小写字母r表示。

4. 圆的直径:通过圆心并且两端点都在圆上的线段称为圆的直径,直径的长度等于半径长度的两倍。

5. 圆的弦:圆上的两个点之间的线段称为圆的弦。

二、圆的性质1. 圆上任意两点之间的线段都是弦,弦的长短决定了其距离圆心的远近。

2. 弦与其所对的圆心角,它们之间的关系是:当一个弦被圆分成两段时,两段弧所对的角相等;而当一个弧被多个弦分成几段时,各弦所对的角之和等于该弧所对的角。

3. 圆的半径相等,即圆的所有半径长度都相等。

4. 圆的直径是圆上最长的弦,并且它等于圆的半径长度的两倍。

5. 在同一个圆中,弧度越大,对应的圆心角越大。

三、圆的相关定理1. 圆心角定理:在同一个圆中,圆心角所对的弧长是一定的。

换句话说,圆心角相等的弧长相等,圆心角不等的弧长不等。

2. 弧长定理:在同一个圆中,两条相交弦所对的弧长之和等于这两条弦所对的圆心角所对应的弧长之和。

3. 弦切角定理:当一个弦与一个切线相交时,两个交角的差等于这条弦所对的弧的圆心角。

4. 切线定理:从圆外一点引圆的两条切线,这两条切线的切点与该外点构成的两个三角形是相似三角形。

5. 弦切线性质:从圆外一点引圆的切点与切线相连,该切线与引线所对的圆心角相等。

综上所述,圆是平面几何中的重要概念,其性质及相关定理也是我们应用数学知识解决问题的基础。

掌握了圆的定义、基本术语、性质和定理,我们就能更加深入地理解和运用圆的相关知识。

希望本文对大家的学习有所帮助。

九年级圆的知识点总结

九年级圆的知识点总结

九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。

2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。

3. 半径(r):圆心到圆上任意一点的距离。

4. 直径(d):通过圆心的最长弦,是半径的两倍长度。

5. 弦(c):连接圆上任意两点的线段。

6. 弧(a):圆上两点之间的圆周部分。

7. 优弧:大于半圆的弧。

8. 劣弧:小于半圆的弧。

9. 半圆:圆的一半,由直径所界定的弧。

10. 切线(t):与圆只有一个公共点的直线。

二、圆的性质1. 所有半径的长度相等。

2. 直径是圆内最长的弦。

3. 圆的任意两点之间的弧,优弧总是大于劣弧。

4. 切线与半径相交于圆外的一点,形成直角。

5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。

6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。

4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。

四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。

2. 圆与圆的关系:内含、外离、相交、内切、外切。

3. 圆的切线问题:求切线长度、切点坐标等。

4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。

5. 圆的面积问题:根据圆的半径、直径、周长等求面积。

五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。

2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。

3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。

数学中学九年级圆知识点

数学中学九年级圆知识点

数学中学九年级圆知识点圆是数学中重要的几何形状之一,广泛应用于各个领域。

本文将重点讨论九年级学生需要掌握的圆的相关知识点,包括圆的定义、圆的性质、弧的性质以及与圆相关的定理。

让我们系统地学习圆的知识,为解决数学问题打下坚实的基础。

1. 圆的定义圆是由平面上任意一点到另一点距离相等的所有点的集合。

通常,以大写字母O表示一个圆,以小写字母o表示圆上的点。

圆上的每个点到圆心的距离称为半径,通常用字母r表示。

圆的直径是通过圆心的两个点之间的距离,通常用字母d表示。

圆的周长是圆上任意一点到该点相邻两点之间的曲线长度,通常用字母C表示。

圆的面积是圆内部所有点构成的区域,通常用字母A表示。

2. 圆的性质(1)圆的半径相等,即圆上的任意两点到圆心的距离相等。

(2)圆的直径是半径的两倍,即d=2r。

(3)圆的周长与直径之间的关系是C=πd,其中π是一个无理数,约等于3.14。

(4)圆的面积与半径之间的关系是A=πr²。

3. 弧的性质在圆上,两个点之间的曲线段成为弧。

弧的长度是弧上两点之间的距离。

根据弧的位置和角度,弧可以分为三种类型:圆心角、弦长、扇形面积。

(1)圆心角:圆心角是由圆心和弧上任意两点构成的角。

圆心角的度数等于弧所对应的圆周角的度数。

圆心角的度数范围是0°到360°。

(2)弦长:弦是连接圆上任意两点的线段,弦的长度称为弦长。

弦长与其所对应的圆心角的度数之间存在正比关系。

(3)扇形面积:扇形是由圆心、弧和两条半径组成的图形。

扇形的面积等于其所对应的圆心角的度数与圆的面积的比例。

4. 圆的相关定理(1)圆周角定理:位于同一个圆上的圆心角所对应的弧相等。

(2)弧长定理:位于同一个圆上的圆心角所对应的弧的弧长与圆心角的度数成正比。

(3)切线定理:一条直线与圆相切的必要条件是此直线与通过圆切点的半径垂直。

(4)正切定理:一条直线与圆相切的切点处的切线垂直于该切点处的半径。

通过学习圆的定义、性质、弧的性质以及相关定理,我们可以运用这些知识解决各种与圆相关的数学问题。

圆九年级知识点

圆九年级知识点

圆九年级知识点圆是初中数学中的基础知识之一,它涉及到圆的定义、圆的性质、圆的应用等内容。

本文将全面介绍九年级学生需要了解的圆的知识点,帮助同学们更好地理解和掌握相关概念。

一、圆的定义圆是平面上一点到另一点的距离等于常数的所有点的集合。

简而言之,圆是由一条固定长度的线段的端点向外作弧所形成的图形。

二、圆的要素1. 圆心:圆心是圆上所有点到圆心的距离都相等的一个点,用字母O表示。

2. 半径:半径是连接圆心和圆上任意一点的线段,用字母r表示。

半径的长度等于圆的直径的一半。

3. 直径:直径是连接圆上任意两点并通过圆心的线段,用字母d表示。

直径的长度等于圆的半径的两倍。

4. 弧:圆上两点间的弧是两点之间的部分弧线段。

弧也可以通过夹角来表示。

三、圆的性质1. 圆内任意两点的距离都小于或等于圆的直径。

2. 圆内任意两点的距离都小于圆的半径。

3. 圆内任意两点的距离都相等。

4. 圆的直径是圆上最长的线段。

5. 半径相等的圆互为等圆。

四、圆的公式1. 圆的面积公式:圆的面积等于π乘以半径的平方,即A = πr²,其中π的近似值为3.14。

2. 圆的周长公式:圆的周长等于π乘以直径,即C = πd。

五、圆的应用圆在日常生活中有广泛的应用,下面以几个实际案例说明圆的应用场景:1. 车轮:车轮是圆形的,它能够顺畅地滚动,减小了摩擦阻力,提高了车辆的行驶效率。

2. 影碟:DVD、CD等光盘都是圆形的,它们的旋转速度决定了光头的读取速度,从而实现了音视频的播放。

3. 灯罩:路灯、台灯等灯具的灯罩往往采用圆形设计,这样可以使光线更加均匀地照射到周围环境。

4. 拱桥:拱桥的形状是由一系列相等的圆弧组成的,它能够有效地分担桥身上的荷载,使得桥梁更加坚固耐用。

六、习题练习1. 已知圆的半径为5cm,求圆的面积和周长。

解答:圆的面积A = πr² = 3.14 × 5² ≈ 78.5cm²,圆的周长C = πd = 3.14 × 10 ≈ 31.4cm。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。

二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。

2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。

3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。

4.圆周角的度量:可以用角的度数来衡量。

三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。

2.切线与半径的关系:切线与半径的关系是切线⊥半径。

3.弦的定义:两点之间的线段叫做弦。

4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。

四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。

2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。

五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。

2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。

六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。

九年级数学圆知识点

九年级数学圆知识点

九年级数学圆知识点在九年级数学学习中,圆是一个重要的知识点。

下面将介绍圆的定义、性质以及与圆相关的主要公式和定理。

一、圆的定义和性质:1. 定义:圆是由平面上的一点到另一点距离不变的所有点的集合。

2. 圆心和半径:圆心是圆的中心,圆的半径是圆心到圆上任一点的距离。

3. 直径和直径长:直径是圆上任意两点之间通过圆心的线段,直径长等于半径的两倍。

4. 弦:连接圆上任意两点的线段。

5. 弧:由圆上两点所确定的一段圆形曲线。

6. 弧长:圆的周长被称为弧长,可以表示为2πr(r为圆的半径)。

7. 弧度制:圆的周长为360°,也可以用弧度来表示,一周的弧度数为2π。

二、圆的相关公式和定理:1. 圆的周长公式:C = 2πr,其中C表示周长,r表示半径。

2. 圆的面积公式:A = πr²,其中A表示面积,r表示半径。

3. 弧长公式:L = 2πr × (θ/360°),其中L表示弧长,r表示半径,θ表示所对应的圆心角的度数。

4. 弦长公式:如果圆心角θ的度数已知,弦长可通过公式l = 2r × sin(θ/2)计算。

5. 切线与半径的关系:切线与半径的相交点处,切线是半径的垂直平分线。

6. 切线与弦的关系:切线与弦的相交点处,切线与弦的夹角等于所对应的弧的圆心角的一半。

7. 弦割定理:如果两个弦相交于圆的内部,那么相交点之间的两个弦的长度的乘积等于两个弦的切割线段的长度的乘积。

8. 切割定理:如果两条切线相交于圆的外部,那么相交点之间的两个切线段的长度的乘积等于两个切线的切割线段的长度的乘积。

三、应用示例:1. 根据给定的半径,求解圆的面积和周长。

2. 根据给定的弦长和半径,求解所对应的圆心角的度数。

3. 根据所给条件,利用切线和弦的关系解题。

4. 根据所给条件,应用弦割定理或切割定理解决问题。

综上所述,九年级数学中的圆知识点包括了圆的定义、性质、相关公式和定理。

九年级数学圆的知识

九年级数学圆的知识

九年级数学圆的知识
九年级数学中,圆的知识包括以下内容:
1. 圆的定义:圆是由平面上所有到定点距离相等的点组成的集合。

2. 圆的元素:圆心是圆的中心点,用O表示;半径是圆心到圆上任意一点的距离,用r表示;直径是通过圆心的一条线段,两端点在圆上,直径的长度是半径的两倍。

3. 圆的性质:
- 圆上任意两点与圆心的距离相等。

- 圆上的点与圆心的距离等于半径。

- 圆的直径是最长的线段,且等于半径的两倍。

- 圆的任意弦都可以作为直径,即两端点在圆上的线段。

- 圆的任意弦都可以分成两段,两段长度乘积等于这条弦所对应的弧的长度乘积。

- 圆的周长是圆周上一周的长度,等于2πr,其中π是一个无理数,约等于3.14159。

- 圆的面积是圆内部的所有点组成的区域的大小,等于πr²。

4. 圆的相关定理:
- 弧长定理:圆的弧所对应的圆心角的度数等于弧长所占圆周的度数。

- 弦切定理:在圆上,切线与弦的乘积等于切点外的弦与切点外
的弦的乘积。

- 切线定理:在圆上,切线与切点外的弦的乘积等于切点外的弦与切点外的弦的乘积。

- 弧度制:角度的度数可以转化为弧度制,1°对应π/180弧度。

以上是九年级数学中关于圆的基本知识,还有更深入的内容如圆锥、圆柱、圆台等,这些内容超出了本回答的范围。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的基本概念和性质1.圆的定义:平面上的点到圆心的距离等于半径的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:a.对于圆上任意一点P和圆心O,OP是半径;b.圆上任意两点P和Q的半径相等;c.圆上两个不同的弧所对的圆心角相等;d.圆心角的度数等于它所对的弧的度数;e.圆的内切四边形的对角线互相垂直;f.圆的内切四边形的对边互相平行且相等;g.圆内接正方形的边长等于半径的2倍。

4.圆心角与弧的关系:a.弧所对的圆心角是其两倍;b.圆心角相等的弧相等;c.同弧度数的圆心角相等;d.弧需要圆的整个周长的弧数表示。

二、圆的运算1.圆周长:圆周长是圆周上的弧长,可以通过半径和直径推导得到。

2.圆的面积:圆的面积是圆心角度和圆的半径之间的数学关系,可以通过面积公式πr²计算得到。

三、圆的位置关系1.圆的判定:a.两个圆相交,如果两个圆的圆心距离小于半径之和但大于半径之差;b.两个圆相切,如果两个圆的圆心距离等于半径之和或半径之差;c.两个圆外离,如果两个圆的圆心距离大于半径之和;d.两个圆内含,如果一个圆完全位于另一个圆内部。

2.相切圆的性质:a.相切圆的切点在半径的连线上;b.相切圆的切线相互垂直;c.相切圆的切线公共切点的连线通过两个圆的圆心。

四、圆与线的位置关系1.弦的性质:a.弦和圆心连线垂直,那么弦是直径;b.弦的中点位于圆心。

2.弧与弦:a.弧上的两个弦相等,则它们所对的圆心角相等;b.两个等圆弧所对的圆心角相等;c.弦所夹的圆弧是圆心角的一半。

3.弦的长度:等于两个切线段的和。

4.直线和圆的位置关系:a.直线与圆相交于两点;b.直线与圆相切于一点;c.直线与圆不相交。

五、切线和切线长1.切线的定义:从圆外的一点引一条直线,直线与圆相交于该点,这条直线叫做切线。

2.切线的性质:a.切线与半径垂直;b.切线与切线垂直;c.相切圆的切线相互垂直。

3.切线长的计算:可以通过勾股定理得到切线长的计算公式。

初三《圆》知识点及定理

初三《圆》知识点及定理

《圆》知识点及定理一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;图1五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。

九年级圆的所有知识点

九年级圆的所有知识点

九年级圆的所有知识点圆是几何学中的重要概念,它在我们的日常生活中无处不在。

在九年级的数学学习中,我们将学习关于圆的各种知识点。

本文将全面介绍九年级圆的所有知识点,包括圆的定义、性质、常见公式以及应用等内容。

一、圆的定义及性质圆是由平面上所有到定点的距离都相等的点构成的集合。

圆由圆心和半径来确定,圆心是圆上任何一点到定点的距离都相等,半径则是圆心到圆上任何一点的距离。

圆的性质包括:1. 圆上任意两点之间的线段都是弦,而直径是一条通过圆心且两端点在圆上的弦,它将圆分为两个相等的半圆。

2. 圆上任意一条弦都可作为直径,且直径的长度是半圆周长的两倍。

3. 圆上每个点到圆心的距离都相等,这个距离就是半径,圆周上所有点到圆心的距离都等于半径的长度。

4. 圆周上的一个角,其对应的弧所对应的圆心角相等,即圆心角的度数等于弧度数。

5. 切线与半径的垂直性质:一条切线与通过切点的半径垂直相交。

二、圆的周长和面积公式1. 周长公式:圆的周长等于直径的长度乘以π(圆周率)。

周长 = 直径× π 或者周长 = 2 ×半径× π。

2. 面积公式:圆的面积等于半径的平方乘以π。

面积 = 半径² × π 或者面积 = (直径/2)² × π。

三、圆的应用圆不仅仅在数学中有着重要的地位,它也广泛应用于生活和其他学科中。

以下是圆的一些常见应用:1. 几何设计:圆形是设计中最基本的形状之一,它常常被用来表达和传达各种美学和构图原则。

2. 圆形建筑:许多建筑物采用圆形设计,如剧院、圆形体育场等,这样可以使观众坐在任何位置上都能获得更好的视觉体验。

3. 圆形运动:许多体育运动中都有圆形运动的要素,例如足球、篮球等球类运动,球场也常常是圆形或半圆形的。

4. 圆的应用于物理学中的轨迹:圆形轨迹出现在一些著名的物理学定律中,如牛顿的万有引力定律中行星的椭圆轨道。

综上所述,九年级圆的知识点包括了圆的定义、性质、周长和面积公式以及常见应用等方面。

圆的认识知识点

圆的认识知识点

圆的认识知识点圆是几何学中的基本图形,它在我们的日常生活中无处不在。

本文将介绍圆的定义、性质以及与圆相关的知识点。

一、圆的定义圆是平面上所有到一定点距离相等的点的集合。

这个点被称为圆心,到圆心距离相等的距离被称为半径。

圆可用以下的数学符号表示:⭕。

圆由圆心和半径唯一确定。

二、圆的性质1. 圆的直径圆的直径是通过圆心且两端点在圆上的线段。

直径的长度是半径长度的两倍。

可以表示为d=2r,其中d是直径的长度,r是半径的长度。

2. 圆的周长圆的周长是指圆上一周的长度。

公式为C=2πr,其中C是周长,r是半径的长度,π是一个常数,近似值约为3.14。

3. 圆的面积圆的面积是指圆内部的平面范围。

公式为A=πr^2,其中A是面积,r是半径的长度,π是一个常数,近似值约为3.14。

4. 弧长和扇形面积弧长是圆上一部分的长度,可以通过弧度来度量。

弧度是一个中心角所对应的弧长与半径的比值。

扇形是圆内部被一条弧和两条半径所夹的区域,扇形的面积可以通过圆心角的大小来计算。

5. 切线和切点切线是与圆相切且垂直于半径的直线。

切点是切线与圆相交的点。

切线与半径垂直的性质使得切线与半径之间的夹角为直角。

三、与圆相关的知识点1. 弦弦是圆上任意两点之间的线段。

弦的长度可以小于、等于或大于直径的长度。

2. 弦长公式如果知道弦的长度和圆的半径,可以利用弦长公式求出两点之间的弦的距离。

弦长公式为L = 2r sin(θ/2),其中L是弦的长度,r是半径的长度,θ是圆心角的度数。

3. 相切与相交当两个圆之间的弦恰好相切于一个点时,我们称这两个圆相切。

两个圆相交时,它们有两个不同的交点。

4. 切线定理切线定理是指从一个点到圆的切点所作的切线段长度的平方等于这个点到圆心的线段与圆的半径的乘积。

五、总结圆是几何学中的重要图形,具有许多重要的性质和知识点。

通过了解并掌握圆的定义、性质以及与圆相关的重要知识点,我们可以更好地理解和应用圆的概念。

在实际生活和学习中,圆的认识对于解决各种与圆有关的问题都有重要的帮助。

圆的认识知识点

圆的认识知识点

圆的认识知识点圆,在我们的日常生活中无处不在。

无论是车轮、钟表的表盘,还是各种圆形的建筑和装饰,圆都以其独特的魅力和重要的数学性质影响着我们的生活。

接下来,让我们一起深入了解圆的相关知识点。

一、圆的定义圆是平面内到一定点的距离等于定长的点的集合。

这个定点称为圆心,定长称为圆的半径。

用字母 O 表示圆心,用 r 表示半径。

想象一下,我们拿着一根绳子,一端固定在一个点上,另一端绑着一支笔,然后让笔绕着这个固定点旋转一周,所形成的图形就是圆。

二、圆的基本元素1、圆心圆心决定了圆的位置。

如果圆心的位置发生变化,圆的位置也会相应改变。

2、半径半径是连接圆心和圆上任意一点的线段。

半径的长度决定了圆的大小。

同一个圆中,所有的半径长度都相等。

3、直径通过圆心并且两端都在圆上的线段叫做直径。

直径是圆中最长的线段,用字母 d 表示。

同一个圆中,直径等于半径的 2 倍,即 d = 2r。

4、弦连接圆上任意两点的线段叫做弦。

直径是圆中特殊的弦。

5、弧圆上任意两点间的部分叫做弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

三、圆的周长圆的周长是指绕圆一周的长度。

圆的周长计算公式为:C =2πr 或C =πd,其中π(读作“派”)是一个常数,约等于 314。

例如,如果一个圆的半径是 5 厘米,那么它的周长就是 2×314×5 =314 厘米;如果直径是 8 厘米,那么周长就是 314×8 = 2512 厘米。

四、圆的面积圆的面积是指圆所占平面的大小。

圆的面积计算公式为:S =πr² 。

假设一个圆的半径是 3 厘米,那么它的面积就是 314×3²= 2826 平方厘米。

五、圆的对称性圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心就是圆心。

这意味着,如果我们沿着对称轴将圆对折,两侧的部分能够完全重合。

六、扇形由圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。

初三数学:圆知识点归纳

初三数学:圆知识点归纳

初三数学:圆知识点归纳 【一】圆的定义。

1、以定点为圆心,定长为半径的点组成的图形。

2、在同一平面内,到一个定点的距离都相等的点组成的图形。

【二】圆的各元素。

1、半径:圆上一点与圆心的连线段。

2、直径:连接圆上两点有经过圆心的线段。

3、弦:连接圆上两点线段(直径也是弦)。

4、弧:圆上两点之间的曲线部分。

半圆周也是弧。

(1)劣弧:小于半圆周的弧。

(2)优弧:大于半圆周的弧。

5、圆心角:以圆心为顶点,半径为角的边。

6、圆周角:顶点在圆周上,圆周角的两边是弦。

7、弦心距:圆心到弦的垂线段的长。

【三】圆的基本性质。

1、圆的对称性。

(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

3、圆心角的度数等于它所对弧的度数。

圆周角的度数等于它所对弧度数的一半。

(1)同弧所对的圆周角相等。

(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。

4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。

5、夹在平行线间的两条弧相等。

6、设⊙O的半径为r,OP=d。

7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。

(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。

(直角三角形的外心就是斜边的中点。

)8、直线与圆的位置关系。

d表示圆心到直线的距离,r表示圆的半径。

直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。

9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。

那么AB=〔x1+x2,y1+y2〕10、圆的切线判定。

(1)d=r时,直线是圆的切线。

整理九年级圆知识点

整理九年级圆知识点

整理九年级圆知识点九年级数学学习中,圆是一个重要的概念。

本文将详细整理九年级圆的知识点,包括圆的定义、圆的性质、圆的公式等内容,帮助同学们更好地理解和掌握圆的相关知识。

一、圆的定义圆是平面上到一个定点的距离都相等的点的轨迹。

其中,定点称为圆心,到圆心的距离称为半径。

表示圆的符号常用字母“O”或大写字母“C”来表示。

二、圆的性质1. 圆心角:以圆心为顶点的角称为圆心角。

任意两点所对的圆心角相等。

2. 圆内角:圆的内部两点之间所对的角称为圆内角。

圆内角的度数等于所对弧所对的圆心角的度数。

3. 弧度制与角度制:弧度制是以半径长为单位的角度制,角度制是以度为单位的角度制。

两者之间的换算关系:1弧度=180°/π。

4. 平行弧的性质:平行于圆的弧所对的圆心角相等。

5. 同弧或等弧:圆周上的两个弧是同弧或等弧的充分必要条件是它们所对的圆心角相等。

三、圆的基本公式1. 圆的周长公式:圆的周长等于2πr,其中r为半径。

2. 圆的面积公式:圆的面积等于πr²,其中r为半径。

四、圆的相关定理1. 相交弦定理:两弦相交于圆内一点,那么它们所夹的两个圆心角互补。

2. 弦切定理:切线与弦相交于圆外一点,那么切线所夹的圆内角等于所对弦所夹的圆心角。

3. 弧切定理:切线与弧相交于圆外一点,那么切线所夹的圆内角等于所对弧的一半。

4. 弧度定理:一个圆周所对的圆心角等于该角所对弧所对圆心角的角度数。

五、圆的常见问题类型1. 求圆的周长和面积:根据给定的半径,利用公式计算圆的周长和面积。

2. 求圆心角、圆内角和弦切角的度数:根据给定的条件,利用相关的定理和性质求解。

3. 求圆心角所对的弧长:根据圆心角的度数和弧度制,利用弧度制与角度制的换算公式求解。

4. 判断三角形的顶点是否在圆上:根据给定的三角形顶点坐标和圆的半径,计算三角形顶点到圆心的距离,判断是否与圆的半径相等。

六、习题示例:1. 已知一个圆的半径为5cm,求其周长和面积。

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。

一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。

这个定点称为圆心,距离称为半径,用字母r表示。

圆通常用圆的轮廓线表示,在数学表达中用字母O表示。

二、圆的性质1. 圆的任意两点到圆心的距离相等。

这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。

2. 圆的直径是圆上任意两点之间的最长距离。

直径的长度是半径的两倍。

3. 圆的弦是圆上任意两点之间的线段。

弦不一定通过圆心,可以在圆内或圆外。

4. 圆上的切线垂直于半径。

切线是与圆相切的线,与圆的切点处的半径垂直。

三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。

2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。

3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。

4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。

四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。

圆的面积等于圆内所包围的面积,即S=πr²。

2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。

3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。

综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。

在此本站初中频道为您提供圆的认识知识点,希望给您学习带来帮助,使您学习更上一层楼!圆的定义:圆是一种几何图形。

当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹叫做圆。

在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。

相关定义:1 在同一平面内,到定点的距离等于定长的点的集合叫做圆。

这个定点叫做圆的圆心。

图形一周的长度,就是圆的周长。

2 连接圆心和圆上的任意一点的线段叫做半径,字母表示为r。

3 通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。

直径所在的直线是圆的对称轴。

4 连接圆上任意两点的线段叫做弦。

最长的弦是直径,直径是过圆心的弦。

5圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,优弧是用三个字母表示。

小于半圆的弧称为劣弧,劣弧用两个字母表示。

半圆既不是优弧,也不是劣弧。

优弧是大于180度的弧,劣弧是小于180度的弧。

6 由两条半径和一段弧围成的图形叫做扇形。

7 由弦和它所对的一段弧围成的图形叫做弓形。

8 顶点在圆心上的角叫做圆心角。

9 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

10 圆周长度与圆的直径长度的比值叫做圆周率。

它是一个无限不循环小数,通常用π表示,π=3.14159265……在实际应用中,一般取π≈3.14。

11圆周角等于相同弧所对的圆心角的一半。

12 圆是一个正n边形(n为无限大的正整数),边长无限接近0但不等于0。

圆的集合定义:圆是平面内到定点的距离等于定长的点的集合,其中定点是圆心,定长是半径。

? 圆的字母表示:以点O为圆心的圆记作“⊙O”,读作O”。

圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母);弧—⌒ ;直径—d ;扇形弧长—L ;周长—C ;面积—S。

圆的性质:(1)圆是轴对称图形,其对称轴是任意一条通过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

(2)有关圆周角和圆心角的性质和定理①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。

圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。

即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

(3)有关外接圆和内切圆的性质和定理①一个三角形有唯一确定的外接圆和内切圆。

外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。

④两相切圆的连心线过切点。

(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

(5)弦切角的度数等于它所夹的弧的度数的一半。

(6)圆内角的度数等于这个角所对的弧的度数之和的一半。

(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

(8)周长相等,圆面积比长方形、正方形、三角形的面积大。

? 点、线、圆与圆的位置关系:点和圆位置关系①P在圆O外,则 PO>r。

②P在圆O上,则 PO=r。

③P在圆O内,则 0≤PO<r。

< p="">反过来也是如此。

直线和圆位置关系①直线和圆无公共点,称相离。

AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。

AB与⊙O相交,d圆和圆位置关系①无公共点,一圆在另一圆之外叫外离,在之内叫内含。

②有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

③有两个公共点的叫相交。

两圆圆心之间的距离叫做圆心距。

设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P<r-r;< p="">内切P=R-r;相交R-r<p<r+r。

< p="">? 圆的计算公式:1.圆的周长C=2πr=或C=πd2.圆的面积S=πr23.扇形弧长L=圆心角(弧度制)× r=n°πr/180°(n为圆心角)4.扇形面积S=nπ r2/360=Lr/2(L为扇形的弧长)5.圆的直径 d=2r6.圆锥侧面积 S=πrl(l为母线长)7.圆锥底面半径 r=n°/360°L(L为母线长)(r为底面半径)圆的方程:1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)2+(y-b)2=r2。

特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x2+y2=r2。

2+2=2、圆的一般方程:方程x2+y2+Dx+Ey+F=0可变形为(x+D/2)(y+E/2)(D2+E2-4F) /4.故有:①当D2+E2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D2+E2-4F)/2为半径的圆;②当D2+E2-4F=0时,方程表示一个点(-D/2,-E/2);③当D2+E2-4F<0时,方程不表示任何图形。

3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ,y=b+r*sinθ,(其中θ为参数);圆的端点式:若已知两点A(a1,b1),B(a2;圆的离心率e=0,在圆上任意一点的曲率半径都是r;经过圆x2+y2=r2上一点M(a0,b0)的切;在圆(x2+y2=r2)外一点M(a0,b0)引;?圆的历史:;圆形,是一个看来简单,实际上是十分奇妙的形状;约在6000年前,美索不达米亚人,做出了世界上第;会作圆,但y=b+r*sinθ, (其中θ为参数)圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x-a1)(x-a2)+(y-b1)(y-b2)=0圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆x2+y2=r2上一点M(a0,b0)的切线方程为 a0·x+b0·y=r2在圆(x2+y2=r2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0·x+b0·y=r2。

? 圆的历史:圆形,是一个看来简单,实际上是十分奇妙的形状。

古代人最早是从太阳、阴历十五的月亮得到圆的概念的。

在一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。

到了陶器时代,许多陶器都是圆的。

圆的陶器是将泥土放在一个转盘上制成的。

当人们开始纺线,又制出了圆形的石纺锤或陶纺锤。

古代人还发现搬运圆的木头时滚着走比较省劲。

后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

约在6000年前,美索不达米亚人,做出了世界上第一个轮子——圆型的木盘。

大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

会作圆,但不一定就懂得圆的性质。

古代埃及人就认为:圆,是神赐给人的神圣图形。

一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:圆,一中同长也。

意思是说:圆有一个圆心,圆心到圆周的长都相等。

这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

任意一个圆的周长与它直径的比值是一个固定的数,我们把它叫做圆周率,用字母π表示。

它是一个无限不循环小数,π=3.1415926535……但在实际运用中一般只取它的近似值,即π≈3.14.如果用C表示圆的周长:C=πd或C=2πr.《周髀算经》上说"周三径一",把圆周率看成3,但是这只是一个近似值。

美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。

魏晋时期的刘徽于公元263年给《九章算术》作注时,发现"周三径一"只是圆内接正六边形周长和直径的比值。

他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。

他算到圆内接正3072边形的圆周率,π=3927/1250。

刘徽把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。

祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。

在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。

现在有了电子计算机,圆周率已经算到了小数点后六十万亿位小数了。

相关文档
最新文档