污水处理中泥龄的计算

合集下载

SICOLAB化学工业污水处理与回用设计规范(活性污泥法)

SICOLAB化学工业污水处理与回用设计规范(活性污泥法)

SICOLAB化学工业污水处理与回用设计规范(活性污泥法)一般规定一、活性污泥法应根据处理规模、进水水质和处理要求,选择合适的处理工艺。

二、活性污泥法进水的石油类含量不应大于30mg/L,硫化物不宜大于20mg/L,其他有毒害和抑制性物质在活性污泥系统混合液中的允许浓度,宜通过试验或按有关技术资料确定。

三、生物反应池应根据污水性质,采取水力消泡或化学消泡措施。

四、生物反应池有效水深应结合地质条件、曝气设备类型、污水场高程设计确定,宜为4m~6m。

五、廊道式生物反应池的池宽与有效水深之比宜为1:1~2:1,长宽比不宜小于5:1。

六、生物反应池采用鼓风曝气、转刷、转碟时,反应池的超高宜为0.5m;采用叶轮表面曝气时,设备平台宜高出设计水面0.8m~1.2m。

七、进水、回流污泥进入生物反应池厌氧段(池)、缺氧段(池)时,宜采用淹没入流方式。

八、生物反应池中的厌氧段(池)、缺氧段(池)应采用机械搅拌,混合功率宜为3W/m³~8W/m³。

传统活性污泥工艺一、传统活性污泥法宜用于处理有机污染物为主的污水。

二、采用普通曝气工艺时,反应池主要设计参数应根据试验或相似污水的运行数据确定,当无数据时,可采用下列数据:1 污泥负荷可取0.20kg[BOD5]/(kg[MLSS]·d)~0.30kg[BOD5]/(kg[MLSS]·d);2 混合液悬浮固体平均浓度可取2.0g[MLSS]/L~4.0g[MLSS]/L;3 污泥回流比可取50%~100%;4 污泥泥龄可取5d~15d;5 污泥产率可取0.4kg[VSS]/kg[BOD5]~0.6kg[VSS]/kg[BOD5]。

三、生物反应池容积可按下列公式进行计算:1 按污泥负荷计算:2 按污泥泥龄计算:式中:V——生物反应池有效容积(m³);S0——进水BOD5浓度(mg/L);Se——出水BOD5浓度(mg/L);Q——生物反应池设计流量(m³/h);Ls——污泥负荷{kg[BOD5]/(kg[MLSS]·d)};X——生物反应池内混合液悬浮固体平均浓度(g[MLSS]/L);Xv——生物反应池内混合液挥发性悬浮固体平均浓度(g[MLVSS]/L);θc——污泥泥龄(d);Y——污泥产率系数(kg[VSS]/kg[BOD5]);Kd——衰减系数,(d-1);Kd(20)——20℃时衰减系数(d-1),可取0.04~0.075;T——设计温度(℃);θT——温度系数,可取1.02~1.06。

污水处理厂运维73个知识点

污水处理厂运维73个知识点

污水处理厂运维73个知识点1、污水处理厂组织结构污水厂生产运行功能主要由厂部、运行部(包括中心控制室和各工段)、动力维修部(包括电工班和维修组)与化验室实现,由运行部指导各工段的运行工作。

污水厂的动力与设备维护体系主要由日常维护,定期检修,故障维修与改善维修组成。

除污水处理系统运行外,运行部人员亦负责设备的日常维护,包括日常巡检及简易常规维护,如加润滑油、清洁、清换过滤器、小部件的紧固调整设备等(一般完成工作任务时间约为0.5小时)。

动力维修部主要负责设备的定期检修,故障维修及改善维修。

实验室行政上由排水公司直属,实际上设在污水厂,并在厂长的协调下与运行部紧密配合进行工作。

污水进厂的调度由厂部在运行部协助下与排管处及泵站进行。

2、水质监控指标水质监控指标按《城镇污水处理厂污染物排放标准》GB18918-2002和建厂时批准的环境影响评价报告确定的级别执行,各检测项目的检测周期参照《城市污水处理厂运行、维护及其安全技术规程》CJJ60-94执行。

即PH值、SS、BOD5、CODcr、NH3-N、TN、TP每日一次,粪大肠菌群数每周一次,其余检测指标每半年检测一次。

一般排水公司为确保污水处理厂能够达到环保局要求,会适当提高对污水处理厂的监控标准。

3、排水公司对污水处理厂业绩考核指标排水公司对污水处理厂的技术考核指标至少应包括以下范围。

水质:出水水质达标率:CODcr、BOD5、SS、NH3-N、TN、TP每2h采样一次,取24h混合样,以日均值计。

粪大肠菌群指标每周一次。

出水水质达标率(%)=(月检测指标总合格次数-不合格数)*100/月检测指标总数水量:未处理污水溢流率(%)=(进水泵站送水量-污水厂实际处理量)*100/泵站送水量化验任务完成率:化验任务完成率(%)=(实际检测项目数*100)/按项目及频次应检测项目数设备仪表完好率:设备仪表完好率(%)=(考核机组完好台数*100)/考核机组总台数连续无责任伤亡事故历时(日)随着公司机构的健全与管理经验的提高,其它指标亦可逐步纳入考核范围。

AO法污水处理工艺计算书

AO法污水处理工艺计算书

1 已知:(1)处理水量:Q=1.3×4.0×104m3/d =2166.7m3/h(2)处理水质:污水处理厂二期工程进出水水质一览表1.设计参数拟用改良A/O法,去除BOD5与COD之外,还具备硝化和一定的脱氮除磷作用,使出水NH3-N低于排放标准。

按最大日平均时流量设计,每座设计流量为Q=1.3×4.0×104m3/d =2166.7m3/h总污泥龄:5.92d污泥产率系数=MLSS=3600mg/L,MLVSS/MLSS=0.75则混合液悬浮物固体污泥浓度MLVSS=2700曝气池:DO=2.0mg/LNOD=4.6mgO2/mgNH3-N氧化,可利用氧2.6mgO2/NO3—N还原α=0.9 β=0.98其他参数:a=0.6kgVSS/kgBOD5b=0.07d-1脱氮速率:q dn=0.0312kgNO3-N/kgMLVSS·dK1=0.23d-1Ko2=1.3mg/L剩余碱度100mg/L(保持PH≥7.2):所需碱度7.1mg 碱度/mgNH 3-N 氧化;产生碱度3.0mg 碱度/mgNO 3-N 还原 硝化安全系数:2.5 脱硝温度修正系数:1.08 2.设计计算(1)碱度平衡计算:1)设计的出水5BOD 为20 mg/L ,则出水中溶解性5BOD =20-0.7×20×1.42×(1-e -0.23×5)=6.4 mg/L2)采用污泥龄20d ,则日产泥量为:8.550)2005.01(1000)4.6190(100006.01=⨯+⨯-⨯⨯=+m r bt aQS kg/d设其中有12.4%为氮,近似等于TKN 中用于合成部分为: 0.124⨯550.8=68.30 kg/d 即:TKN 中有83.610000100030.68=⨯mg/L 用于合成。

需用于氧化的NH 3-N =34-6.83-2=25.17 mg/L 需用于还原的NO 3-N =25.17-11=14.17 mg/L 3)碱度平衡计算已知产生0.1mg/L 碱度 /除去1mg BOD 5,且设进水中碱度为250mg/L ,剩余碱度=250-7.1×25.17+3.0×14.17+0.1×(190-6.4)=132.16 mg/L 计算所得剩余碱度以C a CO 3计,此值可使PH ≥7.2 mg/L(2)硝化区容积计算: 硝化速率为()[]⎥⎥⎦⎤⎢⎢⎣⎡+⨯⎥⎦⎤⎢⎣⎡+⨯=--22158.105.015098.021047.0O K O N N e O T T n μ ()[]⎥⎦⎤⎢⎣⎡+⨯⎥⎦⎤⎢⎣⎡+⨯=-⨯-23.12102247.0158.11505.01515098.0e =0.204 d -1故泥龄:9.4204.011===nw t μ d 采用安全系数为2.5,故设计污泥龄为:2.5⨯4.9=12.5d原假定污泥龄为20d ,则硝化速率为: 05.0201==n μd -1 单位基质利用率:167.06.005.005.0=+=+=abu n μkg 5BOD /kgMLVSS.dMLVSS=f×MLSS=0.75⨯3600=2700 mg/L所需的MLVSS 总量=kg 109941000167.010000)4.6190(=⨯⨯-硝化容积:9.40711000270010994=⨯=n V m 3水力停留时间:8.924100009.4071=⨯=n t h(3)反硝化区容积: 12℃时,反硝化速率为:()20029.0)(03.0-⎥⎦⎤⎢⎣⎡+=T dn M F q θ()201208.1029.0)24163600190(03.0-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⨯⨯= =0.017kgNO 3-N/kgMLVSS.d还原NO 3-N 的总量=7.14110000100017.14=⨯kg/d 脱氮所需MLVSS=3.8335019.07.141=kg脱氮所需池容:1.3087100027003.8335=⨯=dn V m 3水力停留时间:4.72410004.2778=⨯=dn t h(4)氧化沟的总容积: 总水力停留时间:2.174.78.9=+=+=dn n t t t h总容积:71591.30879.4071=+=+=dn n V V V m 3(5)氧化沟的尺寸:氧化沟采用4廊道式卡鲁塞尔氧化沟,取池深3.5m ,宽7m ,则氧化沟总长:m 2.29275.37159=⨯。

污水处理名词解释、工艺及专业词汇

污水处理名词解释、工艺及专业词汇

1、什么是生物处理方法?答:生物处理是利用微生物来吸咐、分解、氧化污水中的有机物,把不稳定的有机物降解为稳定无害的物质,从而使污水得到净化。

现代的生物处理法,按作用微生物的不同,可分好氧氧化和厌氧还原两大类。

前者广泛用于处理城市污水和有机性工业废水。

好氧氧化应用较广包含着很多艺种工艺和构筑物。

生物膜法(包含生物过滤池、生物转盘)、生物接触氧化等多种工艺和构筑物。

活性污泥法和生物膜法都是人工生物处理方法。

此外还有农田和池塘的天然生物处理法,即灌溉田和生物塘。

生物处理成本低廉,因此是目前应用最广泛的污水处理方法。

活性污泥生物处理法往往在其前面先加以物理处理,因此,活性污泥法处理属于二级处理范畴。

经过物理处理和活性污泥处理后产生污泥,二级处理污水厂的污泥主要有初沉污泥和剩余生物污泥两种。

一般污泥量约是污水量的5‰~7‰(含水率95%)。

污泥富有肥效,但又含细菌和寄生虫卵,还可能含有毒重金属。

在利用应适当处理,处理污泥采用得较多的方法是厌氧消化中会产生大量的消化气(沼气),沼气是可燃的有用气体。

消化后的污泥含水率仍很高,不易运送。

因此,还需要进行脱水,干化等处理。

2、操作、管理“四懂四会”是什么?答:即懂污水处理基本知识;懂厂内构筑物的作用和管理方法;懂厂内管道分布和使用方法;懂生产指标和化验数据的含义。

会合理配水、配泥;会合理调度曝气量;会正确回流和排放污泥;会排除一般性的故障。

对维修、操作管理工提出勤工作法:勤看、勤听、勤嗅、勤摸、勤捞垃圾、勤动手等等3、什么是废水处理量或BOD5去除总量和处理质量?答:①污水处理量或BOD5去除总量每日进入污水厂处理的总污水流量(以m3/d计),可作为污水厂处理能力的一个指标。

每日去除BOD5的总量亦可作为污水厂处理能力的指标。

去除BOD5总量等于处理流量与进出水BOD5差值的乘积,以kg/d或t/d为单位。

②处理质量二级污水处理厂以出厂的BOD5与SS值作为处理质量指标。

污水处理问题解答全套

污水处理问题解答全套

污水处理问题解答全套(-)氧化沟泥少,微生物因为天气寒冷,难培养,怎么办?答:1 .如果是在系统刚刚启动时的培养,污泥量少是正常的,随着培养的进行,污泥量会增多。

培养时,曝气过度是很不利于污泥培养的。

2 .当然微生物的量是和你的源水中的碳氢含量有关,碳氢不足自然无法使微生物数量上升。

还请检查。

3 .如果你的系统早就启动了,想要提高微生物数量。

我觉得没有太大必要的。

达到平衡就行了,重要的是处理出水的情况。

4 .特意地提高微生物数量将使污泥老化,反而不利于出水水质的。

5 .温度的问题,我觉得出水水温不低于10度,微生物活性是没有太大问题的。

6 .根据F/M值的大小,可以知道你的微生物数量是否太低, 该值不大于0.25 ,就说明你的微生物数量不是太低。

(二)在CASS工艺设计时应注意些什麽,同时出水堰如何设计(负荷取多大比较合适)?同时,在该工艺中,所用到的设备,都有那些,我初次接触该工艺,对所涉及到的设备不太了解,请你多多指教!同时活性污泥如何进行培养驯化,整个工程在调试运行适应注意些什麽?如何能实现很高的自控技术。

在曝气过程中,哪种曝气装置比较好?1 .CASS工艺有点像我们比较了解的SBR工艺,属批次处理范畴。

为了提高脱氮除磷的效果并抑制丝状菌的增生。

曝气池前又加设了厌氧和缺氧段。

2 .设计中应该根据水量和负荷来确定各池的大小及比例。

3 .出水堰大多由泌水器代替的,保证排水时液面均匀下降。

排水量可根据设定的排水时间来确定选择。

4 .所用到的设备与SBR工艺接近,泌水器和厌缺氧段的潜水式搅拌机要设置的。

当然还要一套自动控制装置。

5 .污泥培养也没有太大的特殊之处,首先接种污泥,24小时闷曝,而后正常曝气(不要过度)先少量排水少量进水,然后逐渐提高进水即可。

6 .调试和运行过程中要自己总结合理的操控参数,如进水、反应、沉淀、泌水的时间、回流污泥量等。

7 .曝气装置选择,对曝气头选择应保证沉淀时不堵塞,也可选射流曝气器,搅拌和充氧都比较好,也很少发生堵塞。

污水厂常见计算

污水厂常见计算

投加500kg尿素,进水氨氮增长浓度为多少?
CO(NH2)2
2 NH3
计算:若在污泥培养过程中,进水碳源不足,需投加乙酸钠以补充进水碳源,
则投加500kg乙酸钠,进水COD增长浓度为多少?
4CH3COONa+7O2
8 CO2+6H2O
例:某厂处理水量6500t,用电量3000度,计算用电电耗。
污泥部分:阳离子用量m1,湿污泥产量M,污泥含水率x。
脱泥单耗:
c
M
m1 (1
x)
(kg/T

DS)
例:某厂脱泥8t,含水率78%,阳离子使用量8kg,计算脱泥单耗。
污水厂常见计算题
2、运行参数计算 SVI SV 30 10000 MLSS
脱水后污泥减量计算:脱水前污泥含水率X1,污泥重量m1;脱泥后污泥含水X2, 污泥重量m2。
污泥减量
m2
m1
m1 (1 X1) 1- X2
- m1
例:某厂储泥池污泥含水率按98%计,若7月6日脱泥进料量100t,若将污泥脱 水至含水率80%,计算脱泥后的理论出泥量。
污水厂常见计算题
气水比: n 曝气量:处理水量
例:C6H12O6+6O2 180 192
6CO2+6H2O
M1 M2
(M1:葡萄糖投加量/葡萄糖投加单耗,M2:对应增加的COD总量/对应COD
浓度增长量)
则有:1M801
192 M2
葡萄糖分子质量:6*12+12*1+6*16=180 氧气(O2)分子量:2*16=32 例:计算投加500kg一水葡萄糖时,COD增长量,若葡萄糖的投加单耗为
在污泥增长的不同阶段,污泥负荷各不相同,净化效果也不一样,因此污泥负荷是活性污泥法设计和 运行的主要参数之一。一般来说,污泥负荷在0.3~0.5kg/(kg.d)范围内时,BOD5去除率可达90%以上, SVI为80-150,污泥的吸附性能和沉淀性能都较好。

学委出品水污染工程复习,重点掌握+掌握

学委出品水污染工程复习,重点掌握+掌握

学委:重点掌握:P139 活性污泥法设计1.曝气池容积计算:(1)有机物负荷法 活性污泥负荷——Ls与曝气时间相当的平均进水量——Q曝气池进水BOD 值——So曝气池混合液污泥浓度——X曝气池容积——V V X S Q L S **0= X L S Q V S ··0=(2)泥龄法 活性污泥的产率系数——Y污泥泥龄——C θ内源代谢系数——Kd )1()(0c d Ce K X S S YQ V θθ+-=2.剩余污泥计算:(1)泥龄法 每天排出总固体量——X ∆ C VXX θ=∆(2)污泥产率系数法 每日增长的污泥量——X ∆产率系数——Y曝气池内挥发性悬浮固体总量——V VXV d e VX K Q S S Y X--=∆)(0 3.需氧量设计计算:(1)有机物降解需氧率和内源代谢需氧率 混合液需氧量——2O微生物氧化分解有机物需氧率——a`微生物内源代谢需氧率——b`XV b QS a O ``2+=(2)微生物对有机物的氧化需氧量 进水可生物降解COD ——bCODo出水可生物降解COD ——bCODe污泥氧当量系数——1.42()X bCOD bCOD Q O e ∆--=42.102P228 生物接触氧化法的工作原理和设计计算工作原理:池内设置填料,填料淹没在污水中,填料表面长满生物膜,污水与生物膜接触时,水中有机物被生物膜吸附,氧化分解,并转化为新的生物膜。

脱落的生物膜到了二沉池被去除。

空气通过在池底的布气设备进入水体随着气泡上升为微生物提供氧气。

设计计算:1.生物接触氧化池容积:()Ve L S S Q V -=0 填料容积负荷——Lv2.生物接触氧化池总面积和水池数0h VA = 1A A N =填料高度——h0 一般采用3.0米每座池子的面积——A1 小于等于25平方米3.水池深度3210h h h h h +++=超高——h1,0.5~0.6米填料上层水深——h2,0.4~0.5米填料到池底的高度——h3,0.5米4.有效停留时间QV t = 5.供气量和空气管道系统计算Q D D 0=每立方米污水需气量——D0,一般取15~20掌握:P1 污水性质与指标BOD :生化需氧量,水中有机物被好氧微生物分解时所需要的氧量COD :化学需氧量,用化学氧化剂氧化水中有机污染物消耗的氧化剂量固体物质:水中所有残渣的总和成为总固体(TS ),可分为溶解性固体(DS )和悬浮固体(SS ) 重金属:汞 镉 铅 铬 镍 等生物毒性显著的金属 以及一定毒害性的 锌 铜 钴 锡无机非金属有毒有害物:总砷 含硫化合物 氰化物P34 沉砂池的分类特点分类:1.平流式沉砂池 2.曝气沉砂池 3.旋流式沉砂池特点:①平流式沉砂池:截留无机颗粒效果较好,构造简单,流速不易控制,沉沙中有机物含量高,排沙需要洗砂处理。

污水处理中泥龄的计算

污水处理中泥龄的计算

污水处理中泥龄的计算一、泥龄的概念和意义泥龄是指污泥在活性污泥系统中停留的平均时间,通常用单位时间内污泥的总量与活性污泥污染负荷的比值来表示。

泥龄的计算对于了解系统中污泥的留存时间,确定系统的处理能力和碳污染负荷非常重要。

活性污泥系统是一种常见的生物处理技术,通过细菌和其他微生物的代谢作用将有机物质降解为无机物,从而实现废水的处理。

在活性污泥系统中,通过调节进水量和出水量的比例以及搅拌、曝气等措施,可以控制泥龄,从而优化处理效果。

泥龄的大小直接关系到系统的处理能力。

当泥龄较小时,活性污泥中的细菌处于较短时间的代谢状态,容易被冲走,降解效果较差;当泥龄较大时,活性污泥中的细菌有足够的时间进行充分的代谢作用,处理效果较好。

因此,正确计算泥龄对于活性污泥系统的正常运行和废水处理效果的提高至关重要。

二、泥龄的计算方法泥龄的计算方法有多种,根据实际情况和所需结果的精度可以选择适当的方法。

下面介绍几种常用的泥龄计算方法:1.插值法插值法是一种简便直观的计算方法,适用于处理系统稳定运行的情况。

可以先确定系统中一部分样本的泥龄,然后根据这些数据进行线性插值计算其他时间段的泥龄。

2.考虑混合过程的公式法这种方法考虑到了系统中混合过程对泥龄的影响,适合于复杂的处理系统。

该公式的计算过程较为复杂,需要根据实际情况和系统特点进行微分方程求解。

3.整理法整理法是一种常用的计算泥龄的方法,通过测量活性污泥容器内的悬浮固体浓度和总污泥浓度,计算泥龄。

可以用下列公式进行计算:泥龄 = 容器中的总污泥质量(kg) / 每天加入的活性污泥质量(kg/d)三、泥龄的调控泥龄的调控可以通过调整系统的进水量和出水量的比例来实现。

当进水量增加或出水量减小时,泥龄相应增加;反之,当进水量减少或出水量增加时,泥龄相应减小。

调整泥龄可以实现系统的处理能力和运行稳定性的优化。

总结起来,泥龄的计算非常重要,可以通过插值法、考虑混合过程的公式法和整理法等方法来确定。

泥龄法设计计算-ATV

泥龄法设计计算-ATV
0.5
有硝化反硝化
VD/V=0.2
VD/V=0.3
VD/V=0.4
VD/V=0.5 有硝化、反硝化、污泥稳
定 反应池MLSS取值范围表
处理目标 无硝化 有硝化(和反硝化) 污泥稳定
浓缩时间TE
无硝化的活性污泥法 只有硝化的活性污泥法
有反硝化的活动污泥法 有深度反硝化的活性污泥

表2-1
设缺氧区的反硝化
间歇或同步硝化反硝 化
Kde(kgNO3/kgBOD)
0.11 0.13 0.14 0.15
0.06 0.09 0.12 0.15
污水处理厂规模
表2-2
BOD≤1200kg/d
BOD≥6000kg/d
最小泥龄 最大泥龄 最小泥龄 最大泥龄
5
6
4
5
10
11
8
9
12.5 14.3 16.7
20 25
13.8 15.7 18.3
VD/V 进水BOD总量
泥龄 好氧泥龄 缺氧泥龄 修正系数
污泥产率系 数
污泥负荷
污泥浓度
浓缩时间
SVI 回流污泥浓
度 外回流 反应池容
HRT 好氧区池容 缺氧区池容
厌氧区池容
二沉池 表面负荷 清水区
分离区 缓冲区
污泥浓缩区
表面积 直径
2000m3/d
数量
45.5 0.15 0.5 600 22 11 11 0.9
活性污泥工艺的最小泥龄 和建议(T=10℃)
Y=K(0.75+0.6*Xo/So-
(1-0.2)*0.17*0.75*θ
kgSS/kgBOS c*1.072^(T-
15)/(1+0.17*0.75*θ

污泥泥龄概念

污泥泥龄概念

污泥泥龄概念 1污泥泥龄概念污泥,就是微生物,就是一种以有机物为食物的生物。

既然是生物,就会有生老病死。

泥龄,就是反映微生物的实际生长状况。

污泥泥龄也是污泥在生化系统内部的停留时间,其值的设定与微生物的世代周期有关。

若泥龄过短,某些微生物可能未来得及培养,就不被排出系统(如反硝化细菌);若泥龄过长,容易形成污泥老化,使得活性污泥整体活性降低。

泥龄反映了微生物在曝气池中的平均停留时间,泥龄的长短与污水处理效果有两方面的关系。

一方面是泥龄越长,微生物在曝气池中停留时间越长,微生物降解有机污染物的时间越长,对有机污染物降解越彻底,处理效果越好。

另一方面是泥龄长短对微生物种群有选择性,因为不同种群的微生物有不同的世代周期,如果泥龄小于某种微生物的世代周期,这种微生物还来不及繁殖就排出池外,不可能在池中生存,为了培养繁殖所需要的某种微生物,选定的泥龄必须大于该种微生物的世代周期。

最明显的例子是硝化菌,它是产生硝化作用的微生物,它的世代周期较长,并要求好氧环境,所以在污水进行硝化时须有较长的好氧泥龄。

当污水反硝化时,是反硝化菌在工作,反硝化菌需要缺氧环境,为了进行反硝化,就必须有缺氧段(区段或时段),随着反硝化氮量的增大,需要的反硝化菌越多,也就是缺氧段和缺氧泥龄要加长。

污泥龄是指活性污泥(微生物)在整个生化系统内的平均停留时间,一般用SRT表示,单位是d(天)。

一般用曝气池中的总泥量(MLSS×曝气池体积)除以每日排出的剩余污泥量来计算曝气池活性污泥的泥龄指标。

也就是,污泥龄=活性污泥系统污泥总量/系统每日排出的污泥量。

SRT指标直接决定着活性污泥系统中微生物的年龄大小,一般年轻的活性污泥,分解有。

计算剩余污泥量的四种公式

计算剩余污泥量的四种公式

计算剩余污泥量的四种公式一、不考虑悬浮物的公式《水处理工程师手册》P329。

1、活性污泥泥龄和剩余污泥量准确地应按下式计算:(2)、活性污泥泥龄(SRT ):活性污泥系统内的总活性污泥量/每天从系统内排除的活性污泥量 SRT =(Ma+Mc+MR )/(Mw+Me )Ma ——为曝气池内的活性污泥量;Mc ——为二沉池内污泥量;MR ——为回流系统的污泥量;Mw ——为每天排放的剩余污泥量(kgss/d);Me ——为二沉池出水每天带走的污泥量。

上式为最准确的计算公式,在实际运行管理中,常根据不同的情况,采用不同的近似计算公式。

当不考虑回流系统和二沉池时,上述公式可简化为:SRT =Ma/Mw2、(2)、剩余污泥量(Mw ) Mw= Ma/SRT=SRTXa V • V-曝气池有效容积(m 3);Xa-曝气池悬浮固体浓度(mg/L);2、行业标准:中国工程建设标准化协会标准(CECS149:2003《城市污水生物脱氮除磷处理设计规范》W=Si Xi ft bh cft Yh bh Yh f Se Si Q ψθ+•+••-〈-19.01000)(> 其中:W ——剩余污泥量(kg/d )Q ——进水流量(m 3/d )Si\Se ——反应池进、出水BOD 5浓度(mg/l);f ——污泥产率修正系数,由试验确定;无试验条件时,取0.8~0.9. ft ——温度修正系数,取1.072(t-15) ;t ——温度(℃);k de ——反硝化速率,kgNO3-N/(kgMLSS ·d);通过试验确定,无试验条件,20℃时k de 值可采用0.03~0.06 kgNO3-N/(kgMLSS ·d);并用4.0.4-3进行温度校正。

即k de(t)=k de(20)1.8t-20;ψ——反应池进水悬浮固体中不可水解/降解的悬浮固体比例,无测定条件时,取0.6;b h ——异氧菌内源衰减系数(d -1),取0.08;Y——异氧菌产率系数(kgSS/kgBOD5),取0.6;hθd——反应设计污泥龄值(d);Xi——反应池进水中悬浮固体浓度(mg/L);3、《污水处理新技术》W=W1-W2+W3=aQLr-bVNw+(C0-Ce)Q×50%=aQ(Lj-Lch) -bVNw+( C0-Ce)Q×50%曝气池的水力停留时间污水在曝气池内的水力停留时间一般用Ta表示。

污水处理中泥龄的计算

污水处理中泥龄的计算

污水处理中泥龄的计算一、泥龄的含义泥龄是指在污水处理系统中,微生物在系统中停留的平均时间,通常以单位天表示。

泥龄与处理系统的稳定运行息息相关,通过合理控制泥龄,可有效地控制污泥的产生和去除,从而达到高效稳定的污水处理效果。

二、泥龄的计算方法1.平均亏损速率法:该方法认为,在系统内各处的活性污泥的亏损速率是相同的。

平均亏损速率方法的计算公式为:泥龄=反应器容积/活性污泥的亏损速率。

活性污泥的亏损速率可通过氧化率和亏损系数进行计算,计算公式为:亏损速率=氧化率/亏损系数。

其中,氧化率可以通过COD去除率、BOD去除率等指标计算得到,亏损系数一般为0.2~0.52.分子标记法:该方法通过标记活性污泥中的微生物并监测其寿命来计算泥龄。

具体方法是向活性污泥中添加其中一种分子标记物,比如同位素、标记染料等,然后通过测定标记物在系统中的浓度变化来计算泥龄。

三、泥龄对污水处理的意义1.泥龄是污水处理系统运行的重要参数。

通过合理控制泥龄,可以保证系统内活性污泥的充分降解有机物质,从而提高处理效果和系统的稳定性。

2.泥龄对污泥的去除和产生具有重要影响。

泥龄过低会导致活性污泥的过度去除,降低系统中的活性污泥浓度;泥龄过高则会导致活性污泥的积累和泥聚问题,使处理系统运行不稳定。

3.泥龄还与系统的氧化还原环境有关。

适当的泥龄可以维持合适的氧化还原条件,有利于污水处理系统内有机物的降解和氮、磷等无机物的去除。

4.泥龄的监测和调控有助于预防污泥膨胀和污泥中毒等问题的发生。

合理的泥龄可以提高活性污泥的稳定性,减少处理系统的泥聚和泥毒现象。

综上所述,泥龄的计算是污水处理中重要的技术手段之一,通过合理计算和控制泥龄,可以提高处理系统的稳定性和处理效果。

污水处理厂应密切关注泥龄的变化,及时调整处理工艺和操控参数,以保证处理系统的正常运行。

同时,还应加强对泥龄计算方法和监测技术的研究,以提高泥龄计算的准确性和可靠性。

污水处理中泥龄的计算

污水处理中泥龄的计算

泥龄指曝气池中工作着的活性污泥总量与每日的剩余污泥数量的比值,单位:。

由于在稳定运行时,剩余污泥量也就是新增长的污泥量,因此污泥龄就是污泥在曝气池中的平均停留时间,或污泥增长一倍平均所需要的时间。

污泥龄-概述污泥龄是指活性污泥在整个系统内的平均停留时间一般用SRT表示也是指微生物在活性污泥系统内的停留时间。

控制污泥龄是选择活性污泥系统中种类的方法。

某种微生物的期比活性污泥系统长,则该类微生物在繁殖出下一代微生物之前,就被以剩余活性污泥的方式排走,该类微生物就不会在系统内起来。

反之如果某种微生物的世代期比活性污泥系统的泥龄短,则该种微生物在被以剩余活性污泥的形式排走之前,可繁殖出下一代,因此该种微生物就能在活性污泥系统内存活下来,并得以繁殖,用于污水。

SRT直接决定着活性污泥系统中微生物的大小,一般年轻的活性污泥,分解代谢有机污染物的能力强,但凝聚沉降性差,年长的活性污泥分解能力差,但凝聚性较好。

用SRT排泥,被认为是一种最可靠,最准确的排泥方法,选择合适的泥龄(SRT)作为控制排泥的目标。

一般处理效率要求高,出水水质要求高SRT应控制大一些,温度较高时,SRT可小一些。

分解有机的决大多数微生物的世代期都小于3天。

将NH3-N硝化成NO3—-N的的世代期为5天。

污泥龄-A131的应用①进水的COD/BOD5≈2,TKN/BOD5≤;②出水达到废水VwV的规定。

对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于:由氮平衡计算NDN/BOD5:NDN=TKNi-Noe-Nme-Ns式中TKNi——进水总凯氏氮,mg/LNoe——出水中有机氮,一般取1~2mg/LNme——出水中无机氮之和,包括氨氮、和,是排放控制值。

按德国标准控制在18mg/L 以下,则设计时取×18=12mg/LNs——剩余污泥排出的氮,等于进水BOD5的倍,mg/L由此可计算NDN/BOD5之值,然后从表查得VDN/VT。

污水处理关键参数指标介绍

污水处理关键参数指标介绍

污水处理关键参数控制指标介绍1、BOD5:生物化学需氧量表示在20℃下,5d微生物氧化分解有机物所消耗水中溶解氧量。

第一阶段为碳化(C-BOD),第二阶段为消化(N-BOD)。

BOD的意义:(1)生物能氧化分解的有机物量;(2)反映污水和水体的污染程度;(3)判定处理厂效果;(4)用于处理厂设计;(5)污水处理管理指标;(6)排放标准指标;(7)水体水质标准指标。

2、COD Mn /COD Cr:化学需氧量表示氧化剂有KMnO4和K2Cr2O7。

COD测定简便快速,不受水质限制,可以测定含有生物有毒的工业废水,是BOD的代替指标。

也可以看作还原物的量。

COD Cr可近似看作总有机物量,COD Cr-BOD差值表示污水中难被微生物分解的有机物,用BOD/CODCr比值表示污水的可生化性,当BOD/CODCr≥0.3时,认为污水的可生化性较好;当BOD/CODCr<0.3时,认为污水的可生化性较差,不宜采用生物处理法。

三、SS:悬浮物质水中悬浮物测定用2mm的筛通过,并且用孔径为1μm的玻璃纤维滤纸截留的物质为SS。

交替物质在滤液(溶解性物质)和截留悬浮物中均含有,但大多数认为胶体物质和悬浮物质一样被滤纸截留。

四、TS:蒸发残留物水样经蒸发烘干后的残留量,在105-110℃下将水样蒸发至干时所残余的固体物质总量。

溶解性物质量等于蒸发残留物减去悬浮物质量。

五、灼烧碱量(VTS)(VSS):蒸发残留物或悬浮物质在600℃±25℃经30min高温挥发的物质,表示有机物量(前者为VTS,后者为VSS),蒸发残留物灼烧减量的差称为灼烧残渣,表示无机物部分。

六、总氮、有机氮、氨氮、亚硝酸盐氮、硝酸盐氮氮在自然界以各种形态进行着循环转换。

有机氮如蛋白质水解为氨基酸,在微生物作用下分解为氨氮,氨氮在硝化细菌作用下转化为亚硝酸盐氮(NO2-)和硝酸盐氮(NO3-);另外,NO2-和NO3-在厌氧条件下在脱氮菌(反硝化细菌)作用下转化为N2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泥龄
指曝气池中工作着的活性污泥总量与每日的剩余污泥数量的比值,单位:。

由于在稳定运行时,剩余污泥量也就是新增长的污泥量,因此污泥龄就是污泥在曝气池中的平均停留时间,或污泥增长一倍平均所需要的时间。

污泥龄-概述
污泥龄是指活性污泥在整个系统内的平均停留时间一般用SRT表示也是指微生物在活性污泥系统内的停留时间。

控制污泥龄是选择活性污泥系统中微种类的方法。

某种微生物的期比活性污泥系统长,则该类微生物在繁殖出下一代微生物之前,就被以剩余活性污泥的方式排走,该类微生物就不会在系统内起来。

反之如果某种微生物的世代期比活性污泥系统的泥龄短,则该种微生物在被以剩余活性污泥的形式排走之前,可繁殖出下一代,因此该种微生物就能在活性污泥系统内存活下来,并得以繁殖,用于污水。

SRT直接决定着活性污泥系统中微生物的大小,一般年轻的活性污泥,分解代谢有机污染物的能力强,但凝聚沉降性差,年长的活性污泥分解能力差,但凝聚性较好。

用SRT排泥,被认为是一种最可靠,最准确的排泥方法,选择合适的泥龄(SRT)作为控制
排泥的目标。

一般处理效率要求高,出水水质要求高SRT应控制大一些,温度较高时,SRT可小一些。

分解有机的决大多数微生物的世代期都小于3天。

将NH3-N硝化成NO3—-N的的世代期为5天。

污泥龄-A131的应用
①进水的COD/BOD5≈2,TKN/BOD5≤0.25;
②出水达到废水VwV的规定。

对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于:
由氮平衡计算NDN/BOD5:
NDN=TKNi-Noe-Nme-Ns
式中TKNi——进水总凯氏氮,mg/L
Noe——出水中有机氮,一般取1~2mg/L
Nme——出水中无机氮之和,包括氨氮、和,是排放控制值。

按德国标准控制在18mg/L以下,则设计时取0.67×18=12mg/L
Ns——剩余污泥排出的氮,等于进水BOD5的0.05倍,mg/L
由此可计算NDN/BOD5之值,然后从表查得VDN/VT。

表:晴天和一般情况下设计参考值
VDN/VT能力,以kgNDN/kgBOD5计,(t=10℃)
计算方式
计算公式
泥龄ts是活性污泥在曝气池中的平均停留时间,即
ts=曝气池中的活性污泥量/每天从曝气池系统排出的剩余污泥量
TS=(X*VT)/(QS*XR+Q*XE)
式中tS——泥龄,d
X——曝气池中的活性污泥浓度,即MLSS,kg/m3
池中的活性污泥,即MLSS,kg/m3
VT——曝气池总体积,m3
QS——每天排出的剩余体积,m3/d
XR——剩余污泥浓度,kg/m3
Q——设计污水流量,m3/d
XE——二沉池出水的悬浮固体浓度,kg/m3
污泥龄-剩余污泥量
污泥龄
污泥比产率:
Y=YBOD5+YP
式中Y——污泥产率,kg干固体/kgBOD5
YBOD5——剩余污泥产率,kg干固体/kgBOD5
YP——同步沉淀的化学污泥产率(当未投加混凝剂除磷时无此项),kg干固体/kgBOD5
剩余污泥产率YBOD5与泥龄、进水SS和BOD5的比例、温度等有关,约为0.52~1.22 kg干固体/kgBOD5。

污泥龄-回流比
流程图
内循环回流比R1=QR1/Q,外循环回流比R2=QR2/Q,总回流比R=R1+R2。

在前置反硝化工艺中,氮通过内循环和外回流进入反硝化区。

只要回流的硝酸盐氮不超过表1中的反硝化能力,则可能达到的最大反硝化程度取决于回流比R。

因此,可根据反硝化率EDN计算所需的最小回流比。

EDN=NDN/(NDN+Nne)
所需的最小回流比R=1/(1-EDN)-1
式中EDN——反硝化率Nne——出水硝酸盐氮,mg/L
一般在前置工艺中,回流比取2.0。

若希望进一步提高反硝化率,可继续提高回流比。

但必须注意,最大回流比为4.0,且比较高时存在着将过多的溶解氧带入反硝化区的。

为了减少循环回流中的溶解氧,可在曝气池末端设置隔离区域,减少该区中的曝气量。

前置反硝化工艺中的反硝化区应采用隔墙与好硝化区分开,并在反硝化区中设置搅拌装置。

回流量还可根据连续监测反硝化区Nne值进行调节。

生物脱氮工艺中,分解碳化合物(BOD5)的需氧率OVC和氧化氮化合物的需氧率OVN必须分开计算。

然后根据饱和溶解氧等的影响,由这两部分之和计算供氧率(氧负荷)OB 。

污泥龄-脱氮除磷效果
不同污泥龄下脱氮除磷效果
右图:不同污泥龄下脱氮除磷效果EffectofSRTonnitrogenandphosphorusremoval
说明:由图可知,当泥龄为10d时除磷效率最高,出水TP浓度最低,随着泥龄的增长则除磷效率下降,出水TP浓度越来越高;氨氮去除率随泥龄的增加而增加CJFD2004
污泥龄-曝气池污泥龄变化趋势
曝气池污泥龄变化趋势
曝气池污泥龄变化趋势:
说明:污泥龄(见图)。

从图看1月中旬到1月底,污泥龄基本在9d左右,泥龄过长,表明污泥已部分,抗冲击能力差。

污泥龄-优点
泥龄法的优点:
(1)泥龄法是经验和理论相结合的设计方法,泥龄θc和污泥产率系数Y值的确定都有充分的依据,又有经验的积累,因而更加准确可靠。

(2)泥龄法很直观,根据泥龄大小,对所选工艺能否实现硝化、反硝化和污泥稳定一目了然。

(3)泥龄法的计算中只使用MLSS,不使用MLVSS,污泥中无机物所占比重的不同在Y中体现,计算式中没有MLVSS,因而不会引起两者的混淆。

(4)泥龄法中最基本的参数泥龄θc和污泥产率系数Y都有幅度很小的推荐值和计算值,操作起来比选定污泥负荷值更方便容易。

(5)泥龄法不像模型法那样需要确定很多参数,使操作大大简化。

相关文档
最新文档