概率统计习题及答案

合集下载

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

概率习题答案

概率习题答案

《概率统计》试题(一) 一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件 1)A 、B 、C 至少有一个发生 2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(AB)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 二、选择题1. 设A,B 为两随机事件,且B A ⊂,则下列式子正确的是 (A )P (A+B) = P (A); (B )()P(A);P AB =(C )(|A)P(B);P B = (D )(A)P B -=()P(A)P B -2. 以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为 (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销” (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”。

3. 袋中有50个乒乓球,其中20个黄的,30个白的,现在两个人不放回地依次从袋中随机各取一球。

则第二人取到黄球的概率是(A )1/5 (B )2/5 (C )3/5 (D )4/5 4. 对于事件A ,B ,下列命题正确的是 (A )若A ,B 互不相容,则A 与B 也互不相容。

(B )若A ,B 相容,那么A 与B 也相容。

(C )若A ,B 互不相容,且概率都大于零,则A ,B 也相互独立。

(D )若A ,B 相互独立,那么A 与B 也相互独立。

5. 若()1P B A =,那么下列命题中正确的是(A )A B ⊂ (B )B A ⊂ (C )A B -=∅ (D )()0P A B -= 三、计算题1. 10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。

概率统计习题带答案

概率统计习题带答案

概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。

3.试验E 为掷2颗骰子观察出现的点数。

每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。

设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。

试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。

问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。

今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。

试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。

试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。

试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。

求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。

《概率统计》练习题及参考答案

《概率统计》练习题及参考答案

习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。

2. 记三事件为C B A ,,。

试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。

3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。

4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。

5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。

6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。

7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。

8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。

9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。

10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。

概率统计参考答案(习题一)

概率统计参考答案(习题一)

概率统计参考答案(习题一)1、 写出下列随机试验的样本空间及各个事件的样本点:(1) 同时郑三枚骰子,记录三枚骰子的点数之和。

解:设三枚骰子点数之和为k ,k=3,,4,5,…,18;则样本空间为{k |k 3,4,...,18}Ω==,且事件A={k |k 11,12,...,18}=,事件B={k |k 3,4,...,14}=。

(2) 解:设从盒子中抽取的3只电子元件为(i,j,k),(i,j,k)为数列1,2,3,4,5的任意三个元素构成的组合。

则Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)} A={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}。

2、 下列式子什么时候成立?解:AUB=A :成立的条件是B ⊂A ;(2)AB=A :成立的条件为A ⊂B 。

3、 设A 、B 、C 表示三事件,试将下列事件用A 、B 、C 表示出来。

解:(1) 仅A 发生:ABC ;(2) A 、B 、C 都发生:ABC ;(3) A 、B 、C 都不发生:ABC ;(4) A 、B 、C 不都发生:ABC ;(5) A 不发生,且B 与C 中至少发生一事件:(A B C);(6) A 、B 、C 中至少有一事件发生:AUBUC ;(7) A 、B 、C 中恰好有一事件发生:ABC+ABC+ABC ;(8) A 、B 、C 中至少二事件发生: BC ABC ABC ABC A +++=(AB )U (AC )U (BC );(9) A 、B 、C 中最多一事件发生:BC ABC ABC ABC A +++=(AB)U(AC)U(BC)------------------。

4、设P(A)=0.5,P(B)=0.6,问:(1)什么条件下,P(AB)取得最大值,最大值是多少?解:由P(AUB)=P(A)+P(B)-P(AB)得到P(AB)=P(A)+P(B)-P(AUB)<=0.5+0.6-0.6=0.5,此时,P(AUB)=0.6。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。

求三位同学中至少有一位通过考试的概率。

答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。

现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。

答案约为0.599。

2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。

答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。

答案约为0.201。

3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。

答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。

答案约为0.967。

以上为高中数学概率统计专题练习题及答案。

希望对您的学习有所帮助!。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

概率统计习题带答案

概率统计习题带答案

概率论与数理统计习题及题解沈志军 盛子宁第一章 概率论的基本概念1.设事件B A ,及B A 的概率分别为q p ,及r ,试求)(),(),(B A P B A P AB P 及)(AB P2.若C B A ,,相互独立,试证明:C B A ,,亦必相互独立。

3.试验E 为掷2颗骰子观察出现的点数。

每种结果以),(21x x 记之,其中21,x x 分别表示第一颗、第二颗骰子的点数。

设事件}10|),{(2121=+=x x x x A , 事件}|),{(2121x x x x B >=。

试求)|(A B P 和)|(B A P4.某人有5把钥匙,但忘了开房门的是哪一把,只得逐把试开。

问:(1)恰好第三次打开房门锁的概率?(2)三次内打开的概率?(3)如果5把里有2把房门钥匙,则在三次内打开的概率又是多少?5.设有甲、乙两袋,甲袋中装有n 个白球、m 个红球,乙袋中装有N 个白球、M 个红球。

今从甲袋中任意取一个放入乙袋中,再从乙袋中任意取一个,问取到白球的概率是多少?6.在时间间隔5分钟内的任何时刻,两信号等可能地进入同一收音机,如果两信号进入收音机的间隔小于30秒,则收音机受到干扰。

试求收音机不受干扰的概率?7.甲、乙两船欲停靠同一码头,它们在一昼夜内独立地到达码头的时间是等可能的,各自在码头上停留的时间依次是1小时和2小时。

试求一船要等待空出码头的概率?8.某仓库同时装有甲、乙两种警报系统,每个系统单独使用的有效率分别为0.92,0.93,在甲系统失灵的条件下乙系统也失灵的概率为0.15。

试求下列事件的概率:(1)仓库发生意外时能及时发出警报;(2)乙系统失灵的条件下甲系统亦失灵?9.设B A ,为两随机变量,试求解下列问题:(1) 已知6/1)|(,3/1)()(===B A P B P A P 。

求:)|(B A P ; (2) 已知2/1)|(,3/1)|(,4/1)(===B A P A B P A P 。

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案

高中数学概率与统计概率分布练习题及答案1. 离散型随机变量问题1一次买彩票,抽奖号码是从1到30的整数,每个号码中奖的概率是相等的。

求以下事件的概率:a) 中奖号码小于等于10b) 中奖号码是偶数c) 中奖号码是质数解答1a) 中奖号码小于等于10的概率为10/30,即1/3。

b) 中奖号码是偶数的概率为15/30,即1/2。

c) 中奖号码是质数的概率为8/30,即4/15。

问题2某商品的销售量每天可以是0、1、2或3箱,各箱销售的概率分别为0.1、0.3、0.4和0.2。

求销售量的概率分布表。

解答2销售量的概率分布表如下:销售量 | 0 | 1 | 2 | 3--- | --- | --- | --- | ---概率 | 0.1 | 0.3 | 0.4 | 0.22. 连续型随机变量问题3某地每天的气温符合正态分布,均值为20摄氏度,标准差为3摄氏度。

求以下事件的概率:a) 气温大于等于15摄氏度b) 气温在15摄氏度到25摄氏度之间解答3a) 气温大于等于15摄氏度的概率可以通过计算标准正态分布的累积概率得到,约为0.8413。

b) 气温在15摄氏度到25摄氏度之间的概率可以通过计算标准正态分布的累积概率得到,约为0.6827。

问题4某工厂生产的铆钉的长度符合正态分布,均值为5毫米,标准差为0.2毫米。

若从工厂中随机抽取一只铆钉,求其长度在5.2毫米到5.5毫米之间的概率。

解答4将问题转化为标准正态分布,得到长度在1到2.5之间的概率约为0.3944。

以上是高中数学概率与统计概率分布的练习题及答案。

概率统计高二练习题及答案

概率统计高二练习题及答案

概率统计高二练习题及答案一、选择题1. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5, 6},事件A={2, 4, 6},事件B={3, 4, 5},则事件A∪B的元素个数是:A. 2B. 3C. 4D. 5答案:C2. 将两个硬币抛掷,它们的结果可以分别是正面(正)、反面(反)。

S表示随机试验“抛掷两个硬币,观察正反面”,事件A表示“至少有一个正面朝上”,则事件A的对立事件是:A. 两个硬币都是反面朝上B. 两个硬币都是正面朝上C. 两个硬币正反面朝上D. 至少有一个反面朝上答案:A3. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={1, 3, 4},则事件A∩B的元素个数是:A. 0B. 1C. 2D. 3答案:14. 设随机试验S的样本空间Ω={1, 2, 3, 4, 5},事件A={1, 2},事件B={3, 4},则事件A∪B的元素个数是:A. 4B. 5C. 6D. 7答案:45. 在某次抽查中,2人中至少有1人精通英语的概率为0.8,两人都不精通英语的概率为0.1,则恰有1人精通英语的概率为:A. 0.1B. 0.2C. 0.3D. 0.4答案:C二、填空题1. 样本空间为Ω={1, 2, 3, 4, 5}的随机试验,以P表示概率函数,则P(Ω)=____。

答案:12. 设随机试验S可有n个结果,而其样本空间的元素个数为m个,则事件A发生的可能性大小为 ________。

答案:m/n3. 在某乡村学校的学生中,男生占40%,女生占60%,男生与女生都占的概率是______。

答案:04. 把两颗骰子分别投掷一次,事件A表示两颗骰子的点数和为8,则事件A发生的概率为________。

答案:5/365. 在两人赛马中,甲、乙、丙三匹马参赛,任一马获胜的概率均为1/3,则甲、乙、丙三匹马同时获胜的概率为______。

答案:0三、计算题1. 有n个袜子,有黑、白两种颜色,从中任取3只,问至少有1只黑袜子的概率是多少?答案:1 - (C(n, 3)/C(n, 3 - 0))*(C(n - 2, 3)/C(n, 3))2. 某商场推出一种新产品,调查发现客户购买此产品的概率为0.25,连续3个客户中至少有一个购买此产品的概率是多少?答案:1 - (1 - 0.25)^33. 一批零件中有5个次品,从中任取4个进行抽样,假设各个零件取得的概率相同,计算抽到至少1个次品的概率。

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。

概率统计习题集(含答案)

概率统计习题集(含答案)

第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。

概率统计精选练习题及答案

概率统计精选练习题及答案

概率统计精选练习题及答案练题一- 问题:有一袋子里面装有5个红球和3个蓝球,从袋子里随机取两个球,求取出的两个球颜色相同的概率。

- 解答:首先,我们计算取两个红球的概率。

从5个红球中取出2个红球的组合数为C(5, 2) = 10。

总的取球组合数为C(8, 2) = 28。

所以,取两个红球的概率为10/28。

同理,取两个蓝球的概率为C(3, 2)/C(8, 2) = 3/28。

因为取球的过程是相互独立的,所以取出的两个球颜色相同的概率等于取两个红球的概率加上取两个蓝球的概率,即(10/28) + (3/28) = 13/28。

练题二- 问题:某商场每天的顾客数量服从均值为100,标准差为20的正态分布。

求该商场下一个月(30天)的总顾客数量的期望值和标准差。

- 解答:下一个月的总顾客数量等于每天顾客数量的总和。

因为每天的顾客数量服从正态分布,所以总顾客数量也服从正态分布。

总顾客数量的期望值等于每天顾客数量的期望值的总和,即30 * 100 = 3000。

标准差等于每天顾客数量的标准差的总和,即sqrt(30) * 20 ≈ 109.544。

练题三- 问题:某城市的交通事故发生率为每年100起。

求在下一个月内该城市发生至少一起交通事故的概率。

- 解答:在下一个月内,发生至少一起交通事故的概率等于1减去没有发生交通事故的概率。

没有发生交通事故的概率可以用泊松分布来计算。

假设一个月内发生交通事故的平均次数为100/12 ≈ 8.333,那么没有发生交通事故的概率为P(X = 0),其中X服从参数为8.333的泊松分布。

计算得到P(X = 0) ≈ 0.。

所以,在下一个月内该城市发生至少一起交通事故的概率为1 - P(X = 0) ≈ 0.。

以上是概率统计的精选练习题及答案,希望能对您的学习有所帮助。

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案

《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。

概率统计习题册答案

概率统计习题册答案

一、概率公式的题目1、已知()()()0.3,0.4,0.5,P A P B P AB === 求().P B A B ⋃解:()()()()()()()()0.70.510.70.60.54P A P AB P AB P B A B P A B P A P B P AB --⋃====+-⋃+-2、已知()()()0.7,0.4,0.2,P A P B P AB === 求().P A A B ⋃解:()()()()()()()0.220.70.29P A A B P AB P A A B P A B P A P B P AB ⎡⎤⋃⎣⎦⋃====+⋃+-。

3、已知随机变量(1)XP ,即X 有概率分布律{}1(0,1,2)!e P X k k k -===,并记事件{}{}2,1A X B X =≥=<。

求:(1)()P A B ⋃; (2) ()P A B -; (3) ()P B A 。

解:(1)()(){}{}111()12,1111P A B P A B P AB P X X P X e -⋃=-⋃=-=-<≥=-==-;(2)(){}{}{}{}1()2,1210112;P A B P AB P X X P X P X P X e --==≥≥=≥=-=-==-(3)()()(){}{}{}{}{}111,201.20122P BA P X X P X e P B A P X P X P X e P A --<<======<=+=4、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,它是甲射中的概率是多少?解: 设A=“甲射击一次命中目标”,B=“乙射击一次命中目标”, (())()()()()()()P A A B P A P A A B P A B P A P B P AB =0.660.750.60.50.60.585、为了防止意外,在矿内同时设两种报警系统,A B ,每种系统单独使用时,其有效的概率系统A 为0.92,系统B 为0.93,在A 失灵的条件下,B 有效的概率为0.85,求: (1)发生意外时,这两个报警系统至少有一个有效的概率;(2)B 失灵的条件下,A 有效的概率。

概率与统计习题答案

概率与统计习题答案

习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.【解】故所求分布律为X 3 4 5P2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求:(1) X的分布律;(2) X的分布函数并作图;(3).【解】故X的分布律为X 0 1 2P(2)当x<0时,F(x)=P(X≤x)=0当0≤x<1时,F(x)=P(X≤x)=P(X=0)=当1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)=当x≥2时,F(x)=P(X≤x)=1故X的分布函数(3)3.射手向目标独立地进行了3次射击,每次击中率为,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X表示击中目标的次数.则X=0,1,2,3.故X的分布律为X 0 1 2 3P分布函数4.(1)设随机变量X的分布律为P{X=k}= ,其中k=0,1,2,…,λ>0为常数,试确定常数a.(2)设随机变量X的分布律为P{X=k}=a/N, k=1,2,…,N,试确定常数a.【解】(1)由分布律的性质知故(2) 由分布律的性质知即 .5.甲、乙两人投篮,投中的概率分别为,,今各投3次,求:(1)两人投中次数相等的概率;(2)甲比乙投中次数多的概率.【解】分别令X、Y表示甲、乙投中次数,则X~b(3,),Y~b(3,(1)+(2)=6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于(每条跑道只能允许一架飞机降落)【解】设X为某一时刻需立即降落的飞机数,则X~b(200,,设机场需配备N条跑道,则有即利用泊松近似查表得N≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)【解】设X表示出事故的次数,则X~b(1000,)8.已知在五重贝努里试验中成功的次数X满足P{X=1}=P{X=2},求概率P{X=4}.【解】设在每次试验中成功的概率为p,则故所以 .9.设事件A在每一次试验中发生的概率为,当A发生不少于3次时,指示灯发出信号,(1)进行了5次独立试验,试求指示灯发出信号的概率;(2)进行了7次独立试验,试求指示灯发出信号的概率.【解】(1)设X表示5次独立试验中A发生的次数,则X~6(5,)(2) 令Y表示7次独立试验中A发生的次数,则Y~b(7,)10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率;(2)求某一天中午12时至下午5时至少收到1次呼救的概率.【解】(1) (2)11.设P{X=k}= , k=0,1,2P{Y=m}= , m=0,1,2,3,4分别为随机变量X,Y的概率分布,如果已知P{X≥1}= ,试求P{Y≥1}.【解】因为,故 .而故得即从而12.某教科书出版了2000册,因装订等原因造成错误的概率为,试求在这2000册书中恰有5册错误的概率.【解】令X为2000册书中错误的册数,则X~b(2000,.利用泊松近似计算,得13.进行某种试验,成功的概率为,失败的概率为 .以X表示试验首次成功所需试验的次数,试写出X的分布律,并计算X取偶数的概率.【解】14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500×12=30000元.设1年中死亡人数为X,则X~b(2500,,则所求概率为由于n很大,p很小,λ=np=5,故用泊松近似,有(2) P(保险公司获利不少于10000)即保险公司获利不少于10000元的概率在98%以上P(保险公司获利不少于20000)即保险公司获利不少于20000元的概率约为62%15.已知随机变量X的密度函数为f(x)=Ae|x|, ∞<x<+∞,求:(1)A值;(2)P{0<X<1}; (3) F(x).【解】(1)由得故 .(2)(3) 当x<0时,当x≥0时,故16.设某种仪器内装有三只同样的电子管,电子管使用寿命X的密度函数为f(x)=求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率;(3) F(x).【解】(1)(2)(3) 当x<100时F(x)=0当x≥100时故17.在区间[0,a]上任意投掷一个质点,以X表示这质点的坐标,设这质点落在[0,a]中任意小区间内的概率与这小区间长度成正比例,试求X的分布函数.【解】由题意知X~∪[0,a],密度函数为故当x<0时F(x)=0当0≤x≤a时当x>a时,F(x)=1即分布函数18.设随机变量X在[2,5]上服从均匀分布.现对X进行三次独立观测,求至少有两次的观测值大于3的概率.【解】X~U[2,5],即故所求概率为19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布 .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}.【解】依题意知,即其密度函数为该顾客未等到服务而离开的概率为,即其分布律为20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N (50,42).(1)若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些(2)又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些【解】(1)若走第一条路,X~N(40,102),则若走第二条路,X~N(50,42),则++故走第二条路乘上火车的把握大些.(2)若X~N(40,102),则若X~N(50,42),则故走第一条路乘上火车的把握大些.21.设X~N(3,22),(1)求P{2<X≤5},P{4<X≤10},P{|X|>2},P{X>3};(2)确定c使P{X>c}=P{X≤c}.【解】(1)(2) c=322.由某机器生产的螺栓长度(cm)X~N(,),规定长度在±内为合格品,求一螺栓为不合格品的概率.【解】23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若要求P{120<X≤200}≥,允许σ最大不超过多少【解】故24.设随机变量X分布函数为F(x)=(1)求常数A,B;(2)求P{X≤2},P{X>3};(3)求分布密度f(x).【解】(1)由得(2)(3)25.设随机变量X的概率密度为f(x)=求X的分布函数F(x),并画出f(x)及F(x).【解】当x<0时F(x)=0当0≤x<1时当1≤x<2时当x≥2时故26.设随机变量X的密度函数为(1) f(x)=ae|x|,λ>0;(2) f(x)=试确定常数a,b,并求其分布函数F(x).【解】(1)由知故即密度函数为当x≤0时当x>0时故其分布函数(2) 由得 b=1即X的密度函数为当x≤0时F(x)=0当0<x<1时当1≤x<2时当x≥2时F(x)=1故其分布函数为27.求标准正态分布的上分位点,(1) =,求 ;(2) =,求, .【解】(1)即即故(2)由得即查表得由得即查表得28.设随机变量X的分布律为X 2 1 0 1 3 Pk 1/5 1/6 1/5 1/15 11/30求Y=X2的分布律.【解】Y可取的值为0,1,4,9故Y的分布律为Y 0 1 4 9Pk 1/5 7/30 1/5 11/3029.设P{X=k}=( )k, k=1,2,…,令求随机变量X的函数Y的分布律.【解】30.设X~N(0,1).(1)求Y=eX的概率密度;(2)求Y=2X2+1的概率密度;(3)求Y=|X|的概率密度.【解】(1)当y≤0时,当y>0时,故(2)当y≤1时当y>1时故(3)当y≤0时当y>0时故31.设随机变量X~U(0,1),试求:(1) Y=eX的分布函数及密度函数;(2) Z=2lnX的分布函数及密度函数.【解】(1)故当时当1<y<e时当y≥e时即分布函数故Y的密度函数为(2)由P(0<X<1)=1知当z≤0时,当z>0时,即分布函数故Z的密度函数为32.设随机变量X的密度函数为f(x)=试求Y=sinX的密度函数.【解】当y≤0时,当0<y<1时,当y≥1时,故Y的密度函数为33.设随机变量X的分布函数如下:试填上(1),(2),(3)项.【解】由知②填1。

(完整版)概率统计习题及答案

(完整版)概率统计习题及答案

1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( D )。

A. A,B 互不相容B. A,B 相互独立C.A BD. A,B 相容⊂2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( C )A. 1/2B. 1/12C. 1/18D. 1/93、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( B )A. B.919910098.02.0Cii i i C-=∑100100910098.02.0C.D.ii i iC-=∑1001001010098.02.0ii i i C-=∑-100910098.02.014、设,则B)3,2,1(39)(=-=i i X E i )()31253(321=++X X X E A. 0 B. 25.5 C. 26.5 D. 95、设样本来自N (0,1),常数c 为以下何值时,统计量521,,,X X X 服从t 分布。

( C )25242321XX X X X c +++⋅A. 0B. 1C.D. -1266、设~,则其概率密度为( A )X )3,14(N A.B.6)14(261--x eπ32)14(261--x eπC.D.6)14(2321--x eπ23)14(261--x eπ7、为总体的样本, 下列哪一项是的无偏估计( A ) 321,,X X X ),(2σμN μ A.B.3212110351X X X ++321416131X X X ++ C. D. 3211252131X X X ++321613131X X X ++8 、设离散型随机变量X 的分布列为X 123PC 1/41/8则常数C 为(C)(A )0 (B )3/8 (C )5/8 (D )-3/89、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值近似的服从( B )X (A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n )10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设,则在显著水平a=0.01下,( B )00μμ=:H A. 必接受 B. 可能接受,也可能拒绝0H 0H C. 必拒绝 D. 不接受,也不拒绝0H 0H 二、填空题(每空1.5分,共15分)1、A, B, C 为任意三个事件,则A ,B ,C 至少有一个事件发生表示为:__AUBUC_______;2、甲乙两人各自去破译密码,设它们各自能破译的概率为0.8,0.6,则密码能被破译的概率为_____0.92____;3、已知分布函数F(x)= A + Barctgx ,则)(+∞<<-∞x A =_1/2__,B =_1/3.14___;4、随机变量X 的分布律为,k =1,2,3,则C=__27/13_____;kC x X P )31()(==5、设X ~b (n,p )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业2(修改2008-10)4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面都出现为止所需投掷的次数,求X 的概率分布.解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L .5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布.第1个能正确回答的概率是5/8,第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=.设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算.解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算31001000(4)1(4)10.04(10.04)0.5705kk k k P X P X C -=≥=-<=--=∑.2) 用泊松近似律计算 331004100004(4)1(4)10.04(10.04)10.5665!kk k kk k P X P X C e k --==≥=-<=--≈-=∑∑.8. 设X 服从泊松分布,分布律为(),0,1,2,!kP X k e k k λλ-===L .问当k 取何值时{}P X k =最大?解 设()/(1)k a P X k P X k ===-,1,2,k =L ,则1/!/(1)!k k k e k a ke k λλλλλ+--==-,数列{}k a 是一个递减的数列. 若11a <,则(0)P X =最大.若11a ≥,则当1k a ≥且11k a +≤时,{}P X k =最大. 由此得1) 若1λ<,则(0)P X =最大.2) 若1λ≥,则{}/1/(1)11P X k k k k λλλλ=⇔≥+≤⇔-≤≤最大且. 由上面的1)和2)知,无论1λ<或1λ≥,都有[]{}1P X k k λλλλλ⎧=⇔=⎨-⎩不是整数最大或是整数.12. 设随机变量X 的概率密度为[0,1)[1,2]()()(2)()p x xI x x I x =+-.求X 的分布函数()F x ,并作出()p x 与()F x 的图形. 解 ()(,0)[0,1)0()()()0()0x xxF x p v dv I x dv I x dv vdv -∞-∞-∞-∞==⋅+⋅+⎰⎰⎰⎰()01[1,2)1()0(2)x I x dv vdv x dv -∞-∞+⋅++-⎰⎰⎰()12[2,)12()0(2)0I x dv vdv v dv dv +∞+∞-∞+⋅++-+⋅⎰⎰⎰⎰()()112[0,1)[1,2)[2,)011()()(2)()(2)x xI x vdv I x vdv v dv I x vdv v dv +∞=++-++-⎰⎰⎰⎰⎰22[0,1)[1,2)[2,)(/2)()(2/21)()()x I x x x I x I x +∞=+--+.11. 设随机变量X 的概率密度为[0,10]()()p x cxI x =.求常数c 和X 的分布函数,并求概率(16/10)P X X +≤.解 1021001()502cx p x dx cxdx c +∞-∞====⎰⎰, 1/50c =.2[0,10)[10,)[0,10)[10,)0()()()()()()50100xxv x F x p v dv I x dv I x I x I x +∞+∞-∞==+=+⎰⎰. 2(16/10)(10160)(28)P X X P X X P X +≤=-+≤=≤≤8288222()3/550100x x p x dx dx ====⎰⎰.15. 设随机变量X 的密度为2x xce -+.求常数c .解 2221/2(1/2)1/41/41/1x t x xx t cedx c e dx ce e dt ce =++∞+∞+∞-+--+--∞-∞-∞====⎰⎰⎰.由上式得1/41/2c e π--=.15. 离散型随机向量(,)X Y 有如下的概率分布:求边缘分布.解 X 有分布Y 有分布因为0(2,0)(2)(0)0.30.1P X Y P X P Y ===≠===⨯,所以X ,Y 不独立.18. 设随机向量(,)X Y 服从矩形{(,):12,02}D x y x y =-≤≤≤≤上的均匀分布,求条件概率(1|)P X X Y ≥≤.解 1()(622)/62/32P X Y ≤=-⨯⨯=,1(,1)(11)/61/122P X Y X ≤≥=⨯⨯=,(,1)1/12(1|)1/8()2/3P X Y X P X X Y P X Y ≤≥≥≤===≤.22. 随机向量(,)X Y 有联合密度(,)(,)E p x y x y =,其中222{(,):0}E x y x y R =<+≤.求系数c 和(,)X Y 落在圆222{(,):}D x y x y r =+≤内的概率. 解()222cos sin 20001(,)2x r y r Rx y Rp x y dxdy d cdr cR θθπθπ==+∞+∞-∞-∞<+≤====⎰⎰⎰⎰⎰⎰因而12c Rπ=.而222{(,)}(,)Dx y r P X Y D p x y dxdy +≤∈==⎰⎰⎰⎰()cos sin 201/2x r y r rd dr r R R θθπθπ====⎰⎰.27. 设2~(,)X N μσ,分别找出i k ,使得()i i i P k X k μσμσα-<<+=.其中1,2,3i =,10.9α=,20.95α=,30.99α=.解122()/(2)()i i k x i i i k P k X k dx μσμσμσαμσμσ+---=-<<+=⎰2/2()()2()1iix t k t i i i kdt k k k σμ=+--==Φ-Φ-=Φ-⎰. ()(1)/2i i k αΦ=+.代入i α的值查得1 1.64α=,2 1.96α=,3 2.58α=.解2 设1~(0,1)2X Z N -=,则~(0,1)Z N . ()i i i i i k k X P k X k P μσμμσμμαμσμσσσσ--+--⎛⎫=-<<+==<<⎪⎝⎭()()()2()1i i i i i P k Z k k k k =-<<=Φ-Φ-=Φ-. ()(1)/2i i k αΦ=+.代入i α的值查得1 1.64α=,2 1.96α=,3 2.58α=.28. 某商品的每包重量2~(200,)X N σ.若要求{195205}0.98P X <<≥,则需要把σ控制在什么范围内. 解 设200~(0,1)X Z N σ-=,则~(0,1)Z N .195200205200{195205}(5/)(5/)2(5/)1P X P Z σσσσσ--⎛⎫<<=≤≤=Φ-Φ-=Φ- ⎪⎝⎭.{195205}0.982(5/)10.98P X σ<<≥⇔Φ-≥15/(0.99) 2.335/2.33 2.15σσ-⇔≥Φ=⇔≤=.28. 设X 服从自由度为k 的2χ分布,即X 有密度/21/2(0,)/21()()2(/2)k x X k p x x e I x k --+∞=Γ.求Y . 解1当0y <时,()())0Y F y P Y y P y =≤==,()()0Y Y p y F y '==.当0y >时,22()())()()Y X F y P Y y P y P X ky F ky =≤=≤=≤=, 222/21/22(0,)/21()()2()2()()2(/2)k ky Y Y X k p y F y kyp ky ky ky e I ky k --+∞'===⋅Γ ()()2/21/22/2/2k k ky k y e k --=Γ. 因而()()2/21/2(0,)2/2()()/2k k kyY k p y y e I y k --+∞=Γ.解2 设(0,)V =+∞,则()1P X V ∈=.设()y f x ==x V ∈,则f 有反函数12()f y ky ϕ-==, y G ∈,其中{():}(0,)G y f x x V ==∈=+∞.因而Y 有密度 ()|()|(()()Y X G p y y p y I y ϕϕ'=22/21/22(0,)/212()()2(/2)k ky k ky ky e I ky k --+∞=⋅Γ()()2/21/22/2/2k k ky k y e k --=Γ.29. 由统计物理学知道分子运动的速率遵从麦克斯威尔(Maxwell)分布,即密度为222/(0,)()()xX p x I x α-+∞.其中参数0α>.求分子的动能2/2Y mX =的密度. 解1当0y <时,2()()(/2)0Y F y P Y y P mX y =≤=≤=,()()0Y Y p y F y '==.当0y >时,2()()(/2)(Y X F y P Y y P mX y P X F =≤=≤=≤=,22/()(0,)()()y m Y Y X p y F y p I α-+∞'=222/()2/()y m y m αα--==. 因而22/()(0,)()()y m Y p y I y α-+∞.解2 设(0,)V =+∞,则()1P X V ∈=.设2()/2y f x mx ==, x V ∈,则f 有反函数1()f y ϕ-==y G ∈,其中{():}(0,)G y f x x V ==∈=+∞.因而Y 有密度 ()|()|(()()Y X G p y y p y I y ϕϕ'=22/()(0,)y m X p I α-+∞22/()(0,)()y m I y α-+∞.30. 设X 服从[1,2]-上的均匀分布,2Y X =.求Y 的分布.解 X 有密度[1,2}1()()3X P x I x -=.Y 有分布函数()()Y F y P Y y =≤ 2()P X y =≤[0,)()(I y P X +∞=[0,)()()XI y x dx +∞=[0,)[1,2]()()I y x dx +∞-=[0,1)[1,4)[4,)1()()()3I y I y I y dy +∞-=++[0,1)[1,4)[4,)()()()y y I y +∞=+.31. 质点随机地落在中心在原点,半径为R 的圆周上,并且对弧长是均匀地分布的.求落点的横坐标的概率密度.解 设落点极坐标是(,)R Θ,则Θ服从[0,2]π上的均匀分布,有密度[0,2]1()()2p I πθθπΘ=. 设落点横坐标是X ,则cos X R =Θ,X 的分布函数为()()(cos )X F x P X x P R x =≤=Θ≤.当1x <-时,()0X F x =.当1x >时,()1X F x =.当11x -≤≤时1()(cos )arccos 2arccos arccos X x x x F x P R x P R R R πππ⎛⎫⎛⎫=Θ≤=≤Θ≤-=- ⎪ ⎪⎝⎭⎝⎭.因而落点的横坐标X 有概率密度(1,1)()()()X Xp x F x x -'==..34. 设随机变量X 服从在[0,1]上的均匀分布,求ln Y X =-的分布. 解 设(0,1)V =,则()1P X V ∈=.设()ln y f x x ==-, x V ∈,则f 有反函数1()y f y e ϕ--==, y G ∈,其中{():}(0,)G y f x x V ==∈=+∞.因而Y 有密度[0,1](0,)(0,)()|()|(())()()()()y y y Y X G p y y p y I y e I e I y e I y ϕϕ---+∞+∞'===.36. 设X 和Y 独立,密度分别为[0,1]()()X p x I x =和(0,)()()y Y p y e I y -+∞=,求Z X Y =+的密度. 解 ()()()Z X Y p z p x p z x dx +∞-∞=-⎰()[0,1](0,)()()z x I x e I z x dx +∞--+∞-∞=-⎰ ()[0,1](,)()()z x z I x e I x dx +∞---∞-∞=⎰1()()[0,1)[1,)0()()zz x z x I z e dx I z e dx ----+∞=+⎰⎰ [0,1)[1,)()(1)(1)()z z I z e e e I z --+∞=-+-.37. 设系统L 由两个相互独立的子系统12,L L 联接而成,联接的方式分别为串联,并联和备用(当系统1L 损坏时,系统2L 开始工作),如图所示.1L 和2L 的寿命为X 和Y ,分别有密度(0,)()()x X p x e I x αα-+∞=和(0,)()()y Y p y e I y ββ-+∞=,其中0,0αβ>>且αβ≠.请就这三种联接方式分别写出系统L 的寿命Z 的密度.解 X ,Y 独立,分别服从参数为α和β的指数分布,因此分别有分布函数(0,)()(1)()x X F x e I x α-+∞=-和(0,)()(1)()y Y F y e I y β-+∞=-.1) 联接的方式为串联时,min{.}Z X Y =, (){min(,)}1{min(,)}S F z P X Y z P X Y z =≤=->()(0,)1()()1[1()][1()](1)()z X Y P X z P Y z F z F z e I z αβ-++∞=->>=---=-,()(0,)()()()()zs Z Zp z F z e I z αβαβ-++∞'==+. 2) 联接的方式为并联时,max{.}Z X Y =,(){max(,)}()()()()Z X Y F z P X Y z P X z P Y z F z F z =≤=≤≤= (0,)(1)(1)()r b r e e I z αβ--+∞=--,()(0,)()()(())()z z z Z Zp z F z e e e I z αβαβαβαβ---++∞'==+-+. 3) 联接的方式为备用时,Z X Y =+, ()(0,)(0,)()()()()()x z x Z X Y p z p x p z x dx e I x e I z x dx αβαβ+∞+∞---+∞+∞-∞-∞=-=⋅-⎰⎰()()(0,)(0,)0()()zz x z x z x I z e e dx e I z e dx αββαβαβαβ------+∞+∞==⎰⎰.因此,当αβ≠时, (0,)()()()z z Z p z e e I z αβαββα--+∞=--, 当αβ=时, 2(0,)()()z Z p z ze I z αα-+∞=.38. ,X Y 相互独立,1~(,)X αβΓ,2~(,)Y αβΓ.证明12~(,)Z X Y a αβ=+Γ+.(提示:称1110(,)(1)s t B s t u u dx --=-⎰为β函数,由微积分的知识知(,)()()/()B s t s t s t =ΓΓΓ+)解 (见命题A.2.1)43. 设12,,,n X X X L 独立,都服从参数为,m η的威布尔分布,即都有密度()/1(0,)()()mx m mmp x xeI x ηη--+∞=.证明12min(,,,)n X X X L 仍服从威布尔分布. 证 i X 1,i n =L 有分布函数 ()/1(0,)0()()mx v m mmF x I x v e dv ηη--+∞=⎰, ()()()///(0,)(0,)0()(1)()m mmv tx x t I x e dt e I x ηηη=--+∞+∞==-⎰.设12min(,,,)n Z X X X =L ,则Z 有分布函数11()()(min(,,))1(min(,,))Z n n F z P Z z P X X z P X X z =≤=≤=-≤L L 11()()1[1()]n n P X z P X z F x =->>=--L .()()//(,0](0,)(0,)1()()1()m mnnx x I x eI x e I x ηη---∞+∞+∞⎛⎫=-+=- ⎪⎝⎭,接下来的证明过程可以有两种。

相关文档
最新文档