三次样条插值算法详解
三次样条插值导数的关系式
三次样条插值导数的关系式
三次样条插值导数的关系式
三次样条插值是一种常用的插值方法,用于在已知数据点之间插值出平滑的曲线。在三次样条 插值中,导数是一个重要的性质,可以通过求解线性方程组来计算。
设有n+1个数据点 (x0, y0), (x1, y1), ..., (xn, yn),其中x0 < x1 < ... < xn。对于每个区间 [x_i, x_{i+1}],我们可以用一个三次多项式 S_i(x) 来插值。每个多项式 S_i(x) 的表达式为:
三次样条插值导数的关系式
最后,根据需要,可以使用导数的关系式来计算任意点的导数值。例如,对于区间 [x_i, x_{i+1}],导数 S_i'(x) 的表达式为:
S_i'(x) = b_i + 2c_i(x - x_i) + 3d_i(x - x_i)^2
这样,我们就可以通过三次样条插值来计算导数值了。
S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3
三次样条插值导数的关系式
其中,a_i, b_i, c_i, d_i 是待定系数。为了保证插值曲线的平滑性,我们需要足以下条 件:
平滑算法:三次样条插值(CubicSplineInterpolation)
平滑算法:三次样条插值(CubicSplineInterpolation)感谢强⼤的google翻译。
我从中认识到了航位推算dead reckoning,⽴⽅体样条Cubic Splines 算法。
我单独查找了 Cubic Splines ,⾥⾯的原理简单说明:Cubic Splines 认为在 x 在[a, b]区间中,y对应是⼀条平滑的曲线,所以 y = f(x); 的⼀阶导函数和⼆阶导函数是平滑连续可导的。
拟定⽤三次⽅程,所以得出了⼀般的三次⽅程和⼀阶导数⽅程和⼆阶导数⽅程。
然后求各个分部的解。
这是三次样条的基本原理。
但⽂中最开始的链接中所得出的x = At3 + Bt2 + Ct + Dy = Et3 + Ft3 + Gt + Ht是percent(0~1)区间值,如果还有三维向量,我理解是同样的展开。
然后通过四个位置点来求出 A B C D … 各分部参数的值A = x3 – 3x2 +3x1 – x0B = 3x2 – 6x1 + 3x0C = 3x1 – 3x0D = x0E = y3 – 3y2 +3y1 – y0F = 3y2 – 6y1 + 3y0G = 3y1 – 3y0H = y0…相同分量展开。
(如果有Z 分量的话)学艺不精,⽆法从现有姿势推出这个分量求解过程。
实时运动游戏是通过预测其他玩家的位置来表现的,当服务器有新的输⼊的时候,本地玩家会发现其他玩家位置或状态发⽣⼀次跳变(瞬移)。
有两种思路,⼀、预测未来1. 通过当前位置和速度,通过预测未来精度(1s或者0.5s)推测出未来位置.2. 得出公式参数,通过dt来平滑当前运动轨迹。
⼆、延迟渲染1. 通过延迟渲染参数(延迟1s,0.5s来)来获得其他玩家的过去状态位置。
2. 得出公式参数,通过dt来平滑运动轨迹。
上述两种⽅案1. 如果参数⼀致,速度不改,则运动轨迹跟预测⼀致,如果玩家输⼊多变,则永远不会是真实的位置。
2. 看到的玩家的过去位置,移动轨迹跟⽬标玩家运动轨迹基本保持⼀致。
三次样条插值知识讲解
(1)差商定义
定义
称 f[xi,xj]f(xxi)i xfj(xj), ij 为 f ( x ) 在 x i , x j
两点处的一阶差商.
f[x0,x1,x2]f[x0,xx10 ] xf2[x1,x2]
二阶差商
f[x 0 ,x 1 ,L x n ]f[x 0 ,x 1 L x n x 1 0 ] x fn [x 1 ,x 2 ,L x n ]n 阶差商
n
P n(x)
i0
yi (xxn i)1(n 'x)1(xi)
(2)插值误差估计
定理2 设 f (n) (x) 在[a, b] 上连续,f (n1) (x)在 (a, b) 内存在,
节点 a x 0 x 1 x n b ,Pn ( x) 是拉格朗日插值多项 式,则对任意 x[a,b] , 插值余项
1 (x4)(x6)(x8)(x10) 3(x2)(x6)(x8)(x10)
384
96
5(x2)(x4)(x8)(x10) 4(x2)(x4)(x6)(x10)
64
96
1 (x2)(x4)(x6)(x8) 384
缺点: 当增加或减少插值节点时,基函数需要重新 构造,不便于实际的计算使用
四、 Newton插值法
为 Det(A) (xi xj) ,由定理中条件,插值结点为彼此互异的, 那么行 0jin
列式不为零.故由Cramer法则知线性代数方程组 Aa b 存在唯一解.
三、Lagrange插值法
(1)Lagrange插值多项式可以表示为
n
Pn (x) yili (x) i0
l i( x ) ( x ( i x x x 0 0 ) ) L L ( ( x x i x x i i 1 1 ) ) ( ( x x i x x i i 1 1 ) ) L L ( ( x x i x n x ) n ) ,i 0 ,1 ,L n
第5章-3三次样条插值解析
0 x
( x 3)3 ,
解 利用上面的定理(光滑因子)验证.
2( x 1)3 ,
3
x,
所以由定理5.5可知该函数为三次样条函数.
例,设
x3 x 2 0 x 1 S ( x) 3 2 ax bx cx 1 1 x 2
是以0,1,2为节点的三次样条函数,则a= 解:1)由 , b= , c=
p j ( x), x j x x j 1
p j ( x) Pm ( j 0,1,...,n)
pn ( x), xn x
s(x)是m次样条的充要条件应为 p0 ( x) a0 a1x am xm ,
பைடு நூலகம்
p1 ( x) p0 ( x) c1 ( x x1 )m ,
已知 f(x0)=f(xn) 确定的周期函数。
例,已知 f(-1)=1,f(0)=0,f(1)=1,求 f(x)在区间[-1,1]上的
三次自然样条插值多项式。 解:这里n=2区间[-1,1]分成两个子区间,故设
S ( x)
且
s0 ( x) a0 x3 b0 x2 c0 x d0
1)它只在插值区间端点比Lagarnge多项式插值问题多两个
边界条件,但却在内点处有一阶、二阶连续的导函数,从而要比 分段Lagarnge插值更光滑。
2)分段Hermite三次多项式插值问题,只有被插值函数在所有
插值节点处的函数值和导数值都已知时才能使用,而且在内节点处 二阶导函数一般不连续。
下面我们讨论三次样条插值多项式s3(x)的构造。 一般来讲,构造三次样条插值多项式s3(x) ,若用待定系数法, 可写成 S3 ( x) ai x3 bi x2 ci x di x xi , xi1 i 0, 1, , n 1 其中 ai, bi, ci, di 为待定系数,共有4n个。按定义s3(x)应满足: (1)插值条件n+1个: S ( xi ) yi i 0, 1, , n 连续性条件n-1个:S ( xi 0) S ( xi 0) i 0, 1, , n 1 (2)在内节点一阶导数连续性条件n-1个:
三次样条插值
三次样条插值C++数值算法(第二版)3.3 三次样条插值给定一个列表显示的函数yi=y(xi),i=0,1,2,...,N-1。
特别注意在xj和xj+1之间的一个特殊的区间。
该区间的线性插值公式为(3.3.1)式和(3.3.2)式是拉格朗日插值公式(3.1.1)的特殊情况。
因为它是(分段)线性的,(3.3.1)式在每一区间内的二阶导数为零,在横坐标为xj处的二阶导数不定义或无限。
三次样条插值的目的就是要得到一个内插公式,不论在区间内亦或其边界上,其一阶导数平滑,二阶导数连续。
做一个与事实相反的个假设,除yi的列表值之外,我们还有函数二阶导数y"的列表值,即一系列的yi"值,则在每个区间内,可以在(3.3.1)式的右边加上一个三次多项式,其二阶导数从左边的yj"值线性变化到右边的yj+1"值,这么做便得到了所需的连续二阶导数。
如果还将三次多项式构造在xj和xj+1处为零,则不会破坏在终点xj和xj+1处与列表函数值yj和yj+1的一致性。
进行一些辅助计算便可知,仅有一种办法才能进行这种构造,即用注意,(3.3.3)式和(3.3.4)式对自变量x的依赖,是完全通过A和B对x的线性依赖,以及C和D(通过A和B)对x的三次依赖而实现。
可以很容易地验证,y"事实上是该插值多项式的二阶导数。
使用ABCD的定义对x求(3.3.3)式的导数,计算dA/dx dB/dx dC/dx dD/dx,结果为一阶导数因为x=xj是A=1,x=x(i+1)时A=0,而B正相反,则(3.3.6)式表明y"恰为列表函数的二阶导数。
而且该二阶导数在两个区间(xj-1, xj)和(xj, xj+1)上是连续的。
现在唯一的问题是,假设yj"是已知的。
而实际上并不知道。
然而,仍不要求从(3.3.5)式算出的一阶导数在两个区间的边界处是连续的。
三次样条的关键思想就在于要求这种连续性,并用它求得等式的二阶导数yi"。
三次样条曲面插值原理
三次样条曲面插值原理
三次样条曲面插值是一种用于构造二维曲面的插值方法。
其基本原理是通过已知的曲面上的若干点,计算出该曲面上的三次多项式函数,从而实现曲面的插值。
具体来说,三次样条曲面插值的原理如下:
1. 确定曲面上的插值节点:根据给定的曲面上的点的坐标,确定曲面上的插值节点。
2. 构造曲面的参数方程:利用插值节点,构造出曲面的参数方程。
三次样条曲面插值通常使用双变量的三次多项式作为参数方程。
参数方程的形式可以是Bézier曲面、B样条曲面等。
3. 确定曲面上的插值条件:根据已知的曲面上的点的坐标和曲面方程,确定曲面上的插值条件。
通常使用平滑条件(曲面上的点的正切方向相等)和代数条件(曲面上的点的坐标满足给定的条件)来确定插值条件。
4. 求解参数方程的系数:根据插值条件,求解参数方程中的系数。
可以使用线性代数的方法求解系数矩阵,得到曲面的参数化表达式。
5. 计算曲面上的点的坐标:利用参数方程和求解得到的系数,计算曲面上的点的坐标。
可以通过插值节点上的参数值,使用参数方程计算得到。
通过以上步骤,就可以构造出满足给定插值条件的三次样条曲面,从而实现曲面的插值。
计算方法分段线性_三次样条插值
计算方法分段线性_三次样条插值分段线性和三次样条插值是两种常用的插值方法,在数值分析和插值问题中广泛使用。
1.分段线性插值分段线性插值是一种简单直观的插值方法,将插值区间划分为若干个子区间,在每个子区间上用线性函数进行插值。
假设给定的插值节点有n+1 个,节点为 (x0, y0), (x1, y1), ..., (xn, yn),并且满足 x0 <x1 < ... < xn。
则对于任意 xx 使得 x 在 [xi, xi+1] 之间,可以通过线性插值得到其函数值 yy,即:yy = yi + (xx - xi) * (yi+1 - yi) / (xi+1 - xi)分段线性插值方法简单易懂,适用于一些较简单的插值问题。
但是由于插值函数在节点之间是线性的,可能不能准确地反映出数据的特征,因此不适用于一些需要高精度的插值问题。
三次样条插值是一种更复杂、更精确的插值方法,将插值区间划分为若干个子区间,在每个子区间上用三次多项式进行插值。
三次样条插值方法的基本思想是找到一组三次多项式,满足在每个子区间内插值点的函数值和一阶导数值相等,并且两个相邻多项式在节点处的二阶导数值也相等。
具体的求解步骤如下:(1) 假设有 n+1 个插值节点 (x0, y0), (x1, y1), ..., (xn, yn),构造 n 个三次多项式,即每个多项式在 [xi, xi+1] 之间插值。
(2) 对每个子区间内的多项式进行插值,设第 i 个子区间的多项式为 Si(x) = ai + bi(x-xi) + ci(x-xi)^2 + di(x-xi)^3、将插值节点的函数值和一阶导数值代入多项式中,可以得到 n 个线性方程,利用这 n 个线性方程可以求解出 n 个子区间的系数。
(3)由于n个子区间的多项式必须在节点处一阶导数值相等,因此再设立n-1个方程,利用这些方程可以求解出n-1个子区间的二阶导数值。
(4)将求解得到的系数和二阶导数值代入每个子区间的多项式中,得到完整的三次样条插值函数。
三次样条插值算法详解
三次样条插值算法要求数据点数量较多,且在某些情况下可能存在数值不稳定性,如数据 点过多或数据点分布不均等情况。此外,该算法对于离散数据点的拟合效果可能不如其他 插值方法。
对未来研究的展望
01
02
03
改进算法稳定性
针对数值不稳定性问题, 未来研究可以探索改进算 法的数值稳定性,提高算 法的鲁棒性。
3
数据转换
对数据进行必要的转换,如标准化、归一化等, 以适应算法需求。
构建插值函数
确定插值节点
根据数据点确定插值节点,确保插值函数在节点处连续且光滑。
构造插值多项式
根据节点和数据点,构造三次多项式作为插值函数。
确定边界条件
根据实际情况确定插值函数的边界条件,如周期性、对称性等。
求解插值函数
求解线性方程组
06
结论
三次样条插值算法总结
适用性
三次样条插值算法适用于各种连续、光滑、可微的分段函数插值问题,尤其在处理具有复 杂变化趋势的数据时表现出色。
优点
该算法能够保证插值函数在分段连接处连续且具有二阶导数,从而在插值过程中保持数据 的平滑性和连续性。此外,三次样条插值算法具有简单、易实现的特点,且计算效率较高 。
根据数据点的数量和分布,合理分段,确保 拟合的精度和连续性。
求解线性方程组
使用高效的方法求解线性方程组,如高斯消 元法或迭代法。
结果输出
输出拟合得到的插值函数,以及相关的误差 分析和图表。
03
三次样条插值算法步骤
数据准备
1 2
数据收集
收集需要插值的原始数据点,确保数据准确可靠。
数据清洗
对数据进行预处理,如去除异常值、缺失值处理 等。
第二章三次样条插值
mk 1 2mk
hk 1 hk hk 1
k 1
3( hk yk1 yk hk1 yk yk1 )
hk hk 1
hk
hk hk 1
hk 1
k mk1 2mk k mk 1 gk
k
hk
hk hk 1
k
hk 1 hk hk 1
gk
3(k
yk yk 1 hk 1
k 0,1,2
小结
1 x3 3 x2 7 x 1
8 8 4
1 x2
S(x)
1 8
x3
3 8
x2
7 4
x
1
3 x3 45 x2 103 x 33
88
4
2x4 4x5
f (3) S(3) 17 4
最后,介绍一个有用的结果
定理 . 设f (x)C2[a,b],S(x)是以xk (k 0,1,,n)
m2 m3
g0 g1 g2
g3
解方程组得:m0
17 8
, m1
Байду номын сангаас
7 4
, m2
5 4
, m3
19 8
将上述结果代入(10)式
S0 ( x)
1 8
x3
3 8
x2
7 4
x
1
S1 ( x)
1 8
x3
3 8
x2
7 4
x
1
1 x 2 2x4
S2(x)
3 8
x3
45 8
x2
103 4
x
33
4x5
注:三次样条与分段 Hermite 插值的根本区别在于S(x)自 身光滑,不需要知道 f 的导数值(除了在2个端点可能需 要);而Hermite插值依赖于f 在所有插值点的导数值。
2[1].7三次样条插值
即
lim S ( x ) = lim S ( x ) lim S ′ ( x) = lim S ′ ( x) = m lim S ′′( x) = lim S ′′ ( x) S ′( x ) = f ′ S ′( x ) = f ′ 或
将(13)式化为矩阵形式
2 λ2
µ1 λ3
2
µ2 λ4
2
µ3
2 O O O
λn − 2
λn − 1
O 2
m1 g 1 − λ1 f 0′ m2 g2 g3 m3 M = M M M µ n − 2 mn − 2 gn−2 2 mn − 1 g n − 1 − µ n − 1 f n′
共4 n − 2个条件
′ ′ lim S k′( x ) = lim S k′− 1 ( x ) + −
S k ( x )是[ xk , xk + 1 ]上的三次样条插值多项式, 应有4个待定的系数 即要确定S ( x )必须确定4n个待定的系数
少两个条件
并且我们不能只对插值函数在中间节点的状态进行限制 也要对插值多项式在两端点的状态加以要求 也就是所谓的边界条件: 第一类(一阶)边界条件: 第二类(二阶)边界条件 第三类(周期)边界条件
f(x) H(x) S(x)
二、三次样条插值多项式
a ≤ x0 , x1 ,L , xn ≤ b为区间[ a , b ]的一个分割 如果函数f ( x )在节点x0 , x1 ,L , xn处的函数值为
f ( x j ) = y j , j = 0 ,1,L , n 如果S ( x )是f ( x )的三次样条插值函数, 则其必满足
三次样条插值
一、问题提出
为给定的节点, 设 x0 , x1 xn 为给定的节点,yi = f ( xi ) ,i = 0,1, n 为相应的函数值, 为相应的函数值,求一个次数不超过 n 的多项式 Pn (x), 使其满足
Pn ( xi ) = yi,
i = 0,1, n .
这类问题称为插值问题。 称为被插值函数 P 被插值函数, 这类问题称为插值问题。 f ( x) 称为被插值函数, n ( x) 称 插值问题 插值函数, 称为插值节点 为插值函数, x0 , x1 xn 称为插值节点
六、 分段插值
所谓分段插值,就是将被插值函数逐段多项式化。 所谓分段插值,就是将被插值函数逐段多项式化。在每 个 [ xi , xi +1 ] 子段上构造插值多项式,然后把它们装配在一, 子段上构造插值多项式,然后把它们装配在一, 作为整个区间 [ a, b ] 上的插值函数,即称为分段多项式。如果 上的插值函数,即称为分段多项式。 次式, 函数 Sk ( x ) 在每个子段上都是 k 次式,则称为 一般(低次: 一般(低次:k=1,2,3) ) 次式。 k 次式。
f [ x0 , x1 ] = 5, f [ x0 , x1, x2 , x3 ] = 1,
N n ( x) = 0 5( x 1) + 2( x 1)( x 2)
+ ( x 1)( x 2)( x 3)
= x3 4 x + 3
五、 Hermite插值多项式 插值多项式
给定的是节点上的函数值和导数值 问题: 问题:已知
∑
i=0
y i li ( x )
( x x0 ) ( x xi 1 )( x xi +1 ) ( x xn ) , i = 0,1, n ( xi x0 ) ( xi xi 1 )( xi xi +1 ) ( xi xn )
三次样条插值算法详解
s3( s3(
x0 xn
) )
M0 Mn
0 0
7
第三类又称周期边界条件:
由区间端点处的函数值或导数值满足周期条件给出
s3 (x0 0) s3 (xn 0)
s3
(
x0
0)
s3 (xn
0)
s3(x0插值 问题就分成三类! 其实不止这三类!
8
样条函数的例子
x
j
),
j 1,,n 1
4
(1)因为s(x)在每个小区间上是一个次小于三次的多项式,故 有四个未知系数; (2)因为s(x)有n分段,从而共有4n个未知系数!
(3)但插值条件与样条条件仅给出4n-2个条件,无法定出4n个 未知系数,还差2个条件!这2个条件我们用边界条件给出!
5
通常我们对插值多项式在两端点的状态加以要求也就是 所谓的边界条件:
化为矩阵形式
17
2 1
2
2
2
m1 g1 1m0
m2
g2
3 2 3 4 2
m3
g3
n2 2 n2 mn2
gn2
n1 2 mn1 gn1 n1mn
这是一个严格对角占优的三对角方程组,
用追赶法可以求解!
18
第二类三次样条插值问题的方程组
分枝,进一步扩大了样条函数的应用范围。
1
样条函数的定义 定义4.1 设区间[a,b]上给定一个节点划分
a=x0<x1<……<xn-1<xn=b 如果存在正整数k使得[a,b]上的分段函数s(x)满足如下 两条: (1)在[a,b]上有直到k-1阶连续导数。 (2)在每个小区间[xi,xi+1]上是次数不大于k的多项式。 则称分段函数s(x)是以(2.6)为节点集的k次样条函数。
三次样条插值(CubicSplineInterpolation)
三次样条插值(CubicSplineInterpolation)样条插值是⼀种⼯业设计中常⽤的、得到平滑曲线的⼀种插值⽅法,三次样条⼜是其中⽤的较为⼴泛的⼀种。
本篇介绍⼒求⽤容易理解的⽅式,介绍⼀下三次样条插值的原理,并附C语⾔的实现代码。
1. 三次样条曲线原理假设有以下节点1.1 定义样条曲线是⼀个分段定义的公式。
给定n+1个数据点,共有n个区间,三次样条⽅程满⾜以下条件:a. 在每个分段区间(i = 0, 1, …, n-1,x递增),都是⼀个三次多项式。
b. 满⾜(i = 0, 1, …, n )c. ,导数,⼆阶导数在[a, b]区间都是连续的,即曲线是光滑的。
所以n个三次多项式分段可以写作:,i = 0, 1, …, n-1其中ai, bi, ci, di代表4n个未知系数。
1.2 求解已知:a. n+1个数据点[xi, yi], i = 0, 1, …, nb. 每⼀分段都是三次多项式函数曲线c. 节点达到⼆阶连续d. 左右两端点处特性(⾃然边界,固定边界,⾮节点边界)根据定点,求出每段样条曲线⽅程中的系数,即可得到每段曲线的具体表达式。
插值和连续性:, 其中 i = 0, 1, …, n-1微分连续性:, 其中 i = 0, 1, …, n-2样条曲线的微分式:将步长带⼊样条曲线的条件:a. 由 (i = 0, 1, …, n-1)推出b. 由 (i = 0, 1, …, n-1)推出c. 由 (i = 0, 1, …, n-2)推出d. 由 (i = 0, 1, …, n-2)推出设,则a. 可写为:,推出b. 将ci, di带⼊可得:c. 将bi, ci, di带⼊ (i = 0, 1, …, n-2)可得:端点条件由i的取值范围可知,共有n-1个公式,但却有n+1个未知量m 。
要想求解该⽅程组,还需另外两个式⼦。
所以需要对两端点x0和xn的微分加些限制。
选择不是唯⼀的,3种⽐较常⽤的限制如下。
三次样条插值
三次样条插值
三次样条插值是插值运算的一种,它具有计算精度高、收敛性好以及曲线拟合准确等特点,是插值运算中最常用的插值方法之
三次样条插值是以曲线为基本元素,把离散点数据连接成一个曲线,并能够在曲线上求出任意点的函数值。
它通过拟合所有离散数据点,来求出一个连续曲线,从而解决了插值法的局限性。
三次样条插值的基本原理是:在离散点的两端,曲线的曲率是零,由此可以计算出曲线的系数,从而得到曲线的表达式,这样就可以得到曲线上任意点的函数值。
三次样条插值的优点在于计算精度高、收敛性好,可以很好地拟合离散数据,并且经过插值后得到的曲线更加平滑,其结果更加可靠。
由于它的优点,三次样条插值得到了广泛的应用,如在统计分析中,用于拟合离散数据;在机械工程中,用于优化加工轨迹;在号处理中,用于滤波等。
总之,三次样条插值是插值运算的一种,它的准确性高,拟合性好,广泛应用于各种领域,是科学研究中的一种重要方法。
三次样条插值cubicsplineinterpolation
三次样条插值cubicsplineinterpolation什么是三次样条插值 插值(interpolation)是在已知部分数据节点(knots)的情况下,求解经过这些已知点的曲线,然后根据得到的曲线进⾏未知位置点函数值预测的⽅法(未知点在上述已知点⾃变量范围内)。
样条(spline)是软尺(elastic ruler)的术语说法,在技术制图中,使⽤软尺连接两个相邻数据点,以达到连接曲线光滑的效果。
样条插值是⼀种分段多项式(piecewise polynomial)插值法。
数学上,曲线光滑需要在曲线上处处⼀阶导连续,因此,在节点处需要满⾜⼀阶导数相等。
另外,为了使得曲线的曲率最⼩,要求曲线⼆阶导连续【1】,在节点处需要⼆阶导相等。
三次及以上多项式可以满⾜节点处光滑和曲率最⼩要求,但是次数⾼的曲线容易震荡,因此,就选⽤三次多项式即可。
数学表述 假设有n个已知节点: 函数关系记为:。
在区间中插值多项式曲线:注意,这⾥头曲线为,尾曲线为。
插值在节点处满⾜条件: (1)曲线经过节点: (2)曲线⼀阶导连续(光滑): (3)曲线⼆阶导连续(曲率最⼩): 边界条件:对两端节点的约束。
(B1)⾃然(natural (or free))边界条件 (B2)固定(clamped)边界条件 固定⼀阶导数: , 固定⼆阶导数: , (B3)⾮节点边界(not-a-knot ) 要求在第⼆个节点和倒数第⼆个节点,曲线的三阶导也连续:三次多样式函数的计算 样条函数采⽤n-1个三次多项式,每个三次多项式有4个参数,⼀共是4n-4个参数,因此需要4n-4个⽅程。
条件(1)n-1个曲线每个两端经过节点,提供2(n-1)=2n-2个⽅程; 条件(2)n-1个曲线相邻⼀阶导连续,提供n-2个⽅程; 条件(3)n-1个曲线相邻⼆阶导连续,提供n-2个⽅程; 以上⼀共是4n-6个⽅程,还需要2个⽅程,这两个⽅程由边界条件提供,条件(B1), (B2), (B3)每个均提供2个⽅程,这样就凑够了4n-4个⽅程。
三次样条插值
三次样条插值0 引⾔三次样条插值以构造简单,使⽤⽅便,拟合准确,具有“保凸”的重要性质等特点成为了常⽤的插值⽅法。
⼀般三次样条插值解算过程中通过追赶法求解三弯矩阵,但使⽤计算机求解时会表现出解的精度不⾼的问题,导致其计算结果⽆法应⽤到⼯程实践之中。
因此需要找出⼀种提⾼解精度的⽅法。
1 基本概念三次样条函数的定义:在区间内对于给定的函数值,其中,如果函数满⾜条件:(1)在每个⼦区间,上都是不⾼于三次的多项式;(2)、、在上都连续;(3),。
则称为函数关于节点的三次样条函数。
想要求解三次样条插值函数,只需在每个⼦区间上确定⼀个三次多项式共有4个系数,确定它们需要 4n 个条件,因此要完全确定共需 4n 个条件。
由所满⾜的条件(1)、(2)、(3),可确定个条件,仍然缺少两个条件。
这两个条件通常由实际问题对三次样条插值函数在端点的状态要求给出,也称之为边界条件,常见的边界条件有:1)夹持边界条件(Clamped Spline):给定两端点的⼀阶导数值,即,;2)⾃然边界条件(Natural Spline):使两端点的⼆阶导数值为零,即;3)⾮扭结边界条件(Not-A-Knot Spline):强制第⼀个插值点的三阶导数值等于第⼆个点的三阶导数值,最后第⼀个点的三阶导数值等于最后第⼆个点的三阶导数值,即,。
2 计算⽅法设三次样条函数,(0),,,由三次样条函数定义(1)(2)(3)可得:,(1)如下构造式(1)矩阵:(2)由式(1)可知:,,,,(3)1)在夹持边界条件时,,,,;,,,;2)在⾃然边界条件时,,,,;,,,;3)在⾮扭结边界条件时,,,,;,,,;由n个未知数的⾮齐次⽅程组有惟⼀解的充分必要条件是,可知矩阵⽅程(2)在以上三种情况下都有惟⼀解。
对矩阵⽅程(2)采⽤⾼斯列主元消去法即可求解得出。
最后,代⼊式(0)可以得出:,,,,3 应⽤算例有点集,在⾮扭结边界条件下进⾏插值。
同时使⽤Matlab R2010a和⽂章所述⽅法进⾏插值计算,对⽐计算结果。
三次样条插值算法详解
三次样条插值算法详解下面详细介绍三次样条插值方法的具体步骤:1.数据准备:首先,需要获得一组数据点,这些数据点包含了所需插值曲线的关键信息。
通常情况下,数据点是从实际观测中获得的。
2.区间划分:将插值区间划分为若干个小区间,每个小区间对应一个三次函数。
3. 函数构建:对于每个小区间,在该区间内构建一个三次函数。
这里使用三次多项式进行构建,形如 f(x) = ax^3 + bx^2 + cx + d。
每个小区间内的函数有四个待定系数:a、b、c、d。
4.条件设置:为了确定每个小区间内的函数,需要设置相应的条件。
一般来说,需要满足以下两个条件:(a) 函数值条件:保证每条小区间内的函数值通过对应的数据点。
即,对于每个小区间,函数值满足 f(xi) = yi,其中(xi, yi)表示第i个数据点的横纵坐标。
(b)导数条件:保证每个小区间内函数的导数连续。
这可以通过限制每个小区间内的函数的一阶导数(即斜率)相等来实现。
5.矩阵方程求解:根据上述条件设置,可以得到一个线性方程组,其中待求的系数为未知数。
将上述条件代入方程组中,然后求解该方程组以获得每个小区间内的函数系数。
6.曲线绘制:通过得到的函数系数,可以计算每个小区间内的函数值,并连接这些函数值,最终得到整个插值曲线。
三次样条插值方法是一种非常强大和灵活的插值方法,适用于各种类型的数据点,包括均匀和非均匀间距的数据。
通过调整划分区间的个数,可以控制插值曲线的光滑程度。
一般来说,插值区间越多,插值曲线越平滑,但对输入数据的噪声更敏感。
总结起来,三次样条插值是一种高级的插值方法,通过构建三次函数来逼近数据点,可以产生平滑的插值曲线。
它的基本思想是将插值区间划分为若干个小区间,并在每个小区间内构建一个三次函数。
通过设置函数值条件和导数条件,可以得到一个线性方程组,从而求解出每个小区间内的函数系数。
最终连接每个小区间内的函数值,得到整个插值曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
样条函数的定义 定义4.1 设区间[a,b]上给定一个节点划分 a=x0<x1<……<xn-1<xn=b 如果存在正整数k使得[a,b]上的分段函数s(x)满足 如下两条: (1)在[a,b]上有直到k-1阶连续导数。 (2)在每个小区间[xi,xi+1]上是次数不大于k的多项式。 则称分段函数s(x)是以(2.6)为节点集的k次样条函数。
S ( xn )
6 4 2 ( yn yn1 ) mn 1 mn M n 2 hn 1 hn 1 hn1
19
稍加整理得
y1 y0 h0 2m0 m1 3 M 0 g0 h0 2 yn yn 1 hn1 mn1 2mn 3 M n gn hn 1 2
x xi
lim S ( x) S ( xi 0)
6 4 2 ( yi 1 yi ) mi mi 1 2 hi hi hi
6 2 4 lim S ( x) S ( xi 0) 2 ( yi yi 1 ) mi 1 mi x xi hi 1 hi 1 hi 1
联合基本方程组得一个n+1阶三对角方程组, 化成矩阵形式为:仍然是严格对角占优
2 1
2
1 2
1 3
2
2
2Байду номын сангаас
n 1
2 n 1 1 2
m0 g 0 m1 g 1 m2 g 2 mn 1 g n 1 m g n n
立即可得下式:
21
n m1 n mn1 2mn gn
其中:
h0 hn1 n , n 1 n h0 hn1 h0 hn1
y1 y0 yn yn1 g n 3 n n h h 0 n 1
联合基本方程得一个广义三对角或周期三对角方程组:
所谓的边界条件:
第一边界条件:由区间端点处的一阶导数给出即
( x0 ) m0 f ( x0 ), s3 ( xn ) mn f ( xn ), s3
6
第二边界条件:由区间端点处的二阶导数给出即
( x0 ) M 0 f ( x0 ), s3 ( xn ) M n f ( xn ), s3
2
三次样条插值函数的定义
如果函数 f ( x)在节点x0 , x1 ,, xn处的函数值为
f ( x j ) y j , j 0,1,, n
并且关于这个节点集的三次样条函数s(x)满足插值条 件:
S( x j ) y j , j 0,1,, n
则称这个三次样条函数s(x)为三次样条插值函数。
14
由于在内部节点处二阶导数连续条件:
S ( xi 0) S ( xi 0), i 1, 2,
,n 1
yi 1 yi yi yi 1 1 1 1 1 mi 1 2( )mi mi 1 3( ) 2 2 hi 1 hi 1 hi hi hi hi 1
三次样条插值
鉴于高次插值不收敛又不稳定的特点,低次插值既具有收敛 性又具有稳定性,因此低次值更具有实用价值,但是低次插 值的光滑性较差,比如分段线性插值多项式在插值区间中仅 具有连续性,在插值节点处有棱角,一阶导数不存在;分段 三次Hermite插值多项式在插值区间中仅具有一阶导数即一 阶光滑性但不具备二阶光滑性,不能满足某些实际应用比如 汽车、轮船、飞机等的外形中流线形设计。样条是在二十世 纪初期经常用于图样设计的一种富有弹性的细长条,多个样 条互相弯曲连接后沿其边缘画出的曲线就是三次样条曲线。 后来数学上对其进行了抽象,定义了m次样条函数,并成为 数值逼近的重要研究分枝,进一步扩大了样条函数的应用范 围。
为了确定三次样条插值函数的表达式 S(x), 我们采用待定系数法来求解,我们待定什么系数呢?
考虑到带一阶导数的分段三次Hermite插值多项式
xi xi 1 x x xi xi 1 x (i ) H3 ( x) yi 0 ( x ) y ( ) m h ( ) m h ( i 1 0 i i 1 i 1 i 1 hi hi hi hi )
16
第一类三次样条插值问题方程组 由于已知:
S ( x0 ) m0 S ( xn ) mn
基本方程组化为n-1阶方程组
2m1 1m2 g1 1 f0 m 2m m g k 2 , 3 , , n 2 k k k 1 k k k 1 n 1mn 2 2mn 1 gn 1 n 1 f n
S ( x j ) m j , j 0,1,, n
因为分段三次Hermite插值多项式已经至少是一阶连续 可导了,为了让它成为三次样条函数只需确定节点处 的一阶导数使这些节点处的二阶导数连续即可!
S ( xi 0) S ( xi 0),i 1,, n 1
xi xi 1 x x xi xi 1 x S ( x) yi 0 ( x ) y ( ) m h ( ) m h ( i 1 0 i i 1 i 1 i 1 hi hi hi hi )
特殊情况为自然边界条件: 由区间端点处的二阶导数恒为0给出即
( x0 ) M 0 0 s3 ( xn ) M n 0 s3
7
第三类又称周期边界条件: 由区间端点处的函数值或导数值满足周期条件给出
s3 ( x0 0) s3 ( xn 0) ( x0 0) s3 ( xn 0) s3 s( x 0) s( x 0) 3 n 3 0
3
三次样条插值函数的边界条件
如果S( x)是f ( x)的三次样条插值函数 , 则其必满足
插值条件: 连续性条件: 一阶导数连续条件: 二阶导数连续条件:
S( x j ) y j , j 0,1,, n
x x j
lim S ( x ) S ( x j ) y j , j 1, , n 1 lim S ( x ) S ( x j ) m j , j 1, , n 1 lim S ( x ) S ( x j ), j 1, , n 1
整理化简后得:
hi hi 1 mi 1 2mi mi 1 hi 1 hi hi 1 hi
i 1,, n 1
hi yi yi 1 hi 1 yi 1 yi 3( ) hi 1 hi hi 1 hi 1 hi hi
15
i mi 1 2mi i mi 1 gi , i 1, , n 1
4
x x j
x x j
(1)因为s(x)在每个小区间上是一个次小于三次的多 项式,故有四个未知系数; (2)因为s(x)有n分段,从而共有4n个未知系数! (3)但插值条件与样条条件仅给出4n-2个条件,无法 定出4n个未知系数,还差2个条件!这2个条件我们用 边界条件给出!
5
通常我们对插值多项式在两端点的状态加以要求也就是
这是一个严格对角占优的三对角方程组, 用追赶法可以求解!
18
第二类三次样条插值问题的方程组
由于已知:
S ( x0 ) M 0 S ( xn ) M n
M 0 M n 0时,称为自然边界条件
故得:
S ( x0 ) 6 4 2 ( y1 y m0 m1 M 0 0) 2 h0 h0 h0
x [ xi , xi 1 ], hi xi 1 xi , i 0,1,, n 1
( x) (2x 1)(x 1)2 ,1 ( x) x( x 1)2
13
对Si ( x)求二阶导数 , 并整理后得
6( xi xi 1 2 x) Si( x) ( yi 1 yi ) 3 hi 6 x 2 xi 4 xi 1 6 x 4 xi 2 xi 1 mi mi 1 2 2 hi hi
hi xi 1 xi , i 0,1,, n 1
(0) H 3 ( x) x0 x x1 (1) H 3 ( x) x1 x x2 H 3 ( x) H ( n1) ( x) x x x n 1 n 3
12
我们采用待定一阶导数的方法即设
化为矩阵形式
17
2 2
1
2
2
2
3
3
2
4
n 2
2
n 1
m1 g1 1m0 m g 2 2 m3 g3 n 2 mn 2 g n 2 g m 2 m n 1 n n1 n1
20
第三类样条插值问题的方程组
由于:
S ( x0 0) S ( xn 0) m0 mn S ( x0 0) S ( xn 0)
6 2 S ( x0 0) 2 ( y1 y0 ) (m1 2m0 ) h0 h0 6 2 S ( xn 0) 2 ( yn yn1 ) (mn1 2mn ) hn1 hn1
是满足如下数据的第一类边界样条插值问题解:
x y y’
0 0 1
1 0
2 0
3 0 0
9
样条函数的例子
(11x 3 26x 2 15x) 15 0 x 1 S ( x) (3x 3 16x 2 27x 14) 15 1 x 2 ( x 3 8 x 2 21x 18) 15 2 x3
2 1 n