智能控制 第2章 模糊控制仿真简介(2)

合集下载

智能控制技术-第三课模糊控制2

智能控制技术-第三课模糊控制2

相应输入(-6~6)对应不同集合的隶属度函数值(e=2.4,元素2)
µ NL NM NS ZE PS PM PL
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
1.0 0.8 0.4 0.1 0 0.2 0.7 1.0 0.7 0.2 0 0 0.2 0.7 1.0 0.9 0 0.5 1.0 0.5 0.9 1.0 0.7 0.2 0 0 0.2 0.7 1.0 0.7 0.2 0.1 0.4 0.8 1.0
如果A’=A
0.2 那么 0.2 B A R C 1 0.8 0.6 0.4 0.2 0.2 0.2 0.2 0.2 0.4 0.6 0.8 1
0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2
0.4 0.6 0.8 0.4 0.6 0.8 0.4 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2
1 0.8 0.6 0.4 0.2
0.2 0.4 0.6 0.8 1 B “高电压” 1 2 3 4 5
方法2. 采用积运算法,即为RP
1 0.8 0.6 0.4 0.2
其中,每个元素是按最大-最小的合成规则计算出来的。如,上 式中第一个元素是这样计算的:
(1 0.2) (0.8 0.2) (0.6 0.2) (0.4 0.2) (0.2 0.2) 0.2 0.2 0.2 0.2 0.2 0.2
如果A’=A B A R p 0.2 0.4 0.6 0.8 1
如果A’=A2 B A2 R p 0.2 0.4 0.6 0.8 1

模糊控制简介

模糊控制简介

模糊控制理论模糊控制理论是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。

模糊控制作为以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,它已成为目前实现智能控制的一种重要而又有效的形式尤其是模糊控制与神经网络、遗传算法及混沌理论等新学科的融合,正在显示出其巨大的应用潜力。

实质上模糊控制是一种非线性控制,从属于智能控制的范畴。

模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。

本文简单介绍了模糊控制的概念及应用,详细介绍了模糊控制器的设计,其中包含模糊控制系统的原理、模糊控制器的分类及其设计元素。

“模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。

“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。

模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量与模糊逻辑推理为基础的一种计算机数字控制技术。

模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。

在1968~1973年期间Zadeh·L·A先后提出语言变量、模糊条件语句与模糊算法等概念与方法,使得某些以往只能用自然语言的条件语句形式描述的手动控制规则可采用模糊条件语句形式来描述,从而使这些规则成为在计算机上可以实现的算法。

1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器, 并把它应用于锅炉与蒸汽机的控制,在实验室获得成功。

这一开拓性的工作标志着模糊控制论的诞生并充分展示了模糊技术的应用前景。

模糊控制实质上是一种非线性控制,从属于智能控制的范畴。

模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。

第2章-模糊逻辑控制

第2章-模糊逻辑控制

例2.3 设论域X={x1, x2, x3, x4, } 以及模糊集合
求 解:
2.2.3模糊集合运算的基本性质 1分配律
2 结合律 3 交换律 4吸收律
5.幂等律 6.同一律
其中x表示论域全集,Φ表示空集。 7.达·摩根律
8.双重否定律 以上运算性质与普通集合的运算性质完全相同,但是在普通集合 中成立的排中律和 矛盾律对于模糊集合不再成立,即
模糊集合的表示方法
序偶 A x, Ax x X
紧凑形式
模糊集合的例子
例2.1 在整数1.2,…,10组成的论域中, 即论域X={1,2,3,4,5,6,7,8,9,10}.设A表示模糊集合“几个”。 并设各元素的隶属度函数依次为
Ax 0,0,0.3,0.7,1,1,0.7,0.3,0,0
9.α截集到模糊集合的转换

2.2.4 模糊集合的其它类型运算 1.代数和
若有三个模糊集合A、B和C,对于所有的 均有
2.代数积 3.有界和 4.有界差 5.有界积 6.强制和
7.强制积
2.3 模糊关系
2.3.1 模糊关系的定义及表示
定义:n元模糊关系R是定义在直积 X1 X 2 X n 上的模糊集合.
2.2 模糊集合及其运算
2.2.1 模糊集合的定义及表示方法
上节介绍了模糊性的概念.例如到苹果园去摘“大苹果”,这里“大 苹果”便是 个 模糊的概念。如果将“大苹果”看作是一个集合.则 “大苹果”便是一个模糊集合。如前所述. 若认为差不多比2两重的 苹果称之为“大苹果”,那么,2.5两的苹果应毫无疑问地属于 “大 苹果”,如对此加以量化,则可设其属于的程度为1.2.1两苹果属于 “大苹果”的程度譬如说为0.7,2两苹果居于的程度为0.5,1.9两的 苹果届于的程度为0.3等等。以后称属 于的程度为隶属度函数,其值 可在0~1之间连续变化。可见,隶属度函数反映了模糊集合 中的元素 属于该集合的程度。若模糊集合“大苹果”用大写字母A表示,隶属 度函数用µ 表示。A中的元素用x表示,则µA (x)便表示x属于A的隶属度, 对上面的数值例子可写成

第二章模糊控制理论基础

第二章模糊控制理论基础

0
x
2、变量所取隶属度函数通常是对称和平衡的。
很低
1

适中

很高
Degree of membership
0.8
标称名:语言值 (个数适中:3~ 9个(通常是奇 数)) 语言值的个 数和规则数 成正比。
0.6
0.4
0.2
0 5
20
30
50
70
95
100
速度(语言变量)
3、隶属度函数要符合人们的语言顺序,避免不恰当的重叠
F F / u
例 以年龄为论域,取 U 0,100 。Zadeh给出了“年轻”的模糊集F, 其隶属函数为
1
Degree of membership
0 u 25 1 1 F (u ) u 25 2 25 u 100 1 5
例: F ={(0,1.0), (1 ,0.9), (2 ,0.75), (3,0.5),(4 ,0.2), (5 ,0.1) } (3)向量表示法 F ={(u1),(u2),…,(un)} (元素u按次序排列)
F ={1.0 ,0.9, 0.75,0.5,0.2 ,0.1 } 例:
模糊集合的表示方法: 2、论域为连续域
u F
(隶属函数 F:u隶属于F的程度)
(映射)
F (u)=1:u完全属于F; F (u)= 0:u完全不属于F; 0< F (u)<1:u部分属于F。 U中的模糊集F可以用元素u和它的隶属度来表示: F={(u ,F (u) )| uU}
例2-2 设F是远大于0的实数集合(显然F是模糊集 合,而论域U表示全部实数集合),U中任一元素u隶 属模糊集合F的隶属度F (u)可以用下式来定义:

智能控制技术(模糊控制)

智能控制技术(模糊控制)

INTELLIGENT CONTROL
随着系统复杂程度的提高,将难以建立系统的精 确数学模型和满足实时控制的要求。 人们希望探索一种除数学模型以外的描述手段和 处理方法。 例如: 骑自行车 水箱水温控制
2011年4月10日
INTELLIGENT CONTROL
模糊控制就是模仿上述人的控制过程,其中包 含了人的控制经验和知识。从这个意义上来说,模 糊控制也是一种智能控制。模糊控制方法既可用于 简单的控制对象,也可用于复杂的过程。 模糊控制是以模糊集合论作为数学基础。 1965年L.A.Zandeh(美国教授)首先提出了模糊集 合的概念。 1974年E.H.Mamdani(英国教授)首先将模糊集合 理论应用于加热器的控制。 典 型 例 子
2011年4月10日
INTELLIGENT CONTROL
二、模糊控制的特点 特点: (1)无需知道被控对象的数学模型 (2)是一种反映人类智慧思维的智能控制 (3)易被人接受 (4)构造容易 (5)鲁棒性好
2011年4月10日
INTELLIGENT CONTROL
第二节
模糊集合论基础 一、模糊集合的概念 二、模糊集合的运算 三、隶属函数的建立 四、模糊关系
2011年4月10日
INTELLIGENT CONTROL
现代控制系统的数学模型难以通过传统的数学工具 来描述。就是说,采用数学工具或计算机仿真技术的传 统控制理论,已无法解决此类系统的控制问题。 从生产实践中可以看到,许多复杂的生产过程难以 实现的目标,可以通过熟练的操作工、技术人员或专家 的操作得到满意的控制效果。 如何有效地将熟练操作工、技术人员或专家的经验 知识和控制理论结合,去解决复杂系统的控制问题,就 是智能控制研究的目标。

模糊控制系统及其MATLAB实现

模糊控制系统及其MATLAB实现

1.模糊控制的相关理论和概念1.1 模糊控制的发展模糊控制理论是在美国加州伯克利大学的L. A.Zadeh教授于1965年建立的模糊集合论的数学基础上发展起来的。

之后的几年间Zadeh又提出了模糊算法、模糊决策、模糊排序、语言变量和模糊IF-THEN规则等理论,为模糊理论的发展奠定了基础。

1975年, Mamdan和Assilian创立了模糊控制器的基本框架,并用于控制蒸汽机。

1978年,Holmblad和Ostergaard为整个工业过程开发出了第一个模糊控制器——模糊水泥窑控制器。

20世纪80年代,模糊控制开始在工业中得到比较广泛的应用,日本仙台地铁模糊控制系统的成功应用引起了模糊领域的一场巨变。

到20世纪90年代初,市场上已经出现了大量的模糊消费产品。

近30 年来, 因其不依赖于控制对象的数学模型、鲁棒性好、简单实用等优点, 模糊控制已广泛地应用到图像识别、语言处理、自动控制、故障诊断、信息检索、地震研究、环境预测、楼宇自动化等学科和领域, 并且渗透到社会科学和自然科学许多分支中去, 在理论和实际运用上都取得了引人注目的成果。

1.2 模糊控制的一些相关概念用隶属度法来定义论域U中的集合A,引入了集合A的0-1隶属度函数,用A(x) 表示,它满足:A(x)用0-1之间的数来表示x属于集合A的程度,集合A等价与它的隶属度函数A(x)模糊系统是一种基于知识或基于规则的系统。

它的核心就是由所谓的IF-THEN规则所组成的知识库。

一个模糊的IF-THEN规则就是一个用连续隶属度函数对所描述的某些句子所做的IF-THEN形式的陈述。

例如:如果一辆汽车的速度快,则施加给油门的力较小。

这里的“快”和“较小”分别用隶属度函数加以描述。

模糊系统就是通过组合IF-THEN规则构成的。

构造一个模糊系统的出发点就是要得到一组来自于专家或基于该领域知识的模糊IF-THEN规则,然后将这些规则组合到单一系统中。

不同的模糊系统可采用不用的组合原则。

智能控制习题答案

智能控制习题答案

第一章绪论1 •什么是智能、智能系统、智能控制答:“智能”在美国Heritage词典定义为“获取和应用知识的能力”。

“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。

“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。

2 •智能控制系统有哪几种类型,各自的特点是什么答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等。

各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。

该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。

人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的尖系,从而达到处理信息的目的。

专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。

可以说是一种模拟人类专家解决领域问题的计算机程序系统。

多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。

这种结构的特点是:1 •上、下级是隶属矢系,上级对下级有协调权,它的决策直接影响下级控制器的动作。

2- 信息在上下级间垂直方向传递,向下的信息有优先权。

同级控制器并行工作,也可以有信息交换,但不是命令。

模糊控制

模糊控制

第2章模糊控制2.1 模糊控制自从1965年美国加利福尼亚大学控制论专家L .A .zadeh教授提出模糊数学以来”,吸引了众多的学者对其进行研究,使其理论与方法日臻完善,并且广泛地应用于自然科学和社会科学的各个领域,尤其是在第5代计算机研制和知识工程开发等领域占有特殊重要的地位。

把模糊逻辑应用于控制领域则始于1973年”。

1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机控制。

此后20多年来,模糊控制不断发展并在许多领域中得到成功应用。

由于模糊逻辑本身提供了由专家构造语言信息并将其转化为控制策略的一种系统的推理方法,因而能够解决许多复杂而无法建立精确数学模型系统的控制问题,所以它是处理推理系统和控制系统中不精确和不确定性的一种有效方法。

从广义上讲,模糊控制是适于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制策略。

它是模糊数学同控制理论相结合的产物,同时也是智能控制的重要组成部分。

模糊控制的突出特点在于:①控制系统的设计不要求知道被控对象的精确数学模型,只需要提供现场操作人员的经验知识及操作数据。

⑦控制系统的鲁棒性强,适应于解决常规控制难以解决的非线性、时变及大纯滞后等问题。

③以语言变量代替常规的数学变量,易于形成专家的“知识”。

④控制推理采用“不精确推理”(Approximatc Reasoning)。

推理过程模仿人的思维过程。

由于介入了人类的经验.因而能够处理复杂甚至“病态”系统。

2.1.1模糊数学模糊数学是基于模糊集理论。

模糊集的概念与古典集非此即彼的概念相对应,描述没有明确、清楚地定义界限的集合。

模糊集的理论叙述为:模糊集A是定义在一个输入ξ之上并由其隶属函数µA(·):ξ→[0,1]表征的集合。

假设ξ是一个普通集合,称为论域。

从ξ到区间[0,1]的映射A称为ξ上的一个模糊集合。

µA(·)表示ξ隶属于模糊集合A的程度,称为隶属度。

2模糊控制的数学基础

2模糊控制的数学基础

分解定理
设A是论域X上的模糊集合,λ∈[0, 1],A是A的λ截集,则有
A A 0, 1 其中λAλ为x的一个特殊模糊集合,其隶属函数为
, A (x) 0,
x A x A
说明任何一个模糊集可由 一个普通集合簇来表示
Page 30
2.3 模糊集合与普通集合的联系
分解定理 为了对分解定理有一个直观的了解,在左图中,取λ1、 λ2∈[0,1]两个值
集合的直积 序偶 将不同的事物按一定顺序排列起来组成一个整体, 用以表达它们之间的关系,这就叫做序偶。 集合的直积 有两个集合X,Y,从X中取一个元素x,从Y中取一个元 素y,把它们组成一个序偶,所有元素序偶的全体组成一 个新的集合,这个集合叫做集合X,Y 的直积,表示为
X Y {(x, y) | x X , y Y}
A {x | x X , A (x) }
称 A为A的λ强截集
当λ=1时,得到的最小的水平截集A1称为模糊集合A的核。 当λ=0+时,得到的最大的水平截集称为模糊集合A的支集。 如果A的核A1非空,则称A为正规模糊集,否则称为非正规 模糊集。
Page 27
2.3 模糊集合与普通集合的联系
λ水平截集
0
25 50 75 100
u
Page 20
2.2 模糊集合
例2.2.3
“年轻”和“年老”模糊集合可以写为:
Y
1
1
(
x
25) 5
2
1
x 0x25
25x200
x
O
0
1
(
x
5 50
)
2
1
x 0x50
50x200
x
Page 21

14版《智能控制技术基础》课程教学大纲

14版《智能控制技术基础》课程教学大纲
课程代码
0401061
课程类别
学科专业课
学分
2
总学时
32
开课学期

修读类别
选修课
开课单位
自动化学院自动化系
适用专业
自动化
先修课程
自动控制原理、控制系统仿真、现代控制理论、专业英语
主讲教师
梁雪慧董恩增
考核方式及各环节所占比例
考试课;
期末考试占70%,平时成绩占20%,实验占10%
课程概要
智能控制技术基础是工科高等学校自动化专业本科生的一门选修课。相对于传统控制理论及方法,该门课主要介绍一些先进的、有一定数学基础的控制方法及其应用,例如:模糊控制、神经网络控制、专家系统等。
4.习题课、课外作业、答疑和质疑
(1)习题课:安排在模糊控制的理论基础、模糊控制系统等章节中。
(2)课外习题:罗兵《智能控制技术》,2011年3月第1版,第一章1、3、6,第二章3、4、5、6、7、8,第三章1、4、6,第四章1、3,第五章1、2、4。
(3)答疑和质疑
每两周在规定时间和地点至少安排一次答疑或质疑。
5.考试环节
掌握:神经网络模型分类、前向神经网络及BP算法、动态网络特点与Hopfield网络
难点:前向网络及BP算法、神经网络控制。
第四章专家控制系统(4学时)
教学目的:
理解:专家系统的概念、专家控制的知识表示与推理、直接专家控制系统、间接专家控制系统等;
掌握:专家控制系统概念、专家控制系统结构与原理、专家控制的应用领域。
教学目的及要求
拓宽专业知识面,了解先进的控制理论及其应用领域,掌握基本的智能控制系统原理及其设计方法;学会应用MATLAB模糊工具箱实现模糊控制器的设计,通过仿真试验,分析控制器的应用效果,使学生具备基本的模糊控制系统的设计与分析能力。课程采用双语授课,使学生掌握专业知识的同时,提高外文文献的阅读和理解能力,并了解国际智能控制领域的最新动态。

模糊控制的理论基础

模糊控制的理论基础
zmf(x,[a, b])
有关隶属函数的MATLAB设计,见著作:
楼顺天,胡昌华,张伟,基于MATLAB的系统分析 与设计-模糊系统,西安:西安电子科技大学出版 社,2001
例2.5 隶属函数的设计:针对上述描述的6种隶属 函数进行设计。M为隶属函数的类型,其中M=1 为高斯型隶属函数,M=2为广义钟形隶属函数, M=3 为 S 形 隶 属 函 数 , M=4 为 梯 形 隶 属 函 数 , M=5为三角形隶属函数,M=6为Z形隶属函数。 如图所示。
X Years
图2-1 “年轻”的隶属函数曲线
2.2.2 模糊集合的运算 1 模糊集合的基本运算
由于模糊集是用隶书函数来表征的,因此两 个子集之间的运算实际上就是逐点对隶属度作 相应的运算。
(1)空集 模糊集合的空集为普通集,它的隶属度为0,

A A (u) 0
(2)全集 模糊集合的全集为普通集,它的隶属度为1,
设A和B经过平衡运算得到C,则
c (x) A (x) B ( x) 1 1 (1 A (x)) (1 B (x))
其中γ取值为[0,1]。 当γ=0时,c (x) A (x) B (x),相当于A∩B时的算子。
当γ=1,c (x) A(x) B (x) A(x) B (x) ,相当于
B 0.3 0.1 0.4 0.6 u1 u2 u3 u4
求A∪B,A∩B
则 A B 0.9 0.2 0.8 0.6
u1 u2 u3 u4
A B 0.3 0.1 0.4 0.5 u1 u2 u3 u4
例2.4 试证普通集合中的互补律在模糊集
合中不成立,即 A (u) A (u) 1,
则 u0属于“成绩差”的隶属度为:
A (u0 ) 1 0.8 0.2

模糊控制技术-第二章

模糊控制技术-第二章
5
上述定义表明:
①论域U中的元素是分明的,即U本身是普通 集合,只是U的子集是模糊集合,故称A为 U的模糊子集,简称模糊集。 ②隶属函数μA(u)是用来说明u隶属于A的程度 的,μA(u)的值越接近于1,表示u隶属于A 的程度越高;当μA(u)的值域变为{0,1}时, 隶属函数μA(u)蜕化为普通集合的特征函数, 模糊集合也就蜕化为普通集合。
' ~ ~ ~ ~ ~
~
0.1 0.1 0.6 0.5 0.7 0.9 0.9 1 C u1 u2 u3 u4
'
0.1 0.5 0.7 0.9 u1 u2 u3 u4
~
0.9 0.4 0.3 0.1 A u1 u2 u3 u4
18
台(support)集合
39
• 例:设X={1,2,3,4},Y={a,b, c},Z={α,β},Χ×Y以及Y×Z上的模糊关 系R与S如图所示。
2.2.2 模糊关系 (1)普通关系:客观世界存在的普遍现象,描 述了事物之间存在的某种联系。 1)集合的直积 • 由两个集合U和V的各自元素u与v组成的序 偶(u,v)的全体集合,称为U与V的直积,记 为U×V,即
U×V={(u,v)|u∈U,v∈V }
• 一般情况下,U×V≠V×U。 2)普通二元关系
A 和 A 分别称为模糊集合 A 的强 截集和弱
正则(normal)模糊集合
[0,) 1 (0, 1]
截集
如果:max A (u )
uU
1 ,则称A为正则模糊集合
凸(convex)模糊集合
A (u1 (1 )u2 ) min( A (u1 ), A (u2 )) u1,u2 U, [0, 1]

模糊控制的理论基础

模糊控制的理论基础
3.结合律
(A∪B)∪C=A∪(B∪C)
(A∩B)∩C=A∩(B∩C)
4.吸收律
A∪(A∩B)=A
A∩(A∪B)=A
5.分配律
A∪(B∩C)=(A∪B)∩(A∪C)
A∩(B∪C)=(A∩B) ∪(A∩C)
6.复原律
A A
7.对偶律
A B A B
A B A B
8.两极律
A∪E=E,A∩E=A
A∪Ф=A,A∩Ф=Ф
例3.4 设
A
B
0 .9 0 .2 0 . 8 0 .5 u1 u2 u3 u4
0 .3 0 . 1 0 .4 0 . 6 u1 u2 u3 u4
求A∪B,A∩B

0.9 0.2 0.8 0.6 A B u1 u2 u3 u4
0 .3 0 .1 0 .4 0 .5 A B u1 u2 u3 u4
A {0.95,0.90 ,0.85}
其含义为张三、李四、王五属于“学习 好”的程度分别是0.95,0.90,0.85。 例3.3 以年龄为论域,取 X 0,200 。Zadeh给 出了“年轻”的模糊集Y,其隶属函数为
0 x 25 1 1 Y ( x) x 25 2 25 x 100 1 5
例3.5 试证普通集合中的互补律在模糊集 合中不成立,即 A (u ) A (u ) 1 ,
A (u ) A (u ) 0
证:设 A (u ) 0.4 , 则
A (u ) 1 0.4 0.6
A (u) A (u) 0.4 0.6 0.6 1
模糊集合是以隶属函数来描述的, 隶属度的概念是模糊集合理论的基石。

模糊控制的理论基础

模糊控制的理论基础

第二章:模糊控制的理论基础第一节:引言模糊控制的发展传统控制方法:数学模型。

模糊控制逻辑:使计算机具有智能和活性的一种新颖的智能控制方法。

模糊控制以模糊集合论为数学基础。

模糊控制系统的应用对于那些测量数据不准确,要处理的数据量过大以致无法判断它们的兼容性以及一些复杂可变的被控对象等场合是有益的。

模糊控制器的设计依赖于操作者的经验。

模糊控制器参数或控制输出的调整是从过程函数的逻辑模型产生的规则来进行的。

改善模糊控制器性能的有效方法是优化模糊控制规则。

模糊控制的特点:一、无需知道被控对象的数学模型二、是一种反应人类智慧思维的智能控制三、易被人们所接受四、推理过程采用“不精确推理”五、构造容易六、存在的问题:1、要揭示模糊控制器的实质和工作原理,解决稳定性和鲁棒性理论问题,从理论分析和数学推导的角度揭示和证明模糊控制系统的鲁棒性优于传统控制策略;2、信息简单的模糊处理将导致系统的控制精度降低和动态品质变差;3、模糊控制的设计尚缺乏系统性,无法定义控制目标。

“模糊控制的定义”定义:模糊控制器的输出是通过观察过程的状态和一些如何控制过程的规则的推理得到的。

基于三个概念:测量信息的模糊化,推理机制,输出模糊集的精确化;测量信息的模糊化:实测物理量转换为在该语言变量相应论域内的不同语言值的模糊子集;推理机制:使用数据库和规则库,根据当前的系统状态信息决定模糊控制的输出子集;模糊集的精确化:将推理过程得到的模糊控制量转化为一个清晰,确定的输出控制量的过程。

“模糊控制技术的相关技术”模糊控制器的核心处理单元:1.传统单片机;2.模糊单片机处理芯片;3.可编程门阵列芯片。

模糊信息与精确转换技术:AD,DA,转换技术。

模糊控制的软技术:系统的仿真软件。

综述:模糊控制是一种更人性化的方法,用模糊逻辑处理和分析现实世界的问题,其结果往往更符合人的要求。

第二节:模糊集合论基础“模糊集合的概念”经典集合论所表达概念的内涵和外延都必须是明确的。

模糊PID控制及其MATLAB仿真讲解

模糊PID控制及其MATLAB仿真讲解

模糊PID控制及其MATLAB实现姓名:专业班级:学号:授课教师:摘要PID(比例积分微分)控制具有结构简单、稳定性能好、可靠性高等优点,尤其适用于可建立精确数学模型的控制系统。

而对于一些多变量、非线性、时滞的系统,传统的PID控制器并不能达到预期的效果。

随着模糊数学的发展,模糊控制的思想逐渐得到控制工程师们的重视,各种模糊控制器也应运而生。

而单纯的模糊控制器有其自身的缺陷—控制效果很粗糙、控制精度无法达到预期标准。

但利用传统的PID控制器和模糊控制器结合形成的模糊自适应的PID控制器可以弥补其缺陷;它将系统对应的误差和误差变化率反馈给模糊控制器进而确定相关参数,保证系统工作在最佳状态,实现优良的控制效果。

论文介绍了参数自适应模糊PID控制器的设计方法和步骤。

并利用MATLAB 中的SIMULINK 和模糊逻辑推理系统工具箱进行了控制系统的仿真研究,并简要地分析了对应的仿真数据。

关键词: 经典PID控制; 模糊控制; 自适应模糊PID控制器; 参数整定; MATLAB仿真ABSTRACTPID(Proportion Integration Differentiation) control, with lots of advantages including simple structure, good stability and high reliability, is quite suitable to establish especially the control system which accurate mathematical model is available and needed. However, taken multivariable, nonlinear and time-lag into consideration, traditional PID controller can not reach the expected effect.Along with the development of Fuzzy Mathematics, control engineers gradually pay much attention to the idea of Fuzzy Control, thus promoting the invention of fuzzy controllers. However, simple fuzzy controller has its own defect, where control effect is quite coarse and the control precision can not reach the expected level. Therefore, the Fuzzy Adaptive PID Controller is created by taking advantage of the superiority of PID Controller and Fuzzy Controller. Taken this controller in use, the corresponding error and its differential error of the control system can be feed backed to the Fuzzy Logic Controller. Moreover, the three parameters of PID Controller is determined online through fuzzification, fuzzy reasoning and defuzzification of the fuzzy system to maintain better working condition than the traditional PID controller.Meanwhile,the design method and general steps are introduced of the Parameter self-setting Fuzzy PID Controller. Eventually, the Fuzzy Inference Systems Toolbox and SIMULINK toolbox are used to simulate Control System. The results of the simulation show that Self-organizing Fuzzy Control System can get a better effect than the Classical PID controlled evidently.Keywords: Classic PID control; Fuzzy Control; Parameters tuning; the Fuzzy Adaptive PID Controller; MATLAB simulation目录第一章绪论 (1)1.1 研究的背景及意义 (1)1.2 经典PID控制系统的分类与简介 (2)1.2.1 P控制 (2)1.2.2 PI控制 (2)1.2.3 PD控制 (2)1.2.4 比例积分微分(PID)控制 (2)1.3 模糊逻辑与模糊控制的概念 (3)1.3.1 模糊控制相关概念 (3)1.3.2 模糊控制的优点 (4)1.4 模糊控制技术的应用概况 (4)1.5 本文的研究目的和内容 (5)第二章PID控制 (6)2.1 PID的算法和参数 (6)2.1.1 位移式PID算法 (6)2.1.2 增量式PID算法 (7)2.1.3 积分分离PID算法 (7)2.1.4 不完全微分PID算法 (8)2.2 PID参数对系统控制性能的影响 (9)2.2.1 比例系数K P对系统性能的影响 (9)2.2.2 积分时间常数T i对系统性能的影响 (9)2.2.3 微分时间常数T d对系统性能的影响 (9)2.3 PID控制器的选择与PID参数整定 (10)2.3.1 PID控制器的选择 (10)2.3.2 PID控制器的参数整定 (10)第三章模糊控制器及其设计 (11)3.1 模糊控制器的基本结构与工作原理 (11)3.2 模糊控制器各部分组成 (11)3.2.1 模糊化接口 (11)3.2.2 知识库 (12)3.2.3 模糊推理机 (12)3.2.4 解模糊接口 (13)3.3模糊推理方式 (13)3.3.1 Mamdani模糊模型(迈达尼型) (13)3.3.2 Takagi-Sugeno模糊模型(高木-关野) (13)3.4模糊控制器的维数确定 (14)3.5 模糊控制器的隶属函数 (15)3.6模糊控制器的解模糊过程 (17)3.7 模糊PID控制器的工作原理 (18)第四章模糊PID控制器的设计 (19)4.1 模糊PID控制器组织结构和算法的确定 (19)4.2 模糊PID控制器模糊部分设计 (19)4.2.1 定义输入、输出模糊集并确定个数类别 (19)4.2.2 确定输入输出变量的实际论域 (20)4.2.3 定义输入、输出的隶属函数 (20)4.2.4 确定相关模糊规则并建立模糊控制规则表 (20)第五章模糊PID控制器的MATLAB仿真 (24)5.1 模糊PID控制的仿真 (24)5.1.1 FIS编辑器 (24)5.1.2 隶属函数 (25)5.1.3 模糊规则库 (25)5.2 对模糊控制器编程仿真 (27)第六章结语 (31)参考文献 (32)第一章绪论1.1 研究的背景及意义随着越来越多的新型自动控制应用于实践,其控制理论的发展也经历了经典控制理论、现代控制理论和智能控制理论三个阶段。

第2章-3-智能控制-幻灯片(1)

第2章-3-智能控制-幻灯片(1)
萌芽期(60年代) 形成期(70年代) 发展期(80年代) 高潮期(90年代至今)
智能控制的主要类型
专家控制 模糊控制 神经网络控制 学习控制 基于规则的仿人控制
2.3.2 专家控制(Expert Control)
什么是专家系统、专家控制?
“专家” 是具有某一领域专门知识或丰富实践经 验的人,而“专家系统”则是一个计算机系统,存 储有专家的知识和经验,并用推理的方式针对问题 给出结论。
u(k)
i1 6
u(ui )
i1
注:离散间隔一般较 该例小得多,计算结 果会更接近连续情况
0.210.220.530.840.85 3.72 0.20.20.50.80.8
说明:
模糊控制器的输入量一般取误差 e 和误差变化率 Δe , 若 e , Δe 和控制量 u 均离散化 [注] , 则可离 线计算好 e , Δe 与 u 的对应关系 ( 查询表 ) , 实 时控制时采用查表法 ( 计算量小, 快速 );
集合
冷μ
适中

1.0
0.0
T( ℃)
-20 -10 0 10 20 30 40
为简化计算, 一般用离散形式表示模糊集合。
例如,以 2 ℃ 为间隔进行离散化, 可得
“热” = 0/25 + 0.14/27 + 0.29/29 + 0.43/31 + 0.57/ 33+
+ 0.71/35 + 0.86/37 + 1/39 + 1/41 + 1/43 + 1/45
模糊控制的发展:
1965年美国的Zadeh提出模糊集合理论; 1974年英国的Mamdani首次将模糊理论应用于蒸

模糊控制(2)

模糊控制(2)

1模糊控制1.1 概述基于解析模型的控制方法有着较长的发展历史,经过许多学者的不懈努力已经建立了一套完善的理论体系,并且非常成功地解决了许多问题。

但是,当人们将这种控制方法应用于具有非线性动力学特征的复杂系统时,受到了严峻的挑战。

特别是,面对无法精确解析建模的物理对象和信息不足的病态过程,基于解析模型的控制理论更显得束手无策。

这就迫使人们去探索新的控制方法和途径去解决这类问题,在这样一个背景下诞生了基于模糊逻辑的控制方法,并且今天它已成为最活跃和最为有效的一种智能控制技术。

一些学者对人类处理复杂对象的行为进行了长期的观察,进而发现人们控制一个对象的过程与基于解析模型的控制机理完全不同,即不是首先建立被控对象的数学模型,然后根据这一模型去精确地计算出系统所需要的控制量,而是完全在模糊概念的基础上利用模糊的量完成对系统的合理控制。

让我们简单地回顾一下:一个优秀的杂技演员在表演走钢丝时事如何保持他身体的平衡呢?当他的身体向一个方向倾斜时,他是通过身体的重心去感觉其倾斜程度,然后根据倾斜程度产生一个相反的力去恢复平衡的过程,我们可以意识到一个重要的事实:杂技演员是无法准确地感知出身体的倾斜角为多大,并且也无法精确地计算出恢复平衡的力要多大,但是他确实能够有效地保持身体的平衡。

显然,杂技演员走钢丝的这种平衡能力是很难用解析的方式来描述的。

相反,这种能力是来源于杂技演员多年的训练经验和积累的专业知识。

为了有效地描述这种经验和知识,一些从事智能技术的专家一直在探索表达经验和知识的有效方法,在这其中,以查德(Zadeh)教授1965年提出基于模糊集合论的模糊逻辑(Fuzzy Logic),是一种表达具有不确定性经验和知识的有效工具。

1974年马达尼(Mamdani)教授在他的博士论文中首次论述了如何将模糊逻辑应用于过程控制,从而开创了模糊控制的先河。

1.2模糊逻辑的基本概念既然模糊控制的基础是模糊逻辑,那么什么是模糊逻辑呢?模糊逻辑可以说是一种逻辑的形式化。

模糊控制PPT课件

模糊控制PPT课件
应用。
其他领域
如农业、医疗、环保等 领域的智能化控制。
模糊控制基本原理
01
02
03
04
模糊化
将输入变量的精确值转换为模 糊语言变量的过程,通过隶属
度函数实现。
模糊推理
根据模糊控制规则和当前输入 变量的模糊值,推导出输出变
量的模糊值。
去模糊化
将输出变量的模糊值转换为精 确值的过程,通过去隶属度函
数实现。
基于仿真实验的分析方法
通过搭建模糊控制系统的仿真模型,模拟系统的运行过程并观察其输出响应。根据输出响应的变化情况 来判断系统的稳定性。这种方法可以直观地展示系统的动态特性,但需要消耗较多的计算资源。
提高模糊控制系统稳定性措施
要点一
优化模糊控制规则
通过调整模糊控制规则中的参数和隶 属度函数形状,可以改善系统的控制 性能并提高稳定性。例如,增加控制 规则的数量、调整隶属度函数的分布 等。
借鉴物理退火过程,避免陷入局部最优解。
05
模糊控制系统稳定性分析
稳定性概念及判定方法介绍
稳定性概念
指系统受到扰动后,能够恢复到原来平衡状态的能力。对于模糊控制系统而言,稳定性是评价其性能的重要指标 之一。
判定方法
包括时域法、频域法和李雅普诺夫法等。其中,时域法通过观察系统状态随时间的变化来判断稳定性;频域法通 过分析系统频率响应特性来评估稳定性;李雅普诺夫法则是基于能量函数的概念,通过构造合适的李雅普诺夫函 数来判断系统的稳定性。
化工生产过程控制
采用模糊控制方法对化工生产过程 中的反应温度、压力、流量等参数 进行精确控制,确保生产安全和产 品质量。
智能交通系统领域应用案例
城市交通信号控制
运用模糊控制理论对城市交通信 号灯的配时方案进行优化设计, 提高道路通行效率和交通安全水

智能控制题目及解答

智能控制题目及解答

智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点。

4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能。

1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。

智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。

智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。

是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。

2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。

(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。

(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。

3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。

在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。

在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⑴ 模糊推理系统编辑器Fuzzy 处理最顶层构建问题,例如输入输出变量的数目、变量名等 激活(进入)方法:命令窗口(command window)执行 Fuzzy命令。
激活模糊推理系统系统编辑器 :
基本属性
输入模糊变量图形框 组成 模糊规则图形框
双击
双击
Mfedit Ruleedit
Mfedit
输出模糊变量图形框
双击
基本属性包括:
1. 模糊集合合成运算(连接词的运算) min(最小法) ① and prod(乘积法)
② or
max(最大法) prober(概率法)
prober(a,b)=a+b-ab
2. 蕴涵计算(Implication)
min prod (乘积法)
3. 输出的合成计算Aggregation(模糊规则综合采用的方法) max prober(a,b)=a+b-ab Aggregation sum(求和法) prober (概率法)
1 2,2(1):1
6、计算模糊推理输出结果函数evalfis 格式:y=evalfis(U,FIS)
说明:参数U是输入数据,FIS是模糊推理矩阵。 U的每一行是一个特定的输入向量,Y的每一行是 一个特定的输出向量。
如果输入U是M*N矩阵,则系统是N输入的, 返回的Y是M*L矩阵,L是系统的输出的数目。
centroid(重心法:系统默认) lom(最大隶属度函数中的取最大值法) bisector(面积平分法) mom(平均最大隶属度法) som(最大隶属度函数中的取最小值法)
4、系统图形显示函数
① 函数plotfis 功能:绘制模糊推理系统的推理过程结构框图。 例:plotfis(‘tipper’) ② 函数plotmf
例:a=newfis(‘tipper’);
a=addvar(a,’input’,’service’,[0 10]); a=addmf(a,’input’,1,’poor’,’guassmf’,[1.5 0]); a=addmf(a,’input’,1,’good’,’guassmf’,[1.5 5]); a=addmf(a,’input’,1,’excellent’,’guassmf’,[1.5 10]);
接口仿真逻辑模块(Simulink环境)
一、图形交互工具箱提供的图形化工具有五类:
模糊推理系统编辑器Fuzzy
隶属度函数编辑器Mfedit (Membership function)
模糊规则编辑器Ruleedit 模糊规则观察器Ruleview 模糊推理输入输出曲面视图Surfview (Surface)
③ 函数gaussmf 功能:建立高斯型隶属度函数。
格式:y=gaussmf(x,[sig c])
其中:参数x指定变量论域范围,参数c决定了函数的中心 点,sig决定了函数曲线的宽度σ 。 高斯函数的表达式为: y e 例: x=0:0.1:10; y=gaussmf(x, [2 5]); plot(x,y) xlable(‘gaussmf,P=[2 5]’)
plot(a,’input’,1)
注意:对于每个语言变量的隶属度函数按该函数被添加的顺 序编号,编号从1开始,依次递增。
3、FIS系统相关操作
① 函数newfis
功能:创建并返回一个新的模糊推理系统。
格式:a=newfis(‘fisName’) ②函数readfis 功能:从磁盘中读出并返回模糊推理系统结构变量。 格式:Fismat=readfis(‘filename’) 说明:打开一个由filename指定的数据文件(.fis),并将 其加载到当前的工作空间(Workspace)中的变量Fismat中。
⑤函数smf 功能:建立S型隶属度函数。
格式:y=smf(x,[a b])
说明:曲线在(a,b)之间是光滑的样条曲线,在a左 段为0,b右段为1,跳跃点是(a+b)/2。参数x指定变量论 域范围。 例: x=0:0.1:10; y=smf(x, [2 8]); plot(x,y) xlable(‘smf,P=[2 8]’)
5、模糊规则建立 ①函数addrule 功能:向模糊推理系统添加模糊规则。 格式:a=addrule(a,rulelist) 说明:参数a为模糊推理系统对应的矩阵变量名称,rulelist 以向量的形式给出需要添加的模糊规则。如果模糊推理系 统有m个输入语言变量和n个输出语言变量,则向量rulelist 的列数必须为m+n+2,而行数等于需要添加的规则数目。
1 x c 2 ( ) 2
④函数zmf 功能:建立Z型隶属度函数。
格式:y=zmf(x,[a b])
说明:曲线在(a,b)之间是光滑的样条曲线,在a左 段为1,b右段为0,跳跃点是(a+b)/2。参数x指定变量论 域范围。 例: x=0:0.1:10; y=zmf(x, [2 8]); plot(x,y) xlable(‘zmf,P=[2 8]’)
②函数addmf
功能:向模糊推理系统的语言变量添加隶属度函数。
格式:a=addmf(a, varType, varIndex,mfName,mfType, mfParams)
说明:隶属度函数只能为模糊推理系统中已经存在的某 一语言变量的语言值添加隶属度函数。参数列表中,a为 模糊推理系统对应的矩阵变量名, varType指定语言变量 类型的字符串(如‘input’或‘output’); varIndex指定 语言变量编号的数字;mfName指定隶属度函数名称; mfType指定隶属度函数类型; mfParams指定隶属度函数 的参数。
2.3 模糊控制系统仿真简介
• 参考文献:石辛民 编著. 模糊控制及其MATLAB
仿真.北京:清华大学出版社/北京交通大学出版
社,2008.3
2.3.1 MATLAB模糊逻辑工具箱
建立模糊逻辑推理系统
命令行函数(以 .m文件存放) 工具 图形交互工具(GUI-Graphical User Interface) (图形用户界面)
例:fismat=readfis(‘tipper’); //tipper.fis已经存在
Hale Waihona Puke ③函数getfis功能:取得模糊推理系统的部分或全部属性。 格式:getfis(a) //显示系统所有属性 //显示系统某一属性
getfis(a,’fisprop’)
getfis(a,’vartype’,varindex,’varprop’)
Range=[0 10]
例:getfis(a,’input’,1,’name’) 输出结果:service
④ 函数showfis
功能:以分行的形式显示模糊推理系统矩阵的所有属性。 格式:showfis(fismat) ⑤ 函数writefis 功能:将以矩阵形式保存在内存中的模糊推理系统的数 据写入磁盘文件中。 格式:writefis(fismat,filename)
2、模糊逻辑系统输入输出变量及隶属度函数的添加 ①函数addvar 功能:向模糊推理系统中添加语言变量。 格式:a=addvar(a, varType, varName, varBounds) 说明:参数列表中,a为模糊推理系统对应的矩阵变量名, varType用于指定语言变量的类型为字符型(如‘input’ 或‘output’); varName用于指定语言变量的名; varBounds用于指定语言变量的论域范围。 注意:对于添加到同一个模糊推理系统的语言变量,按 先后顺序自动编号,编号从1开始,逐渐递增。对于分属 于输入与输出的不同语言变量则独立地分别编号。 例:a=newfis(‘tipper’); //创建并返回一个新的FIS系统 a=addvar(a,’input’,’service’,[0 10]); getfis(a,’input’,1) //取得FIS的部分或全部属性
二、系统设计要求: 1、输入变量:偏差e、偏差变化率de;输出变量:u相应隶属度函数为:
2、规则要求:
3、反模糊化方法:平均最大隶属度函数法mom。
②函数showrule
格式:showrule(fis) showrule(fis,indexlist) showrule(fis,indexlist,format) 说明:fis为模糊推理系统矩阵变量的名称;indexlist为 规则编号,可以以向量形式指定显示多条规则; format为显示方式,有三种显示方式,即语句方式 (verbose),符号方式(symbolic)和索引方式 (indexed)。 例:showrule(a,1:2,’indexed’) 输出结果:1 1,1(1):1
例:fis=readfis(‘tipper’);
out=evalfis([2 1; 4 9],fis) 输出结果:out=7.0169
19.6810
2.3.2 、MATLAB模糊控制设计实例1
(用图形交互工具箱)
一、设计目的:了解用MATLAB模糊工具箱的图形界面可视化工具实 现模糊控制系统的方法。
在rulelist的每一行中,前m个数字表示各输入语言 变量的语言值(隶属度函数的编号),随后的n个数字表 示输出语言变量的语言值,第n+m+1个数字是该规则的 权重,权重的值在0到1之间,一般设定为1;第n+m+2 个数字为0或1两者之一,为1表示模糊规则各输入语言 变量之间是and关系,为0则表示是or关系。
4. 逆模糊化计算(Defuzzification)
centroid(重心法) bisector(面积平分法) lom(最大隶属度函数中的取最大值法) som(最大隶属度函数中的取最小值法)
mom(平均最大隶属度法)
⑵ 在命令窗口键 入mfedit可激活隶 属度函数编辑器
二、命令函数
1、隶属度函数 ①函数trimf(仅介绍该函数) 功能:建立三角形隶属度函数。 格式:y=trimf(x,[a b c])
相关文档
最新文档