二极管三极管的开关特性基本逻辑门电路.PPT
三极管和二极管组成的逻辑门电路
三极管和二极管组成的逻辑门电路鉴于简化电路的需要,整理了一套用三极管、二极管、电阻组成的逻辑门电路,可实现2输入或3输入的AND,OR,NAND,NOR,EXOR操作。
为了便于记忆,我们把上面的每个电路用一个符号来代替有了这套东西作为基础,我们可以进行下一步更深入的探讨,可以从做一个加法器入手。
一个简单的二进制加法如下:我们现在需要把它的结果分为两位,一个是加法位,一个是进位位。
分别如下进位位的逻辑跟逻辑与门一样,这就很好办了。
加法位跟或门逻辑较相似,除了右下角的0逻辑不一样。
也跟与非门较相似,除了左上角的0的逻辑不一样。
我们把它们组合下现在的输入输出情况如下:从结果中看出,可以把或门和与非门输出进行与门逻辑组合,就得到了我们的加法位的正确输出结果这种组合就叫做异或门。
现在我们加法的加法位和进位位都可以用电路来表示了,现在组合成的加法器如下:这种组合就满足了我们对一位二进制的加法的需求,下面我们用下面这种简单的表达方式表达上面的加法器,比较简单明了:为什么叫半加器呢,因为目前位置它只能计算一位的加法,而大多数情况下,我们需要计算多位的二进制加法,它现在还不成熟。
多位加法中,除了第一位,后面每一位的加法都可能跟前面1位的的进1数进行相加。
因此除了计算它本身的加法外,还要跟进位进行相加。
我们现在把逻辑组合如下现在我们可以得出一个完整的二进制加法中任意一位的逻辑了。
既然它成熟了,我们可以把它叫做全加器了。
如下:一个全加器就完成了。
每个全加器的进位输出都是都是后面一位的进位输入,一个串一个,第一个加法的进位输入为0.最后一个进位输出,判断有没溢出。
以8位为单位,我们也可以做16位加法,只要两个8位相连就可以了。
有了加法器,后面就可以考虑考虑设计一下寄存器了。
三极管, 二极管, 逻辑门电路。
电子技术4第9章基本门电路
2020/2/16
15
第 9 章 基本门电路
9.2.2 常用基本逻辑门电路及其符号
1.与门
与门的逻辑关系为 F=ABC
与门符号如图
特点:见0出0,全1才出1。
(a)为新国家标准 (GB312.12)符号;
(b)以前国内常用符号 (SJ1223-77标准);
3. 光电耦合器4N25的接口电路
2020/2/16
39
第 9 章 基本门电路
9.4 集成电路使用中的实际问题
主要要求:
了解各类集成电路的主要参数 掌握集成电路的主要特性
2020/2/16
9
2020/2/16
第 9 章 基本门电路
2. 晶体管的动态特性
tOff=ts+tf tOn=td+tr
三极管从饱和到截止和从截 止到饱和都需要时间。
三极管从截止到饱和的时间 为开通时间,用ton表示;
从饱和到截止时间为关断时 间,用toff表示。
动态过程如图9.1.7
三极管的开通时间和关断时 间一般在纳秒(ns)数量级, 通常toff〉ton,ts〉tf
3)三态门的应用:
有4个设备A,B,C,D共用一条数据线,任意时刻,只要其中一个设备的控 制信号为1,其他的控制信号为0(低电平控制的三态门,此时可使其他设备与 总线间呈高阻态),则该设备的输出送入总线。
2020/2/16
28
第 9 章 基本门电路
利用三态门也可实现双向信息的传输控制,如图所示:
它有两个控制端, EIN/EOUT 当EIN=1且EOUT=0时, 信号由B1→ B2 ; 当EIN=0且EOUT=1时, 信号由B2→ B1 ; 当EIN=0且EOUT=0时, B2 和 B1间为高阻。 EIN与EOUT不能同时为1。
门电路
门电路
EXIT
门电路
a)RI很小时,RI两端的电 压很小,此时相当于输入端
输入低电平。则T2管截止。
U RI
RI (VCC U BE ) RI R1
RI (VCC U BE ) R1
RI增大, RI两端的电压增大。
使vi=0.7V时的RI称为关门电阻, 记为ROFF。
EXIT
门电路
低电平 1
正逻辑体制
负逻辑体制
EXIT
门电路
2.2二极管和三极管的开关特性
主要要求:
理解二极管、三极管的开关特性。 掌握二极管、三极管开关工作的条件。
EXIT
门电路
2.2.1 半导体二极管的开关特性
ui/V uo/V
逻辑电平
0 0.7 0.3 1
3 3.7 55
真值表 ui uo
00 11
二极管开关电路
t
EXIT
门电路
三、抗饱和三极管简介
C
C
SBD
B
B
E
E
抗饱和三极管的开关速度高
① 没有电荷存储效应 ② S在BD普的通导三通极电管压的只基有极0和.4 V集而电非极之0.7间V并, 接一因个此肖特UB基C =势0垒.4二V 极时管,(S简BD称便S导BD通),。使
UBC 钳在 0.4 V 上,降低了饱和深度。
EXIT
2.2.2半导体三极管的开关特性门电路
一、三极管的开关作用及其条件
iC 临界饱和线 放大区
uI=UIL
+ uBE
三怎极样管控为制什它么饱和I的能C(sMa开用t) T和作关开S ?关?Q
-
区
O UCE(sat)
数字电路 第二章门电路
DA
DB B
DC
Y
C
R
–5v
第2章 2.2
由以上分析可知: 只有当A、B、C全为 低电平时,输出端才 为低电平。正好符合
或门的逻辑关系。
A
B C
>1
Y
Y= A+B+C
三、 非门电路
第2章 2.2
RA A
RB
+5V
Rc uY=0.3V 设 uA= 3.6V,T饱和导通
• Y
uY= 0.3V
T
Y= 0
3. CMOS与非门
TP1 与TP2并联,TN1 与TN2串联;
当AB都是高电平时TN1 与TN2
TP2
同时导通TP1 与TP2同时截止;
输出Y为低电平。
当AB中有一个是低电平时, B
TN1 与TN2中有一个截止,
TP1 与TP2中有一个导通, 输出Y为高电平。
A
第2章 2. 3
+VDD
TP1 Y
正逻辑:L=0,H=1 ; 负逻辑:H=0,L=1 。
2. 1 半导体二极管、三极管和 MOS管的开关特性
一、理想开关的开关特性: 1 .静态特性 2. 动态特性
二、半导体二极管的开关特性 1.静态特性:
半导体二极管的结构示意图、符号和伏安 特性
一、二极管等效模型
(b)为理想二极管+恒压源模型 (c)为理想二极管模型
当D、S间加上正 向电压后可产生 漏极电流ID 。
第2章 2. 1
UDS
。
S UGS G
D ID
N++
NN++
N型导电沟道
耗尽层
第2章半导体二极管、三极管和MOS管的开关特性培训讲学
0.3V
2.1.4 MOS管的开关特性
输入特性和输出特性:
输入特性:直流电流为0,看进去有一个输入电容CI,对动 态有影响。 输出特性:iD = f (VDS) 对应不同的VGS下得一族曲线 。
(a) 符号
(b) 漏极特性
漏极特性曲线(分三个区域)
① 截止区:VGS<VGS(th),iD = 0, ROFF > 109Ω
工作状态 条件
偏置情况
工
作 集电极电流
特
点
ce 间电压
ce 间等效电阻
截止 iB=0 发射结反偏 集电结反偏 uBE<0,uBC<0 iC=0
uCE=VCC
很大, 相当开关断开
放大 0<iB<IBS 发射结正偏 集电结反偏 uBE>0,uBC<0
iC=βiB
uCE=VCC- iCRc
可变
饱和
iB>IBS 发射结正偏 集电结正偏 uBE>0,uBC>0
+VCC Rc iC
Rb b c uo
ui
iB
e
iB(μA)
iC (mA) 直流负载线
VCC Q2 Rc
饱 和 区
放
Q
大
区
80μA 60μA 40μA 20μA Q1 iB=0
工作原理电路
0 0.5 uBE(V)
输入特性曲线
0 UCES
VCC uCE(V)
截止区
输出特性曲线
NPN 型三极管截止、放大、饱和 3 种工作状态的特点
2.1.2 半导体二极管的开关特性 高电平:VIH=VCC 低电平:VIL=0
• VI=VIH D截止,VO=VOH=VCC
数字电子技术逻辑门电路课件
数字电子技术-逻辑门电路
二极管与门/或门电路的缺点
(1)在多个门串接使用时,会出现低电平偏离标准数值 的情况。 (2)负载能力差。
+VCC(+5V)
R 3kΩ
D1
0V
D2
5V
D1
p
5V
D2
0.7V
+VCC(+5V) R 3kΩ
L
RL
1.4V
数字电子技术-逻辑门电路
解决办法:
将二极管与门(或门)电路和三极管非门电路组 合起来。
1
3
2T 3
Hale Waihona Puke R e21kΩ输入级
中间级
输出级
数字电子技术-逻辑门电路
TTL与非门的逻辑关系分析
1、输入全为高电平3.6V时。
T2、T3饱和导通, 由于T2饱和导通,VC2=1V。
由于T3饱和导通,输出电压为: VO=VCES3≈0.3V
T4和二极管D都截止。
实现了与非门的逻 辑功能之一: 输入全为高电平时, 输出为低电平。 A
管相当于一个闭合的开关。
D
K
V
F
IF
RL
V
F
IF
RL
数字电子技术-逻辑门电路
半导体二极管的理想开关特性
(2)加反向电压VR时,二极管截止,反向电流IS可忽略。二
极管相当于一个断开的开关。
D
K
V
R
IS
RL
V
R
RL
iD
理想二极管 伏安特性
uD
0V
数字电子技术-逻辑门电路
半导体二极管的实际开关特性
实际的硅二极管正向导通时,存在 一个0.7V的门槛电压(锗二极管为 0.3V),其伏安特性曲线为:
门电路.v.ppt
一、电路结构
vI=VIL=0
|vGS1|=VDD>|VGS(th)P| T1导通
vGS2=0<VGS(th)N
T2截止
vO=VDD
vI=VIH=VDD
vGS1=0<|VGS(th)P|
T1截止
vGS2=VDD>VGS(th)N
T2导通
vO=0
实现反相器的逻辑功能
2.6.1 CMOS反相器的工作原理
vI VEE R1 R2
R1
5 5 (8) 3.3 3.3 10
1.8V
VBE=1.8V>VON,T导通
2.3.3 三极管非门
A=1(VI=3V)
iB
vI vB ຫໍສະໝຸດ 1vB VBE R2
5 0.7 0.7 (8)
3.3
10
0.43mA
tPLH:输出低电平高电 平的传输延迟时间。
tPHL:输出高电平低电 平的传输延迟时间。
tPLH≥tPHL tPD为两者的平均值
2.4.3 TTL反相器的动态特性
二、交流噪声容限
正脉冲噪声容限:输出高电平降至2.0V时输入正脉冲的 幅度。
负脉冲噪声容限:输出低电平上升至0.8V时输入负脉冲 的幅度。
i VCC VD RL RD
VCC
(1
VD VCC
)
RL
(1
RD RL
)
VCC VD RL
2.2.1 半导体二极管的开关特性
反向截止
i≈0,仅有少量漏电流
动态特性
正向:延迟 反向:相对较大的反向
电流
数字电子技术基础ppt课件
R
vo K合------vo=0, 输出低电平
vi
K
只要能判
可用三极管 代替
断高低电 平即可
在数字电路中,一般用高电平代表1、低 电平代表0,即所谓的正逻辑系统。
2.2.2 二极管与门
VCC
A
D1
FY
B
D2
二极管与门
A
B
【 】 内容 回顾
AB Y 00 0 01 0 100 11 1
&
Y
2.2.2 二极管或门
一般TTL门的扇出系数为10。
三、输入端负载特性
输入端 “1”,“0”?
A
ui
RP
R1 b1
c1
T1
D1
•
R2
•
T2
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
简化电路
R1
VCC
ui
A ui
T1
be
RP
2
be 0
RP
5
RP较小时
ui
RP RP R1
(Vcc Von )
当RP<<R1时, ui ∝ RP
•
R4
T4 D2
•
Y
T5
•
TTL非门的内部结构
•
R1
R2
A
b1 c1
T1
•
T2
D1
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
前级输出为 高电平时
•
R2
R4
VCC
T4 D2
数电-第三章 门电路
三、门电路概述 • 工艺分类 –双极型门电路 双极型门电路 – MOS门电路 门电路 – Bi-CMOS电路 电路 • 基本逻辑门电路 –与门、或门、非门 与门、或门、 与门 • 常用门电路 –与门、或门、非门 与门、 与门 或门、 –与非门、或非门、与或非门、同或、异或 与非门、 与非门 或非门、与或非门、同或、
A B ≥1 L=A+B
逻辑电平关系 正逻辑
真值表
VD1 A VD2 B R Y
A/V B/V Y/V
0 0 3 3 0 3 0 3 0 2.3 2.3 2.3
A B
0 0 1 1 0 1 0 1
Y
0 1 1 1
只有A、B同时为低电平(0V),Y才为低电平 (0V)。即:只有A+B=0,才有Y=0。 只要A、B中有一个为高电平(3V),Y就为高电 平(2.3V),即:只要A+B=1,则Y=1。 这种或门电路同样存在“电平偏离” 这种或门电路同样存在“电平偏离”和带载能力差的问 题
四、二极管或门 或门
VD1 A
Y 2.7V 0V
3V 0V A、B——输入,Y——输出 VD2 B 以A=1为例 设:UIH=3V, UIL=0V 0V 二极管正向导通压降 UDF=0.7V。
R
只要A、B中有一个为高电平(3V), 则相应的二极管导通, Y就为低电平(2.3V),即:只要A+B=1,则Y=1。 只有A、B同时为低电平(0V),两个二极管均截止。 Y才为低电平(0V),即:只有A+B=0,才有Y=0 所以:管的截止条件和等效电路 当输入信号uI=UIL=0.3V时(UBE=0.3V<0.5V) i 三极管截止,B=0, iC ≈ 0, uO=UOH=UCC 可靠截止条件为:UBE<0V 截止时,iB、iC都很小,三个极均可看作开路
半导体二极管和三极管的开关特性
第2章 逻辑门电路 章
②ui=0.3V时,因为 BE<0.5V,iB=0, 时 因为u , , 三极管工作在截止状态, 三极管工作在截止状态,ic=0。因 。 为ic=0,所以输出电压: ,所以输出电压:
uo=VCC=5V
③ui=3V时,基极电流: 时 基极电流:
u i − u BE 1 − 0 .7 iB = mA = 0.03 mA = Rb 10
T4 , D3 导通
T1
Y 3.6V
R 3 1k
T2,T5截 止
2012年4月9日星期一 年 月 日星期一
回首页
12
第2章 逻辑门电路 章
2. 两个输入端都输入高电平 两个输入端都输入高电平
+5V R4 130Ω T4 D3 T5 R 3 1k 0.7V
T2饱和 饱和, T5深度饱和 T3,T4 截止
RL
+ uo -
D + + ui =0V RL uo - - ui =0V 时的等效电路
ui=0V时,二极管截止,如 时 二极管截止, 同开关断开, 同开关断开,uo=0V。 。
2012年4月9日星期一 年 月 日星期一
+ uo -
ui =5V 时的等效电路
ui=5V时,二极管导通,如同 时 二极管导通,如同0.7V 的电压源, 的电压源,uo=4.3V。 。
+VCC(+5V) Y
A B D1 D2 R1 3kΩ b1 D3 c1
TTL 与非门电路
T1 的等效电路
A B
2012年4月9日星期一 年 月 日星期一
&
Y
回首页
11
第2章 逻辑门电路 章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.09.2020
13
2. 三极管的开关时间(动态特性)
延迟时间td
上升时间tr 开启时间ton
18.09.2020
图2-5 三极管的开关时间
存储时间ts 下降时间tf 关闭时间14toff
(1) 开启时间ton 三极管从截止到饱和所需的时间。
ton = td +tr td :延迟时间 tr :上升时间
7
开启电压
图2-1 二极管的伏安特性曲线
理想化 伏安特 性曲线
图2-2 二极管的开关等效电路
(a) 导通时 (b) 截止时
18.09.2020
8
2. 动态特性:
二极管从截止变为导通和从导通变为截止都需 要一定的时间。通常后者所需的时间长得多。
反向恢复时间tre :二极管从导通到截止所需的时 间。
一般为纳秒数量级(通常tre ≤5ns )。
若输入信号频率过高,二极管会双向导通,失去 单向导电作用。因此高频应用时需考虑此参数。
18.09.2020
9
2.1.2 三极管的开关特性
1. 静态特性及开关等效电路 在数字电路中,三极管作为开关元件,主要工
作在饱和和截止两种开关状态,放大区只是极短暂 的过渡状态。
1. 电路
2. 工作原理
A、B为输入信号 (+3V或0V)
F 为输出信号 VCC=+12V
表2-1 电路输入与输出电压的关系
18.09.2020
A
B
F
0V
0V 0.7V
0V
3V 0.7V
3V
0V 0.7V
3V
3V 3.7V
17
3. 逻辑赋值并规定高低电平
用逻辑1表示高电平(此例为≥+3V) 用逻辑0表示低电平(此例为≤0.7V)
1
复习
请回忆实现与、或、非逻辑的开关电路形式? 它们有何共同特点? 开关电路与逻辑电路是管及三极管的开关特性
数字电路中的晶体二极管、三极管和MOS管工作 在开关状态。
导通状态:相当于开关闭合 截止状态:相当于开关断开。
逻辑变量←→两状态开关: 在逻辑代数中逻辑变量有两种取值:0和1; 电子开关有两种状态:闭合、断开。
4. 真值表
表2-2 二极管与门的真值表
A
B
F
0V
0V 0.7V
0V
3V 0.7V
3V
0V 0.7V
3V
3V 3.7V
A
BF
0
00
0
10
1
00
1
11
18.09.2020
A、B全1, F才为1。
可见实现了与逻辑
18
5. 逻辑符号
6. 工作波形(又一种表示逻辑功能的方法)
7. 逻辑表达式
F=A B
图2-6 二极管与门
半导体二极管、三极管和MOS管,则是构成这 种电子开关的基本开关元件。
18.09.2020
3
理想开关的开关特性:
(1) 静态特性: 断开时,开关两端的电压不管多大,等效电阻 ROFF = 无穷,电流IOFF = 0。
闭合时,流过其中的电流不管多大,等效电阻 RON = 0,电压UAK = 0。
(2) 动态特性:开通时间 ton = 0 关断时间 toff = 0
分立元件门电路和集成门电路:
分立元件门电路:用分立的元件和导线连接起
来构成的门电路。简单、经济、功耗低,负载差。
集成门电路:把构成门电路的元器件和连线都
制作在一块半导体芯片上,再封装起来,便构成了
集成门电路。现在使用最多的是CMOS和TTL集成门
电路。 18.09.2020
16
2.2.1 二极管与门电路
用逻辑1表示高电平(此例为≥+2.3V) 用逻辑0表示低电平(此例为≤0V)
4. 真值表
表2-2 二极管或门的真值表
A
B
F
0V
0V 0V
0V
3V 2.3V
3V
0V 2.3V
3V
3V 2.3V
A BF 0 00 0 11 1 01 1 11
A、B有1,F就1。
18.09.2020
可见实现了或逻辑
21
5. 逻辑符号 6. 工作波形 7. 逻辑表达式
图2-3三极管的三种工作状态
18.09.2020
(a)电路 (b)输出特性曲线
10
(1) 截止状态
条件:发射结反偏 特点:电流约为0
18.09.2020
开关等效电路
11
(2)饱和状态
条件:发射结正偏,集电结正偏 特点:UBES=0.7V,UCES=0.3V/硅
18.09.2020
12
图2-4 三极管开关等效电路 (a) 截止时 (b) 饱和时
F=A+ B
图2-7 二极管或门
(2) 关闭时间toff 三极管从饱和到截止所需的时间。
toff = ts +tf ts :存储时间(几个参数中最长的;饱和越深越长) tf :下降时间
toff > ton 。 开关时间一般在纳秒数量级。高频应用时需考虑。
18.09.2020
15
2.2 基本逻辑门电路
门电路的概念: 实现基本和常用逻辑运算的电子电路,叫逻辑 门电路。实现与运算的叫与门,实现或运算的叫或 门,实现非运算的叫非门,也叫做反相器,等等。
18.09.2020
4
客观世界中,没有理想开关。 乒乓开关、继电器、接触器等的静态特性十分 接近理想开关,但动态特性很差,无法满足数字电 路一秒钟开关几百万次乃至数千万次的需要。 半导体二极管、三极管和MOS管做为开关使用 时,其静态特性不如机械开关,但动态特性很好。
18.09.2020
5
2.1.1 二极管的开关特性
1. 静态特性及开关等效电路 正向导通时 UD(ON)≈0.7V(硅) 0.3V(锗) RD≈几Ω ~几十Ω 相当于开关闭合
图2-1 二极管的伏安特性曲线
18.09.2020
6
反向截止时 反向饱和电流极小 反向电阻很大(约几百kΩ) 相当于开关断开
18.09.2020
图2-1 二极管的伏安特性曲线
结束
第2章 逻辑门电路
放映 2.1 二极管及三极管的开关特性
2.1.1 二极管的开关特性
2.1.2 三极管的开关特性
2.2 基本逻辑门电路
2.2.1 二极管与门
2.2.2 二极管或门
2.2.3 关于高低电平的概念及状态赋值
2.2.4 二极管非门(反相器)
2.2.5 关于正逻辑和负逻辑的概念
18.09.2020
18.09.2020 (a)电路 (b)逻辑符号 (c)工作波形
19
2.2.2 二极管或门电路
1. 电路
2. 工作原理
A、B为输入信号(+3V或0V) F 为输出信号
18.09.2020
电路输入与输出电压的关系
A
B
F
0V
0V 0V
0V
3V 2.3V
3V
0V 2.3V
3V
3V 2.3V
20
3. 逻辑赋值并规定高低电平