人教版中考数学压轴题提高题学能测试

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、中考数学压轴题

1.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .

(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.

2.我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点M 、N 在x 轴和y 轴上所对应的数分别叫做P 点的x 坐标和y 坐标,有序实数对(x ,y )称为点P 的斜坐标,记为P (x ,y )

(1)如图2,ω=45°,矩形OABC 中的一边OA 在x 轴上,BC 与y 轴交于点D , OA =2,OC =1.

①点A 、B 、C 在此斜坐标系内的坐标分别为A ,B ,C .

②设点P (x ,y )在经过O 、B 两点的直线上,则y 与x 之间满足的关系为 .

③设点Q (x ,y )在经过A 、D 两点的直线上,则y 与x 之间满足的关系为 . (2)若ω=120°,O 为坐标原点.

①如图3,圆M 与y 轴相切原点O ,被x 轴截得的弦长OA =23,求圆M 的半径及圆心M 的斜坐标.

②如图4,圆M 的圆心斜坐标为M (23,23),若圆上恰有两个点到y 轴的距离为1,则圆M 的半径r 的取值范围是 .

3.如图,在梯形ABCD 中,AD//BC ,AB=CD=AD=5,cos 45B =

,点O 是边BC 上的动点,以OB 为半径的O 与射线BA 和边BC 分别交于点E 和点M ,联结AM ,作

∠CMN=∠BAM ,射线MN 与边AD 、射线CD 分别交于点F 、N .

(1)当点E 为边AB 的中点时,求DF 的长;

(2)分别联结AN 、MD ,当AN//MD 时,求MN 的长;

(3)将O 绕着点M 旋转180°得到'O ,如果以点N 为圆心的N 与'O 都内切,求O 的半径长.

4.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .

(1)求证:EDO EAO ∆≅∆;

(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;

(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.

5.如图1,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,连接AC 、BC ,已知点A 、C 的坐标为()2,0A -、()0,6C -.

(1)求抛物线的表达式;

(2)点P 是线段BC 下方抛物线上的一动点,如果在x 轴上存在点Q ,使得以点B 、C 、P 、Q 为顶点的四边形为平行四边形,求点Q 的坐标;

(3)如图2,若点M 是AOC △内一动点,且满足AM AO =,过点M 作MN OA ⊥,垂足为N ,设AMN 的内心为I ,试求CI 的最小值.

6.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C .

(1)求抛物线的解析式;

(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32

MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.

7.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系

(1)如图1,点C(1,0),D(-1,0),E(03,点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .

①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;

(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段FG 与⊙O 满足限距关系,求b 的取值范围;

(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.

8.如图,在平面直角坐标系xoy 中,直线122

y x =-

+与x 轴交于点B ,与y 轴交于点,C 抛物线2y ax bx c =++的对称轴是直线3,2

x =与x 轴的交点为点,A 且经过点B C 、两点.

(1)求抛物线的解析式;

(2)点M 为抛物线对称轴上一动点,当BM CM -的值最小时,请你求出点M 的坐标;

(3)抛物线上是否存在点N ,过点N 作NH x ⊥轴于点,H 使得以点、、B N H 为顶点的三角形与ABC 相似?若存在,请直接写出点N 的坐标;若不存在,请说明理由.

9.附加题:在平面直角坐标系中,抛物线21y ax a =-

与y 轴交于点A ,点A 关于x 轴的对称点为点B ,

(1)求抛物线的对称轴;

(2)求点B 坐标(用含a 的式子表示);

(3)已知点11,P a ⎛⎫ ⎪⎝⎭

,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,

相关文档
最新文档