信号与系统(英文)chapter 1-信号与系统

合集下载

信号与系统英文版奥本海姆

信号与系统英文版奥本海姆

信号与系统英文版奥本海姆
《信号与系统》(第二版)是由美国国家工程院院士、教授奥本海姆(Alan V. Oppenheim)所著,由电子工业出版社出版。

该书是美国麻省理工学院的经典教材之一,主要讲述了线性系统的基本理论、信号与系统的基本概念、线性时不变系统、连续采样、通信和反馈系统中的实例、连续系统、离散系统、时域系统和频域系统的分析方法等内容。

全书共分十一章,除保留原书结构新颖、选材得当、论述严谨、条理清晰等特色外,在某些方面更有所加强。

奥本海姆教授因其出色的研究和教学工作多次获奖,其中包括1988年IEEE教育勋章、IEEE成立百年杰出贡献奖、IEEE在声学、语音和信号处理领域的社会与技术成就奖等。

他是本领域中的权威专家,在国际上享有盛名。

信号与系统奥本海姆英文版课后答案chapter

信号与系统奥本海姆英文版课后答案chapter

Chapter 1 Answers1.1 Converting from polar to Cartesian coordinates: 1.2 converting from Cartesian to polar coordinates:55j=, 22j e π-=,233jj eπ--=212je π--=, 41j j π+=, ()2221jj eπ-=-4(1)j j eπ-=, 411j jeπ+=- 12e π-= 1.3. (a) E ∞=4014tdt e∞-=⎰, P ∞=0, because E ∞<∞ (b) (2)42()j t t x eπ+=, 2()1t x =.Therefore, E ∞=22()dt t x +∞-∞⎰=dt +∞-∞⎰=∞,P ∞=211limlim222()TTTTT T dt dt TTt x --→∞→∞==⎰⎰lim11T →∞=(c) 2()t x =cos(t). Therefore, E∞=23()dt t x +∞-∞⎰=2cos()dt t +∞-∞⎰=∞,P ∞=2111(2)1lim lim 2222cos()TTTT T T COS t dt dt T Tt --→∞→∞+==⎰⎰(d)1[][]12nn u n x =⎛⎫⎪⎝⎭,2[]11[]4nu n n x =⎛⎫ ⎪⎝⎭. Therefore, E ∞=24131[]4nn n x +∞∞-∞===⎛⎫∑∑⎪⎝⎭P ∞=0,because E ∞<∞. (e) 2[]n x =()28n j e ππ-+, 22[]n x =1. therefore, E ∞=22[]n x +∞-∞∑=∞,P ∞=211limlim1122121[]NNN N n Nn NN N n x →∞→∞=-=-==++∑∑.(f) 3[]n x =cos 4nπ⎛⎫ ⎪⎝⎭. Therefore, E ∞=23[]n x +∞-∞∑=2cos()4n π+∞-∞∑=2cos()4n π+∞-∞∑,P ∞=1limcos 214nNN n NN π→∞=-=+⎛⎫∑ ⎪⎝⎭1cos()112lim ()2122NN n Nn N π→∞=-+=+∑ 1.4. (a) The signal x[n] is shifted by 3 to the right. The shifted signal will be zero for n<1, And n>7. (b) The signal x[n] is shifted by 4 to the left. The shifted signal will be zero for n<-6. And n>0. (c) The signal x[n] is flipped signal will be zero for n<-1 and n>2.(d) The signal x[n] is flipped and the flipped signal is shifted by 2 to the right. The new Signal will be zero for n<-2 and n>4.(e) The signal x[n] is flipped and the flipped and the flipped signal is shifted by 2 to the left. This new signal will be zero for n<-6 and n>0.1.5. (a) x(1-t) is obtained by flipping x(t) and shifting the flipped signal by 1 to the right. Therefore, x (1-t) will be zero for t>-2. (b) From (a), we know that x(1-t) is zero for t>-2. Similarly, x(2-t) is zero for t>-1, Therefore, x (1-t) +x(2-t) will be zero for t>-2. (c) x(3t) is obtained by linearly compression x(t) by a factor of3. Therefore, x(3t) will be zero for t<1. (d) x(t/3) is obtained by linearly compression x(t) by a factor of 3. Therefore, x(3t) will be zero for t<9.1.6 (a) x 1(t ) is not periodic because it is zero for t<0. (b) x 2[n ]=1 for all n. Therefore, it is periodic with a fundamental period of 1. (c) x 3[n1.7. (a)v ε[4])n --Therefore,()1[]vn xεis zero for 1[]n x >3. (b) Since x 1(t ) is an odd signal, ()2[]vn x εis zero for all values of t.(c) (){}11311[][][][3][3]221122v nnn n n u n u n x x x ε-⎡⎤⎢⎥=+-=----⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭Therefore, ()3[]vn x εis zero whenn <3 and when n →∞.(d)()1554411()(()())(2)(2)22vttt t t u t u t x x x ee ε-⎡⎤=+-=---+⎣⎦Therefore,()4()vt x εis zero only whent →∞.1.8. (a) ()01{()}22cos(0)tt t x eπℜ=-=+l (b) ()02{()}cos()cos(32)cos(3)cos(30)4t t t t t x e ππℜ+==+l(c) ()3{()}sin(3)sin(32t t t t t x e e ππ--ℜ=+=+l(d) ()224{()}sin(100)sin(100)cos(1002t t t t t t t x e e e ππ---ℜ=-=+=+l1.9. (a) 1()t xis a periodic complex exponential.(b) 2()t x is a complex exponential multiplied by a decaying exponential. Therefore,2()t x is not periodic.(c )3[]n x is a periodic signal. 3[]n x =7j n e π=j n e π.3[]n x is a complex exponential with a fundamental period of22ππ=. (d) 4[]n x is a periodic signal. The fundamental period is given by N=m(23/5ππ)=10().3m By choosing m=3. We obtain the fundamental period to be 10.(e) 5[]n x is not periodic. 5[]n x is a complex exponential with 0w =3/5. We cannot find any integer msuch that m(02wπ ) is also an integer. Therefore, 5[]n xis not periodic.1.10. x (t )=2cos(10t +1)-sin(4t-1)Period of first term in the RHS =2105ππ=.Period of first term in the RHS =242ππ= .Therefore, the overall signal is periodic with a period which the least commonmultiple of the periods of the first and second terms. This is equal to π . 1.11.x[n] = 1+74j n e π?25j n e πPeriod of first term in the RHS =1. Period of second term in the RHS =⎪⎭⎫ ⎝⎛7/42π=7 (when m=2)Period of second term in the RHS =⎪⎭⎫ ⎝⎛5/22ππ=5 (when m=1)Therefore, the overall signal x[n] is periodic with a period which is the least common Multiple of the periods of the three terms inn x[n].This is equal to 35.1.12. The signal x[n] is as shown in figure S1.12. x[n] can be obtained by flipping u[n] and thenShifting the flipped signal by 3 to the right. Therefore, x[n]=u[-n+3]. This implies that 1.13y (t)= ⎰∞-tdt x )(τ =dt t))2()2((--+⎰∞-τδτδ=⎪⎩⎪⎨⎧>≤≤--<2,022,12,0,t t tTherefore ⎰-==∞224dt E=2x 1[n-2]+ 5x 1[n-3] + 2x 1[n-4] The input-output relationship for S isy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4](b) The input-output relationship does not change if the order in which S 1and S 2 are connected series reversed. . We can easily prove this assuming that S 1 follows S 2. In this case , the signal x 1[n], which is the input to S 1 is the same as y 2[n].Therefore y 1[n] =2x 1[n]+ 4x 1[n-1]= 2y 2[n]+4 y 2[n-1]=2( x 2[n-2]+21 x 2[n-3] )+4(x 2[n-3]+21x 2[n-4]) =2 x 2[n-2]+5x 2[n-3]+ 2 x 2[n-4]The input-output relationship for S is once againy[n]=2x[n-2]+ 5x [n-3] + 2x [n-4]1.16 (a)The system is not memory less because y[n] depends on past values of x[n].(b)The output of the system will be y[n]= ]2[][-n n δδ=0(c)From the result of part (b), we may conclude that the system output is always zero for inputs of the form ][k n -δ, k ∈ ?. Therefore , the system is not invertible .1.17 (a) The system is not causal because the output y(t) at some time may depend on future values of x(t). For instance , y(-π)=x(0).(b) Consider two arbitrary inputs x 1(t)and x 2(t).x 1(t) →y 1(t)= x 1(sin(t)) x 2(t) → y 2(t)= x 2(sin(t))Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is , x 3(t)=a x 1(t)+b x 2(t)Where a and b are arbitrary scalars .If x 3(t) is the input to the given system ,then the corresponding output y 3(t) is y 3(t)= x 3( sin(t))=a x 1(sin(t))+ x 2(sin(t))=a y 1(t)+ by 2(t)Therefore , the system is linear.1.18.(a) Consider two arbitrary inputs x 1[n]and x 2[n].x 1[n] → y 1[n] =][001k x n n n n k ∑+-=x 2[n ] → y 2[n] =][02k x n n n n k ∑+-=Let x 3[n] be a linear combination of x 1[n] and x 2[n]. That is :x 3[n]= ax 1[n]+b x 2[n]where a and b are arbitrary scalars. If x 3[n] is the input to the given system, then the corresponding outputy 3[n] is y 3[n]=][03k x n n n n k ∑+-==])[][(2100k bx k ax n n n n k +∑+-==a ][001k x n n n n k ∑+-=+b ][02k x n n n n k ∑+-== ay 1[n]+b y 2[n]Therefore the system is linear.(b) Consider an arbitrary input x 1[n].Lety 1[n] =][01k x n n n n k ∑+-=be the corresponding output .Consider a second input x 2[n] obtained by shifting x 1[n] in time:x 2[n]= x 1[n-n 1]The output corresponding to this input isy 2[n]=][02k x n n n n k ∑+-== ]n [1100-∑+-=k x n n n n k = ][01011k x n n n n n n k ∑+---=Also note that y 1[n- n 1]=][01011k x n n n n n n k ∑+---=.Therefore , y 2[n]= y 1[n- n 1] This implies that the system is time-invariant.(c) If ][n x <B, then y[n]≤(2 n 0+1)B. Therefore ,C ≤(2 n 0+1)B.1.19 (a) (i) Consider two arbitrary inputs x 1(t) and x 2(t). x 1(t) → y 1(t)= t 2x 1(t-1)x 2(t) → y 2(t)= t 2x 2(t-1)Let x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= t 2x 3 (t-1)= t 2(ax 1(t-1)+b x 2(t-1))= ay 1(t)+b y 2(t)Therefore , the system is linear.(ii) Consider an arbitrary inputs x 1(t).Let y 1(t)= t 2x 1(t-1)be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input is y2(t)= t2x2(t-1)= t2x1(t- 1- t)Also note that y1(t-t)= (t-t)2x1(t- 1- t)≠y2(t)Therefore the system is not time-invariant.(b) (i) Consider two arbitrary inputs x1[n]and x2[n]. x1[n] →y1[n] = x12[n-2]x2[n ] →y2[n] = x22[n-2].Let x3(t) be a linear combination of x1[n]and x2[n].That is x3[n]= ax1[n]+b x2[n]where a and b are arbitrary scalars. If x3[n] is the input to the given system, then the corresponding outputy3[n] is y3[n] = x32[n-2]=(a x1[n-2] +b x2[n-2])2=a2x12[n-2]+b2x22[n-2]+2ab x1[n-2] x2[n-2] ≠ay1[n]+b y2[n]Therefore the system is not linear.(ii) Consider an arbitrary input x1[n]. Let y1[n] = x12[n-2]be the corresponding output .Consider a second input x2[n] obtained by shifting x1[n] in time:x 2[n]= x1[n- n]The output corresponding to this input isy 2[n] = x22[n-2].= x12[n-2- n]Also note that y1[n- n]= x12[n-2- n]Therefore , y2[n]= y1[n- n]This implies that the system is time-invariant.(c) (i) Consider two arbitrary inputs x1[n]and x2[n].x 1[n] →y1[n] = x1[n+1]- x1[n-1]x2[n ]→y2[n] = x2[n+1 ]- x2[n -1]Let x3[n] be a linear combination of x1[n] and x2[n]. That is :x3[n]= ax1[n]+b x2[n]where a and b are arbitrary scalars. If x3[n] is the input to the given system, then thecorresponding output y3[n] is y3[n]= x3[n+1]- x3[n-1]=a x1[n+1]+b x2[n +1]-a x1[n-1]-b x2[n -1]=a(x1[n+1]- x1[n-1])+b(x2[n +1]- x2[n -1])= ay1[n]+b y2[n]Therefore the system is linear.(ii) Consider an arbitrary input x1[n].Let y1[n]= x1[n+1]- x1[n-1]be the corresponding output .Consider a second input x2[n] obtained by shifting x1[n] in time: x2[n]=x 1[n-n]The output corresponding to this input isy 2[n]= x2[n +1]- x2[n -1]= x1[n+1- n]- x1[n-1- n]Also note that y1[n-n]= x1[n+1- n]- x1[n-1- n]Therefore , y2[n]= y1[n-n]This implies that the system is time-invariant.(d) (i) Consider two arbitrary inputs x1(t) and x2(t).x 1(t) →y1(t)= dO{}(t)x1x 2(t) →y2(t)= {}(t)x2dOLet x 3(t) be a linear combination of x 1(t) and x 2(t).That is x 3(t)=a x 1(t)+b x 2(t)where a and b are arbitrary scalars. If x 3(t) is the input to the given system, then the corresponding output y 3(t) is y 3(t)= d O {}(t) x 3={}(t) x b +(t) ax 21d O=a d O {}(t) x 1+b {}(t) x 2d O = ay 1(t)+b y 2(t)Therefore the system is linear.(ii) Consider an arbitrary inputs x 1(t).Lety 1(t)= d O {}(t) x 1=2)(x -(t) x 11t -be the corresponding output .Consider a second input x 2(t) obtained by shifting x 1(t) in time:x 2(t)= x 1(t-t 0)The output corresponding to this input isy 2(t)= {}(t) x 2d O =2)(x -(t) x 22t -=2)(x -)t -(t x 0101t t --Also note that y 1(t-t 0)= 2)(x -)t -(t x 0101t t --≠ y 2(t)Therefore the system is not time-invariant. 1.20 (a) Givenx )(t =jt e 2 y(t)=tj e 3x )(t =jte2- y(t)=tj e3-Since the system liner+=tj et x 21(2/1)(jt e 2-) )(1t y =1/2(tj e3+tj e3-)Thereforex 1(t)=cos(2t))(1t y =cos(3t)(b) we know thatx 2(t)=cos(2(t-1/2))= (j e -jte 2+jejt e 2-)/2Using the linearity property, we may once again write x 1(t)=21( j e -jt e 2+j e jt e 2-))(1t y =(je-jt e 3+je jt e 3-)= cos(3t-1)Therefore,x 1(t)=cos(2(t-1/2)))(1t y =cos(3t-1)1.21.The signals are sketched in figure S1.21.(f) Not period.1.26 (a) periodic, period=7.(b) Not period.(c) periodic, period=8.(d) x[n]=(1/2)[cos(3πn/4+cos(πn/4)). periodic, period=8. (e) periodic, period=16. 1.27 (a) Linear, stable(b) Not period. (c) Linear(d) Linear, causal, stable(e) Time invariant, linear, causal, stable (f) Linear, stable(g) Time invariant, linear, causal 1.28 (a) Linear, stable(b) Time invariant, linear, causal, stable (c)Memoryless, linear, causal (d) Linear, stable (e) Linear, stable(f) Memoryless, linear, causal, stable (g) Linear, stable1.29 (a) Consider two inputs to the system such that[][][]{}111.S e x n y n x n −−→=ℜand [][][]{}221.Se x n y n x n −−→=ℜNow consider a third inputx 3[n]= x2[n]+x 1[n]. The corresponding system outputWill be [][]{}[][]{}[]{}[]{}[][]33121212e e e e y n x n x n x n x n x n y n y n ==+=+=+ℜℜℜℜtherefore, we may conclude that the system is additive Let us now assume that inputs to the system such that andNow consider a third input x 3 [n]= x 2 [n]+ x 1 [n]. The corresponding system output Will betherefore, we may conclude that the system is additive (b) (i) Consider two inputs to the system such that()()()()211111Sdx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦and ()()()()222211S dx t x t y t x t dt ⎡⎤−−→=⎢⎥⎣⎦Now consider a third inputx 3[t]= x2[t]+x 1[t]. The corresponding system outputWill betherefore, we may conclude that the system is not additiveNow consider a third input x 4 [t]= a x 1 [t]. The corresponding system output Will beTherefore, the system is homogeneous.(ii) This system is not additive. Consider the fowling example .Let δ[n]=2δ[n+2]+ 2δ[n+1]+2δ[n] andx2[n]=δ[n+1]+ 2δ[n+1]+ 3δ[n]. The corresponding outputs evaluated at n=0 areNow consider a third input x 3 [n]= x 2 [n]+ x 1 [n].= 3δ[n+2]+4δ[n+1]+5δ[n]The corresponding outputs evaluated at n=0 is y 3[0]=15/4. Gnarly, y 3[0]≠]0[][21y y n +.ThisTherefore, the system is homogenous.1.30 (a) Invertible. Inverse system y(t)=x(t+4)(b)Non invertible. The signals x(t) and x 1(t)=x(t)+2πgive the same output (c) δ[n] and 2δ[n] give the same output d) Invertible. Inverse system; y(t)=dx(t)/dt(e) Invertible. Inverse system y(n)=x(n+1) for n ≥0 and y[n]=x[n] for n<0 (f) Non invertible. x (n) and –x(n) give the same result (g)Invertible. Inverse system y(n)=x(1-n) (h) Invertible. Inverse system y(t)=dx(t)/dt(i) Invertible. Inverse system y(n) = x(n)-(1/2)x[n-1] (j) Non invertible. If x(t) is any constant, then y(t)=0 (k) δ[n] and 2δ[n] result in y[n]=0 (l) Invertible. Inverse system: y(t)=x(t/2)(m) Non invertible x 1 [n]= δ[n]+ δ[n-1]and x 2 [n]= δ[n] give y[n]= δ[n] (n) Invertible. Inverse system: y[n]=x[2n]1.31 (a) Note that x 2[t]= x 1 [t]- x 1 [t-2]. Therefore, using linearity we get y 2 (t)= y 1 (t)- y 1 (t-2).this is shown in Figure S1.31(b)Note that x3 (t)= x1 [t]+ x1 [t+1]. .Therefore, using linearity we get Y3 (t)= y1 (t)+ y1 (t+2). this is2220201.34. (a) ConsiderIf x[n] is odd, x[n] +x [-n] =0. Therefore, the given summation evaluates to zero. (b) Let y[n] =x 1[n]x 2[n] .Theny [-n] =x 1[-n] x 2[-n] =-x 1[n]x 2[n] =-y[n]. This implies that y[n] is odd.(c)ConsiderUsing the result of part (b), we know that x e [n]x o [n] is an odd signal .Therefore, using {}1[][0][][]n n x n x x n x n ∞∞=-∞==++-∑∑22[][]e o n n n n x x ∞∞=-∞=-∞=+∑∑222[][][]e on n n n n n x x x ∞∞∞=-∞=-∞=-∞==+∑∑∑the result of part (a) we may conclude thatTherefore,(d)ConsiderAgain, since x e (t) x o (t) is odd,Therefore,1.35. We want to find the smallest N 0 such that m(2π /N) N 0 =2πk or N 0 =kN/m,where k is an integer, then N must be a multiple of m/k and m/k must be an integer .this implies that m/k is a divisor of both m and N .Also, if we want the smallest possible N 0, then m/k should be the GCD of m and N. Therefore, N 0=N/gcd(m,N).1.36.(a)If x[n] is periodic 0(),0..2/j n N T o ewhere T ωωπ+= This implies that 022o T kNT k T T Nππ=⇒==a rational number . (b)T/T 0 =p/q then x[n] =2(/)j n p q e π,The fundamental period is q/gcd(p,q) and the fundmental frequencyis(c) p/gcd(p,q) periods of x(t) are needed .1.37.(a) From the definition of ().xy t φWe have (b) Note from part(a) that()().xx xx t t φφ=-This implies that ()xy t φis even .Therefore,the odd part of ().xx t φis zero.(c) Here, ()().xy xx t t T φφ=-and ()().yy xx t t φφ= 1.38.(a) We know that /22(2)().t t δδ=V V Therefore This implies that(b)The plot are as shown in Figure s3.18.1.39 We have Also,2[][]0eon n n x x ∞=-∞=∑222[][][].e on n n n n n xx x ∞∞∞=-∞=-∞=-∞==+∑∑∑2220()()()2()().eoet dt t dt t dt t t dt x x x x x ∞∞∞∞-∞-∞-∞-∞=++⎰⎰⎰⎰0()()0.et t dt x x ∞-∞=⎰222()()().e ot dt t dt t dt xx x ∞∞∞-∞-∞-∞=+⎰⎰⎰0022gcd(,)gcd(,)gcd(,)gcd(,).T pp q p q p q p q q p q p pωωππ===/21lim (2)lim ().2t t δδ→∞→∞=V V V V(b) y(t)=x 2(t) is such a systerm . (c) No.For example,consider y(t) ()()ty t x d ττ-∞=⎰with ()()(1).x t u t u t =--Then x(t)=0for t>1,but y(t)=1 for t>1.1.41. (a) y[n]=2x[n].Therefore, the system is time invariant.(b) y[n]=(2n-1)x[n].This is not time-invariant because y[n- N 0]≠(2n-1)2x [n- N 0]. (c) y[n]=x[n]{1+(-1)n +1+(-1)n-1}=2x[n].Therefore, the system is time invariant .1.42.(a) Consider two system S 1 and S 2 connected in series .Assume that if x 1(t) and x 2(t) arethe inputs to S 1..then y 1(t) and y 2(t) are the outputs.respectively .Also,assume thatif y 1(t) and y 2(t) are the input to S 2 ,then z 1(t) and z 2(t) are the outputs, respectively . Since S 1 is linear ,we may writewhere a and b are constants. Since S 2 is also linear ,we may write We may therefore conclude thatTherefore ,the series combination of S 1 and S 2 is linear. Since S 1 is time invariant, we may write andTherefore,Therefore, the series combination of S 1 and S 2 is time invariant.(b) False, Let y(t)=x(t)+1 and z(t)=y(t)-1.These corresponds to two nonlinear systems. If these systems are connected in series ,then z(t)=x(t) which is a linear system.(c) Let us name the output of system 1 as w[n] and the output of system 2 as z[n] .Then The overall system is linear and time-invariant. 1.43. (a) We haveSince S is time-invariant.Now if x (t) is periodic with period T. x{t}=x(t-T). Therefore, we may conclude that y(t)=y(t-T).This implies that y(t) is also periodic with T .A similar argument may be made in discrete time . (b)1.44 (a) Assumption : If x(t)=0 for t<t 0 ,then y(t)=0 for t< t 0.To prove That : The system is causal.Let us consider an arbitrary signal x 1(t) .Let us consider another signal x 2(t) which is the same as x 1(t)fort< t 0. But for t> t 0 , x 2(t) ≠x 1(t),Since the system is linear, Since ()()120x t x t -=for t< t 0 ,by our assumption =()()120y t y t -=for t< t 0 .This implies that()()12y t y t =for t< t 0 . In other words, t he output is not affected by input values for 0t t ≥. Therefore, thesystem is causal .Assumption: the system is causal . To prove that :If x(t)=0 for t< t 0 .then y(t)=0 for t< t 0 .Let us assume that the signal x(t)=0 for t< t 0 .Then we may express x(t) as ()()12()x t x t x t =-, Where()()12x t x t = for t< t 0 . the system is linear .the output to x(t) will be()()12()y t y t y t =-.Now ,since the system is causal . ()()12y t y t = for t< t 0 .implies that ()()12y t y t = for t< t 0 .Therefore y(t)=0 for t< t 0 .(b) Consider y(t)=x(t)x(t+1) .Now , x(t)=0 for t< t 0 implies that y(t)=0 for t< t 0 .Note that the system is nonlinear and non-causal .(c) Consider y(t)=x(t)+1. the system is nonlinear and causal .This does not satisfy the condition of part(a). (d) Assumption: the system is invertible. To prove that :y[n]=0 for all n only if x[n]=0 for all n . Consider[]0[]x n y n =→. Since the system is linear :2[]02[]x n y n =→.Since the input has not changed in the two above equations ,we require that y[n]= 2y[n].This implies that y[n]=0. Since we have assumed that the system is invertible , only one input could have led to this particular output .That input must be x[n]=0 .Assumption: y[n]=0 for all n if x[n]=0 for all n . To prove that : The system is invertible . Suppose that andSince the system is linear ,By the original assumption ,we must conclude that 12[][]x n x n =.That is ,any particular y 1[n] can be produced that by only one distinct input x 1[n] .Therefore , the system isinvertible.(e) y[n]=x 2[n].1.45. (a) Consider ,and()222()()s hx x t y t t φ→=.Now, consider ()()()312x t ax t bx t =+. The corresponding system output will be Therefore, S is linear .Now ,consider x 4(t)=x 1(t-T).The corresponding system output will beClearly, y 4(t)≠ y 1(t-T).Therefore ,the system is not time-invariant.The system is definitely not causal because the output at any time depends on future values of the input signal x(t).(b) The system will then be linear ,time invariant and non-causal.1.46. The plots are in Figure S1.46.1.47.(a) The overall response of the system of Figure P1.47.(a)=(the response of the system to x[n]+x 1[n])-the response of the system to x 1[n]=(Response of a linear system L to x[n]+x 1[n]+ zero input response of S)- (Response of a linear system L to x 1[n]+zero input response of S)=( (Response of a linear system L to x[n]).。

《信号与系统》教学大纲

《信号与系统》教学大纲

《信号与系统》教学大纲Signals and Systems一、课程教学目标1、任务和地位:《信号与系统》是通信及相关专业的专业基础课,是通信专业的必修课程。

通过本课程的学习,使学生掌握用系统的观点和方法分析求解电子系统的特性,为后续课程(通信理论、网络理论、控制理论、信号处理和信号检测理论等课程)的学习和今后从事专业技术工作打下坚实的基础。

2、知识要求:本课程是信息类各专业本科生继“电路分析基础”课程之后必修的重要主干课程。

该课程主要研究确知信号的特性,线性时不变系统的特性,信号通过线性时不变系统的基本分析方法,以及信号与系统分析方法在某些重要工程领域的应用。

该课程是学习《现代通信原理》、《数字信号处理》等后续课程所必备的基础。

3、能力要求:通过本课程的学习,使学生掌握信号分析与线性系统分析的基本理论及分析方法,能对工程中应用的简单系统建立数学模型,并对数学模型求解。

为适应信息科学与技术的飞速发展,及在相关专业领域的深入学习打下坚实的基础。

同时,通过习题和实验,学生应在分析问题与解决问题的能力及实践技能方面有所提高。

二、教学内容的基本要求和学时分配2、具体要求:第一章信号与系统[目的要求]1.掌握信号、系统的概念,以及它们之间的关系。

2.了解信号的函数表示与图形表示。

3.掌握信号的能量和信号的功率的概念。

4.熟练掌握信号的自变量变换和信号的运算。

5.掌握阶跃信号、冲激信号,及其性质、相互关系。

6.了解系统的性质。

[教学内容]1. 信号、信号的自变量变换。

2. 能量和功率信号的判别方法3. 阶跃信号和冲激信号。

4. 一些典型序列。

5. 连续时间系统和离散时间系统。

6. 系统的性质[重点难点]1. 信号和系统的概念。

2. 能量和功率信号的判别方法3. 信号的自变量变换4. 阶跃信号和冲激信号。

5. 系统的性质。

[教学方法] 课堂讲解[作业] 7道[课时] 6第二章线性时不变系统[目的要求]1. 单位冲激响应的概念。

第一章 信号与系统的基本概念

第一章 信号与系统的基本概念

取样 时域:信号分解为单位脉冲序列的线 性组合 离散信号 频域:信号分解为不同频率正弦序列的线性组合 复频域:信号分解为不同频率复指数的线性组合
中国民航大学 CAUC

5.系统分析的主要内容

输入输出描述法:N阶微分方程
系统的描述 连续系统 系 统 分 析
状态空间描述:N个一阶微分方程组
r (t ) e(t ) * h(t ) 时域: 频域:R ( j ) E ( j ) H ( j ) 复频域: R ( s) E ( s) H ( s)
2(t),能量 E
4. 能量信号与功率信号
信号的瞬时功率p(t)=f
1
f (t )dt
T 2 T

归一化能量E 与 归一化功率P 的计算
E lim f (t )dt
T 2 T T
1 T 2 P lim f (t )dt T T 2T
1)能量信号:0E+ ,P0 2)功率信号:E + , 0P+ 直流信号与周期信号都是功率信号。 注意: 一个信号,不可能既是能量信号又是功率信号。
zs
中国民航大学 CAUC


6.信号与系统之间的关系
信号与系统是相互依存的整体。
1) 信号必定是由系统产生、发送、传输与接收,
离开系统没有孤立存在的信号;
2) 系统的重要功能就是对信号进行加工、变换与 处理,没有信号的系统就没有存在的意义。
中国民航大学 CAUC

控制 电 类
信号处理 信号检测 计算机等 非电类:
中国民航大学 CAUC
1.1
信号的描述、分类和典型示例
3.连续时间信号与离散时间信号

信号与系统》专业术语中英文对照表

信号与系统》专业术语中英文对照表

《信号与系统》专业术语中英文对照表第 1 章绪论信号(signal)系统(system)电压(voltage)电流(current)信息(information)电路(circuit)网络(network)确定性信号(determinate signal)随机信号(random signal)一维信号(one –dimensional signal)多维信号(multi–dimensional signal)连续时间信号(continuous time signal)离散时间信号(discrete time signal)取样信号(sampling signal)数字信号(digital signal)周期信号(periodic signal)非周期信号(nonperiodic(aperiodic)signal)能量(energy)功率(power)能量信号(energy signal)功率信号(power signal)平均功率(average power)平均能量(average energy)指数信号(exponential signal)时间常数(time constant)正弦信号(sine signal)余弦信号(cosine signal)振幅(amplitude)角频率(angular frequency)初相位(initial phase)周期(period)频率(frequency)欧拉公式(Euler’s formula)复指数信号(complex exponential signal)复频率(complex frequency)实部(real part)虚部(imaginary part)抽样函数Sa(t)(sampling(Sa)function)偶函数(even function)奇异函数(singularity function)奇异信号(singularity signal)单位斜变信号(unit ramp signal)斜率(slope)单位阶跃信号(unit step signal)符号函数(signum function)单位冲激信号(unit impulse signal)广义函数(generalized function)取样特性(sampling property)冲激偶信号(impulse doublet signal)奇函数(odd function)偶分量(even component)奇分量(odd component)正交函数(orthogonal function)正交函数集(set of orthogonal function)数学模型(mathematics model)电压源(voltage source)基尔霍夫电压定律(Kirchhoff’s voltage law(KVL))电流源(current source)连续时间系统(continuous time system)离散时间系统(discrete time system)微分方程(differential function)差分方程(difference function)线性系统(linear system)非线性系统(nonlinear system)时变系统(time–varying system)时不变系统(time–invariant system)集总参数系统(lumped–parameter system)分布参数系统(distributed–parameter system)偏微分方程(partial differential function)因果系统(causal system)非因果系统(noncausal system)因果信号(causal signal)叠加性(superposition property)均匀性(homogeneity)积分(integral)输入–输出描述法(input–output analysis)状态变量描述法(state variable analysis)单输入单输出系统(single–input and single–output system)状态方程(state equation)输出方程(output equation)多输入多输出系统(multi–input and multi–output system)时域分析法(time domain method)变换域分析法(transform domain method)卷积(convolution)傅里叶变换(Fourier transform)拉普拉斯变换(Laplace transform)第 2 章连续时间系统的时域分析齐次解(homogeneous solution)特解(particular solution)特征方程(characteristic function)特征根(characteristic root)固有(自由)解(natural solution)强迫解(forced solution)起始条件(original condition)初始条件(initial condition)自由响应(natural response)强迫响应(forced response)零输入响应(zero-input response)零状态响应(zero-state response)冲激响应(impulse response)阶跃响应(step response)卷积积分(convolution integral)交换律(exchange law)分配律(distribute law)结合律(combine law)第3 章傅里叶变换频谱(frequency spectrum)频域(frequency domain)三角形式的傅里叶级数(trigonomitric Fourier series)指数形式的傅里叶级数(exponential Fourier series)傅里叶系数(Fourier coefficient)直流分量(direct composition)基波分量(fundamental composition)n 次谐波分量(nth harmonic component)复振幅(complex amplitude)频谱图(spectrum plot(diagram))幅度谱(amplitude spectrum)相位谱(phase spectrum)包络(envelop)离散性(discrete property)谐波性(harmonic property)收敛性(convergence property)奇谐函数(odd harmonic function)吉伯斯现象(Gibbs phenomenon)周期矩形脉冲信号(periodic rectangular pulse signal)周期锯齿脉冲信号(periodic sawtooth pulse signal)周期三角脉冲信号(periodic triangular pulse signal)周期半波余弦信号(periodic half–cosine signal)周期全波余弦信号(periodic full–cosine signal)傅里叶逆变换(inverse Fourier transform)频谱密度函数(spectrum density function)单边指数信号(single–sided exponential signal)双边指数信号(two–sided exponential signal)对称矩形脉冲信号(symmetry rectangular pulse signal)线性(linearity)对称性(symmetry)对偶性(duality)位移特性(shifting)时移特性(time–shifting)频移特性(frequency–shifting)调制定理(modulation theorem)调制(modulation)解调(demodulation)变频(frequency conversion)尺度变换特性(scaling)微分与积分特性(differentiation and integration)时域微分特性(differentiation in the time domain)时域积分特性(integration in the time domain)频域微分特性(differentiation in the frequency domain)频域积分特性(integration in the frequency domain)卷积定理(convolution theorem)时域卷积定理(convolution theorem in the time domain)频域卷积定理(convolution theorem in the frequency domain)取样信号(sampling signal)矩形脉冲取样(rectangular pulse sampling)自然取样(nature sampling)冲激取样(impulse sampling)理想取样(ideal sampling)取样定理(sampling theorem)调制信号(modulation signal)载波信号(carrier signal)已调制信号(modulated signal)模拟调制(analog modulation)数字调制(digital modulation)连续波调制(continuous wave modulation)脉冲调制(pulse modulation)幅度调制(amplitude modulation)频率调制(frequency modulation)相位调制(phase modulation)角度调制(angle modulation)频分多路复用(frequency–division multiplex(FDM))时分多路复用(time –division multiplex(TDM))相干(同步)解调(synchronous detection)本地载波(local carrier)系统函数(system function)网络函数(network function)频响特性(frequency response)幅频特性(amplitude frequency response)相频特性(phase frequency response)无失真传输(distortionless transmission)理想低通滤波器(ideal low–pass filter)截止频率(cutoff frequency)正弦积分(sine integral)上升时间(rise time)窗函数(window function)理想带通滤波器(ideal band–pass filter)第 4 章拉普拉斯变换代数方程(algebraic equation)双边拉普拉斯变换(two-sided Laplace transform)双边拉普拉斯逆变换(inverse two-sided Laplace transform)单边拉普拉斯变换(single-sided Laplace transform)拉普拉斯逆变换(inverse Laplace transform)收敛域(region of convergence(ROC))延时特性(time delay)s 域平移特性(shifting in the s-domain)s 域微分特性(differentiation in the s-domain)s 域积分特性(integration in the s-domain)初值定理(initial-value theorem)终值定理(expiration-value)复频域卷积定理(convolution theorem in the complex frequency domain)部分分式展开法(partial fraction expansion)留数法(residue method)第 5 章策动点函数(driving function)转移函数(transfer function)极点(pole)零点(zero)零极点图(zero-pole plot)暂态响应(transient response)稳态响应(stable response)稳定系统(stable system)一阶系统(first order system)高通滤波网络(high-low filter)低通滤波网络(low-pass filter)二阶系统(second system)最小相移系统(minimum-phase system)维纳滤波器(Winner filter)卡尔曼滤波器(Kalman filter)低通(low-pass)高通(high-pass)带通(band-pass)带阻(band-stop)有源(active)无源(passive)模拟(analog)数字(digital)通带(pass-band)阻带(stop-band)佩利-维纳准则(Paley-Winner criterion)最佳逼近(optimum approximation)过渡带(transition-band)通带公差带(tolerance band)巴特沃兹滤波器(Butterworth filter)切比雪夫滤波器(Chebyshew filter)方框图(block diagram)信号流图(signal flow graph)节点(node)支路(branch)输入节点(source node)输出节点(sink node)混合节点(mix node)通路(path)开通路(open path)闭通路(close path)环路(loop)自环路(self-loop)环路增益(loop gain)不接触环路(disconnect loop)前向通路(forward path)前向通路增益(forward path gain)梅森公式(Mason formula)劳斯准则(Routh criterion)第 6 章数字系统(digital system)数字信号处理(digital signal processing)差分方程(difference equation)单位样值响应(unit sample response)卷积和(convolution sum)Z 变换(Z transform)序列(sequence)样值(sample)单位样值信号(unit sample signal)单位阶跃序列(unit step sequence)矩形序列(rectangular sequence)单边实指数序列(single sided real exponential sequence)单边正弦序列(single sided exponential sequence)斜边序列(ramp sequence)复指数序列(complex exponential sequence)线性时不变离散系统(linear time-invariant discrete-time system)常系数线性差分方程(linear constant-coefficient difference equation)后向差分方程(backward difference equation)前向差分方程(forward difference equation)海诺塔(Tower of Hanoi)菲波纳西(Fibonacci)冲激函数串(impulse train)第7 章数字滤波器(digital filter)单边Z 变换(single-sided Z transform)双边Z 变换(two-sided (bilateral) Z transform) 幂级数(power series)收敛(convergence)有界序列(limitary-amplitude sequence)正项级数(positive series)有限长序列(limitary-duration sequence)右边序列(right-sided sequence)左边序列(left-sided sequence)双边序列(two-sided sequence)Z 逆变换(inverse Z transform)围线积分法(contour integral method)幂级数展开法(power series expansion)z 域微分(differentiation in the z-domain)序列指数加权(multiplication by an exponential sequence)z 域卷积定理(z-domain convolution theorem)帕斯瓦尔定理(Parseval theorem)传输函数(transfer function)序列的傅里叶变换(discrete-time Fourier transform:DTFT)序列的傅里叶逆变换(inverse discrete-time Fourier transform:IDTFT)幅度响应(magnitude response)相位响应(phase response)量化(quantization)编码(coding)模数变换(A/D 变换:analog-to-digital conversion)数模变换(D/A 变换:digital-to- analog conversion)第8 章端口分析法(port analysis)状态变量(state variable)无记忆系统(memoryless system)有记忆系统(memory system)矢量矩阵(vector-matrix )常量矩阵(constant matrix )输入矢量(input vector)输出矢量(output vector)直接法(direct method)间接法(indirect method)状态转移矩阵(state transition matrix)系统函数矩阵(system function matrix)冲激响应矩阵(impulse response matrix)朱里准则(July criterion)。

信号与系统chapter 1

信号与系统chapter 1
1
3
x( K )
1
2 2







t
-2 -1
0 1 2
k
连续时间信号
离散时间信号
§周期性信号与非周期性信号
连续时间周期信号定义: t R, 存在非零T,使得 x(t)=x(t+kT),k为整数 成立,则x(t)为周期信号。 离散时间周期信号定义: n I , 存在非零N,使得 x(n)=x(n+kN), n为整数,N为正整数 成立,则x [n] 为周期信号。 满足上述条件的最小的T或N值称为周期信号的周期。若令 周期信号的周期T(或)N趋于无限大,则成为非周期信号。
3 -4
(2) 利用筛选特性,有
x2 (t ) =蝌 e d (t - 6)dt = e -4
3 - 2t - 12
d (t - 6)dt = 0
(3) 利用展缩和筛选特性,有
x3 (t ) = 1 -2
¥
td (t - 1) =
1 2
d (t - 1)
(4) 利用抽样特性,有
x4 (t ) =ò- ? d (t 1 4 ) sin(p t )dt = sin(p t ) t = 1 = sin
0
0
ï î0,
t < t0
x(t t0 )
单 位 斜 变 信 号
x(t)
1
1
1
O
t
O
t0
t0 1
延 迟 斜 变 信 号
§单位阶跃信号
单位阶跃信号表达式为:
ì ï 1, u (t ) = í ï î 0,
t >0 t <0
在跳变点 t = 0 处,函数值未定义 单位斜变信号与单位阶跃信号互为积分和微分的关系。即

信号与系统目录(Signal and system directory)

信号与系统目录(Signal and system directory)

信号与系统目录(Signal and system directory)Chapter 1 signals and systems1.1 INTRODUCTION1.2 signalContinuous signals and discrete signalsTwo. Periodic signals and aperiodic signalsThree, real signal and complex signalFour. Energy signal and power signalThe basic operation of 1.3 signalAddition and multiplicationTwo, inversion and TranslationThree, scale transformation (abscissa expansion)1.4 step function and impulse functionFirst, step function and impulse functionTwo. Definition of generalized function of impulse functionThree. The derivative and integral of the impulse functionFour. Properties of the impulse functionDescription of 1.5 systemFirst, the mathematical model of the systemTwo. The block diagram of the systemCharacteristics and analysis methods of 1.6 systemLinearTwo, time invarianceThree, causalityFour, stabilityOverview of five and LTI system analysis methodsExercise 1.32The second chapter is the time domain analysis of continuous systemsThe response of 2.1LTI continuous systemFirst, the classical solution of differential equationTwo, about 0- and 0+ valuesThree, zero input responseFour, zero state responseFive, full response2.2 impulse response and step responseImpulse responseTwo, step response2.3 convolution integralConvolution integralTwo. The convolution diagramThe properties of 2.4 convolution integralAlgebraic operations of convolutionTwo. Convolution of function and impulse function Three. Differential and integral of convolutionFour. Correlation functionExercise 2.34The third chapter is the time domain analysis of discretesystemsThe response of 3.1LTI discrete systemsDifference and difference equationsTwo. Classical solutions of difference equationsThree, zero input responseFour, zero state response3.2 unit sequence and unit sequence responseUnit sequence and unit step sequenceTwo, unit sequence response and step response3.3 convolution sumConvolution sumTwo. The diagram of convolution sumThree. The nature of convolution sum3.4 deconvolutionExercise 3.27The fourth chapter is Fourier transform and frequency domainanalysis of the systemThe 4.1 signal is decomposed into orthogonal functions Orthogonal function setTwo. The signal is decomposed into orthogonal functions 4.2 Fourier seriesDecomposition of periodic signalsTwo, Fourier series of odd even functionThree. Exponential form of Fu Liye seriesThe spectrum of 4.3 period signalFrequency spectrum of periodic signalTwo, the spectrum of periodic matrix pulseThree. The power of periodic signal4.4 the spectrum of aperiodic signalsFirst, Fu Liye transformTwo. Fourier transform of singular functionsProperties of 4.5 Fourier transformLinearTwo, parityThree, symmetryFour, scale transformationFive, time shift characteristicsSix, frequency shift characteristicsSeven. Convolution theoremEight, time domain differential and integral Nine, frequency domain differential and integral Ten. Correlation theorem4.6 energy spectrum and power spectrumEnergy spectrumTwo. Power spectrumFourier transform of 4.7 periodic signals Fourier transform of sine and cosine functionsTwo. Fourier transform of general periodic functionsThree 、 Fu Liye coefficient and Fu Liye transformFrequency domain analysis of 4.8 LTI systemFrequency responseTwo. Distortionless transmissionThree. The response of ideal low-pass filter4.9 sampling theoremSampling of signalsTwo. Time domain sampling theoremThree. Sampling theorem in frequency domainFourier analysis of 4.10 sequencesDiscrete Fourier series DFS of periodic sequencesTwo. Discrete time Fourier transform of non periodic sequences DTFT4.11 discrete Fu Liye and its propertiesDiscrete Fourier transform (DFT)Two. The properties of discrete Fourier transformExercise 4.60The fifth chapter is the S domain analysis of continuous systems 5.1 Laplasse transformFirst, from Fu Liye transform to Laplasse transformTwo. Convergence domainThree, (Dan Bian) Laplasse transformThe properties of 5.2 Laplasse transformLinearTwo, scale transformationThree, time shift characteristicsFour, complex translation characteristicsFive, time domain differential characteristicsSix, time domain integral characteristicsSeven. Convolution theoremEight, s domain differential and integralNine, initial value theorem and terminal value theorem5.3 Laplasse inverse transformationFirst, look-up table methodTwo, partial fraction expansion method5.4 complex frequency domain analysisFirst, the transformation solution of differential equation Two. System functionThree. The s block diagram of the systemFour 、 s domain model of circuitFive, Laplasse transform and Fu Liye transform5.5 bilateral Laplasse transformExercise 5.50The sixth chapter is the Z domain analysis of discrete systems 6.1 Z transformFirst, transform from Laplasse transform to Z transformTwo, z transformThree. Convergence domainProperties of 6.2 Z transformLinearTwo. Displacement characteristicsThree, Z domain scale transformFour. Convolution theoremFive, Z domain differentiationSix, Z domain integralSeven, K domain inversionEight, part sumNine, initial value theorem and terminal value theorem 6.3 inverse Z transformFirst, power series expansion methodTwo, partial fraction expansion method6.4 Z domain analysisThe Z domain solution of difference equationTwo. System functionThree. The Z block diagram of the systemFour 、 the relation between s domain and Z domainFive. Seeking the frequency response of discrete system by means of DTFTExercise 6.50The seventh chapter system function7.1 system functions and system characteristicsFirst, zeros and poles of the system functionTwo. System function and time domain responseThree. System function and frequency domain responseCausality and stability of 7.2 systemsFirst, the causality of the systemTwo, the stability of the system7.3 information flow graphSignal flow graphTwo, Mason formulaStructure of 7.4 systemFirst, direct implementationTwo. Implementation of cascade and parallel connectionExercise 7.39The eighth chapter is the analysis of the state variables of the system8.1 state variables and state equationsConcepts of state and state variablesTwo. State equation and output equationEstablishment of state equation for 8.2 continuous systemFirst, the equation is directly established by the circuit diagramTwo. The equation of state is established by the input-output equationEstablishment and Simulation of state equations for 8.3discrete systemsFirst, the equation of state is established by the input-output equationTwo. The system simulation is made by the state equationSolution of state equation of 8.4 continuous systemFirst, the Laplasse transform method is used to solve the equation of stateTwo, the system function matrix H (z) and the stability of the systemThree. Solving state equation by time domain methodSolution of state equation for 8.5 discrete systemsFirst, the time domain method is used to solve the state equations of discrete systemsTwo. Solving the state equation of discrete system by Z transformThree, the system function matrix H (z) and the stability of the systemControllability and observability of 8.6 systemsFirst, the linear transformation of state vectorTwo, the controllability and observability of the systemExercise 8.32Appendix a convolution integral tableAppendix two convolution and tableAppendix three Fourier coefficients table of commonly used periodic signalsAppendix four Fourier transform tables of commonly used signalsAppendix five Laplasse inverse exchange tableAppendix six sequence of the Z transform table。

信号与系统——第一章 信号与系统概论(1)

信号与系统——第一章 信号与系统概论(1)

图1-1 各类信号:
二、周期信号与非周期信号

如图1-1(c)所示,周期信号是按某一固定周期重 复出现的信号,它可表示为
f (t ) f (t nT )
其中,T为周期,任何周期信号都可表示为仅在 基本周期内取非零值的有限长信号的周期延拓, 即
f (t ) t 0, T f1 (t ) f (t ) f1 (t nT ) t 0, T 0 n
第一章 信号与系统概论
学习要点: 1. 信号与系统课程的重要性; 2. 信号的概念、分类与运算; 3. 系统的概念、分类与联接形式; 4. 系统的线性性、时不变性、因果性和稳定性的定 义与判断。
§ 1-1 引




信号与系统是在电工原理的基础上发展起 来的,并随着电子工程、通信工程、计算 机和信息技术的飞速发展而不断地发展与 完善。 在信号与系统学科的发展中,微分方程、 差分方程理论,傅里叶(Fourier)变换、 拉普拉斯(Laplace)变换、离散傅里叶 变换和Z变换等正交变换理论起着十分重 要的作用。 二十世纪四十年代创立的系统论、信息论 与控制论极大地推动了信号与系统学科的 发展。

能量信号和功率信号的判断方法

判断能量信号和功率信号的方法: 先计算信号能量,若为有限值则为能量信号, 同时也必是功率信号;否则,计算信号功率,若 为有限值则为功率信号;若上述两者均不符合, 则信号既不是能量信号,也不是功率信号。
连续时间信号能量:E

f (t ) dt
2
1 连续时间信号功率:P lim T 2T
+ -

T
T
f (t ) dt
2

信号与系统第一章

信号与系统第一章
n n n 1 L n m L
m 0
n
m
令 k n பைடு நூலகம்,则 n
k
k
n
上式的正确性在于 k 仅在 k 0时为1,其余 k时取为0, n时,求和式为 0 所以当 时,求和式为零,而当 n0 1。
T

2t

2
e 4T lim T 2
所以该信既非能量信号又非功率信号
1.2 基本的连续时间和离散时间信号
1.2.1 单位阶跃信号(unit step function)与单位冲激信 号(unit impulse function) 阶跃函数和冲激函数不同于普通函数,称为奇异函 数。研究奇异函数的性质要用到广义函数(或分配函数) 的理论。这里将直观地引出阶跃函数和冲激函数。
一、阶跃函数
下面采用求函数序列极限 的方法定义阶跃函数。 选定一个函数序列γn(t)如图所示。
若阶跃幅度为 A ,则可记为 A t
若单位阶跃函数跃变点在 t t 0处,则称为延迟单位阶 跃函数
1, t t0 0, t t0 t t0
阶跃函数性质: (1)可以方便地表示某些信号 f(t) = 2ε (t)- 3ε (t-1) +ε (t-2) (2)用阶跃函数表示信号的作用区间
3.信号(signal) 信号是信息的载体,通过信号传递信息。 为了有效的传播和利用信息,常常需要将信息转 换成便于传输和处理的信号。 信号于我们并不陌生,如刚才的铃声——声信号, 表示该上课了; 十字路口的红路灯——光信号,指挥交通; 电视机天线接收的电视信号——电信号; 日常生活中的文字信号,图像信号,生物电信号 等,都属于信号。

1信号与系统英语课件

1信号与系统英语课件

| 信
号 与


电 子







洪 薛 洋
What is a System
| 信
A System is formally defined as an entity that manipulates 号 one or more signals to accomplish a function, thereby 与 yielding new signals.

1 xo (t ) [ x(t ) x(t )] 2



电 子







洪 薛 洋
EX3:
x(t )
2 1 -2 -1 0 1 2
| 信

t
-2
xe (t )
1 0 2

xo (t )
1 -1
-1 1

t
t与


电 子







洪 薛 洋
| 信 1.continuous-time complex exponential and sinusoidal signals
t2
| 信
号 与

t1
| x(t ) |2 dt
n2
Over the time interval [n1,n2], the total energy of x[n] is:
E=
n n1 2 | x [ n ] |

2
Definitions 能量信号
E lim x(t ) dt E lim n

信号处理与系统分析-第1章信号与系统的基本概念

信号处理与系统分析-第1章信号与系统的基本概念

E
n
| x[n] |

2
本书由天疯上传于世界工厂网-下载中心
连续时间信号的总的平均功率(Average Power)定义为:
1 P lim T 2T



T
T
| x(t ) | dt
2
离散时间信号的总平均功率定义为:
1 2 P lim N| x[n] | N 2 N 1 n
N
本书由天疯上传于世界工厂网-下载中心
典型的能量有限信号
面积有限
本书由天疯上传于世界工厂网-下载中心
功率有限,总能量无限。
本书由天疯上传于世界工厂网-下载中心
功率无限,总能量无限。
本书由天疯上传于世界工厂网-下载中心
1.2自变量的变换
信号自变量的变换就是函数自变量的变换。
它既基础又简单,但同时也是最容易出错 的地方,需要读者细心体会。
最小正周期
T 2 / | 0 |
本书由天疯上传于世界工厂网-下载中心
正弦信号(Sinusoidal Signals)
角频率
相位
x(t ) A cos(0t )
幅度
本书由天疯上传于世界工厂网-下载中心
量纲
Rad/s
rad
x(t ) A cos(0t )
s
本书由天疯上传于世界工厂网-下载中心
本课程主要讨论一维信号的处理。
虽然信号的自变量决不局限于时间,但是 若无特殊声明,函数的自变量都可以理解 为时间变量。
本书由天疯上传于世界工厂网-下载中心
如果用来表示信号的函数的自变量的定义 域是实数域,所表示的信号称为连续时间 信号(Continuous-Time Signal),或者称为 模拟信号(Analog Signal或者Simulated Signal),

信号与系统第一章

信号与系统第一章

.-
第 1 章 信号与系统的基本概念
图 1 3 1 连 续 信 号 的 相 加 和 相 乘
第 1 章 信号与系统的基f1(k) 本概念
1
- 3- 2- 10 1 2 3 4 5 6
k

f2(k )
1
1
.-
- 3- 2- 1
3
0 12345
k
2
-1

f1(k )+f2(k )

2


1

- 3- 2- 1
如果信号是时间的随机函数,事先将无法预知它的变化 规律,这种信号称为不确定信号或随机信号。
第 1 章 信号与系统的基本概念 图 1.1-1 噪声和干扰信号
第 1 章 信号与系统的基本概念
2. 连续信号与离散信号
一个信号,如果在某个时间区间内除有限个间断点外都有 定义, 就称该信号在此区间内为连续时间信号,简称连续信
时间轴展缩(尺度变换)而成的一个新的信号函数或波形。 在信号f(at)中,a为常数,|a|>1时表示f(t)沿时间轴压
缩;|a|<1时表示f(t)沿时间轴展宽。例如图1.3-5分别表示 f(t)、f(2t)、f(t/2)的波形。
信号展缩的一个例子是:如果f(t)表示录制在磁带上 的语音信号,则f(2t)表示放音速度要比原来录制的高一 倍;f(t/2)表示放音速度要比原来录制的慢一倍。
序列f(k)的数学表示式可以写成闭式,也可以直接列出序 列值或者写成序列值的集合。例如,图1.1-3(a)所示的正弦序 列可表示为
f1(k )Asin 4k
第 1 章 信号与系统的基本概念
f1(k )
… -2
-8 -6 -4

信号与系统第1章-信号与系统的基本概念

信号与系统第1章-信号与系统的基本概念
1 0 1 2 t
1 0
1
t
1 0
2
一半语速信号
4 t
正常语速信号
2倍语速信号

a 1 ,波形在t 轴上扩展 1 a 倍。
若 a 1 ,波形在t 轴上压缩1/
a 倍。
信号与系统
SIGNALS & SYSTEMS
第一章 信号与系统的基本概念
前言
§1.1 信号的描述与分类 §1.2 连续时间信号的基本运算与变换 §1.3 系统的描述与分类 §1.4 系统分析方法
♣ 连续时间信号的基本运算主要包括
相加(减)、相乘(除)、微分、积分
♣ 信号波形变换主要指
波形的翻转、平移和展缩 通常是通过对自变量的代换实现
信号与系统
SIGNALS & SYSTEMS
一.信号的相加减
f1(t) 1 0 1
1
f ( t )=f1 ( t )+f2 ( t )
2 1
1
f2 (t)
f1 (t ) f2 (t )
信号与系统
SIGNALS & SYSTEMS
六.信号的时移(波形平移)
连续时间信号的时移定义为
y(t ) f (t t0 )
f (t )
f (t b)
t0为时移量
t t t0
f (t b)
-1
b1
t
(-1+b)
1 (1+b) t
(-1-b)
(1-b)
t
t0>0时右移
t0<0时左移
出现冲激, 其冲激强度 为该处的跳 变量
0
1 2 3
t
0 1
-2
3 (2)
t

绪论

绪论

信号与系统g ySignals and Systems/eclass/控制系本科教学平台:http://www cse zju edu cn/eclass/搜索课程:信号与系统(乙)浙江大学控制科学与工程学系¾信号与系统所需的预修课程¾数学分析(微积分)、常微分方程、复变函数、电路原理等¾信号与系统课程的研究内容(1)信号的特性(包括连续和离散时间信号)信号的时域特性信号的频域特性:频谱(幅度谱,相位谱)等信号的变换域复频域信号的变换域:复频域(2)系统的特性系统的特性:线性、时不变、因果、稳定等系统的特性线性时不变因果稳定等刻画系统的参量:冲激响应、系统函数、频率响应等2¾目的:–介绍信号与系统的基本概念、理论–学习如何分析信号特性和线性时不变系统¾要求:–预习,听课和复习–按时完成所布置的作业(重要!每周上课时交上一次作业)¾评分标准–平时成绩(到课、作业、回答问题以及课堂练习): 20-30%–期末考试: 70-80%¾答疑:课间、课程网站答疑论坛、电子邮件、电话均可3参考书目(Second Edition) 1998年,清华大学出版社•PRENTICE HALL(英文版)(S d Editi)1998年清华大学出版社PRENTICE HALL(英文版)Samebook¾Oppenheim A V, Willsky A S, Nawab S H.刘树棠译.信号与系统(第二版), 西安: 西安交通大学出版社, 1998.¾Oppenheim A V, Schafer R W, Buck J R.刘树棠,黄建国译.离散时间信号处理(第二版), 西安: 西安交通大学出版社, 2001.¾于慧敏主编. --教材信号与系统(第二版), 北京: 化学工业出版社, 2008.¾于慧敏,凌明芳,史笑兴,杭国强编. --配套书信号与系统学习指导, 北京:化学工业出版社, 2004.¾其他同类书4¾本课程性质电类(弱电类)专业的专业基础课¾本课程教学内容第一章~第七章第一章信号与系统基本概念第二章LTI系统的时域分析:连续与离散信号第三章连续时间信号与系统的频域分析第四章离散时间信号与系统的频域分析第五章采样、调制与通信系统第六章信号与系统的复频域分析第七章Z变换5¾任课教师王慧hwang@130********徐祖华xuzh@135********陈曦xichen@138********周立芳lfzhou@139********lfzhou@iipc zju edu cn赵均jzhao@130********j本科教学课程中心:/eclass/搜索课程:信号与系统(乙)6本科教学课程网站:/eclass浙江大学控制科学与工程学系7资源下载浙江大学控制科学与工程学系8浙江大学控制科学与工程学系9号系g y信号与系统Signals and Systems第一章信号与系统的基本概念第章Chapter 1 Signals and Systems Basic Concepts浙江大学控制科学与工程学系本章主要内容(0)引言(Introduction)(1)信号的基本概念(2)连续时间与离散时间的基本信号(3)复指数信号与正弦信号(4)信号的运算与自变量变换(5)系统的描述及系统的基本性质基本概念——引言(0)消息运动或状态变化的直接反映待传输与处理的原始对象之含意如语音9消息(Message)、信息(Information) 、信号(signal )消息:运动或状态变化的直接反映、待传输与处理的原始对象之含意,如语音、基本概念——引言(1)9重要性:三大资源(能源、材料、信息)9信息化——信息的流通、积累、处理和利用。

信号与系统第一章

信号与系统第一章

0 t ≠ 0 δ (t) = 和 ∞ t = 0



δ (t)dt =1
3. 复指数信号(complex exponential signal)
f (t) = est
s = σ + jω 为复数,称复频率.
由于复指数信号能概括多种情况,所以可利用它来描述多种 基本信号,如直流信号,指数信号,等幅,增幅或减幅正弦 或余弦信号,因此,它是信号与系统分析中经常遇到的重要 信号. 上面我们介绍了几种最基本的信号,接着来介绍有关信号的 各种运算. 1.2 信号的运算 1.2.1 信号的相加与相乘 两个信号相加(相乘)可得到一个新的信号,它在任意时刻 的值等于两个信号在该时刻的值之和(积).信号相加与相 乘运算可以通过信号的波形 ( 或信号的表达式 ) 进行.
信号的特性可以从两个方面来描述,即时间特性和频率特性. 信号可写成数学表达式,即是时间 t 的函数,它具有一定的 波形,因而表现出一定波形的时间特性,如出现时间的先后, 持续时间的长短,重复周期的大小及随时间变化的快慢等. 另一方面,任意信号在一定条件下总可以分解为许多不同频 率的正弦分量,即具有一定的频率成份,因而表现为一定波 形的频率特性,如含有大小不同频率分量,主要频率分量占 有不同的范围等. 信号的形式所以不同,就因为它们各自有不同的时间特性和 频率特性,而信号的时间特性和频率特性有着对应的关系, 不同的时间特性将导致不同的频率特性的出现. 1.1.2 信号的分类 对于各种信号,可以从不同的角度进行分类. 1.确定信号和随机信号
信号与系统
沈元隆 周井泉
第一章
第1章 信号与系统的基本概念 1.1 信号的描述及分类 1.2 信号的运算 1.3 系统的数学模型及其分类 1.4 系统的模拟 1.5 线性时不变系统分析方法概述 习题1

信号与系统chap1

信号与系统chap1
输入信号 系 统 输出信号
网络分析关 分析 心:其具有的结构和参数,注意研究各支路的 电压、电流(或功率)(即 关心局部) 系统定义为处理(或变换)信号的物理设备,凡是能将信号加 以变换以达到人们要求的各种设备均可称为系统。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
PDF 文件使用 "pdfFactory Pro" 试用版本创建
4. 能量信号和功率信号
归一化的能量或功率:信号在单位电阻上消耗的能量或功率。
瞬时 功率: p ( t ) = f ( t )
2
区间能量:
α −α 2

α −α
f ( t ) dt
2
a) 连续信号:在区间(-∞,∞)上,信号f (t)的
PDF 文件使用 "pdfFactory Pro" 试用版本创建
三、信号与系统的关系
信号的概念与系统的概念紧密相连 信号在系统中按一定规律运动、变化
e (g ) 输入信号
(激励)
系 统 加工处理信号
y (g ) 输出信号
(响应)
本课程以通信系统和控制系统的某些问题为背景,研究确 定性信号经系统传输或处理的一般规律,着重讨论信号分析和 系统分析的基本概念和基本方法。
1.3 基本信号及其时域特性
1.3.1 普通连续信号(常用信号)
1. 指数信号
f (t )
α<0 α>0 K α =0 O t K 0.368K O
f ( t ) = Keα t
t ∈ R , K 和 α 是实 数
f (t ) = K e α t t ≥ 0, α < 0
t
α 称指数因子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5.2 Discrete-Time Complex Exponential and Sinusoidal signals(sequences)(序列): n
x[n] = Cα
Ⅰ.Real Exponential Signals: if C﹑a are real Ⅱ. General Complex Exponential Signals * both C and a are complex numbers
x[n] = x[n + N] for all values of n. In this case, we say that x(t) (x[n]) is periodic with period T(N).
Example 1.1 Determine the fundamental period of the signal x(t) = 2cos(10πt+1)-sin(4πt-1).
1.5 SEVERAL BASIC SIGNALS
1.5.1 Continuous-time Complex Exponential (复 指数函数) and Sinusoidal Signals(正弦信号) at complex exponential signals:
x(t ) = Ce
Ⅰ.Real Exponential Signals: if C﹑a are real Ⅱ. Periodic Complex Exponential and Sinusoidal Signals : * if C is real and a purely imaginary jω 0 t periodic complex exponential

T
−T
x(t ) dt
+N
2
1 2 P∞ = lim x[n] ∑ N →∞ 2N + 1 n =− N
in continuous time and discrete time, respectively.
With these definitions, we can identify three important classes of signals:
n1
E ∞ = lim ∫
T
T → ∞ −T
x (t ) dt = ∫
2
n=− N
+∞
−∞
+∞
x (t ) dt
2
2
E ∞ = lim
N →∞
∑ x[n]
+N
2
= ∑ x[n]
−∞
The time-average power over an infinite interval:
1 P∞ = lim T →∞ 2T
x(t ) = Ce
Ⅲ.General Complex Exponential Signals: * both C and a are complex numbers C = C e jθ , a = r + j ω 0
at rt rt
Ce = C e cos(ω 0 t + θ ) + j C e sin(ω 0 t + θ )
1.2 CLASSIFICATIONS OF SIGNALS
1.2.1 Continuous-time and Discrete-time Signals (连续时间和离散时间信号) • continuous-time signals’ independent variable is continuous : x(t)=e t • discrete-time signals are defined only at discrete times : x[n] =2n
1.2.3 Determinate and Random Signals (确定性信号和随机信号) • A determinate signal ——x(t) • A random signal —— cannot find a function to represent it
1.2.4
Energy and Power Signals
x(-t/3+2) 1 0 1 2
t
x(t+2) 1 -2/3 -1/3 0
(a)
x(t/3+2) 1 -2 -1 1 0 4/3 5/3 2 0 x(t)
x(-t/3) 1 -6 -5 -4 0 x(t) x(t/3) 1 0 4 5 6 1 0 4/3 5/3 2
1.4 Even-odd Decomposition of a Signal x (t) = Ev{x(t)} + Od {x(t)}
Representing Signals Graphically
x(t)
0
t
(a)
x[n] x[0] -3 -1 -2 x[-1]
0 1 2 3 4 5
x[4]
-4
n
(b)
Figure 1.1 Graphical representations of (a) continuous-time and (b) discrete-time signals
(能量信号和功率信号)
The instantaneous power is The total energy over time interval (t1,t2) is The average power in this interval is
t2
1 2 p(t) = v(t)i(t) = v (t) R p ( t ) dt =
CHAPTER 1 Signals and Systems
1.1 Definition and Mathematical Representation of Signals
• Signals: physical phenomena or physical quantities, which change with time or space. • Functions of one or more independent variables. example: x(t)
C = C e jθ , α = α e jω
n n
0
Cα = C α cos(ω 0 n + θ ) + j C α sin(ω 0 n + θ )
n
α >1
0 <α <1
α < −1
Figure 1.4 the real exponential signal
−1 < α < 0
x[n] = Cα
2 1
Similarly, the total energy in a discrete-time signal x[n] over the time interval n1 ≤ n ≤ n2 : n x [ n ] 2 ∑
2
The total energy over an infinite interval is, in continuous time, in discrete time,
• Energy signals • Power signals • Signals with neither finite total energy nor finite average power
1.3 Transformations of the Independent Variable of Signals
ω0
)]
• 2π = N
ω0
0
is a rational number, the fundamental period 2π M N= M


ω0
is an irrational number, the sinusoidal will not be periodic at all.
ω6
15π cos( n) 8
Figure 1.6 Two periodic sinusoidal sequence and an aperiodic sinusoidal sequence
n
α >1
n
α <1
n
Figure 1.5
(a) Growing sinusoidal sequence (b) Decaying sinusoidal sequence
1.5.3 Periodicity Property of Discrete-Time Complex Exponentials(离散正弦序列的周期性)
x(t)
± C e rt
x(t)
Fig. 1.3 (a) Growing sinusoidal signal, x(t ) = Ce rt cos(ω 0 t + θ ) r>0; (增长的) rt x ( t ) = Ce cos(ω 0 t + θ ) (b) Decaying sinusoid , r<0. (衰减的)
From trigonometry, we know that the fundamental period of cos(10πt+1) is T1=1/5, and sin(4πt-1) is T2=1/2. What about the fundamental period of x(t)? If there is a rational T, and it is the lowest common multiple(最小公倍数) of T1 and T2, then we say that x(t) is periodic with fundamental period T, or else, x(t) is aperiodic. For the x(t) in this example, the lowest common multiple of 0.2 and 0.5 is unit 1, and it is rational, so that the fundamental period of x(t) is 1.
相关文档
最新文档