高考数学概率与统计专题复习

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考复习专题之:概率与统计

一、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.

1.随机事件A 的概率0()1P A ≤≤,其中当()1P A =时称为必然事件;当()0P A =时称为不可能事件P(A)=0; 注:求随机概率的三种方法: (一)枚举法

例1如图1所示,有一电路AB 是由图示的开关控制,闭合a ,b ,c ,

d ,

e 五个开关中的任意两个开关,使电路形成通路.则使电路形成通

路的概率是 .

分析:要计算使电路形成通路的概率,列举出闭合五个开关中的任意

两个可能出现的结果总数,从中找出能使电路形成通路的结果数,根据概率的意义计算即可。

解:闭合五个开关中的两个,可能出现的结果数有10种,分别是a b 、a c 、a d 、a e 、bc 、bd 、be 、cd 、ce 、de ,其中能形成通路的有6种,所以p(通路)=

106=5

3

评注:枚举法是求概率的一种重要方法,这种方法一般应用于可能出现的结果比较少的事件的概率计算. (二)树形图法

例2小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,

两人同时出象牌,则两人平局.如果用A 、B 、C 分别表示小刚的象、虎、鼠三张牌,用A 1、B 1、C 1分别表示小明

的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?

分析:为了清楚地看出小亮胜小刚的概率,可用树状图列出所有可能出现的结果,并从中找出小刚胜小明可能出现的结果数。

解:画树状图如图树状图。由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种.所以P (一次出牌小刚胜小明)=

31

点评:当一事件要涉及两个或更多的因素时,为了不重不漏地列出所有可能的结果,通过画树形图的方法来计算概率 (三)列表法

例3将图中的三张扑克牌背面朝上放在桌面上,从中随机摸出两张,并用这两张扑克牌上的数字组成一个两位数.请你用画树形(状)图或列表的方法求:(1)组成的两位数是偶数的概率;(2)组成的两位数是6的倍数的概率.

分析:本题可通过列表的方法,列出所有可能组成的两位数的可能情况,然后再找出组成的两位数是偶数的可能情况和组成两位数

是6的倍数的可能情况。

解:列的表格如下:根据表格可得两位数有:23,24,32,34,42,43.所

以(1)两位数是偶数的概率为

2

3

.(2)两位数是6的倍数的概率为13.

点评:当一事件要涉及两个或更多的因素时,为了不重不漏地列出所有可能的结果,通过画树形图的方法来计算概率 2.等可能事件的概率(古典概率): P(A)=

n

m

。 3、互斥事件:(A 、B 互斥,即事件A 、B 不可能同时发生)。计算公式:P(A+B)=P(A)+P(B)。 4、对立事件:(A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一

个发生)。计算公式是:P (A )+ P(B)=1;P(A )=1-P(A);

5、独立事件:(事件A 、B 的发生相互独立,互不影响)P(A •B)=P(A) • P(B) 。提醒:(1)如果事件A 、B 独立,那么事件A 与B 、A 与B 及事件A 与B 也都是独立事件;(2)如果事件A 、B 相互独立,那么事件A 、B 至少有一个不发生的概率是1-P (A ⋅B )=1-P(A)P(B);(3)如果事件A 、B 相互独立,那么事件A 、B 至少有一个发生的概率是1-P (A ⋅B )=1-P(A )P(B )。

6、独立事件重复试验:事件A 在n 次独立重复试验中恰好发生了.....k 次.的概率()(1)k

k

n k

n n P k C p p -=-(是二项

展开式[(1)]n p p -+的第k+1项),其中p 为在一次独立重复试验中事件A 发生的概率。

提醒:(1)探求一个事件发生的概率,关键是分清事件的性质。在求解过程中常应用等价转化思想和分解(分类或分步)转化思想处理,把所求的事件:转化为等可能事件的概率(常常采用排列组合的知识);转化为若干个互斥事件中有一个发生的概率;利用对立事件的概率,转化为相互独立事件同时发生的概率;看作某一事件在n 次实验中恰有k 次发生的概率,但要注意公式的使用条件。(2)事件互斥是事件独立的必要非充分条件,反之,事件对立是事件互斥的充分非必要条件;(3)概率问题的解题规范:①先设事件A=“…”, B=“…”;②列式计算;③作答。 二、随机变量.

1. 随机试验的结构应该是不确定的.试验如果满足下述条件:

①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果。它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 设离散型随机变量ξ可能取的值为: ,,,,21i x x x

ξ取每一个值),2,1(1 =i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列. ξ

1x 2x … i x

P

1p 2p … i p …

有性质:① ,2,1,01=≥i p ; ②121=++++ i p p p .

注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.

3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次

的概率是:k

n k k n q

p C k)P(ξ-==[其中p q n k -==1,,,1,0 ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n ·p ),其中n ,p 为参数,并记p)n b(k;q

p C k n k k n ⋅=-. ⑵二项分布的判断与应用.

①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.

②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.

4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A A P(k)P(ξk 1k 21-== .根据相互独立事件的概率乘法分式:

))P(A A P()A )P(A P(k)P(ξk 1k 21-== ),3,2,1(1

==-k p q k 于是得到随机变量ξ的概率分布列.

ξ

1 2 3

… k

… P

q

qp

p q 2

p q 1k -

我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中 3,2,1.1=-=k p q

5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξn

N

k n M

N k M -≤-≤≤≤⋅⋅=

=--.〔分子是从M 件次品中取k 件,从

N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r

m =,则k 的范围可以写为k=0,1,…,n.〕

⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为n.,0,1,k C

C C k)P(ξn

b

a k

n b

k a =⋅=

=+-.

⑶超几何分布与二项分布的关系.

设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含k

n k

k n

b

a C -个结果,故n ,0,1,2,k ,)

b a a (1)b a a (

C b)(a b

a C k)P (ηk

n k k n n

k

n k k n =+-+=+=

=--,即η~)(b

a a n B +⋅

.[我们先为k 个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.

相关文档
最新文档