三角函数的诱导公式重难点分析

合集下载

三角函数诱导公式教案

三角函数诱导公式教案

三角函数诱导公式教案一、教学目标:1.掌握三角函数诱导公式的概念和相关性质;2.理解三角函数诱导公式与函数周期、对称性的关系;3.能够运用三角函数诱导公式求解相关问题。

二、教学重点:1.三角函数诱导公式的概念和相关性质;2.三角函数诱导公式与函数周期、对称性的关系。

三、教学难点:1.三角函数诱导公式推导过程的理解;2.运用三角函数诱导公式求解相关问题的能力。

四、教学方法:1.示范引导法;2.分组合作探究法;3.案例分析法。

五、教学过程:1.导入新知:通过一道例题引出三角函数诱导公式的概念和作用。

例题:已知$\sin \theta = \frac{3}{5}$,求$\cos \theta$的值。

引导学生利用三角函数的定义解答问题,得到$\cos \theta = \pm\sqrt{1-\sin^2 \theta} = \pm \sqrt{1-\frac{9}{25}} = \pm\frac{4}{5}$。

从例题中引出三角函数诱导公式的概念,即$\cos \theta = \pm\sqrt{1-\sin^2 \theta}$。

2.基本三角函数的诱导公式学习:(1)$\sin(\frac{\pi}{2}-\theta) = \cos \theta$;(2)$\cos(\frac{\pi}{2}-\theta) = \sin \theta$;(3)$\sin(\frac{\pi}{2}+\theta) = \cos \theta$;(4)$\cos(\frac{\pi}{2}+\theta) = -\sin \theta$。

通过两两比较基本三角函数的定义式,结合特殊角的值,学生分组合作,依次验证以上四个公式的正确性。

然后,指导学生进行思考和总结,得到以上四个公式。

导出这些公式的过程:首先,通过基本三角函数的定义式可知,$\sin(\frac{\pi}{2}-\theta)=\sin(\frac{\pi}{2} \cdot 1-\theta)$;然后,利用和差化积公式展开并化简,得到$\sin(\frac{\pi}{2}-\theta) = \cos \theta \cdot \sin \frac{\pi}{2} - \sin \theta \cdot \cos\frac{\pi}{2} = \cos \theta$。

三角函数的诱导公式(教案)

三角函数的诱导公式(教案)

课 题:1.2.3三角函数的诱导公式(一)教学目标:1. 利用单位圆,推导出正弦、余弦的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数。

并能解决有关三角函数求值、化简等问题。

2.能通过公式的运用,了解未知到已知、复杂到简单的转化过程,提高分析和解决问题的能力。

教学重点:诱导公式的推导、记忆及应用 教学难点:诱导公式的灵活应用 教学过程:一、引入:问题情境:(1)作出角390 与390-的终边; (请两位学生完成)(2)作出角480 与480-的终边。

师生共同分析作图过程,发现:角390与30的终边相同,角390-与30-的终边相同等,并生成新问题:角2)k k Z απ+∈(的终边与α的终边有什么关系?(终边相同) 其同一三角函数值之间有什么关系? (相等) (为什么?)并引导学生回到任意角的三角函数定义:在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x,y ),它与原点的距离是r(0r=>).一般地,对任意角α,我们规定: (1)比值y r 叫做α的正弦,记作sin α,即:sin ;y r α= (2)比值x r 叫做α的余弦,记作cos α,即:co s ;x rα=(3)比值(0)y x x≠叫做α的正切,记作tan α,即:tan .y x α=点P 为α的终边上任意一点,特殊地(为了简化),取1r =,作出单位圆,则:sin ,y α=cos ,x α=tan (0).y x xα=≠此时,点P (x,y ) 点P (cos ,sin )αα。

(若将角α的终边逆时针旋转一周,角2απ+的三角函数值有没有变化?顺时针旋转一周呢?)总结:(板书)公式一:(2)k k Z απ+∈(与α的终边相同)=+)2sin(παk =+)2cos(παk =+)2tan(παk (其中Z ∈k )作用:它可以将任意角的三角函数求值问题转化为0~360间角的三角函数值问题。

高考数学三角函数诱导公式详解分析

高考数学三角函数诱导公式详解分析

高考数学三角函数诱导公式详解分析高考数学中,三角函数是重要的一部分,其中诱导公式是必须掌握的知识之一。

本文将从诱导公式的定义、证明方法以及应用展开详细的分析和解释,希望能够给同学们带来一些帮助。

一、诱导公式的定义在高中数学中,我们学习了正弦、余弦、正切等三角函数的概念和基本性质。

而对于不同角度的三角函数,它们之间存在着一些特殊的关系,这些关系被称为三角函数的诱导公式。

具体来说,诱导公式是指通过对三角函数的变量进行代换,将一个三角函数转化为另一个三角函数的公式。

通常情况下,诱导公式是将各个相邻的三角函数之间的关系进行转化,从而简化我们计算的过程。

二、诱导公式的证明方法针对不同的三角函数诱导公式,其具体的证明方法也各不相同。

这里我们以正弦诱导余弦公式为例,简单介绍一下具体的证明过程。

我们知道,对于任意角度x,有以下公式成立:sin2x + cos2x = 1接下来,我们进行代换。

首先,我们将sin2x 表示为sin(x + x) 的形式:sin2x = sin(x + x)再将cos2x 表示为cos(x + x) 的形式:cos2x = cos(x + x)接着,我们使用公式sin(a + b) = sinacosb + cosasinb 将正弦函数展开:sin(x + x) = sinxcosx + cosxsinx同样的,我们使用公式cos(a + b) = cosacosb - sinasinb 将余弦函数展开:cos(x + x) = cosxcosx - sinxsinx将以上结果代入到sin2x + cos2x = 1 这个公式中,得到:sinxcosx + cosxsinx + cosxcosx - sinxsinx = 1化简可得:cos2x = cosxcosx - sinxsinx因此,我们可以得到正弦诱导余弦公式:sin2x = 2sinxcosx这个公式表明,通过代换可以将sin2x 转化为2sinxcosx,从而将正弦函数的平方与余弦函数联系起来。

诱导公式说课稿

诱导公式说课稿

诱导公式说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“诱导公式”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“诱导公式”是三角函数这一章节中的重要内容,它是三角函数基本性质的延伸和应用。

通过诱导公式,可以将任意角的三角函数值转化为锐角三角函数值,从而简化三角函数的计算和求解。

这不仅为后续学习三角函数的图像和性质奠定了基础,也在解决实际问题中有着广泛的应用。

在教材的编排上,诱导公式的推导遵循了从特殊到一般、从具体到抽象的认知规律,注重培养学生的逻辑推理能力和数学思维能力。

二、学情分析学生在之前已经学习了三角函数的定义、象限角以及弧度制等基础知识,对于三角函数的基本概念和性质有了一定的了解。

但是,对于如何运用这些知识来推导和应用诱导公式,还需要进一步的引导和训练。

同时,学生在数学学习中已经具备了一定的观察、分析和归纳能力,但在抽象思维和逻辑推理方面还相对较弱。

因此,在教学过程中,要注重引导学生通过观察、思考和探究来发现规律,培养学生的自主学习能力和创新精神。

三、教学目标1、知识与技能目标(1)理解诱导公式的推导过程,掌握诱导公式的内容。

(2)能够运用诱导公式进行三角函数的化简、求值和证明。

2、过程与方法目标(1)通过诱导公式的推导,培养学生的观察能力、分析能力和逻辑推理能力。

(2)通过公式的应用,提高学生的运算能力和解决问题的能力。

3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的信心。

(2)培养学生勇于探索、敢于创新的精神,以及严谨的治学态度。

四、教学重难点1、教学重点诱导公式的推导和应用。

2、教学难点诱导公式的推导过程中角的变换和符号的确定。

五、教法与学法1、教法(1)启发式教学法:通过设置问题,引导学生思考和探究,激发学生的学习兴趣和主动性。

(2)讲授法:对于重点和难点知识,进行详细的讲解和分析,帮助学生理解和掌握。

三角函数诱导公式 秒杀技巧 解题技巧

三角函数诱导公式 秒杀技巧 解题技巧

三角函数诱导公式秒杀技巧解题技巧三角函数诱导公式、秒杀技巧和解题技巧三角函数是高中数学中非常重要的内容,而三角函数诱导公式则是三角函数中的重点和难点。

掌握好三角函数诱导公式对于提高解题速度和正确率非常重要。

本文将介绍三角函数诱导公式、秒杀技巧和解题技巧,帮助读者更好地掌握三角函数知识。

一、三角函数诱导公式三角函数诱导公式是指通过代数运算和三角函数名的变换,将一个角三角函数值转化为其他角三角函数值的方法。

常见的三角函数诱导公式包括sin(π/2±α)=cosα, cos(π/2±α)=sinα, tan(π/4±α)=±√(1-cosα)/(1+cosα), sec(π/4±α)=±√((1+cos α)/(1-cosα))等。

掌握好三角函数诱导公式对于解决一些复杂的三角函数问题非常重要。

二、秒杀技巧秒杀技巧是指快速解决数学问题的技巧。

在解决三角函数问题时,常用的秒杀技巧包括:1. 特殊值法:通过代入特殊值,快速计算出答案。

2. 奇偶性法:利用三角函数的奇偶性,快速判断答案的正负性。

3. 半角法:利用半角公式,将复杂的问题转化为简单的问题。

4. 整体代换法:通过整体代换,将一个式子转化为另外的形式,从而简化计算。

三、解题技巧1. 熟悉三角函数的定义域和值域:在解决三角函数问题时,需要注意函数的定义域和值域,避免出现负值或超出定义域的情况。

2. 学会化简:将复杂的式子化简为简单的形式,有助于快速计算。

3. 学会选择合适的方法:在解决三角函数问题时,需要根据问题的特点选择合适的方法,如代入法、奇偶性法、半角法等。

高一数学《三角函数的诱导公式(第1课时)》教案示范三篇

高一数学《三角函数的诱导公式(第1课时)》教案示范三篇

高一数学《三角函数的诱导公式(第1课时)》教案示范三篇高一数学《三角函数的诱导公式(第1课时)》教案1教材分析:高一数学《三角函数的诱导公式(第1课时)》是一节基础性课程,课本中主要包含了三角函数诱导公式的定义、常见角度的三角函数值以及相应的推导方法等内容。

教师需要全面了解教材的内容,并对教材的组织结构、难易程度及与之相应的教学资源进行细致的分析和处理。

教学目标:通过本节课的教学,学生应该能够掌握诱导公式的基本概念、运用方法及其相关定理,能够熟练地计算一些常见角度的三角函数值,并能够对不同情况下的三角函数值进行求解。

教学重点:本节课教学的重点主要集中在诱导公式的定义及其相关定理的理解和运用上,同时也需要教师在教学过程中重点关注学生对于诱导公式的记忆和运用情况。

教学难点:本节课教学难点在于对于一些相对较为复杂的求解题目的讲解和理解,尤其是在涉及到三角函数值之间的相互替换问题时需要引导学生注重方法逻辑的分析和运用。

学情分析:本节课所涉及到的内容主要是在初中阶段所学习的三角函数知识的基础上进一步推广和延伸,对于新生来说可能需要花费一定的时间来加深对于三角函数概念的理解和记忆。

教学策略:教师可以通过引入案例以及图像的呈现等方式来促进学生对于三角函数概念以及诱导公式的理解和记忆,同时也需要关注学生在解题过程中的思维逻辑和分析方法的引导。

教学方法:本节课教学方法需要注重理论掌握和实践操作的结合,可以通过练习习题,讲解案例和互动讨论等方式来提高学生的思维能力和实际操作水平。

同时也可以通过个性化的辅导方式注重对于学生的学习经历和个体差异进行分析和处理。

高一数学《三角函数的诱导公式(第1课时)》教案2本节课的教学过程如下:一、导入环节(约5分钟)教学内容:复习三角函数的基本概念,介绍本节课的主题——三角函数的诱导公式。

教学活动:1.学生们通过手写练习纸,复习三角函数的基本公式和图像;2.老师引导学生们思考有哪些角的三角函数值已知,而另外一个角的三角函数值不易计算;3.通过引导,学生们提出了需要学习三角函数的诱导公式的需求;4.老师介绍三角函数的诱导公式的含义和作用,引发学生们兴趣。

三角函数的诱导公式说课稿

三角函数的诱导公式说课稿

《三角函数的诱导公式(第一课时)》是普通高中课程标准实验教科书必修四第一章第三节,其主要内容是三角函数的诱导公式中的公式二至公式四,是三角函数的主要性质.前面学生已经学习了诱导公式一和任意角的三角函数值的定义,在此基础上,继续学习这三组公式,为以后的三角函数求值、化简、简单证明以及后续学习的三角函数图像和性质等打好基础,它体现了三角函数之间的内部联系,是定义的延伸与应用,诱导公式在本章中起着承上起下的作用.诱导公式的重要作用是把求任意角的三角函数值问题转化为求[ 0~2 ) 角的三角函数值问题.诱导公式的推导过程,使学生学会用联系的观点,把单位圆的性质与三角函数联系起来,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到普通的数学归纳思维形式.这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义.利用三角函数的定义借助单位圆,特殊是观察角的终边的对称性与角的终边上与单位圆的交点的对称性,推导出诱导公式.相关角终边的几何对称关系及诱导公式结构特征的认识.(1)学习内容分析:本节课基于任意角的三角函数值定义和诱导公式一的基础上,进一步学习三角函数的诱导公式,使学生掌握诱导公式的推导方法和记忆方法.(2) 学生情况分析:学生理解和掌握了任意角的三角函数值的定义,并学习了诱导公式一,对诱导公式的结构特征有了初步的认识.同时学生比较熟悉几何图形的对称性,具备一定的看图实图能力,但还不能够把单位圆的性质与三角函数联系起来,对于数形结合与归纳转化推导公式的思想方法还需要加强训练.根据《普通高中新课程标准》的要求和教学内容的结构特征,依据学生的心理规律和素质教育的要求,结合学生的认知水平,制定本节课的教学目标如下:(1)知识与技能目标:通过本小节的学习要使学生理解并掌握正弦、余弦、正切的诱导公式,并能应用这些公式解决一些求值、化简、证明等问题;(2)过程与方法目标:借助单位圆中的对称关系,启示学生探索发现诱导公式及其证明,培养学生勇于探求新知、善于归纳总结的能力;(3)情感与价值观目标:让学生在分析问题,解决问题的过程中体验成功的欢跃,培养学生的自信心.根据教学内容的结构特征和学生学习数学的心理规律,采用以下教法与学法指导:(1)教法:本节课涉及到的公式比较多,为使学生有效掌握和运用公式,我采用教师引导、学生自主探索的教学方法;(2)学法:指导学生通过公式的推导过程,体味数形结合思想、转化与化归的思想. 通过解题分析,对学生进行公式运用与记忆的指导.(3)教学手段:教学中采用多媒体演示,增强教学直观性.本节课的教学过程设计以新课标为依据,遵循教师为主导、学生为主体的原则.如何将的三角函数求值转化为[0~2)角三角函数求值问题?【问题 1】求9角的正弦、余弦、正切值.4【回顾】终边相同的角的同一三角函数值相等,即:sin(+ 2k ) = sincos(+ 2k ) = cos (公式一)tan(+ 2k ) = tan,其中(k = z)公式一的用途:把求任意角的三角函数值转化为求[0~2)范围的角的三角函数值问题. 我们对 0~ "2))|范围内角的三角函数值很熟悉. 若把[0~2 " ) 内角的三角函数值转化为0~ "2))| 的三角函数值,那末任意角的三角函数值就可以求出,这就是我们这节课要解决的问题.【问题 2】角 a 与a +2k " (k = z) 的三角函数值为什么相等呢?(让学生回到定义去解决问题)【回顾】【思量】两个角的终边还有哪些特殊的对称关系?1)终边相同2)终边关于原点对称 3)终边关于 x 轴对称4)终边关于 y 轴对称【设计意图】 复习旧知,提出问题,调动学生探索问题的积极性.三角函数的值是由角 的终边的位置决定的,因此考虑从终边的位置关系提出问题,通过思量问题、解决问题 的过程,让学生经历由几何直观发现数量关系的学习过程,体验如何把角的终边具有的 特定位置关系转化为三角函数值之间的关系.a 与a + 2k " (k = z) (角之间的数量关系)终边位置相同 (形的关系)终边上(对应)点的坐标(数量关系)三角函数值间的关系(数量关系)【】如何利用已学知识推导出角几 + α 与角α 的三角函数之间的关系.1)角α 与角几 +α 的终边具有什么样的位置关系?2)相应地,角α 与角几 +α 的终边上点P,P ,的坐标具有什么关系? 3) (进而有)角α 与角几 +α 的三角函数值有什么关系?4)设 P(x, y) ,则 P ,(x, y) ,有三角函数的定义得:sin α = y; cos α = x;tan α = yxsin(几 +α ) = sin α得诱导公式二: cos(几 +α ) = cos αtan(几 +α ) = tan αsin(几 +α ) = y; cos(几 +α ) = x;tan(几 +α ) = yx进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系.【】类比公式二探索路线,利用对称推导出 α , 几 α 与α 的三角函数值之间的关系.1)角 α 与角α 的终边有什么关系?三角函数值有何关系?yP(x, y)几+ ααox.yP(x, y)sin(α ) = sin ααcos(α ) = cos α (公式三) tan(α ) = tan αP (x, y)2)角几 α 与角α 的终边有什么关系?三角函数值有何关系?上面的公式一到四都称为三角函数的诱导公式.:α +2k .几(k z) , α ,几 士 α 的三角函数值,等于α 的同名函数值,前面加之一个把α 看成时原函数值的符号.从两个角的终边关于原点对称的情况进行自然过渡,给学生留下了自主探究的空间,让他们再次经历公式的研究过程,从而得出公式三和四,并将问题研究方法 普通化.利用公式求下列三角函数值:(1) cos 225 ; (2) sin11几3; (3) sin( 16几3);(4) cos(2040 ).【】这是直接运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到熟练、正确地应用.让学生观察题目中的角的范围,对照公式找出哪个公式适合yP(x, y)几 ααxP(x, y)osin(几 α ) = sin αcos(几 α ) = cos α (公式四) tan(几 α ) = tan αxαo解决这个问题.利用公式一~四把任意角的三角函数转化为锐角的三角函数, 普通可按下列步骤进 行:用公式任意负角的 三角函数用公式一锐角 三角函数上述步骤体现了由未知转化为已知的转化与化归的思想方法.P27 练习 1、2 题请同学板演,展示学生的学习成果,暴露学生浮现的问题及时总 结、改正.这是直接运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到熟练、正确地应用.1)简述数学的化归思想:2)三个诱导公式的记忆: α3)三个诱导公式的作用4)求任意角的三角函数值的步骤为:引导学生对本课内容进行归纳小结,深刻领略诱导公式的实质与作用. 课本 P29 习题 1.3A 组 1,2;角 一 α 的终边与α 有什么关系?它们的三角函数值有何关系?2巩固本课所学内容,强化基本方法与技能训练,培养学生良好的学习习惯和品质.课下探索为下节课推导诱导公式五、六做准备,同时也让学生尝试类比推导的 方法.任意正角的 三角函数0~2 的角的三角函数用公式 二或者四 三或者一(1)学生不能够很好地把单位圆的性质与三角函数联系起来,需要教师的引导;(2)通过师生共同探索得到公式二,并引导学生自主探索公式三、四,可以激发学生的学习热情,并体验尝试成功的欢跃;(3)课堂气氛活跃,突出学生的自主性与积极性,效果较好.(终边相同) 总结(终边关于原点对称)学生板演点评(终边关于 x 轴对称 )(终边关于 y 轴对称)。

三角函数的诱导公式解析与应用

三角函数的诱导公式解析与应用

三角函数的诱导公式解析与应用三角函数是数学中常见且重要的函数之一,在解决几何问题以及物理、工程等实际应用中扮演着重要的角色。

在三角函数的学习过程中,诱导公式是我们必须要掌握和应用的一部分内容。

本文将对三角函数的诱导公式进行解析,并探讨其在数学和实际应用中的具体应用。

一、三角函数的诱导公式解析1. 正弦函数的诱导公式正弦函数是三角函数中最为常见的函数之一,其诱导公式为:sin(x ± π) = sin(x)cos(π) ± cos(x)sin(π)根据诱导公式,我们可以得出几个重要的结论:- sin(x + π) = -sin(x)- sin(x - π) = -sin(x)- sin(x + 2π) = sin(x)- sin(x - 2π) = sin(x)这些结论表明,通过加减π或2π,正弦函数的值可以保持不变或者取负值。

2. 余弦函数的诱导公式余弦函数是三角函数中与正弦函数密切相关的函数,其诱导公式为:cos(x ± π) = cos(x)cos(π) ∓ sin(x)sin(π)同样地,根据诱导公式,我们可以得出以下结论:- cos(x + π) = -cos(x)- cos(x - π) = -cos(x)- cos(x + 2π) = cos(x)- cos(x - 2π) = cos(x)3. 正切函数的诱导公式正切函数是三角函数中较为特殊的函数,其诱导公式为:tan(x ± π) = (tan(x) ± tan(π)) / (1 ∓ tan(x)tan(π))其中,tan(π) = 0,因此可以得到以下结论:- tan(x + π) = tan(x)- tan(x - π) = tan(x)- tan(x + 2π) = tan(x)- tan(x - 2π) = tan(x)二、三角函数的诱导公式应用1. 几何问题中的应用三角函数的诱导公式在解决几何问题中有着广泛的应用。

高中数学必修4 三角函数的诱导公式

高中数学必修4 三角函数的诱导公式

三角函数的诱导公式一、教学目标:(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式;(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题;(3)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力;(4)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力.教学重点:用联系的观点发现并证明诱导公式.教学难点: 如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法.教学设想一.问题引入:角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢?先看一个具体的问题。

求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,即有:sin(α+2kπ) = sinα,cos(α+2kπ) = cosα,ta n(α+2kπ) = tanα(k∈Z) 。

(公式一)二.尝试推导由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。

反过来呢?问题:你能找出和30°角正弦值相等,但终边不同的角吗?角π-α与角α的终边关于y轴对称,有sin(π-α) = sin α,cos(π-α) = - cos α,(公式二)tan(π-α) = - tan α。

因为与角α 终边关于y 轴对称是角π-α,,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数。

于是,我们就得到了角π-α 与角α的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。

三.自主探究问题:两个角的终边关于x 轴对称,你有什么结论?两个角的终边关于原点对称呢?角-α 与角α 的终边关于x 轴对称,有:sin(-α) = -sin α,cos(-α) = cos α,(公式三)tan(-α) = -tan α。

【高中数学经典】三角函数的诱导公式重难点题型(举一反三)

【高中数学经典】三角函数的诱导公式重难点题型(举一反三)

【高中数学】三角函数的诱导公式重难点题型【举一反三系列】【知识点1 诱导公式】诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈ 诱导公式二: sin()sin παα+=-, cos()cos παα+=-,tan()tan παα+=,其中k Z ∈ 诱导公式三: sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈ 诱导公式四:sin()sin παα-=, cos()cos παα-=-,tan()tan παα-=-,其中k Z ∈诱导公式五:sin cos 2παα⎛⎫-=⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 诱导公式六:sin cos 2παα⎛⎫+=⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭,其中k Z ∈ 【知识点2 诱导公式的记忆】记忆口诀“奇变偶不变,符号看象限”,意思是说角90k α⋅±(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.【考点1 利用诱导公式求值】【方法点拨】对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.【例1】(2018秋•道里区校级期末)已知点(1,1)P 在角α的终边上,求下列各式的值. (Ⅰ)2cos()sin()tan()sin ()2παπαππαα+-++-;(Ⅱ)2233sin()cos()22cos sin tan()ππααααπα+--+-. 【分析】由条件利用任意角的三角函数的定义求得sin α,cos α,tan α的值,再利用诱导公式即可求得要求式子的值.【答案】解:角α终边上有一点(1,1)P ,1x ∴=,1y =,||r OP ==sin 2y r α∴==,cos 2x r α==,tan 1yxα==, ∴(Ⅰ)22cos()sin()cos sin 1tan 3tan()sin ()2cos παπαααπααπαα+--===-+++-; (Ⅱ)222233sin()cos()(((cos )(sin )1222211cos sin tan()tan 2122cos sin ππααααααπαααα+-⨯--===--+-----. 【点睛】本题主要考查任意角的三角函数的定义,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.【变式1-1】(2019春•龙潭区校级月考)已知1tan()2πα+=-,求下列各式的值:(1)2cos()3sin()4cos(2)sin(4)παπααππα--+-+-;(2)sin(7)cos(5)απαπ-+.【分析】(1)由诱导公式化简后,原式分子分母除以cos α,利用同角三角函数间的基本关系化简,将tan α的值代入计算即可求出值;(2)由诱导公式化简后,原式分母“1”化为22sin cos αα+,然后分子分母除以2cos α,利用同角三角函数间的基本关系化简,将tan α的值代入计算即可求出值.【答案】解:1tan()tan 2παα+==-,∴(1)2cos()3sin()3sin 2cos 3tan 274cos(2)sin(4)4cos sin 4tan 9παπαααααππαααα--+--===--+---;(2)222sin cos tan 2sin(7)cos(5)sin cos 15sin cos tan ααααπαπααααα-+====-++. 【点睛】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键,属于基本知识的考查.【变式1-2】(2018春•陆川县校级月考)若2cos 3a =,a 是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)a a a a a a ππππππ-+--------的值.【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【答案】解:2cos 3a =,a是第四象限角,sin a ∴=,∴51sin(2)sin(3)cos(3)sin sin (cos )sin (1cos )53321cos()cos()cos(4)cos cos cos cos (cos 1)()33a a a a a a a a a a a a a a a ππππππα-+---+--====------+--.【点睛】本题主要考查应用诱导公式化简三角函数式,属于基础题.【变式1-3】(2019春•沈阳校级月考)已知sin α是方程25760x x --=的根,求2233sin()sin()tan (2)22cos()cos()cos ()22αππαπαππααπα-----+-的值. 【分析】把sin α代入到方程中解出即可求出sin α的值进而求出2tan α的值,然后把所求的式子利用诱导公式及同角三角函数间的基本关系进行化简,将2tan α的值代入即可求出值.【答案】解:sin α是方程25760x x --=的根,∴3sin 5α=-或sin 2α=(舍).故29sin 25α=,22169cos tan 2516αα=⇒=.∴原式22222222sin cos (cos )cos (cos )tan 1925cos sec 1tan 1sin (sin )cos sin (sin )cos cos 1616αααααααααααααααα--=====+=+=-- 【点睛】此题要求学生灵活运用诱导公式及同角三角函数间的基本关系化简求值,解这道题的思路是利用已知求出正切函数的平方,所求的式子也要化为关于正切函数平方的关系式. 【考点2 利用诱导公式化简】【方法点拨】灵活应用诱导公式,应用的原则是:负化正,大化小,化到锐角就终了【例2】(2019秋•颍泉区校级期中)化简:3tan()cos(2)sin()2cos()sin()ππαπαααππα---+----.【分析】由已知利用诱导公式即可化简得解.【答案】解:3tan()cos(2)sin()(tan )cos (cos )21cos()sin()(cos )sin ππαπααααααππααα---+--==------.【点睛】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.【变式2-1】(2019春•兰考县校级期末)化简:9sin(4)cos()tan(5)211sin()cos(2)sin(3)sin()22ππααπαππαπαπαα-+--+--+.【分析】利用诱导公式以及同角三角函数基本关系式化简求解即可. 【答案】解:222229sin(4)cos()tan(5)sin()(sin )tan 112111(cos )cos()sin cos cos cos sin()cos(2)sin(3)sin()22sin sin cos ππααπααααααππααααααααπαπαα-+------=-=+==---+--+. 【点睛】本题考查诱导公式以及同角三角函数基本关系式的应用,考查计算能力.【变式2-2】(2019春•东莞市校级期末)化简sin(5)cos()cos(7)23sin()sin(3)2πθπθπθπθπθ-------.【分析】由条件利用诱导公式进行化简所给的式子,可得结果. 【答案】解:sin(5)cos()cos(7)sin()cos()cos()sin (sin )(cos )22sin 33cos sin sin()sin(3)sin()sin()22ππθπθπθθπθπθθθθθππθθθπθθπθ-----+----===-------.【点睛】本题主要考查应用诱导公式化简三角函数式,要特别注意符号的选取,这是解题的易错点,属于基础题.【变式2-3】(2019春•西安月考)化简:tan(2)sin(2)cos(6)cos()sin(5)πθπθπθθππθ-----+.【分析】由条件利用诱导公式化简所给的三角函数式,可得结果. 【答案】解:tan(2)sin(2)cos(6)tan (sin )cos sin tan cos()sin(5)cos (sin )cos πθπθπθθθθθθθππθθθθ------===-+--,【点睛】本题主要考查利用诱导公式进行化简求值,属于基础题. 【考点3 诱导公式在函数中的应用】【例3】(2019春•怀化期末)已知3cos()cos()sin()22()sin()cos(2)x x x f x x x ππππ+--=--- (Ⅰ)化简()f x ;(Ⅱ)若x 是第三象限角,且tan 2x =,求()f x 的值. 【分析】(Ⅰ)由已知利用诱导公式即可化简得解;(Ⅱ)由tan 2x =,可得sin 2cos x x =,根据角的范围利用同角三角函数基本关系式即可求解. 【答案】解:(Ⅰ)(sin )cos (cos )()cos sin cos x x x f x x x x--==.(Ⅱ)tan 2x =,sin 2cos x x ∴=,代入22sin cos 1x x +=,得:25cos 1x =,x 是第三象限角, ∴()cos f x x ==. 【点睛】本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.【变式3-1】(2019春•大武口区校级期末)已知sin()sin cos().()3sin()cos()sin()222f πααπααπππααα++=-++(1)化简()f α;(2)若1()3f α=,求223sin 4sin cos 5cos αααα-+的值.【分析】(1)直接利用诱导公式化简求解即可.(2)求出正切函数值,利用同角三角函数基本关系式化简表达式为正切函数的形式,代入求解即可. 【答案】解:(1)sin sin (cos )()tan cos (sin )cos f αααααααα--==--.(2)1()3f α=,可得:1tan 3α=,222222223sin 4sin cos 53tan 4tan 53sin 4sin cos 5sin tan 1cos cos cos ααααααααααααα-+-+-+==++, 将1tan 3α=代入,得22183sin 4sin cos 55cos αααα-+=. 【点睛】本题考查诱导公式以及同角三角函数基本关系式的应用,考查转化思想以及计算能力. 【变式3-2】(2018秋•红塔区校级期末)已知sin(2)tan()cos()()cos()tan(3)f παπααπαπαπα-+--=--.(1)将()f α化为最简形式; (2)若31()()25f f παα-+=,且(0,)απ∈,求tan α的值. 【分析】(1)由题意利用诱导公式,化简所给的式子,可得结果.(2)由题意可得sin cos αα+的值,再利用同角三角函数的基本关系,求得sin cos αα-的值,可得sin α的cos α的值,从而求得tan α的值.【答案】解:(1)由题意可得,(sin )tan (cos )()sin (cos )(tan )f ααααααα--==--.(2)331()()sin sin()sin cos 225f f ππαααααα-+=-+=+=①, 平方可得112sin cos 25αα+=,∴242sin cos 025αα=-<, 因为(0,)απ∈,所以(,)2παπ∈,sin cos 0αα->,249(sin cos )12sin cos 25αααα-=-=,所以7sin cos 5αα-=②,由①②可得:43sin ,cos 55αα==-,所以4tan 3α=-.【点睛】本题主要考查利用诱导公式,同角三角函数的基本关系,属于基础题. 【变式3-3】(2018秋•汕头校级期中)已知函数(sin tan )cos ()1cos()x x xf x x +=+-.(1)若()sincos 06f πθθ⨯-=,求sin cos θθ的值.(2)若1()cos 8f θθ=,且344ππθ<<,求(2019)cos(2018)f πθπθ---的值; 【分析】(1)由题意利用诱导公式求得tan 2θ=,再根据222sin cos tan sin cos sin cos tan 1θθθθθθθθ==++,计算求得结果.(2)利用诱导公式化简要求的式子为sin cos 0θθ->,再计算2(sin cos )θθ-的值,可得要求式子的值.【答案】解:(1)函数(sin tan )cos sin cos sin ()sin 1cos()1cos x x x x x xf x x x x++===+-+,若1()sincos sin cos 062f πθθθθ⨯-=-=,则tan 2θ=, 222sin cos tan 2sin cos sin cos tan 15θθθθθθθθ∴===++. (2)1()cos sin cos 8f θθθθ==,且344ππθ<<, (2019)cos(2018)sin(2019)cos(2018)sin cos 0f πθπθπθπθθθ∴---=---=->,23(sin cos )12sin cos sin cos 4θθθθθθ-=-=∴-=,即(2019)cos(2018)f πθπθ---=【点睛】本题主要考查三角恒等变换,诱导公式的应用,属于基础题. 【考点4 分类讨论思想】 【例4】化简:4141sin()cos()()44n n n Z παπα-+-+-∈. 【分析】对n 分当2n k =与21()n k k Z =+∈讨论,利用诱导公式化简求值即可. 【答案】解:4141sin()cos()sin()cos()4444n n n n πππαπαπαπα-+-+-=--++-, 当2()n k k Z =∈时,上式sin()cos()sin[()]cos()044244πππππαααα=-++-=---+-=;当21()n k k Z =+∈时,上式35sin()cos()sin()cos()cos()cos()0444444ππππππαααααα=-+-=+--=---=. 【点睛】本题考查运用诱导公式化简求值,分类讨论是关键,是基本知识的考查. 【变式4-1】(2019春•集宁区校级月考)设k 为整数,化简sin()cos[(1)]sin[(1)]cos()k k k k παπαπαπα---+++.【分析】分k 为偶数和奇数两种情况,分别利用诱导公式进行化简求值. 【答案】解:当k 为偶数时,sin()cos[(1)]sin()(cos )1sin[(1)]cos()sin cos k k k k παπαααπαπααα-----==-+++-.当k 为奇数时,sin()cos[(1)]sin cos 1sin[(1)]cos()sin (cos )k k k k παπαααπαπααα---==-+++-,综上可得,sin()cos[(1)]1sin[(1)]cos()k k k k παπαπαπα---=-+++.【点睛】本题主要考查利用诱导公式进行化简求值,体现了分类讨论的数学思想,属于基础题. 【变式4-2】(2019•广东模拟)化简sin()cos()cos[(1)]n n n παπαπα+-+-,n Z ∈.【分析】利用诱导公式化简.应分当n 为偶数时和为奇数时两种情况.因为这两种情况正余函数的正负值不同.【答案】解:当2()n k k Z =∈时,原式sin cos sin cos αααα==--;当21()n k k Z =-∈时,原式(sin )(cos )sin cos αααα--==.【点睛】本题主要考查诱导公式的应用.注意三角函数的正负号的判断. 【变式4-3】已知222cos ()sin ()()()cos [(21)]n x n x f x n Z n x πππ+-=∈+-,(1)化简()f x 的表达式; (2)求502()()20101005f f ππ+的值. 【分析】(1)看n 为奇数和偶数时,分别根据诱导公式化简整理,最后综合可得答案. (2)把2010x π=和5021005π代入函数解析式,利用诱导公式和同角三角函数的基本关系求得答案. 【答案】解:(1)当n 为偶数,即2n k =,()k Z ∈时,2222222222cos (2)sin (2)cos sin ()cos (sin )()sin cos [(221)]cos ()(cos )k x k x x x x x f x x k x x x ππππ+---====⨯+---,()n Z ∈ 当n 为奇数,即21n k =+,()k Z ∈时2222222222222cos [(21)]sin [(21)]cos [2()]sin [2()]cos ()sin ()(cos )sin ()sin ,()cos {[2(21)1]}cos [2(21)()]cos ()(cos )k x k x k x k x x x x x f x x n Z k x k x x x ππππππππππππ+++-+++-+--=====∈⨯++-⨯++--- 2()sin f x x ∴=;(2)由(1)得225021004()()sin sin 2010100520102010f f ππππ+=+ 2222sin sin ()sin cos ()120102201020102010πππππ=+-=+=【点睛】本题主要考查了同角三角函数的基本关系和诱导公式化简求值.在利用诱导公式时注意根据角的范围,确定三角函数的正负. 【考点5 利用诱导公式进行证明】【例5】(2019春•凉州区校级月考)证明下列等式:(1)2cos()2sin(2)cos(2)sin 5sin()2πααππααπα---=+ (2)tan(2)sin(2)cos(6)tan 33sin()cos()22παπαπααππαα----=-++【分析】(1)利用诱导公式对等号左边分子和分母进行化简,最后约分即可求得答案.(2)利用诱导公式对等号左边分子和分母进行化简,注意符号的判断.【答案】证明:(1)左边2cos()sin 2sin(2)cos(2)sin cos sin 5cos sin()2παααππααααπαα-=--===+右边. (2)左边tan(2)sin(2)cos(6)tan (sin )cos tan 33cos sin sin()cos()22παπαπαααααππαααα------===-=-++右边.【点睛】本题主要考查了诱导公式的化简求值.可采用“奇变偶不变,正负看象限”的口诀记忆. 【变式5-1】(2019秋•岳池县校级月考)求证: (1)22sin()cos 1tan(9)112sin tan()1πθθπθθπθ+-++=-+-; (2)2tan sin cos (tan sin )tan sin sin θθθθθθθθ+=-. 【分析】(1)原式左边利用诱导公式及同角三角函数间的基本关系化简,右边利用诱导公式化简,得到两结果相等,即可得证;(2)原式左边与右边分别利用同角三角函数间的基本关系化简,整理后得到两结果相等,即可得证. 【答案】证明:(1)左边2222sin cos 1(sin cos )(sin cos )tan 1sin cos tan 1tan 1(sin cos )cos sin )(sin cos )tan 1cos sin 1tan tan 1cos sin θθθθθθθθθθθθθθθθθθθθθθθθ---+++----+=======-+------; 右边tan(8)1tan 1tan 1tan 1ππθθθθ++++==--, ∴左=右,得证;(2)左边2sin sin sin cos sin sin (1cos )1cos sin cos sin θθθθθθθθθθθ===---,右边22sin cos (sin )sin (1cos )sin cos 11cos sin cos θθθθθθθθθθ++===--,∴左=右,得证.【点睛】此题考查了同角三角函数间的基本关系,以及运用诱导公式化简求值,熟练掌握基本关系是解本题的关键.【变式5-2】已知A 、B 、C 是ABC ∆的三个内角,求证: (1)cos(2)cos A B C A ++=-; (2)sincos 22B C A +=;(3)3tantan44A B Cπ++=-. 【分析】(1)由已知条件利用cos()cos παα+=-进行证明. (2)由已知条件利用sin()cos 2παα-=进行证明.(3)由已知条件利用tan()tan παα-=-进行证明. 【答案】证明:(1)A 、B 、C 是ABC ∆的三个内角,A B C π∴++=,cos(2)cos()cos A B C A A π∴++=+=-, cos(2)cos A B C A ∴++=-.(2)A 、B 、C 是ABC ∆的三个内角,A B C π∴++=,sin sin()sin()cos 22222B C A A Aππ+-∴==-=, sincos 22B C A+∴=. (3))A 、B 、C 是ABC ∆的三个内角,A B C π∴++=,3tan tan tan()tan4444A B C C Cππππ+--+∴==--=-. 3tantan44A B Cπ++∴=-. 【点睛】本题考查三角函数的证明,是基础题,解题时要认真审题,注意三角形内角和定理和诱导公式的合理运用.【变式5-3】设8tan()7a πα+=,求证:1513sin()3cos()37720221sin()cos()77a a ππααππαα++-+=+--+.【分析】由条件利用诱导公式求得tan()7a πα+=,再利用诱导公式、同角三角函数的基本关系化简等式的左边为tan()37tan()17παπα++++,再把tan()7a πα+=,从而得到要证的等式的右边.【答案】证明:8tan()tan()77a ππαα+=+=,∴1513sin()3cos()sin()3cos()sin()3cos()tan()3377777772022681sin()cos()sin()cos()sin()cos()tan()17777777a a πππππππαααααααπππππππααααααα++-+++++++++====+--+--++++++, 故要证的等式成立.【点睛】本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.【考点6 角的灵活拆分问题】【例6】已知1sin 3β=,sin()1αβ+=,求sin(23)αβ+的值. 【分析】由已知sin()1αβ+=,得22k παβπ+=+,再将2αβ+化为2()αββ++,利用三角函数的诱导公式求解.【答案】解:sin()1αβ+=,22k παβπ∴+=+. 又1sin 3β=, 1sin(23)sin[2()]sin 3αβαβββ∴+=++=-=-. 【点睛】本题考查了三角函数求值,利用整体代入是常用的技巧,是基础题.【变式6-1】已知3cos(75)5α︒+=,且75α︒+是第四象限角,求cos(105)sin(105)sin(15)ααα︒-+-︒+︒-的值.【分析】由已知利用同角三角函数基本关系式可求sin(75)α︒+的值,利用诱导公式即可化简求值. 【答案】解:3cos(75)5α︒+=,且75α︒+是第四象限角,4sin(75)5α∴︒+=-, cos(105)sin(105)sin(15)ααα∴︒-+-︒+︒-cos(75180)sin(75180)sin(7590)ααα=︒+-︒++︒-︒-︒+-︒cos(75)sin(75)cos(75)ααα=-︒+-+︒+︒+343()555=---+ 45=. 【点睛】本题主要考查了同角三角函数基本关系式,诱导公式的综合应用,属于基础题.【变式6-2】已知1cos(55)3α-︒=-,且α为第四象限角,求sin(125)α+︒的值. 【分析】由条件利用同角三角函数的基本关系求得sin(55)α-︒的值,再利用诱导公式求得sin(125)α+︒的值.【答案】解:1cos(55)3α-︒=-,且α为第四象限角,55α∴-︒为第三象限角,sin(55)3α∴-︒==-.sin(125)sin(55180)sin(55)ααα∴+︒=-︒+︒=--︒= 【点睛】本题主要考查同角三角函数的基本关系,诱导公式的应用,属于基础题.【变式6-3】(2019秋•秀屿区校级月考)(1,3班做)已知1sin()43πα-=,则5cos()4πα+的值等于( )A .13-B .13 C .3- D .3【分析】直接对函数的关系式利用诱导公式变换求出结果. 【答案】解:已知1sin()43πα-=, 故:5cos()cos[()]cos()sin[()]44424πππππαπααα+=++=-+=--+1sin()sin()443ππαα=--=-=.故选:B .【点睛】本题考查的知识要点:三角函数诱导公式的应用及相关的运算问题.。

高中数学_诱导公式教学设计学情分析教材分析课后反思

高中数学_诱导公式教学设计学情分析教材分析课后反思

诱导公式教学设计一、内容分析:1.教材的地位与作用《诱导公式》是高中数学必修四1.2.4, 其主要内容是诱导公式及其应用。

过去学生已经学习了单位圆, 三角函数的定义, 同角三角函数的基本关系式等, 在此基础上来学习诱导公式的推导及其应用, 为今后学习三角函数的图象与性质打好了基础。

因此, 本节的学习有着极其重要的地位。

本节共分三个课时, 本课为第一课时, 主要是利用三角函数的定义推导出诱导公式并且应用。

2.教学重点和难点教学重点: 诱导公式(一)(二)及综合应用。

教学难点: 公式的推导和对称变换思想在学习过程中的渗透。

二、目标分析根据《高中数学教学大纲》的要求和教学内容的结构特征, 依据学生学习的心理规律和素质教育的要求, 结合学生的实际水平, 制定本节课的教学目标如下:1.知识目标:理解正弦, 余弦, 正切的诱导公式。

2、能力目标:(1)会用三角函数的定义和单位圆推导出公式;(2)掌握诱导公式并应用之进行三角函数式的求值, 化简;(3)培养观察能力、分析能力、归纳总结能力;(4)培养数形结合的数学思想方法。

3.德育目标:(1)渗透由抽象到具体的思想, 培养学生辩证唯物主义观点;(2)培养学生合作学习和数学交流的能力;三、教法分析根据上述教材分析和目标分析, 贯彻诱思探究教学原则, 体现以教师为主导, 学生为主体的教学思想, 深化课堂教学改革, 确定本课主要的教法为:1.计算机辅助教学借助多媒体教学手段引导学生理解利用单位圆和定义推导出公式, 使问题变得直观, 易理解;利用多媒体向学生展示, 使学生有直观认识。

2.讨论式教学通过观察课件的演示, 让学生分组讨论、交流、总结, 说出诱导公式(不同层次的组员回答, 教师给予评价不同)。

3.讲练结合教学教师耐心引导、分析、讲解和提问, 并及时对学生的意见进行肯定与评议。

四、学法分析引导学生认真观察教学课件的演示, 指导学生进行分组讨论交流, 促进学生知识体系的建构和数学思想方法的形成, 注意面向全体学生, 培养学生勇于探索、勤于思考的精神, 提高学生合作学习和数学交流的能力。

三角函数的诱导公式教学设计与教学反思

三角函数的诱导公式教学设计与教学反思

三角函数的诱导公式教学设计与教学反思一、教学设计:主题:三角函数的诱导公式目标:通过本节课的教学,学生能够理解三角函数的诱导公式的概念并能够熟练运用该公式解决相关问题。

教学重点:三角函数的诱导公式的概念,应用。

教学难点:能够熟练运用诱导公式解决相关问题。

教学方法:讲授、讨论、实例演练、思考。

教学过程:1.导入(5分钟)通过提问“谁能告诉我sin(α+β)和cos(α+β)的展开公式是什么?”来引导学生复习并回忆有关的知识。

2.引入(10分钟)3.讲解(10分钟)首先,老师引导学生回顾并总结sin(α+β)和cos(α+β)的展开公式,然后引入三角函数的诱导公式。

依次讲解三角函数的诱导公式的推导过程和具体展开形式。

- sin(α+β)的诱导公式:sin(α+β)=sinαcosβ+cosαsinβ- cos(α+β)的诱导公式:cos(α+β)=cosαcosβ-sinαsinβ4.示例演练(15分钟)通过给出一些具体的问题,引导学生通过诱导公式来解决问题。

示例1:计算sin105°解:将105°表示为两个已知角的和:105°=60°+45°根据sin(α+β)的诱导公式,sin(105°)=sin(60°)cos(45°)+cos(60°)sin(45°)然后,运用已知关于常见角的三角函数值,计算得到结果。

示例2:计算cos165°解:将165°表示为两个已知角的和:165°=60°+105°根据cos(α+β)的诱导公式,cos(165°)=cos(60°)cos(105°)-sin(60°)sin(105°)然后,运用已知关于常见角的三角函数值,计算得到结果。

5.拓展应用(15分钟)通过给出一些更复杂的问题,引导学生综合运用诱导公式解决问题,并提出思考。

三角函数的诱导公式1

三角函数的诱导公式1

βα三角函数的诱导公式 江苏省涟水中学 曹广明一、教学目标:1.借助单位圆,推导出正弦、余弦的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题。

2.通过公式的运用,了解已知到未知,复杂到简单的转化过程,提高分析和解决问题的能力。

二、教学重难点:诱导公式的推导及应用,三角函数式的求值、化简和证明是重点;诱导公式的灵活应用是难点。

三、教学方法与教学手段教学方法:讲练结合。

教学手段:多媒体。

四、教学过程: 1.新课导入:①投影显示以下问题: =6sinπ_________ =6cosπ_________=613sin π_________ =613cos π_________=-)6sin(π_________ =-)6cos(π_________ =65sin π_________ =65cos π_________=67sin π_________ =67cos π_________②诱导公式一及用途终边相同角的同一三角函数值相等。

)(sin )2sin(Z k k ∈=+ααπ)(cos )2cos(Z k k ∈=+ααπ 公式(一) )(tan )2tan(Z k k ∈=+ααπ③角的终边关于x 轴对称、y 轴对称、原点对称三角函数值之间的关系? 2.新课讲授①α、β角的终边关于x 轴对称;如图:)sin ,(cos ααP ,)sin ,(cos ββQ αβsin sin -=αβcos cos = αβtan tan -=αα 特别地:α-与α的终边关于x 轴对称 ααsin )sin(-=-ααcos )cos(=- (公式二) ααtan )tan(-=- ②α、β角的终边关于y 轴对称;如图:)sin ,(cos ααP ,)sin ,(cos ββQ αβsin sin = αβcos cos -=αβtan tan -=特别地:απ-与α的终边关于y 轴对称 ααπsin )sin(=-ααπcos )cos(-=- (公式三) ααπtan )tan(-=- ③α、β角的终边关于原点O 对称; 如图:)sin ,(cos ααP ,)sin ,(cos ββQ αβsin sin -=αβcos cos -= αβtan tan =特别地:απ+与α的终边关于原点O 对称 ααπsin )sin(-=+ααπcos )cos(-=+ (公式四) ααπtan )tan(=+④问题:(1)诱导公式的用途?(2)诱导公式中角α的范围?(3)由公式二你能得到三角函数的什么性质?(4)能否利用公式二、三、四中的两组公式推出另一组公式? (5)公式如何记忆?απ+k 2,απ+,απ-,α-的三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。

三角函数诱导公式教案

三角函数诱导公式教案

《三角函数的诱导公式》的教案[教学目标] 1)学习从单位圆的对称性和任意角终边的对称性中,发现问题,提出研究方法,从而借助于单位圆推导诱导公式.借助于单位圆推导诱导公式.2)能正确运用诱导公式求任意角的三角函数值,以及进行简单三角函数式的化简和恒等式的证明,并从中体会未知到已知,复杂到简单的转化过程.等式的证明,并从中体会未知到已知,复杂到简单的转化过程.[重点、难点、疑点] 重点:用联系的观点,发现并证明诱导公式,进而运用诱导公式解决问题.重点:用联系的观点,发现并证明诱导公式,进而运用诱导公式解决问题.难点:如何引导学生从单位圆的对称性和任意角终边的对称性中,发现问题,提出研究方法.方法.疑点:运用诱导公式时符号的确定.疑点:运用诱导公式时符号的确定.[课时安排]2课时课时第一课时,诱导公式二、三、四[教学设计] 引入新课:引入新课:先让同学们思考单位圆的对称性并举出一些特殊的对称轴和对称中心,如x 轴,y 轴,y x =,原点.这些对称性对三角函数的性质有什么影响呢?先思考阅读教科书第26页的“探究”.1、角的对称关系:、角的对称关系:给定一个角a ,发现:,发现: 1)终边与角a 的终边关于原点对称的角可以表示为π+a ;同样,让学生探究问题(2) ,(3)不难发现.不难发现.2)终边与角a 的终边关于x 轴对称的角可以表示为a -(或2π-a );3)终边与角a 的终边关于y 轴对称的角可以表示为:π-a ;4)终边与角a 的终边关于直线y =x 对称的角可以表示为π2a -. 2、三角函数的关系、三角函数的关系诱导公式二:诱导公式二:以问题(1)为例,引导学生去思考,角的对称关系怎样得出三角函数的关系?)为例,引导学生去思考,角的对称关系怎样得出三角函数的关系?角a ————π+a终边与单位圆交点(,)P x y ————(,)P x y ¢-sin y a = ————sin(sin(ππ+)=-y a a ∴sin(sin(ππ+)=-sin a a π+a 同理,cos(cos(ππ-)x a =-, cos x a =,cos(cos(ππ-)cos a a =-tan(tan(ππ+)=tan y xa a =∴tan(tan(ππ+)=tan a a 诱导公式二:诱导公式二: sin(sin(ππ)sin a a +=- cos(cos(ππ+)cos a a =- tan(tan(ππ)tan a a += 请同学们自己完成公式三、四的推导:请同学们自己完成公式三、四的推导: 诱导公式三:诱导公式三:sin()sin a a -=-cos()cos a a -=tan()tan a a -=-诱导公式四:诱导公式四:sin(sin(ππ)sin a a -=cos(cos(ππ)cos a a -=-tan(tan(ππ)tan a a -=-让学生把探究诱导公式二、三、四的思想方法总结概括,引导学生得出:让学生把探究诱导公式二、三、四的思想方法总结概括,引导学生得出:圆的对称性____________角的终边的对称性角的终边的对称性对称点的数量关系对称点的数量关系 角的数量关系角的数量关系三角函数关系即诱导公式三角函数关系即诱导公式总结规律,引导学生记忆学过的四组公式,即:总结规律,引导学生记忆学过的四组公式,即:22πk a +(Z)k Î , a -, πa ±的三角函数值,等于a 角的同名三角函数值,前面加上一个把a 角看成锐角时的原函数的符号.角看成锐角时的原函数的符号.P 28 例1,例2.思考:诱导公式有什么作用?思考:诱导公式有什么作用?负角→正角负角→正角大角→小角→锐角三角函数大角→小角→锐角三角函数即所有的角的三角函数值都可转化成锐角三角函数来求.即所有的角的三角函数值都可转化成锐角三角函数来求.上述步骤体现了未知转化为已知的化归思想.上述步骤体现了未知转化为已知的化归思想.P 27 例3[练习] P 30 1,2,3.通过对公式的应用,加深对公式的理解,并对学生所做练习进行点评.通过对公式的应用,加深对公式的理解,并对学生所做练习进行点评.[小结]本节课我们学习了诱导公式二、三、四,并运用诱导公式求任意角的三角函数值及化简,在学习过程中逐步学习化归思想,要注意诱导公式中符号的确定.及化简,在学习过程中逐步学习化归思想,要注意诱导公式中符号的确定.[作业] P 33 A 组 2,3,4.化简:化简:1、2π4πsin(2sin(2ππ)cos(4)cos(4ππ)33++2、sin(π)sin(π)sin(π)cos(π)n n n n a a a a ++-+-。

三角函数诱导公式的教案

三角函数诱导公式的教案

三角函数诱导公式的教案
教案标题:三角函数诱导公式的教案
一、教学目标
1. 理解三角函数诱导公式的概念和意义;
2. 掌握三角函数诱导公式的推导方法;
3. 能够运用三角函数诱导公式解决相关问题。

二、教学重点和难点
1. 三角函数诱导公式的推导方法;
2. 三角函数诱导公式的应用。

三、教学准备
1. 教师准备:授课内容、教学课件、相关教学实例;
2. 学生准备:课前预习相关知识点。

四、教学过程
1. 导入:通过展示实际问题中三角函数诱导公式的应用,引出三角函数诱导公式的概念和意义;
2. 讲解:介绍三角函数诱导公式的定义和推导方法,重点讲解三角函数诱导公式的推导过程;
3. 实例演练:通过具体的实例,引导学生掌握三角函数诱导公式的应用方法;
4. 拓展:引导学生思考三角函数诱导公式在实际问题中的应用,并展示更多相关实例;
5. 总结:对本节课的内容进行总结,强调三角函数诱导公式的重要性和应用价值。

五、课堂作业
布置相关的课后作业,要求学生运用三角函数诱导公式解决相关问题。

六、教学反思
及时总结本节课的教学效果,对学生的学习情况进行分析,为下节课的教学做
好准备。

七、教学资源
1. 教学课件;
2. 相关教学实例;
3. 课堂作业。

八、教学评价
通过课堂表现、作业完成情况和考试成绩等多方面对学生的学习情况进行评价。

以上是三角函数诱导公式的教案设计,希朥能够对您有所帮助。

【教学设计】高一数学《三角函数的诱导公式》

【教学设计】高一数学《三角函数的诱导公式》

教案:1.3 三角函数的诱导公式(一)一、教学三维目标(一)知识与技能1.借助单位圆,推导、识记和应用诱导公式;2.理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数值,并进行简单三角函数式的化简。

(二)过程与方法1.通过诱导公式的推导,分析公式的结构特征,使学生体验和理解数形结合、从特殊到一般的数学思想方法;2.通过习题组的练习,提高学生分析问题和解决问题的实践能力,使学生体验和理解转化与化归的数学思想方法。

(三)情感态度与价值观培养学生主动探索,勇于发现的科学精神,并在课程中渗透数形结合、从特殊到一般以及把未知转化为已知的转化与化归的数学思想方法。

二、教学重难点(一)教学重点1. 诱导公式的探究,利用诱导公式进行简单三角函数式的求值和化简;2.利用四组诱导公式会进行简单的化简与证明。

(二)教学难点发现圆的对称性与任意角终边坐标的联系,及诱导公式的合理运用。

三、教学过程(一)、温故知新1、角α与角α的终边相同的角的三角函数值之间的关系公式一:终边相同的角的同一三角函数的值相等。

通过公式一,我们就可以把绝对值大于2π的任意角的三角函数问题,转化 为研究绝对值小于2π的角的三角函数问题.(二)、热身小试求下列各三角函数值: );38sin()1(ππ+ .319cos )2(π (三)、合作探究 变式、求 产生认知冲突,从而进行探究探究1: 角π+α与角α的三角函数值之间的联系。

结论1:角α+π 的终边与角α的终边关于原点对称; 结论2:它们的终边与单位圆的交点坐标满足:横坐标互为相反数,纵坐标互为相反数.由此得出结论(公式二): 完成变式、求结合公式一,对两个公式结构特征进行分析直接抛出探究2:角-α与角α的三角函数值之间有什么联系?学生合作探究,发现结论公式三 Zk k k k ∈=⋅+=⋅+=⋅+,tan )2tan(,sin )2sin(,cos )2cos(απααπααπα.310cos π.tan )tan(,sin )sin(,cos )cos(ααπααπααπ=+-=+-=+.310cos π.tan )tan(,sin )sin(,cos )cos(αααααα-=--=-=-由此给出诱导公式的概念(四)、公式应用 例1、求下列各三角函数值:变式1、求 (由变式一启发思维,进行公式三和二的综合应用) 进而推论:角π-α与角α的三角函数值之间的联系:例2、求下列各三角函数值:(公式的综合应用)四、回顾总结(一)、知识小结:1、诱导公式一、二、三、四的推导、记忆和应用;2、诱导公式的应用原则。

三角函数的诱导公式教案

三角函数的诱导公式教案

三角函数的诱导公式(一)一、教学目标:1.借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。

二、重点与难点:重点:四组诱导公式的记忆、理解、运用。

难点:四组诱导公式的推导、记忆及符号的判断; 三、学法与教学用具:(1)与学生共同探讨,应用数学解决现实问题;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯. 四、教学过程:创设情境:我们知道,任一角α都可以转化为终边在)2,0[π内的角,如何进一步求出它的三角函数值? 我们对)2,0[π范围内的角的三角函数值是熟悉的,那么若能把)2,2[ππ内的角β的三角函数值转化为求锐角α的三角函数值,则问题将得到解决,这就是数学化归思想 研探新知1. 诱导公式的推导由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:)(tan )2tan()(cos )2cos()(sin )2sin(Z k k Z k k Z k k ∈=+∈=+∈=+απααπααπα (公式一) 诱导公式(一)的作用:把任意角的正弦、余弦、正切化为)2,0[π之间角的正弦、余弦、正切。

【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成︒=+︒80sin )280sin(πk ,3cos)3603cos(ππ=︒⋅+k 是不对的【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到)2,0[π角后,又如何将)2,0[π角间的角转化到)2,0[π角呢?除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。

那么它们的三角函数值有何关系呢?若角α的终边与角β的终边关于x 轴对称,那么α与β的三角函数值之间有什么关系?特别地,角α-与角α的终边关于x 轴对称,由单位圆性质可以推得:ααααααtan )tan(cos )cos(sin )sin(-=-=--=- (公式二)特别地,角απ-与角α的终边关于y 轴对称,故有ααπααπααπtan )tan(cos )cos(sin )sin(-=--=-=- (公式三)特别地,角απ+与角α的终边关于原点O 对称,故有ααπααπααπtan )tan(cos )cos(sin )sin(=+-=+-=+ (公式四) 所以,我们只需研究απαπαπ-+-2,,的同名三角函数的关系即研究了βα与的关系了。

三角函数的诱导公式

三角函数的诱导公式

三角函数的诱导公式(二)编写人: 审稿人:一、 学习目标能熟练掌握诱导公式一至五,并运用求任意角的三角函数值, 学会关于∂±2π诱导公式,并能应用,进行简单的三角函数式的化简及论证。

二、 重、难点学习重点:诱导公式学习难点:诱导公式的灵活应用三、学习过程1、在直角坐标系中画出下列各角与单位圆交点,写出∂-∂+∂2,2ππ与的终边与单位圆交点p、1P 、2P 的坐标(三角函数定义写):p 1P 2P结论:=+∂)2sin(π;=+∂)2cos(π。

=∂-)2sin(π;=∂-)2cos(π。

公式特点:奇变偶不变,符号看象限四、典例探究例1证明:(1)x x cos )23sin(-=-π (2)x x sin )23cos(=+π例2 已知cos (750+α)=31,且-1800<α<-90,求sin (150-α)的值。

【分析】注意到(150-α)+(750+α)=900,因此可将cos (150-α)转化为sin (750+α)变式)2cos()5cos()2sin()4sin()cot()2tan()23cos()2sin(απαπαπαπαπαπαπαπ+-+--=+-+---+k k k 求证:五、课堂练习1.求)417cos(π-的值是( )A .21B .22C .23D .33-2. 若cos(750+α) = ,α是第三象限角,cos(1050-α)+sin(α-1050)的值等于 ___3.判断函数44sin cos 1()33sin()cos()22x x f x x x ππ+-=+-的奇偶性六、课后巩固1、下列等式正确的有几个( )①ααπsin )sin(-=- ②ααπcos )2cos(-=-③ααπcos )2sin(-=+ ④ααπsin )23cos(-=-A .1个B .2个C .3个D .4个2、在△ABC 中,下列等式一定成立的是( )A .2cos2sinCB A -=+ B.C B A 2cos )22sin(-=+C.C B A sin )sin(-=+D.C B A sin )sin(=+3、化简480cos 225sin )30sin(315cos ++-+=_____________4、33)6cos(=+θπ,则=-)31sin(θπ___________.6、已知:tan 3α=,求2cos()3sin()22334cos()sin()22ππααππαα--+-++的值.学习反思:1、 诱导公式记忆2、 诱导公式解题步骤3、 公式熟练程度31。

三角函数的诱导公式难吗

三角函数的诱导公式难吗

三角函数的诱导公式难吗
三角函数的诱导公式是三角函数部分的重要公式,其目的是将任意角的三角函数转化为锐角的三角函数,便于计算。

然而,对于初学者来说,这些公式可能会显得复杂且难以记忆。

诱导公式繁多,学生在初学时很容易混淆,并且感觉难以牢记。

但是,随着对公式的理解和掌握以及运用
能力的提高,学生应该能够克服这些困难。

为了更好地理解和运用诱导公式,学生可以采取一些策略。

例如,通过推导过程来理解公式的来源和意义,加强对公式的记忆。

同时,结合其他知识点进行练习,如与其他知识点结合出题,可以帮助学生更好地理解和运用诱导公式。

此外,教师可以通过探究的方式进行教学,引导学生自主探究和学
习,培养他们的思维能力和数学素养。

总之,虽然三角函数的诱导公式可能对初学者来说有一定的难度,但只要学生有耐心、恒心和正确的学习方法,就能够克服这些困难,掌握这些重要的公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3 三角函数的诱导公式
教学重点难点分析:
本节主要是推导诱导公式二、三、四,并利用它们解决一些求解、化简、证明问题.
本小节介绍的五组诱导公式在内容上既是公式一的延续,又是后继学习内容的基础,它们与公式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化简、证明等问题.
在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导入,还是利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清晰地得到体现,在教学中注意数学思想渗透于知识的传授之中,让学生了解化归思想,形成初步的化归意识,特别是在本课时的三个转化问题引入后,为什么确定180°+α角为第一研究对象,-α角为第二研究对象,正是化归思想的运用.
公式二、公式三与公式四中涉及的角在本课的分析导入时为不大于90°的非负角,但是在推导中却把α拓广为任意角,这一思维上的转折使学生难以理解,甚至会导致对其必要性的怀疑,因此它成为本课时的难点所在.
课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角.学生第一次接触到此题型,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可转化为弧度制,但必须注意同一个公式中只能采取一种制度,因此要加强角度制与弧度制的转化的练习.
三维目标
1.通过学生的探究,明确三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.
3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.
重点难点
教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的
求值、化简和证明等.
教学难点:六组诱导公式的灵活运用.
学习公式二、公式三、公式四三组公式,这三组公式在求三角函数值、化简三角函数式及证明三角恒等式时是经常用到的,为了记牢公式,我们总结了“函数名不变,符号看象限”的简便记法,同学们要正确理解这句话的含义,不过更重要的还是应用,我们要多加练习,切实掌握由未知向已知转化的化归思想.导出了公式五、公式六,完成了教材中诱导公式的学习任务,为求任意角的三角函数值“铺平了道路”.公式一至六可用一句话“纵变横不变,符号看象限”来记忆,简单方便,不会遗忘.利用这些公式,可把任意角的三角函数转化为锐角三角函数,为求值带来很大的方便,这种转化的思想方法,是我们经常用到的一种策略,要细心去体会、去把握.利用这些公式,还可以化简三角函数式,证明简单的三角恒等式,我们要多练习,在应用中达到熟练掌握的程度.。

相关文档
最新文档