简单说明温度变送器的原理及参考书籍
pt100温度变送器原理
pt100温度变送器原理
PT100温度变送器是一种常用的温度测量仪器,它使用PT100电阻传感器来测量温度,并将测量结果转换成电信号输出。
PT100电阻传感器是一种根据电阻值随温度变化的特性来测量温度的传感器。
它由具有特殊电阻-温度特性的白金电阻丝构成,电阻值随温度的变化呈线性关系。
温度变送器包含一个电路板,上面安装有PT100电阻传感器和其他电子元件。
当温度变化时,PT100电阻传感器的电阻值也会发生变化。
变送器的电路通过测量电阻值的变化来确定温度的变化。
温度变送器的工作原理基于电桥电路。
常见的电桥电路包括满桥、半桥和四线制电桥。
其中,最常见的是四线制电桥,因为它具有较高的测量精度。
四线制电桥中,PT100电阻传感器作为电桥的一个电阻,其他三个电阻为固定电阻。
当电桥平衡时,输出电压为零。
根据电桥平衡条件可以得到PT100电阻传感器的电阻值与温度之间的关系。
温度变送器使用一种特殊的电路来将电桥的平衡情况转换成电信号输出。
一般使用运算放大器等电子元件来实现信号放大和转换。
通过校准和调节温度变送器,可以将变送器的输出信号与实际
温度之间建立准确的关系。
用户可以根据变送器的输出信号来获取准确的温度测量值。
总结来说,PT100温度变送器利用PT100电阻传感器的电阻-温度特性来测量温度,并通过电桥电路和特殊的电路将测量结果转换成电信号输出。
温度变送器作业指导书
温度变送器作业指导书
一、目的:帮助和指导班组有效处理温度变送器故障,对存在的危险进行分析,并采取
相应的安全措施进行规避,以确保作业安全和质量。
二、适用范围:各装置中的温度变送器。
三、工作原理:
温度变送器是与各种热电偶或热电阻配合用,将温度信号或直流毫伏信号转换成0~10mA,4~20mA,或1~5V统一的直流信号输出。
其原理框图如下:
四、作业步骤:
五、常见故障及处理方法:
六、使用工具和劳保要求:
使用的工具:个人工具、万用表、824校验仪、干净抹布或塑料薄膜;
劳保要求:工作服着装,戴好安全帽、护目眼睛和劳保手套(或防酸碱手套)、呼吸器;。
温度变送器工作原理
温度变送器工作原理
温度变送器工作原理是通过将温度信号转化为标准电信号输出的一种仪器。
它主要由传感器、信号调理电路和输出电路组成。
传感器是温度变送器的核心部件,通常采用热敏电阻、热电偶或热电阻等材料制造而成。
传感器与被测温度源接触后,会受到温度的影响,从而产生相应的电信号。
这个电信号称为温度信号。
温度变送器将温度信号输入信号调理电路中进行处理。
信号调理电路主要包括放大电路、滤波电路和线性化电路等。
其中,放大电路用来增大温度信号的幅度,使其能够被后续电路正常工作;滤波电路用来消除温度信号中的噪声干扰,提高信号的稳定性和可靠性;线性化电路则用来将非线性的温度信号转化为线性的电信号输出。
经过信号调理电路的处理后,温度信号被转化为标准电信号,一般为4-20mA或0-10V等。
这个标准电信号可以被数字显示
仪表、PLC或DCS等设备读取并做进一步的处理。
最后,经过输出电路的放大、隔离和滤波等处理,标准电信号被转化为最终的输出信号,供用户使用。
总结来说,温度变送器工作原理是通过传感器将温度信号转化为电信号,经过信号调理电路处理后,输出标准电信号,最终由输出电路转化为可用的信号输出。
温度变送器说明书
供应导轨式温度变送器SBWZ-2460概述:一、SBWR热电偶温度变送器、SBWZ热电阻温度变送器是DDZ-S系列仪表中的现场安装式温度变送单元。
它采用二线传送方式(两根导线作为电源输入,信号输出的公用传输线)。
将热电偶、热电阻信号变换成输入电信号或被测温度或成线性的4~20mA的输出信号,变送器可以安装于热电偶、热电阻的接线盒内与之形成一体化结构。
它作为新一代测温仪表可广泛应用于冶金、石油化工、电力、轻工、纺织、食品、国防以及科研等工业部门。
二、温度变送器特点1、采用环氧树脂密封结构,因此抗震、耐温,适合在恶劣现场环境中安装使用。
2、现场安装于热电阻、热电偶的接线盒内,直接输出4~20mA,这样既省去较贵的补偿导线费用,又提高了信号长距离传送过程中的抗干扰能力。
3、精度高、功耗低、使用环境温度范围宽、工作稳定可靠。
4、量程可调,并具有线性化较正功能,热电偶温度变送器具有冷端自动补偿功能。
应用面广,既可与热电偶、热电阻形成一体化现场安装结构,也可作为功能模块安装入检测设备中。
三、主要技术指标:1、输入:热电阻Pt100、Cu50、Cu100热电偶K、E、S、B、T、J、N2、输出:在量程范围内输出4~20mA直流信号可与热电阻温度计的输出电阻信号成线性,可与热电阻温度计的输入温度信号成线性;可与热电偶输入的毫伏信号成线性,也可与热电偶温度计的输入温度信号成线性。
3、基本误差:±0.2%、±0.5%4、传送方式:二线制5、变送器工作电源电压最低12V,最高35V,额定工作电压24V。
6、负载:极限负二载电阻按下式计算RL(max)=50×(Vmm-12)即24V时负载电阻可在0~600Ω范围内选用)额定负载250Ω。
注:量程可调式变送器,改变量程时零点与满度需反复调试;电偶型变送器在调试前须预热30分钟。
7、环境温度影响≤0.05%1℃8、正常工作环境:a、环境温度-25℃~+80℃b、相对湿度5%~95%c、机械振动f≤55Hz振幅<0.15mm四、型号、类别:、热电偶温度变送器校验步骤1、校验时,在输入端接入电位差计,输出信号为电动势,在输出端接上24VDC稳压电源并串接上标准电流表。
描述系统中压力变送器、流量变送器以及温度变送器的工作原理
描述系统中压力变送器、流量变送器以及温度变送器的工作原
理
压力变送器的工作原理:
压力变送器通过感受被测介质的压力变化,并将其转换为与输入压力成正比的电信号输出。
一般采用毛细管原理或压力传感器原理。
毛细管原理是将被测介质的压力作用在细管的内外两侧,通过测量细管内外的液位差来计算压力值。
压力传感器原理是利用压电效应,将被测介质的压力转换为电荷信号输出。
流量变送器的工作原理:
流量变送器通过感受被测介质的流速变化,并将其转化为与流速成正比的电信号输出。
一般采用热式、机械式或电磁式原理。
热式流量变送器通过加热体和测量体之间的温度差来推导出流速。
机械式流量变送器通过叶轮、涡轮或旋翼等转子的转速来推算流速。
电磁式流量变送器利用被测介质通过导电管道时产生的电磁感应现象,通过测量感应电动势来计算流速。
温度变送器的工作原理:
温度变送器通过感受被测介质的温度变化,并将其转换为与温度成正比的电信号输出。
一般采用热电偶、热敏电阻或红外线测温原理。
热电偶原理是利用不同金属的热电势随温度的变化来测量温度。
热敏电阻原理是根据电阻随温度变化的特性来进行测量。
红外线测温原理是通过感应被测物体发出的红外线辐射来计算温度值。
温度变送器的基本原理
温度变送器的基本原理
温度变送器由量程单元和放大单元两部分组成。
量程踩元由输入电路和反馈电路组成的线路板构成。
量程单元因输入信号的不同而各不相同,有与直流毫伏、热电偶和热电阻三种输入方式相匹配的三种量程单元,而放大单元对三种输入通用。
直流毫伏信号可以由任何传感器或敏感元件所提供,直流毫伏量程单元比较简单,在将直流毫伏信号放大5倍之前有一调答电路使得输入信号Ui=0时,输出信号Uo=1v(标准信号协议规定),为满足这一要求还设计一个反馈电路,使输出电压Uo与反馈电压Uf有确定关系:Uo=5Uf。
需反复调整调零电位器W1和反馈电位器Wf,才能达到精确度的要求。
而热电势量程单元则必须有冷端补偿和线性化功能。
冷端补偿用电桥法,与前述基本相同。
线性化功能是因为热电势与温度的变化关系为非线性关系,设计一个负反馈电路令其具有折线特性,各段折线的斜率不同,但近似可视为曲线,使得闭环放大倍数随输入热电势的大小呈曲线变化,这就基本上抵消了热电偶的非线性,输出电压使基本正比于温度。
热电阻量程单元采用二线制引入热电阻。
对于铂电阻,电阻—温度曲线为单调上凸曲线,随留温度升高,阻值增量越来越小.设计一正反馈电路,使得输出信号的增长随着输入电阻值的增大越来越显著,即输出电比阻值曲线为上凹曲线,从而实现线性化功能。
而铜电阻本身有良好线性,用不着线性比。
放大单元采用集成运算放大器加功率放大器的基本电路。
上述温度变送器测直流毫伏时、量程为3-100mv,零点迁移量-50-50mv;与热电偶匹配量程为3-60mV;与铂热电阻匹配时量程为-100-500℃。
精度等级都是0.5级。
徽宁温度变送器pt100说明书
徽宁温度变送器pt100说明书摘要:1.徽宁温度变送器pt100 简介2.徽宁温度变送器pt100 的工作原理3.徽宁温度变送器pt100 的技术参数4.徽宁温度变送器pt100 的安装与维护5.徽宁温度变送器pt100 的使用注意事项正文:徽宁温度变送器pt100 是一款高精度、高稳定性的温度传感器,广泛应用于工业自动化、化工、石油、医疗等领域。
本文将对徽宁温度变送器pt100 进行详细介绍,包括其工作原理、技术参数、安装与维护以及使用注意事项。
首先,我们来了解徽宁温度变送器pt100 的工作原理。
pt100 是一种白金电阻温度传感器,其工作原理是基于白金电阻随温度变化的特性。
当温度发生变化时,pt100 的电阻值会发生相应的变化。
徽宁温度变送器pt100 通过将这一变化转换为标准信号输出,从而实现对温度的测量和监控。
接下来,我们来看一下徽宁温度变送器pt100 的技术参数。
徽宁温度变送器pt100 具有以下技术参数:测量范围为-200℃至+850℃;输出信号为4-20mA 或0-10V;温度漂移小于±0.05%/℃;响应时间小于5 秒;防护等级为IP65。
在安装与维护方面,徽宁温度变送器pt100 具有以下特点:结构紧凑,易于安装;抗干扰能力强,抗震动性能好;具有自锁功能,便于维护。
在安装过程中,应确保传感器与被测物体充分接触,以保证测量精度。
在维护过程中,应定期对传感器进行清洁和校准,以确保其正常工作。
最后,我们来看一下使用徽宁温度变送器pt100 的注意事项。
首先,应根据实际需求选择合适的测量范围和输出信号;其次,应确保传感器安装在合适的位置,避免受到外部环境的影响;再次,应定期对传感器进行校准,以确保测量精度;最后,应注意传感器的防潮、防尘和防油处理,以保证其使用寿命。
总之,徽宁温度变送器pt100 是一款性能优越的温度传感器,广泛应用于各种工业领域。
温度变送器供电的原理
温度变送器供电的原理
温度变送器供电的原理是通过外部电源将电能传送给变送器,使其能够正常工作。
常见的温度变送器供电方式有两种:被动式供电和主动式供电。
被动式供电是指温度变送器通过信号回路的电流或电压来获取能量。
一般来说,被动式供电的方式有两种:一种是电流回路供电,即通过传输4-20mA的电流信号来供电;另一种是电压回路供电,即通过传输0-10V的电压信号来供电。
主动式供电是指温度变送器通过外部电源直接供电。
这种方式主要包括两种形式:一种是直流供电,即通过直流电源提供供电电压;另一种是交流供电,即通过交流电源提供供电电压,并通过变换器将交流电压转换为所需的直流电压。
供电方式的选择一般要根据实际应用情况来确定,包括供电电压、传输距离、环境条件等因素的考虑。
温度变送器原理
温度变送器原理
1 温度变送器原理
温度变送器是一种仪表设备,用于测量温度并将数字化的温度测量数据放大输出到其他仪表中。
它与温度计的原理基本相同,都是根据温度变化的物理原理或物理机械原理进行温度测量的,但温度变送器的输出方式不同,一般是模拟量输出或数字量输出。
温度变送器的操作原理:温度变送器结构包括测量部分、放大调节部分、屏蔽电缆和输出接口。
测量部分有三种:膨胀式变送器、恒温式变送器和电阻式变送器,它们之间的原理基本相同,用温度变化刺激元件发生变化,将变化的信号放大输出至输出接口,形成一定精度的信号,来表示温度的大小。
膨胀式变送器的基本原理是:将一个精制的金属杆放入有温度检测元件的温度管中,温度变化时,变温管内壁的温度也随之变化,金属杆也将会由此受到温度变化刺激而发生延伸变化,进而转动连接的拉杆,拉动控制电位器,从而使输出电流起到调节温度大小的作用。
恒温式变送器的操作原理类似,它将温度变化引起的物理变化转换为电信号,然后将电信号放大后输出。
它有一个电阻环的结构,其中的一环或多环电阻为恒定的,另外一环电阻则会受温度的变化而变化,然后将变化的电阻值转换成发送给输出的电流脉冲信号。
电阻式变送器的操作原理与上面两种基本相同,是将物理变化转
化成电信号输出,但它是通过测量电阻随温度变化而发生变化来表示
温度的大小,例如,热电偶、热敏电阻及金属膨胀式温度元件等。
温度变送器是根据温度变化的物理原理或物理机械原理进行测量,把温度信号放大输出到其他仪表中,是当今许多工业自动化测控系统
的重要组成部分。
温度变送器使用说明书
温度变送器使用说明书一、用途本产品广泛用于石油、化工、冶金、电力、轻工、建材等行业,实现对流体温度的测量,可适用于工业测量的各种场合及介质,是工业自动化领域理想的压力测量仪表。
二、特点1、选用具有国际先进水平的传感器,配合高精度的元器件,经严格的工艺过程装配而成,因此在使用温度范围内非线性小,长期稳定性好。
2、可靠的机械保护IP65和防爆保护dⅡBT4/T6,适用于各种恶劣环境。
3、可用于测量粘稠、结晶及腐蚀性介质。
4、4~20mADC标准电流信号输出,二线制工作。
可定制HART/485等数字输出。
5、体积小,重量轻,安装、调试、使用方便。
三、技术指标被测介质:与316不锈钢兼容的液体、气体、蒸汽,特殊介质需定制测量范围:-50~450℃输出:4~20mADC二线制准确度:0.2%FS,0.5%FS温度影响系数:±0.15%FS/10℃稳定性:优于0.2%FS/年电源电压:DC 6.5~36VDC 机械保护:IP65防爆等级:dⅡBT4/T6 温度极限:使用温度-40~80℃存贮温度:-20~+50℃过载极限:额定量程的1.5倍~3倍相对湿度:≤95%RH 负载电阻:≤750Ω四、物理性能隔离膜片:304不锈钢接触介质连接件:SUS304不锈钢过程连接方式:1/2NPT外螺纹,M20×1.5外螺纹(可自定义接口)电气连接:电缆孔为Φ8五、工作原理过程压力通过压力传感器将压力信号转换成电信号,经差分放大器、输出放大器放大后,再经V/A转换器转换为与输入压力成线性对应关系的4~20mA标准电流输出信号。
六、接线方式小巧型接线端子示意图 2088型端子示意图七、按键说明用户参数菜单(进入方式:按,输入密码:3001)(1)参数组:用于变送器用户选项调节注1:INP:输入类型选择。
根据选用传感器类型调节参数,可选传感器见表2。
注2:BSL:变送低限值,即输出4mA对应的显示值。
注3:BSH:变送高限值,即输出20mA对应的显示值。
温度变送器的原理及应用
温度变送器的原理及应用1. 概述温度变送器是一种用于测量和转换温度信号的仪器,它能将被测温度转换为标准的电压、电流或数字信号,以便于在各种自动化控制系统中进行处理和监测。
本文将介绍温度变送器的工作原理以及其在实际应用中的重要性。
2. 工作原理温度变送器的工作原理基于热电效应和电阻效应。
常见的温度变送器主要有热电偶和热电阻两种类型。
2.1 热电偶热电偶是利用两种不同金属在不同温度下产生的电动势差来测量温度的装置。
它由两个不同材料的金属导线组成,这两个导线的一端连接在一起,形成热电偶的测量点。
当热电偶的测量点与被测温度接触时,两种金属导线产生的电动势会因温度差异而产生微弱的电压信号,这个信号会经过放大、滤波和线性化处理,最终转换为标准的电流或电压信号输出。
2.2 热电阻热电阻是利用导体的电阻随温度变化的特性来测量温度的一种装置。
常见的热电阻材料有铂、镍和铜等金属。
温度变送器中采用的热电阻一般为铂热电阻。
当铂热电阻与被测温度接触时,它的电阻值会随温度的变化而发生相应改变。
通过测量热电阻的电阻值,可以得到被测温度的准确数值。
3. 应用温度变送器在工业自动化、环境监测等领域有着广泛的应用。
3.1 工业自动化在工业生产过程中,温度的监测和控制是至关重要的。
温度变送器可以实时测量和监测各种工业设备和流体的温度,如炉温、液体浴温、冷却水温度等,并将这些温度信息转换为标准信号,供PLC控制器或DCS系统进行处理和控制。
温度变送器能够帮助工业企业提高生产效率和产品质量,并确保系统的安全运行。
3.2 环境监测温度变送器也广泛应用于环境监测领域。
在气象观测、农业温室、实验室等场所,温度变送器可以测量和记录环境温度的变化情况。
这对于气象预测、农作物种植和科学研究都非常重要。
同时,温度变送器可与其他传感器相结合,如湿度传感器、光电传感器等,实现多参数综合监测及数据记录。
3.3 制药、食品行业在制药和食品行业中,温度的精确控制对于产品质量的保证至关重要。
温度变送器原理
温度变送器原理
温度变送器原理是指将被测物体的温度转化为与之对应的信号,并将这个信号传送到显示仪表或控制设备上。
温度变送器一般由敏感元件、信号处理电路和输出电路组成。
敏感元件主要采用热电阻、热电偶或半导体温度传感器。
热电阻是一种电阻随温度变化的元件,常用的有铂电阻和镍电阻。
热电偶由两种不同材料的导线焊接而成,当焊点温度发生变化时,两种材料形成的电势差也会发生变化。
半导体温度传感器利用半导体材料的电阻温度特性来实现温度测量。
信号处理电路主要起放大、滤波和线性化的作用。
放大电路对敏感元件输出的微弱信号进行放大,以增强信号的强度。
滤波电路对信号进行滤波处理,去除噪声干扰,保证输出信号的稳定性和准确性。
线性化电路通过对信号进行线性转换,使输出信号与被测温度成线性关系。
输出电路一般采用模拟电信号或数字信号输出。
模拟信号通常是电压信号或电流信号,其大小与被测温度成正比。
数字信号输出则是通过A/D转换将模拟信号转化为数字信号,以便于
数字化处理和传输。
总之,温度变送器通过敏感元件对被测物体的温度进行感知,并通过信号处理电路和输出电路将温度信号转化为可读的形式,以实现温度测量和控制。
温度变送器工作原理
温度变送器工作原理
温度变送器是一种用来测量温度并将其转换成标准信号输出的仪器,它在工业自动化控制领域中起着至关重要的作用。
本文将介绍温度变送器的工作原理,以帮助读者更好地理解和应用这一设备。
温度变送器的工作原理主要基于热敏电阻和热电偶两种传感元件。
热敏电阻是一种电阻随温度变化而变化的元件,它的电阻值随温度的升高而降低,反之亦然。
而热电偶则是由两种不同金属材料焊接在一起形成的一种温度传感器,当两种金属材料的焊点处温度发生变化时,会产生电动势,从而实现温度的测量。
在温度变送器中,传感元件感知到的温度信号首先会经过放大电路进行放大,然后经过线性化处理电路将其转换成与温度成线性关系的标准信号输出,如4-
20mA电流信号或0-10V电压信号。
这样的标准信号可以方便地传输到控制室或PLC等设备中,实现对温度的准确监测和控制。
除了传感元件和信号处理电路外,温度变送器还包括了冷端补偿电路、线性补偿电路和标定电路等部分。
冷端补偿电路用于补偿热电偶中的冷端温度影响,线性补偿电路用于对传感元件输出信号进行线性化处理,而标定电路则用于对温度变送器进行校准,以确保输出信号的准确性和稳定性。
总的来说,温度变送器的工作原理可以概括为,传感元件感知温度信号,经过放大、线性化处理和补偿等环节后,将其转换成标准信号输出。
这一过程实现了温度的准确测量和可靠传输,为工业生产过程中的温度控制提供了重要的支持。
总之,温度变送器作为工业自动化控制领域中不可或缺的一部分,其工作原理的理解对于工程技术人员来说至关重要。
通过本文的介绍,相信读者对温度变送器的工作原理已有了更清晰的认识,希望能对大家的工作和学习有所帮助。
温度变送器工作原理
在现代科技发展的社会,因为感温元件品种繁多,其信号输出类型也多。
为了便于自动化检测,所以对各种温度传感器的信号输出做了统一的规定,为了使其能输出同一信号,就有了温度变送器,来改变电流信号。
接下来,我就为大家简单介绍下它的工作原理和相关情况。
温度变送器采用热电偶、热电阻作为测温元件,从测温元件输出信号送到变送器模块,经过稳压滤波、运算放大、非线性校正、V/I 转换、恒流及反向保护等电路处理后,转换成与温度成线性关系的4~20mA电流信号0-5V/0-10V电压信号,RS485数字信号输出。
工作原理:温度变送器将温度传感元件(热电阻或热电偶)与信号转换放大单元有机集成在一起,用来测量各种工艺过程-200-1600°C范围内的液体、蒸汽及其它气体介质或固体表面的温度。
它通常和显示仪表、记录仪表以及各种控制系统配套使用。
温度传感器温度影响产生电阻或电势效应,经转换产生一个差动电压信号。
此信号经放大器放大,再经电压、电流变换,输出与量程相对应的4-20ma的电流信号。
将物理测量信号或普通电信号转换为标准电信号输出或能够以通讯协议方式输出的设备。
温度变送器是将温度变量转换为可传送的标准化输出信号的仪表,主要用于工业过程温度参数的测量和控制。
电流变送器是将被测主回路交流电流转换成恒流环标准信号,连续输送到接收装置。
温度电流变送器是把温度传感器的信号转变为电流信号,连接到二次仪表上,从而显示出对应的温度。
比如,图中该温度传感器的型号为PT100,那么温度电流变送器的作用就是把电阻信号转变为电流信号,输入仪表,显示温度。
安徽皖控自动化仪表有限公司成立于2012年,是专业从事工业自动化仪表研究开发、制造的专业厂家之一,注册资金5510万元。
自公司成立以来被评为高新技术企业、规模企业、成立有滁州市工业在线检测仪表工程技术研研究中心、获得青年文明号、民营科技企业的称号,市认定企业技术中心证书、高新技术产品认证证书、市科技进步奖。
温度变送器的工作原理
温度变送器的工作原理
温度变送器是一种常用的工业自动化仪表,用于测量和转换温度信号。
它的工作原理是基于热电偶、热电阻或半导体温度传感器的信号转换原理,通过将温度信号转换成标准信号输出,实现对温度的准确测量和控制。
首先,让我们来了解一下温度变送器的构成。
温度变送器通常由温度传感器、信号调理电路和输出电路组成。
温度传感器负责采集被测介质的温度信号,信号调理电路用于对传感器输出的信号进行放大、滤波和线性化处理,输出电路则将处理后的信号转换成标准信号输出,如4-20mA电流信号或0-10V电压信号。
其次,让我们来了解一下温度变送器的工作原理。
当温度传感器接触到被测介质时,根据热电偶、热电阻或半导体温度传感器的特性,产生相应的电压或电阻信号。
这个信号会经过信号调理电路进行放大、滤波和线性化处理,以保证输出的信号符合标准的输入输出关系。
最后,输出电路将处理后的信号转换成标准信号输出,供给给控制系统或显示仪表进行显示和控制。
在实际应用中,温度变送器通常与温度显示仪表、温度控制器
或PLC等设备配合使用,实现对温度的实时监测和控制。
它被广泛应用于化工、电力、冶金、石油、制药等领域,对生产过程中的温度进行监测和控制,保证生产过程的稳定性和安全性。
总的来说,温度变送器的工作原理是基于温度传感器的信号转换原理,通过信号调理和输出电路的处理,将温度信号转换成标准信号输出,实现对温度的准确测量和控制。
它在工业自动化控制中起着重要的作用,是保证生产过程稳定运行的重要仪表设备。
多路温度变送器使用说明
多路温度变送器使用说明一、多路温度变送器的基本原理1.传感器测量:多路温度变送器可以连接多个传感器,如热电偶、热敏电阻等,用于测量不同位置的温度;2.信号转化:多路温度变送器将传感器测量到的温度信号转化为标准信号,常见的有4-20mA电流信号和0-10V电压信号;3.信号输出:多路温度变送器将转化后的标准信号输出,可以连接到工业控制系统或数据采集设备。
二、多路温度变送器的特点1.多路输入:多路温度变送器通常可以连接多个传感器,可以同时监测和控制多个温度点,方便现场温度监测和控制;2.高精度:多路温度变送器采用高精度的信号转化和放大电路,可以提供高精度的温度测量和控制;3.多种输出信号:多路温度变送器常见的输出信号有4-20mA电流信号和0-10V电压信号,可以适应不同的控制系统和设备需求;4.抗干扰能力强:多路温度变送器采用专业的抗干扰设计,可以降低外界干扰电磁波对信号传输的影响;5.功耗低:多路温度变送器采用低功耗设计,可以减少对电源的需求和能源消耗。
三、多路温度变送器的应用1.温度监测:多路温度变送器可以连接多个温度传感器,用于监测不同位置的温度,如管道、储罐、反应器等;2.温度控制:多路温度变送器可以将测量到的温度信号输出给控制器,通过控制器对温度进行控制,实现恒温、升温、降温等控制需求;3.报警功能:多路温度变送器可以设置阈值,当温度超过或低于阈值时发出报警信号,用于提醒操作人员或触发其他控制设备;4.数据采集:多路温度变送器的输出信号可以连接到数据采集设备,将温度数据记录到数据库中,用于分析和监控。
四、多路温度变送器的使用注意事项1.选择合适的传感器:根据实际需求选择合适的传感器,并与多路温度变送器兼容;2.安装位置:选择一个适合的位置安装多路温度变送器,远离干扰源,避免温度漂移和干扰电磁波;3.校准和调试:在使用前对多路温度变送器进行校准和调试,确保输出信号准确可靠;4.防护措施:根据使用环境的需要,采取防护措施,如防水、防尘、防腐蚀等;5.维护保养:定期检查和维护多路温度变送器,确保其正常运行和长寿命。
温度变送器工作原理
温度变送器工作原理温度变送器是一种常见的工业控制设备,用于将温度信号转换为标准的电流、电压或数字信号输出,以便于监测和控制系统对温度的实时反馈。
温度变送器的工作原理是基于热敏元件的特性和信号转换电路的原理。
热敏元件是温度变送器的核心部件,常见的热敏元件有热电偶、热敏电阻和热敏电容等。
这些热敏元件都具有随温度变化而改变电阻、电压或电容的特性,利用这些特性可以实现温度的测量和转换。
热电偶是由两种不同金属导线焊接在一起而成,当焊点处温度发生变化时,两种金属导线的热电势也会发生变化,从而产生微小的电压信号。
温度变送器通过放大和滤波这个微小的电压信号,将其转换为标准的电流或电压输出,以便于监测和控制系统的使用。
热敏电阻是一种随温度变化而改变电阻值的元件,常见的热敏电阻有铂金热敏电阻和镍铬热敏电阻等。
温度变送器通过将热敏电阻接入一个恒流源电路中,测量电阻值的变化,然后将其转换为标准的电流或电压输出。
热敏电容是一种随温度变化而改变电容值的元件,温度变送器通过测量电容值的变化,并将其转换为标准的电流或电压输出。
除了热敏元件外,温度变送器还包括信号转换电路和补偿电路。
信号转换电路用于放大、滤波和线性化热敏元件的信号,以便于得到稳定和准确的输出信号。
补偿电路用于对热敏元件的非线性特性进行补偿,以确保输出信号与实际温度之间的准确对应关系。
在实际应用中,温度变送器通常还包括温度补偿和线性化补偿功能。
温度补偿是指根据环境温度对热敏元件的影响进行补偿,以确保输出信号与实际温度之间的准确对应关系。
线性化补偿是指根据热敏元件的非线性特性进行补偿,以确保输出信号与实际温度之间的线性关系。
总的来说,温度变送器的工作原理是基于热敏元件的特性和信号转换电路的原理,通过测量、放大和转换热敏元件的信号,实现温度的测量和转换。
同时,通过温度补偿和线性化补偿,确保输出信号与实际温度之间的准确对应关系。
温度变送器在工业控制系统中起着至关重要的作用,广泛应用于化工、电力、冶金、石油、制药等领域。
温度变送器的工作原理
温度变送器的工作原理
温度变送器是一种用于测量、转换和传输温度信号的仪器。
它可以将温度信号转换为标准的电信号,以便在远距离传输或作为其他设备的输入。
温度变送器工作原理如下:
1. 温度感应器:温度变送器通常配备了温度感应器,常见的有热电阻和热电偶。
热电阻是利用金属电阻随温度的变化而变化,而热电偶则是通过两种不同金属之间的热电效应来测量温度。
2. 信号转换:温度感应器读取环境的温度,并将其转换为电信号。
这些信号可以是电压信号或电流信号。
在一些情况下,温度变送器还会进行一些增益或补偿操作,以确保输出信号的准确性。
3. 信号调理:温度变送器会对转换后的信号进行调理,以便进行传输或作为其他设备的输入。
这可能涉及到放大、滤波和线性化等操作,以确保信号的稳定性和可靠性。
4. 输出信号:最后,温度变送器会将调理后的信号输出给接收方。
这可以是一条传输线路、一个数据记录器或者其他需要温度输入的设备。
总的来说,温度变送器的工作原理是将温度感应器读取到的温度信号转换为标准的电信号,并经过调理后输出给其他设备使
用。
这样,温度变送器可以在工业控制、自动化系统等领域中起到重要作用。
温度变送器
温度变送器原理Pt100的电阻受温度的变化而变化,Rt=R0(1+aT)=100(1+0.00392T),其中T 为温度,Rt的单位为欧姆,Rt与温度呈有一个零点的线性关系。
要求温度输出0~100℃时,输出电压为0~5V。
温度变送器设计要点:(1)为了将温度的变化转化成电压的变化,需设计一个恒流电路,使电阻的变化转化成电压的变化;(2)因为Vt=Rt×Is=100×Is+0.392T×Is,因此需要设计一个恒压抬高电路,抵消100×Is,使温度与电压呈线性关系;(3)因为Pt100的电路变化比较小,因此需要放大器。
变送器原理:由图1可知:(1)系统前级电路由三极管、二极管和稳压管组成的电路产生恒定的电流Is,使Vi随温度的变化而变化;(2) Vi为铂电阻的转换电压,U1和U2组成二级放大器,Vi1为一级放大电压,V11抬高电压,Vo为最终输出电压(0~10V),Vo1输出0~5V;(3) U3是射极跟随器,产生稳定的抬高电压V11。
Vi1 2.2K V oo1V2 I S图1 温度变送电路Vi有关参数推导:Vi=Is*Rt=100(1+0.00392T)*Is 7661545R R R Vi R R R Vi +⨯=+⨯ 将电阻值代入(2)式得:Vi1=10Vi=1000(1+0.00392T)*Is (3)11111011)11(9891V R R R V Vo R R R Vi ++⨯-=+⨯将电阻代入(4)得:Vo=10(Vi1-V11)=10(10Vi-V11)再将(1)代如(5)得:V o=10[1000(1+0.00392T)*Is-V11]=10000*Is-10V11+39.2*Is*T (6)为了达到好的补偿效果,令V0=10(V),T=100(℃)10000*Is-10V11=0则:)151413()1514(211R RR R R V V +++⨯=温度变送器的调试:(1)调节R2使Is 为2.55(mA);(2)调节R14使V11的电压为2.55(V);(3)调节R16使V o1为V o 的一半。
变送器知识相关书籍
变送器知识相关书籍变送器是指将被测量的物理量转换为标准的电信号输出的设备。
在现代工业自动化中,变送器的应用越来越广泛,因为它能够将不同类型的传感器输出信号转换为标准信号,从而实现各种控制和测量系统之间的互联。
为了更好地了解变送器,以下是几本与变送器相关的书籍:1. 《变送器技术手册》这是一本基础的变送器技术手册,介绍了变送器的原理、类型、应用和选型等方面。
书中详细介绍了变送器的工作原理、信号标准、输入输出电路、测量误差等方面的内容,对于初学者来说是一本不可多得的参考书。
2. 《工业变送器应用与选型》这本书是一本实用的变送器应用手册,主要介绍了变送器的应用和选型。
书中包含了不同类型的传感器和变送器的应用实例,以及如何根据不同的工况和要求选择合适的变送器的方法和技巧。
3. 《现代工业自动化控制系统》这本书是一本广义的自动化控制系统教材,但其中也包含了对于变送器的介绍。
书中较为详细地介绍了自动化控制系统的组成和原理,以及变送器在其中的作用和应用。
对于想要全面了解自动化控制系统的读者来说,这本书是一本不可或缺的参考书。
4. 《现代传感器原理与应用》这本书是一本关于传感器的综合性教材,但其中也介绍了与变送器相关的内容。
书中介绍了传感器的原理、分类、应用以及与变送器的联接等方面的内容。
对于想要深入了解传感器和变送器的读者来说,这本书也是一本不错的参考书。
变送器作为现代工业自动化中不可或缺的一部分,其应用和发展也越来越广泛。
对于想要了解变送器的人来说,以上几本书籍都是不错的选择。
但是需要注意的是,由于变送器技术的发展和应用的多样性,这些书籍所介绍的内容也可能存在一定的局限性,需要结合实际情况和其他资料进行综合分析和研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单说明温度变送器的原理及参考书籍
《工厂电气控制》
《电工手册》
原理是
如:热电阻隔离变送器Pt100:
通过感应温度变化达到阻值的变化
温度变送器:
1.通过确认阻值的不同计算出当前的温度
2.再根据热点阻的量程变送输出对应的标准
信号(4-20mA)值
即:
温度变化--热电阻隔离变送器--电阻变化--温度变送器--4~20mA信号
举个例子:
Pt100的量程为:-199.9度-600.0度
温度变送器就把这个转化为标准信号后对应的
4mA就是-199.9度
20mA就是600.0度
通过确认变送器输出的电流大小就可以知道当前的温
摘要:现场总线是应用在生产现场,在微机化测量控制设备(称为现场总线仪表)之间实现双向串行多节点数字通信系统,它在制造业、流程工业、交通、楼宇等方面的自动化系统中具有广泛的应用前景。
本文从工程应用出发,介绍了现场总线温度变送器的原理和应用,以供自动化人员参考。
关键词:现场总线、温度变送器、原理、应用。
一、引言
信息技术的飞速发展,引起了自动化系统结构的变革,逐步形成了以网络集成自动化系统为基础的企业信息系统。
现场总线就是顺应这一形势发展起来的新技术。
现场总线是应用在生产现场,在微机化测量控制设备(称为现场总线仪表)之间实现双向串行多节点数字通信系统,也被称为开放式、数字化、多点通信的底层控制网络,它在制造业、流程工业、交通、楼宇等方面的自动化系统中具有广泛的应用前景。
目前,在国内可购到的FF(现场总线基金会)现场总线仪表有:罗斯蒙特公司的FF3051压力(压差)变送器、FF3244MV温度变送器、FFDVC50000智能阀门;Smart公司的FFLD302压力(压差)变送器、FFTT302温度变送器、FFFP302现场总线到气压转换器。
本文从工程应用出发,对FFTT302现场总线温度变送器的原理和应用加以介绍,以供自动化人员参考。
二、原理
1、功能与特性
TT302是一种将温度、温差、毫伏等工业过程参数转变为现场总线数字信号的变送器,它还具有控制功能,起到了基地式(现场)仪表的作用。
TT302测量温度配用RTD(热电阻隔离变送器)或热电偶,但也可配用其他具有电阻或毫伏输出的传感器,诸如高温计、负荷传感器、电阻或位置指示器等。
TT302采用数字技术后能实现下列性能:单一的型号能接受多种传感器、宽量程范围、单值或差值测量;在现场和控制室之间接口容易,可大大减少安装和维护费用,能接受二路输入,也就是说有两个测量点,准确度为0.02%。
TT302温度变送器内装AI(模拟输入)、PID(比例加积分加微分控制)、ISS (输入选择)、CHAR(线性化)和ARTH(计算)等5种功能模块。
它们具有可由用户组态的基本功能,各种功能模块都有输入、输出,并装有参数和一个算法。
各功能模块用一个标识符来表示,功能模块的输入、输出等能用其他仪表从总线上读出,它们之间也能互相连接,其他仪表也能写入模块的输入。
TT302与其他现场总线仪表互连构成现场总线控制系统。
用户可通过功能模块的连接建立适合控制应用所需的控制策略。
2、硬件构成原理
由TT302输入板、主电路板和显示板组成。
TT302接受来自热电偶(TC)、mV
发生器、热电阻隔离变送器(ohm)传感器的信号,这些输入信号必须在规定范围内。
电压规定范围为50~500mV,电阻的规定范围为0~200W。
量程可以组态。
(1)输入板
MUX为多路转换器,它的作用是确保传感器端子到信号调理板接收的电压信号是正确的端子间电压。
信号调理板的功能是给输入信号乘上一个正确的增益以适合A/D(模/数)转换器的信号接收范围。
电源隔离和信号隔离的作用是防止输入信号与地形成地环电流而引入干扰。
来自主电路板CPU的控制信号和来自A/D转换器的信号通过光电耦合器传输,从而实现了信号电的隔离。
同样,输入板上的电源也必须是隔离的,电源隔离是采用把直流转换为一高频交流,并使用变压器分隔电的联系来实现的。
(2)主电路板
中央处理器CPU是TT302的核心部件,它控制着整个仪表各个部件的协调工作、线性化和通信。
系统程序存贮于CPU外部的只读存贮器PROM,运算数据暂存贮于RAM,如果电源开关断开,RAM中的数据就会丢失。
然而,CPU内还有一个非易失性存贮器EEPROM,当电源开关断开时,这里的数据仍保留。
因此,一些重
要的标定、组态和辨识等应用程序都存贮在这里。
主电路板上的EEPROM存贮器用来存贮组态参数(指功能模块的参数)。
CPU与信号整形之间是通信控制器,此控制器用来监视现场总线上的占空系数(或情况),调制和解调通信信号,引入和删除数字信号中开始和结束的定界符。
本机调整为两个干簧管(也称磁性开关)。
在本机调整时,不用打开仪表的端盖,即在仪表的电路全部被密封的情况下,利用磁棒的置入与置出就可触发TT302
内的磁开关,进行仪表的组态和调整,从而使现场仪表内的电子元件不与现场的恶劣环境直接接触,大大延长了电子元件的使用寿命,也使仪表适应恶劣环境的性能得到提高。
TT302是由现场总线供电的,供电电压为9~32VDC。
在供电的同时,仪表的输入-输出的数字信号也由现场总线传输,与二线制模拟变送器相近,但现场总线中的数字信号是双向的,而且传输的是多个信号。
信号规程符合IEC-1158-2,本安,隔爆。
(3)显示板
显示板是一个从CPU接收数据的微功耗液晶显示器,它为四位半数字值和五位字母的LCD(液晶显示器)。
三、应用
目前,在中国已有十几家工业企业选用了Smart公司的302现场总线控制系统。
安庆石化腈纶厂是国内率先采用Smart302现场总线控制系统的厂家,其现场总线控制系统应用示意图如图2所示。
PCI为过程控制接口卡,它通过卡上的OPRAM(双口RAM)与PC机CPU进行快速信息交换,从而实现PC机与所有现场总线仪表间的信息交换,而PC机的CPU
主要从事管理工作。
每块卡可接4个相互独立的通道,每个通道下可挂接4块总线安全栅(SB302)。
总线安全栅除了起总线安全隔离作用外,还起总线供电和总线重复器(放大器)作用。
LD302是一种将差压、绝压、差压、液位和流量等工业过程参数转变为现场总线数字信号的变送器,它还具有控制功能,起到了基地式仪表的作用。
TT302可就地实现温度的自动控制,同时把温度信号通过现场总线传送给操作站。
FI302是把现场总线数字信号转换为4~20mADC电流信号的转换器,IF302是把
4~20mA (DC)电流信号转换为现场总线数字信号的转换器。
这两个转换器可使现
场总线控制系统与常规模拟控制系统相连。
操作站采用普通工控机及AIMAX-WIN人机界面软件。
双向的全数字通信总线从控制室的操作站一直延伸到现场仪表,中间节省了很多A/D、D/A等环节,既可提高系统的精度,又可减少I/O卡及其安装空间,因而可以大大减少运行和维护方面的费用。
在安全可靠性方面,由于控制功能下放在各处的现场总线仪表内,从而将危险分散,大大提高了系统的可靠性。
四、结束语
现场总线控制系统的优越性是不容置疑的,因此,象TT302这样的现场总线仪表是很有发展前途的仪表,它将使传统的传感器或变送器消失,从而开创一个工业控制的新时代。