(完整)初中数学经典四边形习题50道(附答案)

合集下载

(易错题精选)初中数学四边形专项训练解析含答案(1)

(易错题精选)初中数学四边形专项训练解析含答案(1)

(易错题精选)初中数学四边形专项训练解析含答案(1)一、选择题1.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【答案】D【解析】试题分析:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°,解得:n=8. 则原多边形的边数为7或8或9.故选D .考点:多边形内角与外角.2.如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【解析】【分析】 根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选:C .【点睛】本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.3.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD中,∵∠ABC=60°,AB=1,∴△ABC,△ACD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD1③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为1故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C5.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:360572=,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.6.如图,正方形ABCD的边长为4,点E、F分别在AB、BC上,且AE=BF=1,CE、DF交于点O,下列结论:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=43,⑤S△DOC=S四边形EOFB中,正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】分析:由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确,③CE=D F正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得④正确;由①易证得⑤正确.详解:∵正方形ABCD的边长为4,∴BC=CD=4,∠B=∠DCF=90°.∵AE=BF=1,∴BE=CF=4﹣1=3.在△EBC和△FCD中,BC CDB DCFBE CF=⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正确,∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正确;连接DE,如图所示,若OC=OE.∵DF⊥EC,∴CD=DE.∵CD=AD<DE(矛盾),故②错误;∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC=DCFC=43,故④正确;∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四边形BEOF.故⑤正确;故正确的有:①③④⑤.点睛:本题考查了正方形的性质、全等三角形的判定与性质、直角三角形的性质以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想与转化思想的应用.7.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.10【答案】B【解析】【分析】【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.8.下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.9.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.10.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】 【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-=∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC ==∴在Rt AOD △中,AD =3OD =∴OA =∴OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.11.在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 是平行四边形,可添加的条件不正确的是( )A .AB ∥CDB .∠B =∠DC .AD =BC D .AB =CD【答案】D【解析】【分析】根据平行四边形的判定解答即可.【详解】∵AD ∥BC ,AB ∥CD ,∴四边形ABCD 是平行四边形,故A 正确;∵AD ∥BC ,AD=BC ,∴四边形ABCD 是平行四边形,故C 正确;∵AD ∥BC ,∴∠D+∠C=180°,∵∠B=∠D ,∴∠B+C=180°,∴AB ∥CD ,∴四边形ABCD 是平行四边形,故B 正确;故选:D .【点睛】此题考查平行四边形的判定,解题关键是根据平行四边形的判定解答.12.如图,菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (0,DOB =60°,点P 是对角线OC 上的一个动点,已知A (﹣1,0),则AP +BP 的最小值为( )A.4 B.5 C.33D.19【答案】D【解析】【分析】点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可.【详解】解:连接AD,如图,∵点B的对称点是点D,∴AD即为AP+BP的最小值,∵四边形OBCD是菱形,顶点B(0,23),∠DOB=60°,∴点D的坐标为(3,3),∵点A的坐标为(﹣1,0),∴AD=22+=,(3)419故选:D.【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离.13.如图,四边形ABCD的对角线为AC、BD,且AC=BD,则下列条件能判定四边形ABCD 为矩形的是()A.BA=BCB.AC、BD互相平分C.AC⊥BDD.AB∥CD【答案】B【解析】试题分析:根据矩形的判定方法解答.解:能判定四边形ABCD是矩形的条件为AC、BD互相平分.理由如下:∵AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴▱ABCD是矩形.其它三个条件再加上AC=BD均不能判定四边形ABCD是矩形.故选B.考点:矩形的判定.14.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.35B.23C.38D.45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53 b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.15.如图,在菱形ABCD 中,60BCD ∠=︒,BC 的垂直平分线交对角线AC 于点F ,垂足为E ,连接BF 、DF ,则DFC ∠的度数是( )A .130︒B .120︒C .110︒D .100︒【答案】A【解析】【分析】 首先求出∠CFB=130°,再根据对称性可知∠CFD=∠CFB 即可解决问题;【详解】∵四边形ABCD 是菱形,∴∠ACD =∠ACB =12∠BCD=25°, ∵EF 垂直平分线段BC ,∴FB=FC ,∴∠FBC=∠FCB=25°,∴∠CFB=180°-25°-25°=130°,根据对称性可知:∠CFD=∠CFB=130°,故选:A .【点睛】此题考查菱形的性质、线段的垂直平分线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在 ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连结EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有( ).A .1个B .2个C .3个D .4个 【答案】D【解析】分析:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题;详解:如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.点睛:本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.17.如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【答案】D【解析】分析:根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC-BE,代入数据进行计算即可得解.详解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC-BE=8-6=2cm.故选:D.点睛:本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.18.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°【答案】B【解析】【详解】解:∵AD∥BC,∴∠DEF=∠EFB=20°,图b中∠GFC=180°-2∠EFG=140°,在图c中∠CFE=∠GFC-∠EFG=120°,故选B.19.下列说法正确的是()A.对角线相等的四边形一定是矩形B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上C.如果有一组数据为5,3,6,4,2,那么它的中位数是6D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D【解析】【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.20.如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.65B.85C.125D.245【答案】D【解析】【分析】连接AD,根据已知等腰三角形的性质得出AD⊥BC和BD=6,根据勾股定理求出AD,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:22221068AB BD=+=,∵S△ADB=12×AD×BD=12×AB×DE,∴DE=8624105 AD BDAB⨯⨯==,故选D.【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD的长是解此题的关键.。

(必考题)初中八年级数学下册第十八章《平行四边形》经典练习卷(含答案解析)

(必考题)初中八年级数学下册第十八章《平行四边形》经典练习卷(含答案解析)

一、选择题1.如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M 所代表的正方形面积可表示为( )A .40064-B .2240064-C .2240064-D .40064+A解析:A【分析】 要求图中字母所代表的正方形的面积,根据面积=边长×边长=边长的平方,设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,已知斜边和一直角边的平方,由勾股定理即可求出2a ,即可得到答案.【详解】设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,如图所示,在该直角三角形中,由勾股定理得:22240064a c b =-=-,故选:A .【点睛】本题主要考查勾股定理的应用和正方形的面积公式,解题的关键在于熟练运用勾股定理求出正方形的边长的平方.2.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对C解析:C【分析】因为图形对折,所以首先△CDB ≌△ABD ,由于四边形是长方形,进而可得△ABE ≌△CDE ,如此答案可得.【详解】解:∵△BDC 是将长方形纸片ABCD 沿BD 折叠得到的,∴CD=AB ,AD=BC ,∵BD=BD ,∴△CDB ≌△ABD (SSS ),∴∠CBD=∠ADB∴EB=ED∴CE=AE又AB=CD∴△ABE ≌△CDE ,∴图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进. 3.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD )433a b +C 解析:C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出33BE AE ==,33DF ,得出232AB BE =,232AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论. 【详解】 解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,BE AE ∴==,DF =,2AB BE ∴==,2AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆的面积21122BE AE a =⨯=⨯=,ADF ∆的面积21122DF AF b =⨯=⨯,平行四边形ABCD 的面积BC AE a =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.4.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形.A 解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.5.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠OAB=∠ACD ,∵∠OAB=∠OAD ,∴∠DAC=∠DCA ,∴AD=CD , ∴四边形ABCD 是菱形(邻边相等的平行四边形是菱形)故选:D .【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.如图,在123A A A △中,160A ∠=︒,230A ∠=︒,131A A =,3+n A 是1(1,2,3)n n A A n +=⋅⋅⋅的中点,则202120222023A A A △中最短边的长为( )A .100912 B .101012 C .101112 D .102112B解析:B【分析】根据已知条件和图形的变化可得前几个图形的最短边的长度,进而可得结论.【详解】解:在△A 1A 2A 3中,∠A 1A 3A 2=90°,∠A 2=30°,A 1A 3=1,A n+3是A n A n+1(n=1、2、3…)的中点,可知:A 4A 5//A 1A 3,A 3A 4=A 2A 4,∴∠A 3A 5A 4=90°,∠A 4A 3A 2=∠A 2=30°,∴△A 1A 2A 3是含30°角的直角三角形,同理可证△A n A n+1A n+2是含30°角的直角三角形.△A 1A 2A 3中最短边的长度为A 1A 3=1=012, △A 3A 4A 5中最短边的长度为A 4A 5=12=112, △A 5A 6A 7中最短边的长度为A 5A 7=21142=, …, 所以△A n A n+1A n+2中最短边的长度为1212n -,则△A 2019A 2020A 2021中最短边的长度为120211221122n --==101012. 故选:B .【点睛】 本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律.也考查了直角三角形斜边的中线,三角形的中位线,平行线的性质,含30°角的直角三角形的性质,以及等腰三角形的性质等知识.7.顺次连接矩形ABCD 各边的中点,所得四边形是( )A .平行四边形B .正方形C .矩形D .菱形D解析:D【分析】利用三角形中位线定理,矩形对角线的性质,菱形的判定判断即可.【详解】如图,设矩形ABCD各边的中点依次为E,F,G,H,∴EF,FG,GH,HE分别是△ABC,△BCD,△CDA,△DAB的中位线,∴EF=12AC,FG=12BD,GH=12AC,EH=12BD,∵四边形ABCD是矩形,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故选D.【点睛】本题在矩形背景考查了三角形中位线定理,菱形的判定,矩形的性质,熟练运用三角形中位线定理,矩形的性质,菱形的判定是解题的关键.8.下列命题中,正确的命题是()A.菱形的对角线互相平分且相等B.顺次联结菱形各边的中点所得的四边形是矩形C.矩形的对角线互相垂直平分D.顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B.【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.9.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】 先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.10.如图,菱形ABCD 中,4AB =,60A ∠=︒,点E 是线段AB 上一点(不与A ,B 重合),作EDF ∠交BC 于点F ,且60EDF ∠=︒,则BEF 周长的最小值是( )A .6B .43C .43+D .423+D解析:D【分析】 只要证明DBE DCF ∆≅∆得出DEF ∆是等边三角形,因为BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,所以等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,只要求出DEF ∆的边长最小值即可.【详解】解:连接BD ,菱形ABCD 中,60A ∠=︒,ADB ∴∆与CDB ∆是等边三角形,60DBE C ∴∠=∠=∠︒,BD DC =,60EDF ∠=︒,BDE CDF ∴∠=∠,在BDE ∆和CDF ∆中,DBE C BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE DCF ∴∆≅∆,DE DF ∴=,BDE CDF ∠=∠,BE CF =,60EDF BDC ∴∠=∠=︒,DEF ∴∆是等边三角形,BEF ∆的周长4BE BF EF BF CF EF BC EF EF =++=++=+=+,∴等边三角形DEF ∆的边长最小时,BEF ∆的周长最小,当DE AB ⊥时,DE 最小23=,BEF ∴∆的周长最小值为423+,故选:D .【点睛】本题考查菱形的性质、全等三角形的判定和性质、等边三角形的判定和性质、最小值问题等知识,解题的关键是正确寻找全等三角形,利用全等三角形的性质解决问题,学会转化的思想解决问题,所以中考常考题型.二、填空题11.如图,直线a 过正方形ABCD 的顶点A ,点B 、D 到直线a 的距离分别为1、3,则正方形的边长为_______.【分析】先由正方形的性质可知再证明Rt △AFD ≌Rt △BEA 再由全等三角形的性质可得;最后在在Rt △BEA 中由勾股定理得:即得本题答案【详解】解:在正方形中;∵∴;∵∴;在Rt △AFD 和Rt △BEA 10【分析】先由正方形的性质可知DA AB =,再证明Rt △AFD ≌Rt △BEA ,再由全等三角形的性质可得3DF AE ==,1AF BE ==;最后在在Rt △BEA 中,由勾股定理得:2210AB AE BE =+=【详解】解:在正方形ABCD 中,AD AB =;∵DF AF ⊥,BE AE ⊥,∴90AFD AEB ∠=∠=︒,90ADF DAF ∠+∠=︒;∵90DAF BAE ∠+∠=︒,∴ADF BAE =∠∠;在Rt △AFD 和Rt △BEA 中,AFD AEB ADF BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △AFD ≌Rt △BEA (AAS ),∴3DF AE ==,1AF BE ==;在Rt △BEA 中,由勾股定理得:22223110AB AE BE =+=+= 10.【点睛】本题主要考查正方形的性质,三角形全等的性质与判定以及勾股定理的知识. 12.如图,Rt ABC △中,90,5∠=︒=B AB ,D 为AC 的中点, 6.5=BD ,则BC 的长为__________.12【分析】根据直角三角形斜边上的中线等于斜边的一半可求出再根据勾股定理求解即可【详解】解:∵D 为的中点∴∴故答案是:12【点睛】考查了勾股定理和直角三角形斜边上的中线熟悉相关性质是解题的关键解析:12.【分析】根据直角三角形斜边上的中线等于斜边的一半,可求出AC ,再根据勾股定理求解即可.【详解】解:∵90B ∠=︒,D 为AC 的中点, 6.5=BD∴22 6.513AC BD ==⨯=, ∴222212135BC AC AB =--,故答案是:12.【点睛】考查了勾股定理和直角三角形斜边上的中线,熟悉相关性质是解题的关键.13.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.或2【分析】根据菱形有一个内角为60°可以得到等边三角形分两种情况画出图形结合勾股定理求出AC 的长【详解】解:∵四边形ABCD 是菱形∴AC ⊥BDOA=OCOB=ODAD=AB=2若∠BAD=60°∴ 解析:232【分析】根据菱形有一个内角为60°可以得到等边三角形,分两种情况,画出图形,结合勾股定理求出AC 的长.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=OC ,OB=OD ,AD=AB=2,若∠BAD=60°,∴△ABD 是等边三角形,∴BD=2,∴OD=1,∴22213-=, ∴AC=3若∠ABC=60°,∴△ABC 是等边三角形,∴AC=2;故答案为:23或2.【点睛】此题考查了菱形的性质和勾股定理,等边三角形的判定和性质,要记住菱形的对角线互相平分且垂直,菱形的四条边都相等.14.如图,在ABC ∆中,点,D E 分别在边,AB AC 上,且BD CE =,连接,CD DE ,点,,M N P 分别是,,DE BC CD 的中点,34PMN ∠=,则MPN ∠的度数是_______.【分析】根据点MNP 分别是DEBCCD 的中点可以证明MP 是ΔDEC 的中位线NP 是ΔDBC 的中位线根据中位线定理可得到MP=NP 再根据等腰三角形的性质得到∠PMN=∠PNM 最后根据三角形的内角和定理可解析:112【分析】根据点 M ,N ,P 分别是 DE ,BC ,CD 的中点,可以证明MP 是ΔDEC 的中位线,NP 是ΔDBC 的中位线,根据中位线定理可得到MP=NP ,再根据等腰三角形的性质得到∠PMN=∠PNM ,最后根据三角形的内角和定理可以得到∠MPN .【详解】解:如图∵点 M,N,P 分别是 DE,BC,CD 的中点∴MP是ΔDEC的中位线,∴MP=1EC,2NP是ΔDBC的中位线∴NP=1BD,2又∵BD=CE∴MP=NP∴∠PMN=∠PNM=34∘∴∠MPN=180∘-∠PMN-∠PNM=180∘-34∘-34∘=112∘故答案位:112°【点睛】本题考查了三角形的中位线定理,等腰三角形的性质和判定,以及三角形的内角和定理,解题的关键是灵活运用三角形的中位线定理求线段的长度.15.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P 不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF的最小值等于__________.48【分析】连接由菱形的性质解得再根据勾股定理解得继而证明四边形为矩形得到根据垂线段最短解得当时有最小值最后根据三角形面积公式解题即可【详解】连接四边形是菱形四边形为矩形当时有最小值此时的最小值为故解析:4.8【分析】连接OP ,由菱形的性质解得118,622BO BD OC AC ====,再根据勾股定理解得10BC =,继而证明四边形OEPF 为矩形,得到FE OP =,根据垂线段最短解得当OP BC ⊥时,OP 有最小值,最后根据三角形面积公式解题即可.【详解】 连接OP ,四边形ABCD 是菱形,12,16AC BD ==,AC BD ∴⊥118,622BO BD OC AC ==== 22643610BC OB OC ∴=+=+=,,PE AC PF BD AC BD ⊥⊥⊥∴四边形OEPF 为矩形,FE OP ∴=当OP BC ⊥时,OP 有最小值,此时1122OBC S OB OC BC OP =⋅=⋅ 68 4.810OP ⨯∴== EF ∴的最小值为4.8,故答案为:4.8.【点睛】本题考查菱形的性质、矩形的判定与性质、勾股定理、垂线段最短等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,在Rt ABC ∆中,90,6,10ACB AC AB ∠===,过点A 作//,AM CB CE 平分ACB ∠交AM 于点,E Q 是线段CE 上的点,连接BQ ,过点B 作BP BQ ⊥交AM 于点P ,当PBQ ∆为等腰三角形时,AP =________________________.【分析】过点P作PG⊥CB交CB的延长线于点G过点Q作QF⊥CB运用AAS定理证明△QBF≌△BPG根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形利用勾股定理求得线段BC的长然后结合全解析:10【分析】过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB,运用AAS定理证明△QBF≌△BPG,根据平行线的性质和角平分线的定义求得△AEC为等腰直角三角形,利用勾股定理求得线段BC的长,然后结合全等三角形和矩形的性质求解.【详解】解:过点P作PG⊥CB,交CB的延长线于点G,过点Q作QF⊥CB∵BP BQ⊥,PG⊥CB∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3∵QF⊥CB,BP BQ⊥∴∠QFB=∠PGB=90°又∵PBQ∆为等腰三角形∴QB=PB在△QBF和△BPG中1=3QFB PGB QB PB∠∠⎧⎪∠=∠⎨⎪=⎩∴△QBF≌△BPG∴PG=BF,BG=QF∵∠ACB=90°,CE平分ACB∠∴∠ACE=∠ECB=45°又∵AM∥CB,∴∠AEC=∠ECB=45°∴∠AEC=∠ACE=45°∴△AEC为等腰直角三角形∵AM∥BC,∠ACB=90°∴∠CAM+∠ACB=180°,即∠CAM=90°∴∠CAM=∠ACB=∠PGB=90°∴四边形ACGP为矩形,∴PG=AC=6,AP=CG在Rt △ABC 中,BC=228AB AC -=∴CF=BC-BF=BC-PG=8-6=2∵QF ⊥BC ,∠ECB=45°∴△CQF 是等腰直角三角形,即CF=QF=2∴AP=CG=BC+BG=BC+QF=8+2=10【点睛】本题考查矩形的判定和性质、全等三角形的判定和性质以及勾股定理,掌握相关性质定理正确推理论证是解题关键17.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).18-【分析】过A 作AE ⊥y 轴于EAD ⊥x 轴于D 构造正方形AEOD 再证△AEB ≌△ADC (SAS )得BE=CD 由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a .【分析】过A 作AE ⊥y 轴于E ,AD ⊥x 轴于D ,构造正方形AEOD ,再证△AEB ≌△ADC (SAS ),得BE=CD ,由EB=EO-BO=9-a ,可求CD=9-a ,求出OC=OD+CD=9+9-a =18-a 即可.【详解】过A 作AE ⊥y 轴于E ,AD ⊥x 轴于D ,∵点()9,9A ,AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD 为正方形,∵AB AC ⊥,∠EAD=90°,∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD ,∵AB AC =,AE=AD ,∴△AEB ≌△ADC (SAS ),∴BE=CD ,∵EB=EO-BO=9-a ,∴CD=9-a ,OC=OD+CD=9+9-a =18-a ,故答案为:18-a .【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.18.如图,将长方形纸片ABCD 沿着对角线BD 翻折,点C 落在点C '处,BC '与AD 交于点E .若20AD cm =,5AB cm =,则DE =_______cm .【分析】根据题意得到BE =DE 然后根据勾股定理得到关于线段ABAEBE 的方程解方程即可【详解】解:设ED =x 则AE =20﹣x ∵四边形ABCD 为矩形∴AD ∥BC ∴∠EDB =∠DBC ;由题意得:∠EBD 解析:858【分析】根据题意得到BE =DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可.【详解】解:设ED =x ,则AE =20﹣x ,∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB =∠DBC ;由题意得:∠EBD =∠DBC ,∴∠EDB =∠EBD ,∴EB =ED =x ;由勾股定理得:BE 2=AB 2+AE 2,即x 2=52+(20﹣x )2,解得:x =858, ∴ED =858. 【点睛】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.19.在ABCD 中,BE AD ⊥于E ,BF CD ⊥于F ,若60EBF ︒∠=,且3AE =,2DF =,则EC =_______.【分析】由▱ABCD 中BE ⊥ADBF ⊥CD 可得∠D=120°继而求得∠A 与∠BCD 的度数然后由勾股定理求得ABBEBC 的长继而求得答案【详解】解:∵BE ⊥ADBF ⊥CD ∴∠BFD=∠BED=∠BFC91【分析】由▱ABCD 中,BE ⊥AD ,BF ⊥CD ,可得∠D=120°,继而求得∠A 与∠BCD 的度数,然后由勾股定理求得AB ,BE ,BC 的长,继而求得答案.【详解】解:∵BE ⊥AD ,BF ⊥CD ,∴∠BFD=∠BED=∠BFC=∠BEA=90°,∵∠EBF=60°,∴∠D=120°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BCD=∠A=60°,∵在△ABE中,∠ABE=30°,∴AB=2AE=2×3=6,∴CD=AB=6,BE=2233AB AE-=,∴CF=CD-DF=6-2=4,∵在△BFC中,∠CBF=30°,∴BC=2CF=2×4=8,∴CE=2291BE BC+=,故答案为:91.【点睛】此题考查了平行四边形的性质、勾股定理以及含30°角的直角三角形的性质.此题难度适合,注意掌握数形结合思想的应用.20.在长方形ABCD中,52AB=,4BC=,CE CF=,CF平分ECD∠,则BE=_________.【分析】延长CF交EA的延长线于点G连接EF过点F作FH⊥CE于点H过点E作EM⊥CF于点M由题意易得FH=FDFH=EMEC=EG进而可得△CDF≌△CME然后可得CM=CD=由勾股定理可得BG=解析:7 6【分析】延长CF,交EA的延长线于点G,连接EF,过点F作FH⊥CE于点H,过点E作EM⊥CF于点M,由题意易得FH=FD,FH=EM,EC=EG,进而可得△CDF≌△CME,然后可得CM=CD=52,由勾股定理可得BG=3,设BE=x,则有EC=EG=3+x,最后利用勾股定理可求解.【详解】解:延长CF,交EA的延长线于点G,连接EF,过点F作FH⊥CE于点H,过点E作EM⊥CF于点M,如图所示:∵四边形ABCD 是矩形,4BC =,52AB =∴BC=AD ,52AB DC ==,AB ∥DC ,∠D=∠ABC=∠CBE=90° ∴∠DCF=∠G ,∵CF 平分∠ECD ,∴∠DCF=∠ECF ,DF=FH ,∴∠G=∠ECF ,∴EC=EG ,∴△ECG 是等腰三角形,∴CM=MG ,∵CE=CF ,∴△ECF 是等腰三角形, ∵EM 、FH 分别是等腰三角形ECF 腰上的高线,∴FH=EM=DF ,∴Rt △CDF ≌Rt △CME (HL ), ∴52CM DC ==, ∴CG=5,∴在Rt △CBG 中,223BG CG CB -=,设BE=x ,则有EC=EG=3+x ,在Rt △CBE 中,222BC BE CE +=,∴()22243x x +=+, 解得:76x =, ∴76BE =; 故答案为76. 【点睛】本题主要考查等腰三角形的性质与判定、矩形的性质及勾股定理,熟练掌握等腰三角形的性质与判定、矩形的性质及勾股定理是解题的关键.三、解答题21.如图,四边形ABCD是矩形,对角线AC与BD相交于点O,∠AOD=60°,AD=2,求AC的长度.解析:4【分析】根据矩形的性质和等边三角形的性质,可以得到OA的长,从而可以求得AC的长.【详解】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD,∵∠AOD=60°,AD=2,∴△AOD是等边三角形,∴OA=OD=2,∴AC=2OA=4,即AC的长度为4.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记性质并判断出△AOB是等边三角形是解题的关键.22.如图,已知,四边形ABCD是平行四边形,AE∥BD,交CD的延长线于点E, 交BC延长线于点F,求证:四边形ABFD是等腰梯形.EF BC解析:见解析.【分析】首先证明四边形ABDE是平行四边形,即可得AB=DE,等量代换可得CD=DE,根据直角三角形斜边中线的性质定理可得DF=CD=DE,进而可得AB=DF,再说明线段AB和DF不平行即可求证结论.【详解】∵四边形ABCD是平行四边形,=.∴AD∥BC,AB∥CD,AB CD∴AB∥DE;又∵AE∥BD,∴四边形ABDE是平行四边形.=.∴AB DE∴CD DE=.⊥,∵EF BC∴DF=CD=DE.=.∴AB DF∵CD、FD交于点D,∴线段AB与线段FD不平行.∴四边形ABFD是等腰梯形.【点睛】本题考查平行四边形的判定及其性质、梯形的判定,直角三角形的斜边中线的性质定理,解题的关键是掌握两腰相等的梯形是等腰梯形.23.综合与实践:问题情境:数学活动课上,老师和同学们一起以“矩形的旋转”开展数学活动.具体操作如下:第一步:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG互相重合.第二步:固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止.问题解决:(1)奋进小组发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,请写出线段AM与CN始终存在的数量关系,并利用图2说明理由.(2)奋进小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形MRNQ 时,如图3所示,请你猜测四边形MRNQ 的形状,并试着证明你的猜想.探索发现:(3)奋进小组还发现在问题(2)中的四边形MRNQ 中MQN ∠与旋转角AOE ∠存在着特定的数量关系,请你写出这一关系,无需说明理由.解析:(1)AM CN =,理由见解析;(2)四边形MRNQ 为菱形,证明见解析;(3)MQN ∠=AOE ∠【分析】(1)结论:AM=CN .先证明(AAS)AOS COT ≌△△,推出AS CT =,OS OT =,34∠=∠,再证明(ASA)ESM GTN ≌△△即可解决问题.(2)过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .首先证明四边形QMRN 是平行四边形,再证明QM=QN 即可.(3)结论:∠MQN=∠AOE .理由三角形的外角的性质以及平行线的性质即可解决问题.【详解】(1)关系:AM CN =理由:如图:设EG 分别与AB 、CD 相交于点S 、T ;∵四边形ABCD 与EFGH 都是矩形,且点O 为对角线的中点;∴//AB CD ,//EF GH ,OA OC =,OE OG =;∴12∠=∠;又AOS COT ∠=∠∴(AAS)AOS COT ≌△△∴AS CT =,OS OT =;∴ES GT =;又//EF GH ,∴56∠=∠;又12∠=∠;∴34∠=∠∴(ASA)ESM GTN ≌△△ ∴SM TN =,则AS SM CT TN +=+即AM CN =(2)四边形MRNQ 为菱形.证明:过点Q 作QK ⊥EF ,QL ⊥CD ,垂足分别为点K ,L .由题可知:矩形ABCD ≌矩形EFGH∴AD=EH ,AB ∥CD ,EF ∥HG∴四边形QMRN 为平行四边形,∵QK ⊥EF ,QL ⊥CD ,∴QK=EH ,QL=AD ,∠QKM=∠QLN=90°∴QK=QL ,又∵AB ∥CD ,EF ∥HG ,∴∠KMQ=∠MQN ,∠MQN=∠LNQ ,∴∠KMQ=∠LNQ ,∴△QKM ≌△QLN (AAS )∴MQ=NQ∴四边形MRNQ 为菱形.(3)结论:∠MQN=∠AOE .理由:如图中,∵∠QND=∠1+∠2,∠AOE=∠1+∠3,又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,∵AB∥CD,∴∠MQN=∠QND,∴∠MQN=∠AOE.【点睛】本题属于四边形综合题,考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找确定的三角形解决问题,属于中考压轴题.24.如图,将长方形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AB=6,△ABF的面积是24,求DE的长.解析:10 3【分析】先根据三角形的面积公式求得BF的长,然后根据勾股定理可求得AF=10,由翻折的性质和矩形的性质可知BC=10,故此FC=2,最后在△EFC中,由勾股定理列方程求解即可.【详解】解:∵S△ABF=24,∴12AB•BF=24,即12×6×BF=24.解得:BF=8.在Rt△ABF中由勾股定理得:22AB BF=10.由翻折的性质可知:BC=AD=AF=10,ED=FE.∴FC=10-8=2.设DE=x ,则EC=6-x .在Rt △EFC 中,由勾股定理得:EF 2=FC 2+EC 2,x 2=4+(6-x )2.解得:x=103, ∴DE=103. 【点睛】本题主要考查的是矩形与折叠、三角形的面积公式、勾股定理的应用,根据勾股定理列出关于x 的方程是解题的关键.25.如图,在ABC 中,AB AC =,10BC =.(1)尺规作图:(要求:保留作图痕迹,不写作法)①作BAC ∠的平分线交BC 于点D ;②作边AC 的中点E ,连接DE ;(2)在(1)所作的图中,若12AD =,则DE 的长为__________.解析:(1)①见解析;②见解析;(2)6.5【分析】(1)①以A 为圆心,小于AB 的长度为半径画圆,交AB 、AC 于两个点,再分别以这两个点为圆心,一样的半径画弧,交于一点,连接这个点与点A ,即可得到BAC ∠的平分线,再画出它与BC 的交点D ;②作线段AC 的垂直平分线,即可找到线段AC 的中点E ,连接DE ;(2)由等腰三角形“三线合一”的性质得152BD BC ==,AD BC ⊥,用勾股定理求出AB 的长,再根据中位线的性质得到DE 的长.【详解】解:(1)①如图所示:②如图所示:(2)∵AB AC =,AD 平分BAC ∠, ∴152BD BC ==,AD BC ⊥, 在Rt ABD △中,2213AB AD BD =+=, ∵E 、D 分别是AC 和BC 的中点,∴1 6.52DE AB ==, 故答案是:6.5.【点睛】 本题考查等腰三角形的性质,中位线的定理,以及角平分线和垂直平分线的作法,解题的关键是熟练掌握这些几何的性质定理以及作图方法.26.已知:如图,在ABCD 中,4,6,AC BD CA AB ==⊥,求ABCD 的周长和面积. 解析:521+,5【分析】依据平行四边形的对角线互相平分,即可得到2AO =,3BO =,再根据勾股定理即可得出AB 与BC 的长,进而得到ABCD 的周长和面积. 【详解】解:如图所示,4AC =,6BD =,2AO ∴=,3BO =,又CA AB ⊥, Rt AOB ∴∆中,2222325AB BO AO =-=-Rt ABC 中,2222(5)421BC AB AC =+=+=ABCD ∴的周长2(521)25221==,ABCD 的面积5445AB AC =⨯=⨯=.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,解题时注意:平行四边形的对角线互相平分.27.已知:如图,ABCD 中,AE 、CF 分别是BAD ∠和BCD ∠的角平分线,分别交边DC 、AB 于点E 、F ,求证:AE CF =.解析:见解析【分析】根据平行四边形的性质及角平分线的定义,证明ADE CBF ∆≅∆即可判断AE CF =.【详解】解:四边形ABCD 是平行四边形,DAB DCB ∴∠=∠,D B ∠=∠,AD BC =.AE ∵、CF 分别是BAD ∠和BCD ∠的角平分线,DAE BCF ∴∠=∠.()ADE CBF ASA ∴∆≅∆.AE CF ∴=.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定和性质.证明线段相等的技巧一般是找到两个线段的相关三角形,通过全等求解.28.如图,AD 为ABC ∆的中线,BE 为ABD ∆的中线.(1)15ABE ∠=︒,40BAD ∠=︒,求 BED ∠的度数;(2)若ABC ∆的面积为40,5BD =,则E 到BC 边的距离为多少.解析:(1)55︒;(2)4.【分析】(1)根据三角形内角与外角的性质解答即可;(2)过E 作BC 边的垂线即可得:E 到BC 边的距离为EF 的长,然后过A 作BC 边的垂线AG ,再根据三角形中位线定理求解即可.【详解】解:(1)BED ∠是ABE ∆的外角, 154055BED ABE BAD ;(2)过E 作BC 边的垂线,F 为垂足,则EF 为所求的E 到BC 边的距离,过A 作BC 边的垂线AG ,AD ∴为ABC ∆的中线,5BD =,22510BC BD ∴==⨯=,ABC ∆的面积为40, ∴1402BC AG ,即110402AG ,解得8AG =,∵AD 为ABC ∆的中线, ∴11402022ABD ABC S S , 又∵BE 为ABD ∆的中线, ∴11201022EBD ABD S S , 则有:1151022BD EFEF 4EF ∴=.即E 到BC 边的距离为4.【点睛】本题考查了三角形外角的性质、三角形中位线的性质及三角形的面积公式,添加适当的辅助线是解题的关键.。

初中数学几何动点训练题--四边形类(含答案)

初中数学几何动点训练题--四边形类(含答案)

几何动点训练题1一、单选题(共8题;共16分)1.(2020·绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B移动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( )A. 平行四边形→正方形→平行四边形→矩形B. 平行四边形→菱形→平行四边形→矩形C. 平行四边形→正方形→菱形→矩形D. 平行四边形→菱形→正方形→矩形2.(2020八下·泰兴期末)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A. 平行四边形→正方形→平行四边形→矩形B. 平行四边形→菱形→平行四边形→矩形C. 平行四边形→正方形→菱形→矩形D. 平行四边形→菱形→正方形→矩形3.(2020八下·杭州期末)如图,在正方形ABCD中,点E是CD边上的一个动点(不与点C、D重合),BE的垂直平分线分别交AD,BC于点F,G。

若FD=5AF,则CE:ED的值为( )A. 6-2B.C. -1D.4.如图,正方形的边长为,动点P,Q同时从点A出发,在正方形的边上,分别按,的方向,都以的速度运动,到达点C运动终止,连接,设运动时间为xs,的面积为,则下列图象中能大致表示y与x的函数关系的是()A. B. C. D.5.(2019九上·遵义月考)如图,正方形边长为4个单位,两动点、分别从点、处,以1单位/ 、2单位/ 的速度逆时针沿边移动.记移动的时间为,面积为(平方单位),当点移动一周又回到点终止,同时点也停止运动,则与的函数关系图象为()A. B. C. D.6.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC 边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q 也停止),在这段时间内,线段PQ有()次平行于AB?A. 1B. 2C. 3D. 47.(2019八下·滦南期末)如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB 的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A. ②③B. ②⑤C. ①③④D. ④⑤8.(2019九下·江阴期中)如图,在菱形ABCD中,点P是BC边上一动点,连结AP,AP的垂直平分线交BD于点G,交AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是()A. 变大B. 先变大后变小C. 先变小后变大D. 不变二、填空题(共8题;共9分)9.(2020·嘉兴·舟山)如图,有一张矩形纸条ABCD,AB=5cm,BC=2cm,点M,N分别在边AB,CD上,CN=1cm。

初中数学平行四边形练习题(含答案)

初中数学平行四边形练习题(含答案)

初中数学平行四边形练习题(含答案)一、选择题(共10小题,3*10=30)1.在下列条件中,能够判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线2.在▱ABCD 中,若∠BAD 与∠CDA 的角平分线交于点E ,则△AED 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定3.下列不能判定一个四边形是平行四边形的条件是( )A .两组对角分别相等B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等4.只用下面的一种正多边形,不能进行平面镶嵌的是( )A .正三角形B .正方形C .正五边形D .正六边形5.如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 经过点O ,分别交AD ,BC 于点E ,F ,已知▱ABCD 的面积是20 cm 2,则图中阴影部分的面积是( )A .12 cm 2B .10 cm 2C .8 cm 2D .5 cm 26. 如图,在▱ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,CG ⊥BF ,垂足为点G ,若BF =4,则线段CG 的长为( )A.152B .4 3C .215 D.557.顺次连接平面上A,B,C,D四点得到一个四边形,从①AB∥CD;②BC=AD;③∠A=∠C;④∠B=∠D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有()A.5种B.4种C.3种D.1种8.如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH的交点P在BD上,则图中面积相等的平行四边形有()A.3对B.2对C.1对D.0对9.如图,在四边形ABCD中,E,F,P,Q分别为AB,AD,BC,CD的中点.若∠ABC=90°,∠AEF=60°,则∠CPQ的度数为()A.15° B.30°C.45° D.60°10.如图,在▱ABCD中,∠ABC=60°,BC=2AB=8,点C关于AD的对称点为E,连接BE交AD 于点F,点G为CD的中点,连接EG,BG.则△BEG的面积为()A.16 3 B.14 3C.8 3 D.73二.填空题(共8小题,3*8=24)11.一个多边形的内角和等于900°,则这个多边形是_________边形.12. 如图,五边形ABCDE是正五边形.若l1∥l2,则∠1-∠2=______.13.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.E是CD的中点,BD=12,则△DOE 的周长为________.14.如图,在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是____________.15.如图,面积为12 cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是BC的3倍,则四边形ACED的面积为_________.16.如图,在▱ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=22,则▱ABCD 的周长是________.17.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY 交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是___________.18.如图,点A,E,F,C在一条直线上,若将△DEC的边EC沿AC方向平移,平移过程中始终满足下列条件:AE=CF,DE⊥AC于点E,BF⊥AC于点F,且AB=CD,则当点E,F不重合时,BD与EF的关系是____________.三.解答题(共7小题,66分)19.(8分) 如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF ,连接EF 交BD 于点O.求证:OB =OD.20.(8分) 是否存在一个多边形,它的每一个内角都相等且等于相邻外角的14请说明理由.21.(8分) 如图,在平行四边形ABCD 中,E 为AB 边上的中点,连接DE 并延长,交CB 的延长线于点F.(1)求证:AD =BF ;(2)若平行四边形ABCD 的面积为32,试求四边形EBCD 的面积.22.(10分) 如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 经过点O 并且分别和AB ,CD 相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.23.(10分)如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.24.(10分)如图,在平行四边形ABCD中,∠ABC,∠BCD的平分线交于点E,且点E刚好落在AD上,分别延长BE,CD交于点F.(1)AB与AD之间有什么数量关系?并证明你的猜想;(2)CE与BF之间有什么位置关系?并证明你的猜想.25.(12分) 在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图2,当EF与CD相交,且∠EAB=90°时,请你写出线段EG,AG,BG之间的数量关系,并证明你的结论.参考答案1-5CBDCD 6-10CCABB11. 七 12. 72° 13.15 14.3<x <11 15. 60 cm 2 16.8 17. 2≤a +2b≤5 18.互相平分19. 证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC.∴∠ADB =∠CBD.又∵AE =CF ,∴AE +AD =CF +BC.∴ED =FB.又∵∠EOD =∠FOB ,∴△EOD ≌△FOB(AAS).∴OB =OD.20. 解:不存在,理由如下:假设存在这样的一个多边形,设其一个外角的度数度为x°,则相邻的内角度数为180°-x°,由题意,得14x =180-x , 解得x =144,即这个多边形的每一个外角的度数都是144°,由多边形的外角和为360°,得这个多边形的边数为360°÷144°=2.5,因为多边形的边数应为整数,所以不存在这样的多边形.21. 解:(1)∵E 是AB 边上的中点,∴AE =BE.∵AD ∥BC ,∴∠ADE =∠F.在△ADE 和△BFE 中,∠ADE =∠F ,∠DEA =∠FEB ,AE =BE ,∴△ADE ≌△BFE.∴AD =BF(2)过点D 作DM ⊥AB 与M ,则DM 同时也是平行四边形ABCD 的高.∴S △AED =12×12AB·DM =14AB·DM =14×32=8, ∴S 四边形EBCD =S ▱ABCD -S △ADE =32-8=2422. 证明:如图所示.∵点O 为▱ABCD 对角线AC ,BD 的交点,∴OA =OC ,OB =OD.∵G ,H 分别为OA ,OC 的中点,∴OG =12OA ,OH =12OC. ∴OG =OH.又∵AB ∥CD ,∴∠1=∠2.在△OEB 和△OFD 中,⎩⎪⎨⎪⎧∠1=∠2,OB =OD ,∠3=∠4,∴△OEB ≌△OFD(ASA).∴OE =OF.∴四边形EHFG 为平行四边形.23.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥CD ,AB =CD ,∴∠B =∠ECF.∵E 为BC 的中点,∴BE =CE.在△ABE 和△FCE 中,⎩⎪⎨⎪⎧∠B =∠ECF ,BE =CE ,∠AEB =∠FEC ,∴△ABE ≌△FCE.(2)解:CH ⊥DG.理由如下:由(1)知△ABE ≌△FCE ,∴AB =CF.∵AB =CD ,∴DC =CF ,即点C 为DF 的中点.∵H 为DG 的中点,∴CH ∥FG.∵DG ⊥AE ,∴CH ⊥DG.24. 解:(1)AD =2AB.证明如下:∵BF 平分∠ABC ,∴∠ABE =∠FBC.∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠FBC =∠AEB ,∴∠AEB =∠ABE ,∴AB =AE ,同理可证:CD =DE ,∴AD =AE +ED =AB +CD =2AB.(2)CE ⊥BF.证明如下:∵BF 平分∠ABC ,∴∠ABC =2∠EBC ,∵CE 平分∠BCD ,∴∠BCD =2∠BCE.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°,∴2∠EBC +2∠BCE =180°,∴∠EBC +∠BCE =90°,∴∠BEC =90°,即CE ⊥BF.25. 解:(1)证明:如图①,作∠GAH =∠EAB 交GE 于点H ,设EF 与AB 相交于点P.则∠GAB =∠HAE.∵∠EAB =∠EGB ,∠APE =∠BPG ,∴∠ABG =∠AEH.在△ABG 和△AEH 中,⎩⎪⎨⎪⎧∠GAB =∠HAE ,AB =AE ,∠ABG =∠AEH ,∴△ABG ≌△AEH(ASA).∴BG =EH ,AG =AH.∵∠GAH =∠EAB =60°,∴△AGH 是等边三角形.∴AG =HG.∴EG =AG +BG.(2)EG =2AG -BG.证明如下:如图②,作∠GAH =∠EAB 交GE 的延长线于点H.∴∠GAB =∠HAE.∵∠EGB =∠EAB =90°,∴∠ABG +∠AEG =∠AEG +∠AEH =180°.∴∠ABG =∠AEH.又∵AB =AE ,∴△ABG ≌△AEH ,∴BG =EH ,AG =AH.∵∠GAH =∠EAB =90°,∴△AGH 是等腰直角三角形. ∴2AG =HG.∴EG =2AG -BG.。

初中数学特殊的平行四边形50题(含答案)

初中数学特殊的平行四边形50题(含答案)

特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。

(易错题精选)初中数学四边形经典测试题附答案(1)

(易错题精选)初中数学四边形经典测试题附答案(1)

(易错题精选)初中数学四边形经典测试题附答案(1)一、选择题1.下列说法中正确的是( )A .有一个角是直角的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直平分的四边形是正方形D .两条对角线相等的菱形是正方形【答案】D【解析】【分析】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键.【详解】A. 有一个角是直角的四边形是矩形,错误;B. 两条对角线互相垂直的四边形是菱形,错误;C. 两条对角线互相垂直平分的四边形是正方形,错误;D. 两条对角线相等的菱形是正方形,正确.故选D.【点睛】本题考查了菱形,矩形,正方形的判定方法,熟练掌握菱形,矩形,正方形的判定方法是解题的关键,考查了学生熟练运用知识解决问题的能力.2.如图,在四边形ABCD 中,90,150,BAD BCD ADC ∠=∠=︒∠=o 连接对角线BD ,过点D 作//DE BC 交AB 于点,E 若23,AB AD CD =+=,则CD =( )A .2B .1C .13+D 3【答案】B【解析】【分析】 先根据四边形的内角和求得∠ABC 30︒=,再根据平行线的性质得到∠AED 30︒=,∠EDB=∠DBC ,然后根据三角形全等得到∠ABD=∠DBC ,进而得到EB=ED ,最后在Rt ADE V 中,利用勾股定理即可求解.【详解】解:在四边形ABCD 中∵90,150,BAD BCD ADC ∠=∠=︒∠=o∴∠ABC 30︒=∵//DE BC∴∠AED 30︒=,∠EDB=∠DBC在Rt ABD V 和Rt BCD △中 ∵AD CD BD BD =⎧⎨=⎩∴Rt ABD Rt BCD ≅V V∴∠ABD=∠DBC∴∠EDB=∠ABD∴EB=ED ∵23AB =+在Rt ADE △中,设AD=x,那么DE=2x,AE=232x +-()2222322x x x ++-=解得:121;73x x ==+(舍去)故选:B .【点睛】此题主要考查四边形的内角和、全等三角形的判断、平行线的性质和勾股定理的应用,熟练进行逻辑推理是解题关键.3.如图,小莹用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,BC 长为10cm .当小莹折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).则此时EC =( )cmA .4B 2C .22D .3【答案】D【解析】【分析】 根据矩形的性质得AB=CD=8,BC=AD=10,∠B=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF ,在Rt △ABF 中,利用勾股定理计算出BF=6,则CF=BC ﹣BF=4,设CE=x ,则DE=EF=8﹣x,在Rt△CEF中利用勾股定理得到:42+x2=(8﹣x)2,然后解方程即可.【详解】解:∵四边形ABCD为矩形,∴AB=CD=8,BC=AD=10,∠B=∠C=90°.∵长方形纸片ABCD折纸,顶点D落在BC边上的点F处(折痕为AE),∴AF=AD=10,DE=EF,在Rt△ABF中,AB=8,AF=10,∴6=∴CF=BC﹣BF=4.设CE=x,则DE=EF=8﹣x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8﹣x)2,解得x=3∴EC的长为3cm.故选:D【点睛】本题考查了折叠的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠的性质和矩形的性质,根据勾股定理得出方程是解题关键.4.下列命题错误的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A、平行四边形的对角线互相平分,正确;B、两直线平行,内错角相等,正确;C、等腰三角形的两个底角相等,正确;D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 5.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.6.如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )A.a B.45a C2D3【答案】C【解析】【分析】根据“AN平分∠DAB,DM⊥AN于点M,CN⊥AN于点N”得∠MDC=∠NCD=45°,cos45°=DM CNDE CE,所以DM+CN=CDcos45°;再根据矩形ABCD,AB=CD=a,DM+CN的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°, ∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=22a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =7.如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是这个菱形内部或边上的一点,若以点P ,B ,C 为顶点的三角形是等腰三角形,则P ,D (P ,D 两点不重合)两点间的最短距离为( )A .12B .1C 3D 31【答案】D【解析】【分析】分三种情形讨论①若以边BC 为底.②若以边PC 为底.③若以边PB 为底.分别求出PD 的最小值,即可判断.【详解】解:在菱形ABCD 中,∵∠ABC=60°,AB=1,∴△ABC ,△ACD 都是等边三角形,①若以边BC 为底,则BC 垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P 与点A 重合时,PD 值最小,最小值为1;②若以边PC 为底,∠PBC 为顶角时,以点B 为圆心,BC 长为半径作圆,与BD 相交于一点,则弧AC (除点C 外)上的所有点都满足△PBC 是等腰三角形,当点P 在BD 上时,PD 31③若以边PB 为底,∠PCB 为顶角,以点C 为圆心,BC 为半径作圆,则弧BD 上的点A 与点D 均满足△PBC 为等腰三角形,当点P 与点D 重合时,PD 最小,显然不满足题意,故此种情况不存在;上所述,PD的最小值为31故选D.【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC 【答案】A【解析】根据矩形的性质和全等三角形的性质找出全等三角形应用排它法求欠妥即可:∵AD=DE,DO∥AB,∴OD为△ABE的中位线.∴OD=OC.∵在Rt△AOD和Rt△EOD中,AD=DE,OD=OD,∴△AOD≌△EOD(HL).∵在Rt△AOD和Rt△BOC中,AD=BC,OD=OC,∴△AOD≌△BOC(HL).∴△BOC≌△EOD.综上所述,B、C、D均正确.故选A.9.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG ≌△GBE;④EG=EF,其中正确的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】由平行四边形的性质可得AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD,即可得BO=DO=AD=BC,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.【详解】解:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB∥CD∵BD=2AD∴BO=DO=AD=BC,且点E是OC中点∴BE⊥AC,∴①正确∵E、F、分别是OC、OD中点∴EF∥DC,CD=2EF∵G是AB中点,BE⊥AC∴AB=2BG=2GE,且CD=AB,CD∥AB∴BG=EF=GE,EF∥CD∥AB∴四边形BGFE是平行四边形,∴②④正确,∵四边形BGFE是平行四边形,∴BG=EF,GF=BE,且GE=GE∴△BGE≌△FEG(SSS)∴③正确故选D.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,直角三角形的性质,三角形的中位线及等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.10.如图,菱形ABCD中,对角线BD与AC交于点O, BD=8cm,AC=6cm,过点O作OH ⊥CB于点H,则OH的长为( )A.5cm B.52 cmC.125cm D.245cm【答案】C 【解析】【分析】根据菱形的对角线互相垂直平分求出OB 、OC ,再利用勾股定理列式求出BC ,然后根据△BOC 的面积列式计算即可得解.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,111163,842222OC AC OB BD ==⨯===⨯= 在Rt △BOC 中,由勾股定理得,2222345BC OB OC =+=+=∵OH ⊥BC ,1122BOC S OC OB CB OH ∴=⋅=⋅V ∴1143522OH ⨯⨯=⨯ ∴125OH =故选C .【点睛】本题考查了菱形的性质,勾股定理,三角形的面积,熟记性质是解题的关键,难点在于利用两种方法表示△BOC 的面积列出方程.11.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】 ∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度=2205OB C +=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.12.如图,四边形ABCD 的对角线相交于点O ,且点O 是BD 的中点,若AB =AD =5,BD =8,∠ABD =∠CDB ,则四边形ABCD 的面积为( )A .40B .24C .20D .15【答案】B【解析】【分析】根据等腰三角形的性质得到AC ⊥BD ,∠BAO=∠DAO ,得到AD=CD ,推出四边形ABCD 是菱形,根据勾股定理得到AO=3,于是得到结论.【详解】∵AB =AD ,点O 是BD 的中点,∴AC ⊥BD ,∠BAO =∠DAO ,∵∠ABD =∠CDB ,∴AB ∥CD ,∴∠BAC =∠ACD ,∴∠DAC =∠ACD ,∴AD =CD ,∴AB =CD ,∴四边形ABCD 是菱形,∵AB =5,BO 12=BD =4, ∴AO =3,∴AC =2AO =6,∴四边形ABCD 的面积12=⨯6×8=24, 故选:B .【点睛】本题考查了菱形的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,正确的识别图形是解题的关键.13.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x ,y ,z ,则111x y z++的值为( ) A .1B .23C .12D .13【答案】C【解析】分析:根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.详解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x 、y 、z ,那么这三个多边形的内角和可表示为:2180x x -⨯()+2180y y -⨯()+2180z z ()-⨯=360,两边都除以180得:1﹣2x+1﹣2y +1﹣2z =2,两边都除以2得:1x +1y +1z =12. 故选C .点睛:解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.14.如图,在ABCD Y 中,8AC =,6BD =,5AD =,则ABCD Y 的面积为( )A .6B .12C .24D .48【答案】C【解析】【分析】 由勾股定理的逆定理得出90AOD ∠=o ,即AC BD ⊥,得出ABCD Y 是菱形,由菱形面积公式即可得出结果.【详解】∵四边形ABCD 是平行四边形, ∴142OC OC AC ===,132OB OD BD ===, ∴22225OA OD AD +==,∴90AOD ∠=o ,即AC BD ⊥,∴ABCD Y 是菱形,∴ABCD Y 的面积11862422AC BD =⨯=⨯⨯=; 故选C .【点睛】本题考查平行四边形的性质、勾股定理的逆定理、菱形的判定与性质,熟练掌握平行四边形的性质,证明四边形ABCD 是菱形是解题的关键.15.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB =,则EFGH 的面积是( )A.6 B.8 C.9 D.12【答案】B【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF 2 AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE 2EF22AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH2DE=2,∴EFGH的面积为EH2=(2)2=8,故选:B.本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.16.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.17.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .18.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,将边长为4的菱形OBCD 的边OB 固定在x 轴上,开始时30DOB ∠=︒,现把菱形向左推,使点D 落在y 轴正半轴上的点D ¢处,则下列说法中错误的是( )A .点C '的坐标为()4,4B .60CBC '∠=︒ C .点D 移动的路径长度为4个单位长度D .CD 垂直平分BC '【答案】C【解析】【分析】 先证明四边形OBC′D′是正方形,且边长=4,即可判断A ;由平行线的性质得∠OBC 的度数,进而得到60CBC '∠=︒,即可判断B ;根据弧长公式,求出点D 移动的路径长度,即可判断C ;证明CD ⊥BC ′,BC′=BC=2BE ,即可判断D .【详解】∵四边形OBCD 是菱形,∴OB=BC=CD=OD ,∴OB=BC ′=C ′D ′=OD ′,∵∠BOD′=90°,∴四边形OBC′D′是正方形,且边长=4,∴点C '的坐标为()4,4,故A 不符合题意.∵30DOB ∠=︒,OD ∥BC ,∴∠OBC=180°-30°=150°,∵∠OBC ′=90°,∴60CBC '∠=︒,故B 不符合题意.∵点D 移动的路径是以OD 长为半径,圆心角为∠DOD ′=90°-30°=60°的弧长,∴点D 移动的路径长度=604180π⨯=43π,故C 符合题意. 设CD 与BC′交于点E ,∵在菱形OBCD 中,∠C=30DOB ∠=︒,∵60CBC '∠=︒,∴∠BEC=180°-60°-30°=90°,即CD ⊥BC ′,∴BC′=BC=2BE ,∴CD 垂直平分BC ',故D 不符合题意.故先C .【点睛】本题主要考查菱形的性质,正方形的判定和性质以及点的坐标,熟练掌握菱形的性质和正方形性质,含30°角的直角三角形的性质,是解题的关键.19.如图,在▱ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于( )A .1B .2C .3D .4【答案】C【解析】试题分析:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD ﹣MC=3,故选C.考点:平行四边形的性质.20.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:3605 72,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.。

初中数学经典四边形习题50道(附答案)

初中数学经典四边形习题50道(附答案)

初中数学经典四边形习题50道(附答案)经典四边形习题1、已知:在等腰梯形abcd中,ab∥dc,ad=bc,e、f分别为ad、bc的中点,bd_d_c 平分∠abc交ef于g,eg=18,gf=10求:等腰梯形abcd的周长。

_g_e_f_a_b2、从平行四边形四边形abcd的各顶点作对角线的垂线ae、bf、cg、dh,垂足分别是e、f、g、h,求证:ef∥gh。

_d_c_e_f_o_h_g_a_b_a_d3、未知:梯形abcd的对角线的交点为e若在平行边的一边bc的延长线上取一点f,_e并使s?abc=s?ebf,澄清:df∥ac。

4、在正方形abcd中,直线ef平行于对角线ac,与边ab、bc的交点为e、f,在da 的延长线上取一点g,使ag=ad,若eg与df的交点为h,澄清:ah与正方形的边长成正比。

5、若以直角三角形abc的边ab为边,在三角形abc的外部作正方形abde,af就是bc边的高,缩短fa并使ag=bc,澄清:bg=cd。

6、正方形abcd,e、f分别是ab、ad延长线上的一点,且ae=af=ac,ef交bc于g,交ac于k,交cd于h,求证:eg=gc=ch=hf。

_a_g_b_a_c_f_d_e_h_b_f_g_c_e_d_a_b_f_d_h_c_f_c_k_jg__b7、在四边形abcd中,ab=cd,p、q分别就是ad、bc中点,m、n分别就是对角线ac、bd的中点,澄清:pq?mn。

8、平行四边形abcd中,ad=2ab,ae=ab=bf求证:ce?df。

9、在正方形abcd中,p就是bd上一点,过p惹来pe?bc交bc于e,过p惹来pf?cd 于f,澄清:ap?ef。

10、过正方形abcd的顶点b引对角线ac的平行线be,在be上取一点f,并使af=ac,若作菱形café,澄清:ae及af三等分∠bac。

11、以?abc的三边ab、bc、ca分别为边,在bc的同侧作等边三角形abd、bce、caf,求证:adef是平行四边形。

中考特殊平行四边形证明及计算经典习题及答案2

中考特殊平行四边形证明及计算经典习题及答案2

DSE 金牌数学专题系列经典专题系列初中数学中考特殊四边形证明及计算一. 解答题1.(1)如图①, ▱ABCD的对角线AC, BD交于点O, 直线EF过点O, 分别交AD, BC于点E, F.求证: AE=CF.(2)如图②, 将▱ABCD(纸片)沿过对角线交点O的直线EF折叠, 点A落在点A1处, 点B落在点B1处, 设FB1交CD于点G, A1B1分别交CD, DE于点H, I.求证:EI=FG.考点:平行四边形的性质;全等三角形的判定与性质;翻折变换(折叠问题). 718351分析:(1)由四边形ABCD是平行四边形, 可得AD∥BC, OA=OC, 又由平行线的性质, 可得∠1=∠2, 继而利用ASA, 即可证得△AOE≌△COF, 则可证得AE=CF.(2)根据平行四边形的性质与折叠性质, 易得A1E=CF, ∠A1=∠A=∠C, ∠B1=∠B=∠D, 继而可证得△A1IE≌△CGF, 即可证得EI=FG.(2)根据平行四边形的性质与折叠性质,易得A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,继而可证得△A1IE≌△CGF,即可证得EI=FG.(2)根据平行四边形的性质与折叠性质,易得A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,继而可证得△A1IE≌△CGF,即可证得EI=FG.解答:证明: (1)∵四边形ABCD是平行四边形,∴AD∥BC, OA=OC,∴∠1=∠2,在△AOE和△COF中,, ∴△AOE≌△COF(ASA), ∴AE=CF;(2)∵四边形ABCD是平行四边形, ∴∠A=∠C, ∠B=∠D, 由(1)得AE=CF,由折叠的性质可得: AE=A1E, ∠A1=∠A, ∠B1=∠B,∴A1E=CF, ∠A1=∠A=∠C, ∠B1=∠B=∠D, 又∵∠1=∠2, ∴∠3=∠4, ∵∠5=∠3, ∠4=∠6, ∴∠5=∠6, 在△A1IE与△CGF中,, ∴△A1IE≌△CGF(AAS), ∴EI=FG.点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中, 注意掌握折叠前后图形的对应关系, 注意数形结合思想的应用.2. 在△ABC中, AB=AC, 点P为△ABC所在平面内一点, 过点P分别作PE∥AC交AB于点E, PF∥AB交BC于点D, 交AC于点F. 若点P在BC边上(如图1), 此时PD=0, 可得结论: PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2), △ABC外(如图3)时, 上述结论是否成立?若成立, 请给予证明;若不成立, PD, PE, PF与AB之间又有怎样的数量关系, 请写出你的猜想, 不需要证明.考点:平行四边形的性质. 718351专题:探究型.分析:在图2中, 因为四边形PEAF为平行四边形, 所以PE=AF, 又三角形FDC为等腰三角形, 所以FD=PF+PD=FC, 即PE+PD+PF=AC=AB, 在图3中, PE=AF可证, FD=PF﹣PD=CF, 即PF﹣PD+PE=AC=AB.解答:解: 图2结论: PD+PE+PF=AB.证明: 过点P作MN∥BC分别交AB, AC于M, N两点,∵PE∥AC, PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC, PF∥AB∴四边形BDPM是平行四边形,∴AE=PF, ∠EPM=∠ANM=∠C,∵AB=AC,∴∠EMP=∠B,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB.图3结论:PE+PF﹣PD=AB.图3结论: PE+PF﹣PD=AB.图3结论:PE+PF﹣PD=AB.点评:此题主要考查了平行四边形的性质, 难易程度适中, 读懂信息, 把握规律是解题的关键.3. 如图, △ABC是等边三角形, 点D是边BC上的一点, 以AD为边作等边△ADE, 过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①), 求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B.C外如图②), 那么(1)中的结论是否仍然成立?若成立, 请给出证明;若不成立, 请说明理由.考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质. 718351专题:证明题.分析:(1)根据△ABC和△AED是等边三角形, D是BC的中点, ED∥CF, 求证△ABD≌△CAF, 进而求证四边形EDCF是平行四边形即可;(2)在(1)的条件下可直接写出△AEF和△ABC的面积比;(3)根据ED∥FC, 结合∠ACB=60°, 得出∠ACF=∠BAD, 求证△ABD≌△CAF, 得出ED=CF, 进而求证四边形EDCF是平行四边形, 即可证明EF=DC.(3)根据ED∥FC,结合∠ACB=60°,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC.(3)根据ED∥FC,结合∠ACB=60°,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC.解答:(1)证明: ∵△ABC是等边三角形, D是BC的中点,∴AD⊥BC, 且∠BAD= ∠BAC=30°,∵△AED是等边三角形,∴AD=AE, ∠ADE=60°,∴∠EDB=90°﹣∠ADE=90°﹣60°=30°,∵ED∥CF,∴∠FCB=∠EDB=30°, ∵∠ACB=60°, ∴∠ACF=∠ACB﹣∠FCB=30°,∴∠ACF=∠BAD=30°, 在△ABD和△CAF中,,∴△ABD≌△CAF(ASA), ∴AD=CF, ∵AD=ED,∴ED=CF, 又∵ED∥CF, ∴四边形EDCF是平行四边形, ∴EF=CD.(2)解: △AEF和△ABC的面积比为: 1: 4;(3)解: 成立.理由如下: ∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60°+∠BCF, ∠BDA=∠ADE+∠EDB=60°+∠EDB∴∠AFC=∠BDA,在△ABD和△CAF中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC.∴EF=DC.点评:此题主要考查学生对平行四边形的判定和性质、全等三角形的判定和性质、等边三角形的性质的理解和掌握.此题涉及到的知识点较多, 综合性较强, 难度较大.4. 如图, 在菱形ABCD中, AB=10, ∠BAD=60度. 点M从点A以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10).(1)点N为BC边上任意一点, 在点M移动过程中, 线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动, 在什么时刻, 梯形ABNM的面积最大并求出面积的最大值;(3)点N从点B(与点M出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动, 过点M作MP∥AB, 交BC于点P.当△MPN≌△ABC时, 设△MPN与菱形ABCD重叠部分的面积为S, 求出用t表示S的关系式, 井求当S=0时的值.考点:菱形的性质;二次函数的最值;全等三角形的性质. 718351专题:压轴题.分析:(1)菱形被分割成面积相等的两部分, 那么分成的两个梯形的面积相等, 而两个梯形的高相等, 只需上下底的和相等即可.(2)易得菱形的高, 那么用t表示出梯形的面积, 用t的最值即可求得梯形的最大面积.(3)易得△MNP的面积为菱形面积的一半, 求得不重合部分的面积, 让菱形面积的一半减去即可.(3)易得△MNP的面积为菱形面积的一半,求得不重合部分的面积,让菱形面积的一半减去即可.(3)易得△MNP的面积为菱形面积的一半,求得不重合部分的面积,让菱形面积的一半减去即可.解答:解: (1)设: BN=a, CN=10﹣a(0≤a≤10)因为, 点M从点A以每秒1个单位长的速度沿着AD边向点D移动, 点M移动的时间为t秒(0≤t≤10)所以, AM=1×t=t(0≤t≤10), MD=10﹣t(0≤t≤10).所以, 梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10﹣t)+(10﹣a)]×菱形高÷2当梯形AMNB的面积=梯形MNCD的面积时,即t+a=10, (0≤t≤10), (0≤a≤10)所以, 当t+a=10, (0≤t≤10), (0≤a≤10)时, 可出现线段MN一定可以将菱形分割成面积相等的两部分.(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动, 设点N移动的时间为t, 可知0≤t≤5,因为AB=10, ∠BAD=60°, 所以菱形高=5 ,AM=1×t=t, BN=2×t=2t.所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5 ×= t(0≤t≤5).所以当t=5时, 梯形ABNM的面积最大, 其数值为.(3)当△MPN≌△ABC时,则△ABC的面积=△MPN的面积, 则△MPN的面积为菱形面积的一半为25 ;因为要全等必有MN∥AC,∴N在C点外, 所以不重合处面积为×(at﹣10)2×∴重合处为S=25 ﹣,当S=0时, 即PM在CD上,∴a=2.∴a=2.点评:本题考查了菱形以及相应的三角函数的性质, 注意使用两条平行线间的距离相等等条件.5. 如图, 在下列矩形ABCD中, 已知: AB=a, BC=b(a<b), 假定顶点在矩形边上的菱形叫做矩形的内接菱形, 现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:命题(Ⅰ): 图①中, 若AH=BG=AB, 则四边形ABGH是矩形ABCD的内接菱形;命题(Ⅱ): 图②中, 若点E、F、G和H分别是AB、BC、CD和DE的中点, 则四边形EFGH是矩形ABCD的内接菱形;命题(Ⅲ):图③中, 若EF垂直平分对角线AC, 变BC于点E, 交AD于点F, 交AC于点O, 则四边形AECF是矩形ABCD的内接菱形.请解决下列问题:(1)命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个, 并证明它是真命题或假命题;(2)画出一个新的矩形内接菱形(即与你在(1)中所确认的, 但不全等的内接菱形).(3)试探究比较图①, ②, ③中的四边形ABGH、EFGH、AECF的面积大小关系.考点:菱形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;三角形中位线定理;矩形的性质;命题与定理. 718351分析:(1)①先证明是平行四边形, 再根据一组邻边相等证明;②根据三角形中位线定理得到四条边都相等;③先根据三角形全等证明是平行四边形, 再根据对角线互相垂直证明是菱形;(2)先作一条对角线, 在作出它的垂直平分线分别与矩形的边相交, 连接四个交点即可.(3)分别表示出三个菱形的面积, 根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系, 分a>2b, a=2b和a<2b三种情况讨论.(3)分别表示出三个菱形的面积,根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系,分a>2b,a=2b和a<2b三种情况讨论.(3)分别表示出三个菱形的面积,根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系,分a>2b,a=2b和a<2b三种情况讨论.解答:解: (1)都是真命题;若选(Ⅰ)证明如下:∵矩形ABCD,∴AD∥BC,∵AH=BG,∴四边形ABGH是平行四边形,∴AB=HG,∴AB=HG=AH=BG,∴四边形ABGH是菱形;若选(Ⅱ), 证明如下:∵矩形ABCD,∴AB=CD, AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H是中点,∴AE=BE=CG=DG, AH=HD=BF=FC,∴△AEH≌△BEF≌△DGH≌△GCF,∴EF=FG=GH=HE,∴四边形EFGH是菱形;若选(Ⅲ), 证明如下∵EF垂直平分AC,∴FA=FC, EA=EC,又∵矩形ABCD,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△ADF≌△COE(SAS)∴AF=CE,∴AF=FC=CE=EA,∴四边形AECF是菱形;(2)如图4所示: AH=CF, EG垂直平分对角线FH, 四边形HEFG是菱形;(3)SABGH=a2 ,SEFGH= ab,S菱形AECF= ,∵﹣a2==>0(b>a)∴S菱形AECF>SABGH.∵﹣ab= = = >0,∴S菱形AECF>SEFGH.∵a2 ﹣ab=a(a﹣b)∴当a>b, 即0<b<2a时, S菱形ABGH>S菱形EFGH;当a= b, 即b=2a时, S菱形ABGH=S菱形EFGH;当a<b, 即b>a时, S菱形ABGH<S菱形EFGH.综上所述:当O<b<2a时, SEFGH<SABGH<S菱形AECF.当b=2a时, SEFGH=SABGH<S菱形AECF.当b>2a时SABGH<SEFGH<S菱形AECF.点评:本题主要考查了菱形的判定与性质, 三角形中位线定理, 全等三角形的判定与性质以及矩形的性质等知识点.注意第(3)题需要分类讨论, 以防错解.6. 在平行四边形ABCD中, ∠BAD的平分线交直线BC于点E, 交直线DC的延长线于点F, 以EC.CF为邻边作平行四边形ECFG.(1)如图1, 证明平行四边形ECFG为菱形;(2)如图2, 若∠ABC=90°, M是EF的中点, 求∠BDM的度数;(3)如图3, 若∠ABC=120°, 请直接写出∠BDG的度数.考点:菱形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质;正方形的判定与性质. 718351分析:(1)平行四边形的性质可得AD∥BC, AB∥CD, 再根据平行线的性质证明∠CEF=∠CFE, 根据等角对等边可得CE=CF, 再有条件四边形ECFG是平行四边形, 可得四边形ECFG为菱形;(2)首先证明四边形ECFG为正方形, 再证明△BME≌△DMC可得DM=BM, ∠DMC=∠BME, 再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;(3)分别连接GB、GC, 求证四边形CEGF是平行四边形, 再求证△ECG是等边三角形.由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB, 求证△BEG≌△DCG, 然后即可求得答案.(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形. 由AD ∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案.(3)分别连接GB.GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案.(3)分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC 及AF平分∠BAD可得∠BAE=∠AEB,求证△BEG≌△DCG,然后即可求得答案.解答:解: (1)证明: ∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC, AB∥CD,∴∠DAF=∠CEF, ∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形.(2)如图, 连接BM, MC,∵∠ABC=90°, 四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形,∴∠BDM=45°;(3)∠BDG=60°,延长AB.FG交于H, 连接HD.∵AD∥GF, AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°, AF平分∠BAD,∴∠DAF=30°, ∠ADC=120°, ∠DFA=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH, △DHF为全等的等边三角形,∴DH=DF, ∠BHD=∠GFD=60°,∵FG=CE, CE=CF, CF=BH,∴BH=GF,在△BHD与△GFD中,∵,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.点评:此题主要考查平行四边形的判定方法, 全等三角形的判定与性质, 等边三角形的判定与性质, 菱形的判定与性质等知识点, 应用时要认真领会它们之间的联系与区别, 同时要根据条件合理、灵活地选择方法.7. 在△ABC中, ∠BAC=90°, AB=AC, 若点D在线段BC上, 以AD为边长作正方形ADEF, 如图1, 易证: ∠AFC=∠ACB+∠DAC;(1)若点D在BC延长线上, 其他条件不变, 写出∠AFC.∠ACB.∠DAC的关系, 并结合图2给出证明;(2)若点D在CB延长线上, 其他条件不变, 直接写出∠AFC、∠ACB、∠DAC的关系式.考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质. 718351专题:几何综合题.分析:(1)∠AFC.∠ACB.∠DAC的关系为: ∠AFC=∠ACB﹣∠DAC, 理由为: 由四边形ADEF为正方形, 得到AD=AF, 且∠FAD为直角, 得到∠BAC=∠FAD, 等式左右两边都加上∠CAD得到∠BAD=∠CAF, 再由AB=AC, AD=AF, 利用SAS可得出三角形ABD与三角形ACF全等, 根据全等三角形的对应角相等可得出∠AFC=∠ADB, 又∠ACB为三角形ACD的外角, 利用外角的性质得到∠ACB=∠ADB+∠DAC, 变形后等量代换即可得证;(2)∠AFC、∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°, 可以根据∠DAF=∠BAC=90°, 等号两边都减去∠BAF, 可得出∠DAB=∠FAC, 再由AD=AF, AB=AC, 利用SAS证明三角形ABD与三角形AFC全等, 由全等三角形的对应角相等可得出∠AFC=∠ADB, 根据三角形ADC的内角和为180°, 等量代换可得证.(2)∠AFC、∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°,可以根据∠DAF=∠BAC=90°,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC 的内角和为180°,等量代换可得证.(2)∠AFC、∠ACB.∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°,可以根据∠DAF=∠BAC=90°,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD 与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC的内角和为180°,等量代换可得证.(2)∠AFC.∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°,可以根据∠DAF=∠BAC=90°,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD 与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC的内角和为180°,等量代换可得证.(2)∠AFC、∠ACB、∠DAC的关系式是∠AFC+∠ACB+∠DAC=180°,可以根据∠DAF=∠BAC=90°,等号两边都减去∠BAF,可得出∠DAB=∠FAC,再由AD=AF,AB=AC,利用SAS证明三角形ABD 与三角形AFC全等,由全等三角形的对应角相等可得出∠AFC=∠ADB,根据三角形ADC的内角和为180°,等量代换可得证.解答:解: (1)关系: ∠AFC=∠ACB﹣∠DAC, …(2分)证明: ∵四边形ADEF为正方形,∴AD=AF, ∠FAD=90°,∵∠BAC=90°, ∠FAD=90°,∴∠BAC+∠CAD=∠FAD+∠CAD, 即∠BAD=∠CAF, …(3分)在△ABD和△ACF中,,∴△ABD≌△ACF(SAS), …(4分)∴∠AFC=∠ADB,∵∠ACB是△ACD的一个外角,∴∠ACB=∠ADB+∠DAC, …(5分)∴∠ADB=∠ACB﹣∠DAC,∵∠ADB=∠AFC,∴∠AFC=∠ACB﹣∠DAC;…(6分)(2)∠AFC.∠ACB.∠DAC满足的关系式为: ∠AFC+∠DAC+∠ACB=180°, …(8分)证明: ∵四边形ADEF为正方形,∴∠DAF=90°, AD=AF,又∠BAC=90°,∴∠DAF=∠BAC,∴∠DAF﹣∠BAF=∠BAC﹣∠BAF, 即∠DAB=∠FAC,在△ABD和△ACF中,∴△ABD≌△ACF(SAS),∴∠ADB=∠AFC,在△ADC中, ∠ADB+∠ACB+∠DAC=180°,则∠AFC+∠ACB+∠DAC=180°.则∠AFC+∠ACB+∠DAC=180°.点评:此题考查了正方形的性质, 全等三角形的判定与性质, 三角形的内角和定理, 以及三角形的外角性质, 熟练掌握判定及性质是解本题的关键.8. 已知四边形ABCD是正方形, O为正方形对角线的交点, 一动点P从B开始, 沿射线BC运动, 连接DP, 作CN⊥DP于点M, 且交直线AB于点N, 连接OP, ON. (当P在线段BC上时, 如图1: 当P在BC的延长线上时, 如图2)(1)请从图1, 图2中任选一图证明下面结论: ①BN=CP;②OP=ON, 且OP⊥ON;(2)设AB=4, BP=x, 试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.考点:正方形的性质;分段函数;三角形的面积;全等三角形的判定与性质. 718351专题:代数几何综合题.分析:(1)根据正方形的性质得出DC=BC, ∠DCB=∠CBN=90°, 求出∠CPD=∠DCN=∠CNB, 证△DCP ≌△CBN, 求出CP=BN, 证△OBN≌△OCP, 推出ON=OP, ∠BON=∠COP, 求出∠PON=∠COB即可;(2)同法可证图2时, OP=ON, OP⊥ON, 图1中, S四边形OPBN=S△OBN+S△BOP, 代入求出即可;图2中, S四边形OBNP=S△POB+S△PBN, 代入求出即可.(2)同法可证图2时,OP=ON,OP⊥ON,图1中,S四边形OPBN=S△OBN+S△BOP,代入求出即可;图2中,S四边形OBNP=S△POB+S△PBN,代入求出即可.(2)同法可证图2时,OP=ON,OP⊥ON,图1中,S四边形OPBN=S△OBN+S△BOP,代入求出即可;图2中,S四边形OBNP=S△POB+S△PBN,代入求出即可.解答:(1)证明: 如图1,∵正方形ABCD,∴OC=OB, DC=BC, ∠DCB=∠CBA=90°, ∠OCB=∠OBA=45°, ∠DOC=90°, DC∥AB,∵DP⊥CN,∴∠CMD=∠DOC=90°,∴∠BCN+∠CPD=90°, ∠PCN+∠DCN=90°,∴∠CPD=∠CNB,∵DC∥AB,∴∠DCN=∠CNB=∠CPD,∵在△DCP和△CBN中∴△DCP≌△CBN,∴CP=BN,∵在△OBN和△OCP中,∴△OBN≌△OCP,∴ON=OP, ∠BON=∠COP,∴∠BON+∠BOP=∠COP+∠BOP,即∠NOP=∠BOC=90°,∴ON⊥OP,即ON=OP, ON⊥OP.(2)解: ∵AB=4, 四边形ABCD是正方形,∴O到BC边的距离是2,图1中, S四边形OPBN=S△OBN+S△BOP,= ×(4﹣x)×2+ ×x×2,=4(0<x<4),图2中, S四边形OBNP=S△POB+S△PBN=×x×2+×(x﹣4)×x= x2﹣x(x>4),即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:.即以O、P、B、N为顶点的四边形的面积y与x的函数关系是: .即以O、P、B.N为顶点的四边形的面积y与x的函数关系是:.即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:.点评:本题考查了正方形性质, 全等三角形的性质和判定, 分段函数等知识点的应用, 解(1)小题的关键是能运用性质进行推理, 解(2)的关键是求出符合条件的所有情况, 本题具有一定的代表性, 是一道比较好的题目, 注意:证明过程类似.9. 如图, 四边形ABCD是正方形, 点E, K分别在BC, AB上, 点G在BA的延长线上, 且CE=BK=AG. (1)求证: ①DE=DG;②DE⊥DG(2)尺规作图: 以线段DE, DG为边作出正方形DEFG(要求: 只保留作图痕迹, 不写作法和证明);(3)连接(2)中的KF, 猜想并写出四边形CEFK是怎样的特殊四边形, 并证明你的猜想:(4)当时, 请直接写出的值.考点:正方形的性质;全等三角形的判定与性质;平行四边形的判定;作图—复杂作图. 718351分析:(1)由已知证明DE、DG所在的三角形全等, 再通过等量代换证明DE⊥DG;(2)根据正方形的性质分别以点G、E为圆心以DG为半径画弧交点F, 得到正方形DEFG;(3)由已知首先证四边形CKGD是平行四边形, 然后证明四边形CEFK为平行四边形;(4)由已知表示出的值.(4)由已知表示出的值.解答:(1)证明: ∵四边形ABCD是正方形,∴DC=DA, ∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△DAG,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°∴DE⊥DG.(2)解: 如图.(3)解: 四边形CEFK为平行四边形.证明: 设CK、DE相交于M点∵四边形ABCD和四边形DEFG都是正方形,∴AB∥CD, AB=CD, EF=DG, EF∥DG,∵BK=AG,∴KG=AB=CD,∴四边形CKGD是平行四边形,∴CK=DG=EF, CK∥DG,∴∠KME=∠GDE=∠DEF=90°,∴∠KME+∠DEF=180°,∴CK∥EF,∴四边形CEFK为平行四边形.(4)解: ∵,∴设CE=x, CB=nx,∴CD=nx,∴DE2=CE2+CD2=n2x2+x2=(n2+1)x2,点评:此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图, 解题的关键是先由正方形的性质通过证三角形全等得出结论, 此题较复杂.10. 如图, 点P是正方形ABCD对角线AC上一动点, 点E在射线BC上, 且PB=PE, 连接PD, O为AC中点. (1)如图1, 当点P在线段AO上时, 试猜想PE与PD的数量关系和位置关系, 不用说明理由;(2)如图2, 当点P在线段OC上时, (1)中的猜想还成立吗?请说明理由;(3)如图3, 当点P在AC的延长线上时, 请你在图3中画出相应的图形(尺规作图, 保留作图痕迹, 不写作法), 并判断(1)中的猜想是否成立?若成立, 请直接写出结论;若不成立, 请说明理由.考点:正方形的性质;全等三角形的判定与性质;等腰三角形的性质. 718351分析:(1)根据点P在线段AO上时, 利用三角形的全等判定可以得出PE⊥PD, PE=PD;(2)利用三角形全等得出, BP=PD, 由PB=PE, 得出PE=PD, 要证PE⊥PD;从三方面分析, 当点E在线段BC上(E与B、C不重合)时, 当点E与点C重合时, 点P恰好在AC中点处, 当点E在BC的延长线上时, 分别分析即可得出;(3)利用PE=PB得出P点在BE的垂直平分线上, 利用垂直平分线的性质只要以P为圆心, PB为半径画弧即可得出E点位置, 利用(2)中证明思路即可得出答案.(3)利用PE=PB得出P点在BE的垂直平分线上,利用垂直平分线的性质只要以P为圆心,PB为半径画弧即可得出E点位置,利用(2)中证明思路即可得出答案.(3)利用PE=PB得出P点在BE的垂直平分线上,利用垂直平分线的性质只要以P为圆心,PB为半径画弧即可得出E点位置,利用(2)中证明思路即可得出答案.解答:解: (1)当点P在线段AO上时,在△ABP和△ADP中,∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,过点P做PM⊥CD, 于点M, 作PN⊥BC, 于点N,∵PB=PE, PN⊥BE,∴DM=NE,在Rt△PNE与Rt△PMD中,∵PD=PE, NE=DM,∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EPN,∵∠MPN=90°,∴∠DPE=90°,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD, PE⊥PD;(2)∵四边形ABCD是正方形, AC为对角线,∴BA=DA, ∠BAP=∠DAP=45°,∵PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD.(i)当点E与点C重合时, 点P恰好在AC中点处, 此时, PE⊥PD.(ii)当点E在BC的延长线上时, 如图.∵△ADP≌△ABP,∴∠ABP=∠ADP,∴∠CDP=∠CBP,∵BP=PE,∴∠CBP=∠PEC,∴∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD.综合(i)(ii), PE⊥PD;(3)同理即可得出: PE⊥PD, PD=PE.点评:此题主要考查了正方形的性质以及全等三角形的判定与性质和尺规作图等知识, 此题涉及到分类讨论思想, 这是数学中常用思想同学们应有意识的应用.巩固训练:1.如图, 矩形ABCD的对角线交于点O, AE⊥BD, CF⊥BD, 垂足分别为E, F, 连接AF, CE.(1)求证: 四边形AECF是平行四边形;(2)若∠BAD的平分线与FC的延长线交于点G, 则△ACG是等腰三角形吗?并说明理由.考点:平行四边形的判定;全等三角形的判定;等腰三角形的判定;矩形的性质. 718351专题:证明题;几何综合题;探究型.分析:(1)根据矩形的性质可知: AB=CD, ∠ABE=∠CDF, ∠AEB=∠CFD=90°, 得到△ABE≌△CDF, 所以AE∥CF, AE=CF, 可证四边形AECF为平行四边形;(2)因为AE∥FG, 得到∠G=∠GAE.利用AG平分∠BAD, 得到∠BAG=∠DAG, 从而求得∠ODA=∠DAO.所以∠CAG=∠G, 可得△CAG是等腰三角形.(2)因为AE∥FG,得到∠G=∠GAE. 利用AG平分∠BAD,得到∠BAG=∠DAG,从而求得∠ODA=∠DAO. 所以∠CAG=∠G,可得△CAG是等腰三角形.(2)因为AE∥FG,得到∠G=∠GAE.利用AG平分∠BAD,得到∠BAG=∠DAG,从而求得∠ODA=∠DAO.所以∠CAG=∠G,可得△CAG是等腰三角形.解答:(1)证明: ∵矩形ABCD,∴AB∥CD, AB=CD.∴∠ABE=∠CDF, 又∠AEB=∠CFD=90°,∴AE∥CF,∴△ABE≌△CDF,∴AE=CF.∴四边形AECF为平行四边形.(2)解: △ACG是等腰三角形.理由如下: ∵AE∥FG,∴∠G=∠GAE.∵AG平分∠BAD,∴∠BAG=∠DAG.又OA= AC= BD=OD,∴∠ODA=∠DAO.∵∠BAE与∠ABE互余, ∠ADB与∠ABD互余,∴∠BAE=∠ADE.∴∠BAE=∠DAO,∴∠EAG=∠CAG, ∴∠CAG=∠G,∴△CAG是等腰三角形.∴△CAG是等腰三角形.点评:本题考查三角形全等的性质和判定方法以及等腰三角形的判定, 判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等, 先根据已知条件或求证的结论确定三角形, 然后再根据三角形全等的判定方法, 看缺什么条件, 再去证什么条件.2. 如图, 在Rt△ABC中, ∠BAC=90°, E, F分别是BC, AC的中点, 延长BA到点D, 使AD= AB. 连接DE, DF. (1)求证: AF与DE互相平分;(2)若BC=4, 求DF的长.考点:平行四边形的判定. 718351专题:计算题;证明题.分析:(1)连接EF、AE, 证四边形AEFD是平行四边形即可.(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等, 求得AE长即可.(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质: 平行四边形的对边相等,求得AE长即可.(2)注意应用直角三角形斜边上的中线等于斜边的一半和平行四边形的性质:平行四边形的对边相等,求得AE长即可.解答:(1)证明: 连接EF, AE.∵点E, F分别为BC, AC的中点,∴EF∥AB, EF= AB.又∵AD= AB,∴EF=AD.又∵EF∥AD,∴四边形AEFD是平行四边形.∴AF与DE互相平分.(2)解: 在Rt△ABC中,∵E为BC的中点, BC=4,∴AE= BC=2.又∵四边形AEFD是平行四边形,∴DF=AE=2.点评:本题考查了平行四边形的判定, 有中点时需考虑运用三角形的中位线定理或者直角三角形斜边上的中线等于斜边的一半.3. 如图, 以△ABC三边为边在BC同侧作三个等边△ABD.△BCE、△ACF.请回答下列问题:(1)求证: 四边形ADEF是平行四边形;(2)当△ABC满足什么条件时, 四边形ADEF是矩形.考点:平行四边形的判定;等边三角形的性质;矩形的判定. 718351专题:证明题;探究型.分析:1.本题可根据三角形全等证得DE=AF, AD=EF, 即可知四边形ADEF是平行四边形2、要使四边形ADEF是矩形, 必须让∠FAD=90°, 则∠BAC=360°﹣90°﹣60°﹣60°=150°2.要使四边形ADEF是矩形,必须让∠FAD=90°,则∠BAC=360°﹣90°﹣60°﹣60°=150°2、要使四边形ADEF是矩形,必须让∠FAD=90°,则∠BAC=360°﹣90°﹣60°﹣60°=150°解答:证明: (1)∵等边△ABD.△BCE、△ACF,∴DB=AB, BE=BC.又∠DBE=60°﹣∠EBA, ∠ABC=60°﹣∠EBA,∴∠DBE=∠ABC. ∴△DBE≌△CBA. ∴DE=AC.又∵AC=AF, ∴AF=DE.同理可证: △ABC≌△FCE, 证得EF=AD.∴四边形ADEF是平行四边形.(2)假设四边形ABCD是矩形, ∵四边形ADEF是矩形, ∴∠DAF=90°.又∵等边△ABD.△BCE、△ACF, ∴∠DAB=∠FAC=60°.∴∠BAC=360﹣∠DAF﹣∠FAC﹣∠DAB=150°.当△ABC满足∠BAC=150°时, 四边形ADEF是矩形.当△ABC满足∠BAC=150°时,四边形ADEF是矩形.当△ABC满足∠BAC=150°时,四边形ADEF是矩形.点评:此题主要考查了等边三角形的性质和平行四边形的判定.4. 已知: 如图, 矩形ABCD中, AB=2, AD=3, E、F分别是AB.CD的中点.(1)在边AD上取一点M, 使点A关于BM的对称点C恰好落在EF上. 设BM与EF相交于点N, 求证: 四边形ANGM是菱形;(2)设P是AD上一点, ∠PFB=3∠FBC, 求线段AP的长.考点:菱形的判定;矩形的性质. 718351专题:计算题;证明题.分析:(1)设AG交MN于O, 由题意易得AO=GO, AG⊥MN, 要证四边形ANGM是菱形, 还需证明OM=ON, 又可证明AD∥EF∥BC. ∴MO: ON=AO: OG=1: 1, ∴MO=NO;(2)连接AF, 由题意可证得∠PFA=∠FBC=∠PAF, ∴PA=PF, ∴PA= , 求得PA= .(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA= ,求得PA= .(2)连接AF,由题意可证得∠PFA=∠FBC=∠PAF,∴PA=PF,∴PA=,求得PA=.解答:(1)证明: 设AG交MN于O, 则∵A.G关于BM对称,∴AO=GO, AG⊥MN.∵E、F分别是矩形ABCD中AB.CD的中点,∴AE=BE, AE∥DF且AE=DF, AD∥EF∥BC.∴MO: ON=AO: OG=1: 1.∴MO=NO.∴AG与MN互相平分且互相垂直.∴四边形ANGM是菱形.(2)解: 连接AF,∵AD∥EF∥BC,∴∠PAF=∠AFE, ∠EFB=∠FBC.又∵EF⊥AB, AE=BE,∴AF=BF,∴∠AFE=∠EFB.∴∠PAF=∠AFE=∠EFB=∠FBC.∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC. ∴∠PFA=∠FBC=∠PAF.∴PA=PF.∴在Rt△PFD中, 根据勾股定理得: PA=PF= ,解得:PA= .。

初中数学平行四边形练习题及答案

初中数学平行四边形练习题及答案

练习1一、选择题(3′×10=30′)1.下列性质中,平行四边形具有而非平行四边形不具有的是().A.内角和为360° B.外角和为360° C.不确定性 D.对角相等2.ABCD中,∠A=55°,则∠B、∠C的度数分别是().A.135°,55° B.55°,135° C.125°,55° D.55°,125°3.下列正确结论的个数是().①平行四边形内角和为360°;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A.1 B.2 C.3 D.44.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm5.在ABCD中,AB+BC=11cm,∠B=30°,S ABCD=15cm2,则AB与BC的值可能是().A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm6.在下列定理中,没有逆定理的是().A.有斜边和一直角边对应相等的两个直角三角形全等;B.直角三角形两个锐角互余;C.全等三角形对应角相等;D.角平分线上的点到这个角两边的距离相等.7.下列说法中正确的是().A.每个命题都有逆命题 B.每个定理都有逆定理C.真命题的逆命题是真命题 D.假命题的逆命题是假命题8.一个三角形三个内角之比为1:2:1,其相对应三边之比为().A.1:2:1 B.1:1 C.1:4:1 D.12:1:29.一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个.A.2 B.3 C.4 D.510.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=•14,•AC=19,则MN的长为().A.2 B.2.5 C.3 D.3.5二、填空题(3′×10=30′)11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,•周长都是18cm,则这条对角线长是_________cm.13.在ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,•若ABCD•的周长为38cm,△ABD的周长比ABCD的周长少10cm,则ABCD的一组邻边长分别为______.14.在ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则ABCD 的各内角度数分别为_________.15.平行四边形两邻边的长分别为20cm ,16cm ,两条长边的距离是8cm ,•则两条短边的距离是_____cm . 16.如果一个命题的题设和结论分别是另一个命题的______和_______,•那么这两个命题是互为逆命题.17.命题“两直线平行,同旁内角互补”的逆命题是_________.18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________. 20.△ABC 的两边分别为5,12,另一边c 为奇数,且a+b+•c•是3•的倍数,•则c•应为________,此三角形为________三角形.三、解答题(6′×10=60′)21.如右图所示,在ABCD 中,BF ⊥AD 于F ,BE ⊥CD 于E ,若∠A=60°,AF=3cm ,CE=2cm ,求ABCD 的周长.22.如图所示,在ABCD 中,E 、F 是对角线BD 上的两点,且BE=DF.求证:(1)AE=CF ;(2)AE ∥CF .23.如图所示,ABCD 的周长是103+62,AB 的长是53,DE ⊥AB 于E ,DF ⊥CB 交CB•的延长线于点F ,DE 的长是3,求(1)∠C 的大小;(2)DF 的长.FCDAEB24.如图所示,ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、•∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:•推理过程中要用到“平行四边形”和“角平分线”这两个条件).25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).求证:∠C=90°.26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S△ABE=60,•求∠C的度数.27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,•求三条中位线的长.28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,•CD•⊥MN 于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,•使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?30.如图所示,E 是ABCD 的边AB 延长线上一点,DE 交BC 于F ,求证:S △ABF =S △EFC .答案:一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C二、11.3cm 4cm 12.8 13.9cm 和10cm 14.50°,130°,50°,130° • • 15.10 16.结论 题设 17.同旁内角互补,两直线平行 18.519.13 直角 三、21.ABCD 的周长为20cm 22.略23.(1)∠C=45° (2)24.略 25.•略 26.∠C=90° 27.三条中位线的长为:12cm ;20cm ;24cm 28.提示:连结BD ,取BD•的中点G ,连结MG ,NG 29.(1)略 (2)结论仍成立.提示:过F 作FG ⊥MN 于G 30.略练习2一、填空题(每空2分,共28分)1.已知在ABCD 中,AB =14cm ,BC =16cm ,则此平行四边形的周长为 cm .2.要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明(只需填写一种方法)3.如图,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形. 4.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (第3题)AB CD O(2)菱形可以由两个能够完全重合的 拼合而成; (3)矩形可以由两个能够完全重合的 拼合而成.5.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm .6.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .7.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为 cm .8.根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .第10题) 9.已知平行四边形的两条对角线互相垂直且长分别为12cm 和6cm ,那么这个平行四边形 的面积为 2cm .10.如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB ⊥BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上) 二、选择题(每题3分,共24分)11. 如果一个多边形的内角和等于一个三角形的外角和,那么这个多边形是( )A 、三角形B 、四边形C 、五边形D 、六边形12.下列说法中,错误的是 ( ) A.平行四边形的对角线互相平分 B.对角线互相平分的四边形是平行四边形 C. 平行四边形的对角相等 D.对角线互相垂直的四边形是平行四边形13.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( ) A.1个 B.2个 C.3个 D.4个 14. 四边形ABCD 中,AD//BC ,那么 的值可能是( ) A 、3:5:6:4 B 、3:4:5:6 C 、4:5:6:3 D 、6:5:3:415.如图,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( )A.变大B.变小C.不变D.无法确定(第15题) (第16题) (第17题) 16.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果60=∠BAF ,则DAE ∠ 等于 ( ) A. 15 B. 30 C. 45 D. 6017.如图,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∥AB 交AC 于点E ,DF ∥AC 交AB 于点F ,A B C D EF A B C a b A B CDO l那么四边形AFDE 的周长是 ( ) A.5 B.10 C.15 D.2018.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∥CD ”,那么还不能判定四形 ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形 其中正确的说法是( )A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(2)(3)(4) 三、解答题(第19题8分,第20~23题每题10分,共48分)19.如图,中,DB=CD ,70=∠C ,AE ⊥BD于E .试求的度数.(第19题)20.如图中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG , 100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.(第20题)21.工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH ;(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: .AB CD EABCD FEG(图①) (图②) (图③) (图④) (第21题)22.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.请问李大伯愿望能否实现?若能,请画出你的设计;若不能,请说明理由.(第22题)答案1.60.2.平行四边形;有一组邻边相等.3.8. 提示:它们是.,,,,,,,ACD BCD ABC ABD AOD COD BOC AOB ∆∆∆∆∆∆∆∆4.(1)等腰直角三角形; (2)等腰三角形; (3)直角三角形. 7.3. 8.4. 提示:如图所示,将“十”字标志的某些边进行平移后可得到一个边长为1m 的正方 形,所以它的周长为4m .8题) 9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半. 10. (1)(2)(4). 提示:四边形ABCD 是菱形. 11.B. 12.D. 13.C. 14.C.15.C. 提示:因为ABC ∆的底边BC 的长不变,BC 边上的高等于直线b a ,之间的距离也不变,所以ABC ∆的面积不变.16.A. 提示:由于()BAF DAE FAE DAE FAE ∠-=∠=∠∠∠ 9021,所以通过折叠后得到的是由 . 17.B. 提示:先说明DF=BF,DE=CE,所以四边形AFDE 的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18.C.19.因为BD=CD ,所以,C DBC ∠=∠又因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以,DBC D ∠=∠因为 20709090,,=-=∠-=∠∆⊥D DAE AED BD AE 中所以在直角.20.(1)因为四边形ABCD 是平行四边形,所以AB=DC ,又AF=CG ,所以AB -AF=DC -CG,即GD=BF,又 DG ∥BF,所以四边形DFBG 是平行四边形,所以DF=BG ;(2)因为四边形DFBG 是平行四边形,所以DF ∥GB,所以AFD GBF ∠=∠,同理可得D GEG BF ∠=∠,所以 100=∠=∠DGE AFD . 21.(1)平行四边,两组对边分别相等的四边形是平行四边形;A BCD(2)矩,有一个是直角的平行四边形是矩形.22.如图所示,连结对角线AC 、BD,过A 、B 、C 、D 分别作BD 、AC 、BD 、AC 的平行线,且这些 平行线两两相交于E 、F 、G 、H ,四边形EFGH 即为符合条件的平行四边形.练习31、把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.2、四边形ABCD 、DEFG 都是正方形,连接AE 、CG .(1)求证:AE =CG ;(2)观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想.3、将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为A B CDE FGH DC ABGH F EEF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.挑战自我:1、 (2010年眉山市).如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( )A. 正三角形B. 正方形C. 正五边形D. 正六边形 3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( )A .9B .8C .6D .44、(2010年福建福州中考)如图4,在□ABCD 中,对角线AC 、BD 相交于点O ,若AC=14,BD=8,AB=10,则△OAB 的周长为 。

初中数学平行四边形练习题(含答案和解析)

初中数学平行四边形练习题(含答案和解析)

一般平行四边形习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.9.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C 向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。

初中数学 第十九章《四边形》单元总复习题(含答案)

初中数学 第十九章《四边形》单元总复习题(含答案)

第十九章《四边形》提要:本章重点是四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.本章难点在于四边形的概念及四边形不稳定性的理解和应用.在前面学习三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思不容易理解,所以是难点.习题一、填空题1.如图19-1,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是:.2.用黑白两种颜色的正六边形地面砖按如图19-2所示的规律,拼成若干个图形:(1)第4个图形中有白色地面砖块;(2)第n个图形中有白色地面砖块.3.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是___________________.4.在正方形ABCD所在的平面内,到正方形三边所在直线距离相等的点有__个.5.四边形ABCD为菱形,∠A=60°, 对角线BD长度为10c m,则此菱形的周长c m.6.已知正方形的一条对角线长为8c m,则其面积是__________c m2.7.平行四边形ABCD中,AB=6c m,AC+BD=14c m,则∠AOC的周长为_______.8.在平行四边形ABCD中,∠A=70°,∠D=_________, ∠B=__________.9.等腰梯形ABCD中,AD∠BC,∠A=120°,两底分别是15c m和49c m,则等腰梯形的腰长为______.10.用一块面积为450c m2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条c m.11.已知在平行四边形ABCE中,AB=14cm,BC=16cm,则此平行四边形的周长为cm. 12.要说明一个四边形是菱形,可以先说明这个四边形是形,再说明图19-2图19-1ABCDO图19-3(只需填写一种方法)13.如图19-3,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.14.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (2)菱形可以由两个能够完全重合的 拼合而成; (3)矩形可以由两个能够完全重合的 拼合而成. 15.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm . 16.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .17.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm .18.如图19-4,根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .19.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm . 20.如图19-5,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上)二、选择题21.给出五种图形:∠矩形; ∠菱形; ∠等腰三角形(腰与底边不相等); ∠等边三角形; ∠平行四边形(不含矩形、菱形).其中,能用完全重合的含有300角的两块三角板拼成的图形是( )A .∠∠B .∠∠∠C .∠∠∠∠D .∠∠∠∠∠22.如图19-6,设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( )AB C D图19-611图19-4 A BCO图19-523.四边形ABCD 中,∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,则这个四边形是( ) A .梯形 B .等腰梯形C .直角梯形D .任意四边形24.要从一张长40c m ,宽20c m 的矩形纸片中剪出长为18c m ,宽为12c m 的矩形纸片则最多能剪出( ) A .1张 B .2张 C .3张 D .4张25.如图19-7,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB =6,BC =4,则AE ︰EF ︰FB 为( )A .1︰2︰3B . 2︰1︰3C . 3︰2︰1D . 3︰1︰2 26.下列说法中错误的是( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形. 27.下列说法正确的是( )A .任何一个具有对称中心的四边形一定是正方形或矩形;B .角既是轴对称图形又是中心对称图形;C .线段、圆、矩形、菱形、正方形都是中心对称图形;D .正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条.28.点A 、B 、C 、D 在同一平面内,从∠AB //CD ;∠AB =CD ;∠BC //AD ;∠BC =AD 四个条件中任意选两个,能使四边形ABCD 是平行四边形的选法有( ) A .∠∠ B .∠∠ C . ∠∠ D . ∠∠29.已知ABCD 是平行四边形,下列结论中不一定正确的是( )A .AB =CD B .AC =BDC .当AC ∠BD 时,它是菱形 D .当∠ABC =90°时,它是矩形 30.平行四边形的两邻边分别为6和8,那么其对角线应( )A .大于2,B .小于14C .大于2且小于14D .大于2或小于1231.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( ) A .4种 B .5种 C .7种 D .8种32.下列说法中,错误的是 ( ) A .平行四边形的对角线互相平分 B .对角线互相平分的四边形是平行四边形 C .菱形的对角线互相垂直 D .对角线互相垂直的四边形是菱形33.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( )A .1个B .2个C .3个D .4个34.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )A D CB F E 图19-7 ·A .矩形B .菱形C .正方形D .菱形、矩形或正方形 35.如图19-8,直线a ∠b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( ) A .变大 B .变小 C .不变 D .无法确定36.如图19-10,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )A . 15B . 30C . 45D . 6037.如图19-11,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∠AB 交AC 于点E ,DF ∠AC 交AB于点F ,那么四边形AFDE 的周长是 ( ) A .5 B .10 C .15 D .2038.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∠CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是 ( ) A .(1)(2) B .(1)(3)(4) C .(2)(3) D .(2)(3)(4) 三、解答题39.如图19-12,已知四边形ABCD 是等腰梯形, CD //BA ,四边形AEBC 是平行四边形.请说明:∠ABD =∠ABE .40.如图19-13,在∠ABC 中,点O 是AC 边上的一动点, 过点O 作直线MN //BC , 设MNA BC D EF图19-9 图19-10 图19-11 D A EBC图19-12交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)说明EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?说明你的结论.41.如图19-14,AD 是∠ABC 的角平分线,DE ∠AC 交AB 于点E ,DF ∠AB 交AC 于F . 试确定AD 与EF 的位置关系,并说明理由.42.如图19-15,在正方形ABCD 的边BC 上任取一点M ,过点C 作CN ∠DM 交AB 于N ,设正方形对角线交点为O ,试确定OM 与ON 之间的关系,并说明理由.43.如图19-16,等腰梯形ABCD 中,E 为CD 的中点,EF ∠AB 于F ,如果AB =6,EF =5,AE B CF O N M D图19-13 A EB DC F1图19-142O图19-15 A BN M C D O AD求梯形ABCD 的面积.44.如图19-17,有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分可看成半径为1.5米的圆形(如左下图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套或四套的两种方案中选取一种,在右下方 14×20方格纸内画出设计示意图.(提示:∠画出的圆应符合比例要求; ∠为了保证示意图的清晰,请你在有把握后才将设计方案正式画在方格纸上.说明:正确地画出了符合要求的三个圆得5分,正确地画出了符合要求的四个圆得8分.)45.如图19-18, 在正方形ABCD 中, M 为AB 的中点,MN ∠MD ,BN 平分∠CBE 并交MN 于N .试说明:MD =MN .46.如图19-19, 中,DB=CD , 70=∠C ,AE ∠BD 于E .试求DAE ∠的度数.D A B C ME N图19-18图19-17ABCD47.如图19-20, 中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG ,100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.48..工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图19-21∠),使AB=CD,EF=GH ;(2)摆放成如图∠的四边形,则这时窗框的形状是 形,根据的数学道理是: ;(3)将直角尺靠紧窗框的一个角(如图∠),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图∠),说明窗框合格,这时窗框是 形,根据的数学道理是: .(图∠) (图∠) (图∠) (图∠)49.如图19-22,已知平行四边形ABCD ,AE 平分∠DAB 交DC 于E ,BF 平分∠ABC 交DC于F ,DC =6c m ,AD =2c m ,求DE 、EF 、FC 的长.图19-19图19-20图19-21ABCD图19-2250.如图19-23,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE =15°,试求∠COE的度数。

初中数学四边形专题训练50题含答案

初中数学四边形专题训练50题含答案

中考数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.平行四边形不一定具有的性质是( )A .对角线互相垂直B .对边平行且相等C .对角线互相平分D .对角相等 2.如图,在MON ∠的两边.上分别截取,OA OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接,,,AC BC AB OC .若2AB =,四边形OACB 的面积为4.则OC 的长为( )A .2B .3C .4D .5 3.在ABCD 中,下列结论错误的是( )A .//AB CD B .B D ∠=∠C .AC BD =D .180C D ∠+∠=︒ 4.如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,若∠A=60°,则∠1的度数为( )A .120°B .60°C .45°D .30° 5.若平行四边形中两个内角的度数比为1∠2,则其中较大的内角是( ) A .100° B .60° C .120° D .90° 6.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,位似比为2:3,点B 、E 在第一象限.若点A 的坐标为()1,0,则点E 的坐标是( )A .0)B .33,22⎛⎫ ⎪⎝⎭C .D .(2,2) 7.四边形ABCD 中,对角线AC ,BD 交于点O ,AD//BC ,为了判定四边形是平行四边形,还需一个条件,其中错误..的是( ) A .AB//CD B .∠A=∠C C .AB=CD D .AO=CO 8.一个多边形的内角和等于外角和,则这个多边形的边数为( )A .10B .8C .6D .49.顺次连接等腰梯形各边中点所围成的四边形是( )A .平行四边形B .矩形C .菱形D .正方形 10.已知平行四边形ABCD 的周长为32,AB =4,则BC 的长为( )A .4B .12C .24D .48 11.如图,四边形ABCD 是矩形,,把矩形沿直线AC 折叠,点B 落在点E处,连结DE,则的值是( )A .B .C .8D .7:25 12.如图,在平行四边形ABCD 中,AB=4,CE 平分∠BCD 交AD 边于点E ,且AE=3,则BC 的长为( )A .4B .6C .7D .813.如图,在矩形ABCD ,对角线AC 与BD 相交于点O ,EO AC ⊥于点O ,交BC 于点E ,若ABE ∆的周长为8,3AB =,则AD 的长为 ( )A .2B .5.5C .5D .414.如图,矩形ABCD 中,4AB =,2BC =.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则BE 的长是( )A .B C .2.5 D .1.5 15.如图,在平行四边形ABCD 中,过点P 作直线EF 、GH 分别平行于AB 、BC ,那么图中共有( )平行四边形.A .4个B .5个C .8个D .9个 16.如图,已知直线PQ CD ⊥于点P ,B 是CPQ ∠内部一点,过点B 作BA PQ ⊥于点A ,BC CD ⊥于点C ,四边形PABC 是边长为8cm 的正方形,N 是AB 的中点,动点M 从点P 出发,以2cm/s 的速度,沿P A B C →→→方向运动,到达点C 停止运动,设运动时间为()s t ,当CM PN =时,t 等于( )A .2B .4C .2或4D .2或617.如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为A .B .C .D . 18.如图,点EF 、分别是菱形ABCD 的边AD 、DC 的中点,如果阴影部分的面积和是10,则菱形对角线AC 与BD 的乘积AC BD ⋅等于( )A .10B .32C .20D .1619.如图,在正方形1ABCB 中,AB =AB 与直线l 所夹锐角为60,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ⋯,依次规律,则线段20212022A A =( )A .20192⨯⎝⎭B .20202⨯⎝⎭C .20212⨯⎝⎭D .20222⨯⎝⎭20.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,添加一个条件使平行四边形ABCD 为矩形的是( )A .AD AB = B .AB AD ⊥C .AB AC =D .CA BD ⊥二、填空题21.如图,这个图案是用形状、大小完全相同的等腰梯形密铺而成的,则这个图案中的等腰梯形的底角(指锐角)是_________度.22.如图,点E 在矩形ABCD 的对角线BD 上,EF BC ⊥于点F ,连接AF ,若5BC =,2EF =,则ABF △的面积为_________.23.已知菱形的两条对角线长分别为3和4,则菱形的面积为______.24.有一个边长为50cm 的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为_____.25.如图,Rt ABC 中,90C BC AC ∠=︒>,,以AB BC AC ,,三边为边长的三个正方形面积分别为1S ,2S ,3S .若ABC 的面积为7,140S =,则32S S -的值等于______.26.如图,将长方形ABCD沿AE折叠,已知50∠=︒,则BADCED'∠'的大小是_____27.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为CC',则图中阴影部分的面积为__.28.用直角边分别为3和4的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是______.29.如图,菱形ABCD中,点O为对角线AC的三等分点且AO=2OC,连接OB,OD,OB=OC=OD,已知AC=3,那么菱形的边长为_____.30.如图,将四边形ABCD沿BD、AC剪开,得到四个全等的直角三角形,已知,OA =4,OB=3,AB=5将这四个直角三角形拼为一个没有重叠和缝隙的四边形,则重新拼成的四边形的周长为_____.31.在长方形ABCD中,10AB=,将长方形ABCD折叠,折痕为EF.AD=,8(1)如图1,当A'与B重合时,EF=_______;(2)如图1,当直线EF过点D时,点A的对应点A'落在线段BC上,则线段EF的长为______.32.如图,P 是▱ABCD 内的任意一点,连接P A 、PB 、PC 、PD ,得到△P AB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论:∠S 1+S 3=S 2+S 4,∠若S 3=2S 1,则S 2=2S 4,∠若S 1+S 3=5,则ABCD 的面积为10;∠S 1+S 2=S 3+S 4.其中正确的结论的序号是____________(把所有正确结论的序号都填在横线上).33.如图, 直线l 是四边形ABCD 的对称轴,若AB CD =,有下面的结论:∠AB BC ⊥;∠AC BD ⊥;∠//AB CD ;∠AO OC =.其中正确的结论有__.34.如图1是三国时期的数学家赵爽创制的一幅“勾股圆方图”.将图2的矩形分割成四个全等三角形和一个正方形,恰好能拼成这样一个“勾股圆方图”,则该矩形与拼成的正方形的周长之比为________.35.如图,平行四边形ABCD 中,45B ∠=︒,7BC =,CD =E ,F 分别是边AB ,BC 的中点,连接CE ,DF ,取CE ,DF 的中点G ,H ,连接GH ,则GH 的长度为__________.36.如图,正方形ABCD的边长为1,AC,BD是对角线,将∠DCB绕着点D顺时针旋转45°得到∠DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:∠DE平分∠ADB;∠BE∠四边形AEGF是菱形;∠BC+FG=1.5.其中结论正确的序号是_______.37.如图,点E、F是平行四边形ABCD的边AB、DC上的点,F与DE相交于点P,BF与CE相交于点Q若S△APD=14cm2,S△BCQ=16cm2,四边形PEQF的面积为______.38.如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为_____.39.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.三、解答题40.□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F ,四边形AFCE 是否是菱形?为什么?41.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,延长CD 到E ,使DE CD =,连接AE .(1)求证:四边形ABDE 是平行四边形;(2)连接OE ,若60ABC ∠=︒,且8AD DE ==,求OE 的长.42.如图,点E 、F 分别在ABCD 的边AB 、CD 的延长线上,且BE =DF ,连接AC 、EF 、AF 、CE ,AC 与EF 交于点O .(1)求证:AC 、EF 互相平分;(2)若EF 平分∠AEC ,判断四边形AECF 的形状并证明.43.正方形ABCD 的对角线交点为O ,连AE 交BC 于E ,交OB 于F ,2EC FO =,求证:AE 平分BAC ∠.44.如图,在三角形ABC 中,90C ∠=︒,四边形DEFC 是边长为4的正方形,且D 、E 、F 分别在边AC AB BC 、、上.把三角形ADE 绕点E 逆时针旋转一定的角度.(1)当点D 与点F 重合时,点A 的对应点G 落在边BC 上,此时四边形ACGE 的面积为___________;(2)当点D 的对应点1D 落在线段BE 上时,点A 的对应点为点1A ,在旋转过程中点A 经过的路程为1l ,点D 经过的路程为2l ,且12:3:2l l =,求线段1AD 的长. 45.如图所示,已知四边形ABCD 是平行四边形,在AB 的延长线上截取BE=AB ,BF=BD ,连接CE ,DF ,相交于点M .求证:CD=CM .46.如图,在直角梯形ABCD 中,AD ∠BC ,AD ∠CD ,M 为腰AB 上一动点,联结MC 、MD ,AD =10,BC =15,cot B 512=.(1)求线段CD 的长.(2)设线段BM 的长为x ,∠CDM 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域.47.在Rt ABC 与Rt BDE 中,90ABC DBE ∠=∠=︒,AB BC =,BD BE =.(1)如图1,若点D ,B ,C 在同一直线上,连接AD ,CE ,则AD 与CE 的关系为_________;(2)如果将图1中的BDE △绕点B 在平面内顺时针旋转到如图2的位置,那么请你判断AD 与CE 的关系,并说明理由;(3)如图3,若6AB =,2BD =,连接AE ,分别取DE ,AE ,AC 的中点M ,P ,N ,连接MP ,NP ,MN ,将BDE △绕点B 在平面内顺时针旋转一周,请直接写出旋转过程中MPN△面积的最小值和最大值.48.如图,在矩形ABCD中,AD=4,CD=3,点E为AD的中点.连接CE,将∠CDE 沿CE折叠得∠CFE,CE交BD于点G,交BA的延长线于点M,延长CF交AB于点N.(1)求DG的长;(2)求MN的长.49.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.参考答案:1.A【分析】结合平行四边形的性质即可判定.【详解】结合平行四边形的性质可知选项B、C、D均正确,但平行四边形的对角线不垂直,则A不正确.故选A.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是正确解题的关键.2.C【分析】根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,∠OA=OB,∠OA=OB=BC=AC,∠四边形OACB是菱形,∠AB=2,四边形OACB的面积为4,∠12AB•OC=12×2×OC=4,解得OC=4.故选:C.【点睛】本题主要考查菱形的性质与判定,熟练掌握菱形的性质与判定是解题的关键.3.C【分析】根据平行四边形的性质逐项判断即可.【详解】解:A、由平行四边形行两组对边分别平行可得//AB CD,故A正确;B、由平行四边形对角相等可得B D∠=∠,故B正确;C、AC、BD为平行四边形对角线,平行四边形对角线互相平分,但不一定相等,故C错误;D、由平行四边形行两组对边分别平行可得//AD BC,两直线平行同旁内角互补,可得180C D∠+∠=︒,故D正确.故选:C.【点睛】本题主要考查平行四边形的性质及其推论,熟练掌握平行四边形的性质是解题关键.4.B【详解】解:∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠1=∠A=60°.故选B .5.C【分析】据平行四边形的性质得出AB //CD ,推出∠B +∠C =180°,根据∠B :∠C =1:2,求出∠C 即可.【详解】解:∠四边形ABCD 是平行四边形∠AB //CD ,∠∠B +∠C =180°,∠∠B :∠C =1:2,∠∠C =23×180°=120°,故选:C .【点睛】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.B【分析】由题意可得:2:3OA OD =,又由点A 的坐标为()1,0,即可求得OD 的长,又由正方形的性质,即可求得E 点的坐标.【详解】解:∠正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为2:3, ∠:2:3OA OD =,∠点A 的坐标为()1,0,即1OA =, ∠32OD =, ∠四边形ODEF 是正方形,∠32 DE OD==.∠E点的坐标为:33,22⎛⎫ ⎪⎝⎭.故选:B.【点睛】此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.7.C【分析】根据平行四边形的判定定理逐项判断即可.【详解】解:A.根据两组对边分别平行可判定是平行四边形,不符合题意;B.根据平行线性质可得另一对内角相等,根据两组对角分别相等可判定是平行四边形,不符合题意;C.不能判定是平行四边形,可能是等腰梯形,符合题意;D.可通过全等证对角线互相平分,能判定是平行四边形,不符合题意;故选:C.【点睛】本题考查了平行四边形的判定,解题关键是熟知平行四边形的判定定理,准确进行判断.8.D【分析】设这个多边形的边数为n,根据内角和等于外角和列方程解答即可.【详解】解:设这个多边形的边数为n,则()2180360n-⨯︒=︒,解得4n=,故选:D.【点睛】此题考查了多边形内角和与外角和的计算,熟练掌握多边形内角和公式及外角和是解题的关键.9.C【分析】由E、F、G、H分别为AB、BC、CD、DA的中点,得出EF,HG,FG,EH是中位线,再得出四条边相等,根据“四条边都相等的四边形是菱形”进行证明.【详解】解:如图所示,因为E、F、G、H分别为AB、BC、CD、DA的中点,连接AC、BD,因为E、F分别是AB、BC的中点,所以EF=12AC ,且EF∠AC同理可得HG=12AC ,且HG∠AC , FG=12BD ,且FG∠BD , EH=12BD ,且EH∠BD , ∠EF∠HG ,HE ∠FG ,∠四边形EFGH 是平行四边形,又因为等腰梯形的对角线相等,即AC=BD ,因此有EF=FG=GH=HE ,所以连接等腰梯形各中点所得四边形为菱形.故选:C【点睛】此题考查三角形中位线的性质,解题的关键是掌握三角形的中位线定理及菱形的判定.10.B【详解】由题意得:2()32,4,12AB BC AB BC +===得: .故选B.11.D【详解】试题分析:从D,E 处向AC 作高DF,EH .设AB=4k,AD=3k,则AC=5k .由∠AEC的面积=4k×3k=5k×EH,得EH=95k k;根据勾股定理得CH=,∠四边形ACED是等腰梯形,∠CH=AF=95 k,所以DE=5k﹣95k×2=75k.所以DE:AC=75k:5k=7:25.故选D.考点:翻折变换.12.C【分析】由平行四边形的性质可得AD∠BC,且AD=BC,结合角平分线的性质可求得DE=DC=AB=4,则可求得AD的长,可求得答案.【详解】解:∠四边形ABCD为平行四边形,∠AB=CD=4,AD∠BC,AD=BC,∠∠DEC=∠BCE.∠CE平分∠BCD,∠∠DCE=∠BCE,∠∠DEC=∠DCE,∠DE=DC=4.∠AE=3,∠AD=BC=3+4=7.故选C.【点睛】本题主要考查平行四边形的性质,利用平行线的性质及角平分线的性质求得DE=DC是解题的关键.13.C【分析】由矩形的性质可得AO=CO,由线段垂直平分线的性质可得AE=EC,即可求解.【详解】解:∵四边形ABCD是矩形,∴AO=CO,BC=AD,∵EO⊥AC,∴AE=EC,∵△ABE的周长为8,∴AB+AE+BE=8,∴3+BC=8,∴AD =BC =5,故选:C .【点睛】本题考查了矩形的性质,线段垂直平分线的性质,掌握矩形的性质是本题的关键.14.D【分析】由矩形ABCD 中,四边形EGFH 是菱形,易证得()COF AOE AAS ≌,即可得OA OC =,然后由勾股定理求得AC 的长,继而求得OA 的长,又由AOE ABC ∽△△,利用相似三角形的对应边成比例,即可求得答案.【详解】解:如图,连接EF ,交AC 于O ,∠四边形EHFG 是菱形,EF AC OE OF ∴⊥=,,∠四边形ABCD 是矩形,90B D ∴∠=∠=︒,AB CD ∥,ACD CAB ∴∠=∠,在COF 与AOE △中,FCO OAE FOC AOE OF OE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()COF AOE AAS ∴≌,AO CO ∴=,AC AB ==12AO AC ∴==, 90CAB CAB AOE B ∠=∠∠=∠=︒,,AOE ABC ∴∽,∠AO AE AB AC=,=, 2.5AE ∴=,1.5BE ∴=,故选:D .【点睛】本题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质,准确作出辅助线是解此题的关键.15.D【详解】∠AD∠BC 、AB∠CD ,EF∠AB ,GH∠BC ,∠AB∠EF∠DC ,AD∠GH∠BC ,∠共有9个平行四边形,如平行四边形AGPE ,平行四边形BGPF ,平行四边形PEDH ,平行四边形PFCH ,平行四边形ABFE ,平行四边形EFCD ,平行四边形AGHD ,平行四边形BGHC ,平行四边形ABCD ,故选D.16.D【分析】分点M 是AP 的中点和点M 与点N 重合两种情况讨论,由全等三角形的性质和正方形的性质即可求解.【详解】解:当点M 是AP 的中点时,∵四边形P ABC 是正方形,∴PC =P A =AB ,∠CP A =∠P AN =90°,∵N 是AB 的中点,点M 是AP 的中点,∴PM =AN =4,在△CPM 和△P AN 中,PA CP CPA PAN PM AN =⎧⎪∠=∠⎨⎪=⎩∴△CPM ≌△P AN (SAS ),∴PN =CM ,∴t 42==2, 当点M 与点N 重合时,由正方形的对称性可得PN =CM ,∴t842+==6,故选:D【点睛】本题考查了正方形的性质,全等三角形的性质,利用分类讨论思想解决问题是解题的关键.17.A【详解】试题分析:作在菱形中,,,是的中点是的中点,故答案选A.考点:平行四边形的面积,三角函数.18.B【分析】设EF交BD于G,AC交BD于O,由三角形中位线的性质可得EF=12AC,EF//AC,可得EG为∠AOD的中位线,可得DG=12OD,根据菱形的性质可得BG=34BD,根据菱形的面积公式列方程即可得答案.【详解】设EF交BD于G,AC交BD于O,∠点E F 、分别是菱形ABCD 的边AD 、DC 的中点, ∠EF=12AC ,EF//AC ,∠EG 为∠AOD 的中位线, ∠OG=12OD ,∠四边形ABCD 是菱形, ∠OD=OB=12BD ,BD∠AC , ∠BG=34BD ,BG∠EF , ∠S 菱形ABCD =S 阴影+S △BEF ,阴影部分的面积和是10, ∠12AC·BD=10+12EF·BG=10+12·12AC·34BD , 解得:AC·BD=32.故选:B【点睛】本题考查菱形的性质、三角形中位线的性质及菱形的面积公式,菱形的对角线互相垂直且平分;菱形的面积等于两条对角线乘积的一半;三角形的中位线平行于第三边且等于第三边的一半;熟练掌握相关性质及公式是解题关键.19.C【分析】利用特殊角的三角函数值分别求出11A B 、22A B 、33A B ,以此类推找到规律求出20222022A B ,最后根据202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,即可求解.【详解】解:∠AB 与直线l 所夹锐角为60︒,且1BAB ∠是正方形1ABCB 的一个顶角, ∠11180609030B AA ∠=︒-︒-︒=︒,又∠1190AB A ∠=︒,∠在11Rt AB A △中,11111tan A B AB A AB =⨯∠,∠正方形1ABCB 的边长AB∠11111tan A B AB A AB =⨯∠同理可求得: 222A B =⎝⎭,333A B =⎝⎭,以此类推可知: 20222021202120222022A B ===⎝⎭⎝⎭⎝⎭,∠202120222022Rt A A B 中20212022202290A B A ∠=︒,20222021202230A A B ∠=︒,∠2021202120222022202222A A A B ==⨯⎝⎭,故C 正确.故选:C . 【点睛】本题主要考查了正方形的性质、含特殊角的锐角三角函数等知识,含30°的直角三角形的性质.利用从特殊到一般寻找规律是解题的关键.20.B【分析】根据矩形的判定和平行四边形的性质分别对各个选项进行判断即可.【详解】解: A 、AD AB =时,平行四边形ABCD 是菱形,故选项A 不符合题意; B 、AB AD ⊥时,∠BAD =90°,则平行四边形ABCD 是矩形,故选项B 符合题意; C 、AB AC =时,平行四边形ABCD 不一定是矩形,故选项C 不符合题意;D 、CA BD ⊥时,平行四边形ABCD 是菱形,故选项D 不符合题意;故选:B .【点睛】此题考查的是平行四边形的性质、矩形的判定以及等腰三角形的判定等知识;熟练掌握矩形的判定和平行四边形的性质是解答此题的关键.21.60°【分析】根据图案的特点,可知密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,即可求出等腰梯形的较大内角的度数,进而即可得到答案.【详解】由图案可知:密铺的一个顶点处的周角,由3个完全相同的等腰梯形的较大内角组成,∠等腰梯形的较大内角为360°÷3=120°,∠等腰梯形的两底平行,∠等腰梯形的底角(指锐角)是:180°-120°=60°.故答案是:60°.【点睛】本题主要考查等腰梯形的性质以及平面镶嵌,掌握平面镶嵌的性质是解题的关键.22.5【分析】证明∠BEF∠∠BCD,由相似三角形的性质求得BF•CD,即求得BF•AB,进而由三角形的面积公式求得结果.【详解】解:∠四边形ABCD是矩形,∠AB=CD,∠ABC=∠BCD=90°,∠EF∠BC,∠EF∠CD,∠∠BEF∠∠BDC,∠BF EF BC CD=,∠BC=5,EF=2,∠BF•CD=BC•EF=5×2=10,∠BF•AB=10,∠∠ABF的面积=12BF•AB=5,故答案为:5.【点睛】本题主要考查了矩形的性质,相似三角形的判定与性质,三角形的面积计算,关键是由相似三角形求得BF•AB的值.23.6【分析】根据菱形的面积等于对角线乘积的一半列式进行计算即可得解.【详解】解:∠菱形的两条对角线长分别为3和4,∠菱形的面积为134=6 2⨯⨯故答案为:6【点睛】本题考查了菱形的性质,菱形的面积通常有两种求法,可以用底乘以高,也可以用对角线乘积的一半求解,计算时要根据具体情况灵活运用.24.【分析】根据圆与其内切正方形的关系,易得圆盖的直径至少应为正方形的对角线的长,已知正方形边长为50cm,进而由勾股定理可得答案.【详解】解:根据题意,知圆盖的直径至少应为正方形的对角线的长;再根据勾股定理,50故答案为:.【点睛】题主要考查正多边形和圆的相关知识;注意:熟记等腰直角三角形的斜边是直角边的 倍,可以给解决此题带来方便.25.【分析】结合正方形面积公式,平方差公式,勾股定理,三角形面积公式,可知()()2223S S BC AC BC AC BC AC -=-=+-,2240BC AC +=,14BC AC ⋅=,然后运用完全平方公式()2222a b a b ab ±=+±求解即可.【详解】解:根据题意,2140S AB ==,22S BC =,23S AC = ∠()()2223S S BC AC BC AC BC AC -=-=+-在Rt ABC 中,根据勾股定理,222BC AC AB +=∠2240BC AC +=∠7Rt ABC S = ∠172BC AC ⋅⋅= ∠14BC AC ⋅=∠BC AC +==BC AC -====∠()()BC AC BC AC +-==即23S S -=故答案为:【点睛】本题考查勾股定理与三角形、正方形的面积,完全平方公式与平方差公式的灵活应用,掌握并熟练应用勾股定理和各类公式是解题的关键.26.40【详解】试题分析:先根据折叠的性质求得、的度数,即可求得、的度数,再根据长方形的性质求解即可.∠50CED ∠='︒,AE 为折痕∠∠∠BAD ∠'. 考点:折叠的性质点评:折叠的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.27.342π+【分析】根据菱形的性质以及旋转角为30°,连接CD ′和BC ',可得A 、D′、C 及A 、B 、C′分别共线,求出扇形的面积,再根据AAS 证得两个小三角形全等,求得面积,最后根据扇形ACC '的面积-两个小的三角形的面积即可.【详解】解:连接CD ′和BC '∠∠DAB =60°∠30DAC CAB ∠=∠=︒∠30C AB ∠''=︒∠A 、D′、C 及A 、B 、C′分别共线∠AC =∠扇形ACC′的面积为:2303604ππ⨯=∠AC =AC ′,AD′=AB在OCD OC B ''和中CD BC ACD AC D COD C OB '='⎧⎪∠=∠''⎨⎪∠'=∠'⎩∠()OCD OC B AAS ''≌∠OB =OD′,CO =C′O又∠60,30CBC BC O ︒∠'∠=='︒∠90BOC ∠'=︒在Rt BOC '中,())22211BO BO +-=解得13,22BO C O ='=∠S △OCB=12BO C O '⨯⨯=,∠322442C B AC OC S S Sππ''=-=-=+阴影扇形 故答案为:342π+ 【点睛】本题考查了旋转的性质,菱形的性质,扇形的面积公式,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.28.18或16【分析】首先由直角边分别为3和4,求得其斜边,然后分别从以边长为3,4,5的边为对角线拼成一个平行四边形(非矩形),去分析求解即可求得答案. 【详解】解:直角边分别为3和4,∴5=,若以边长为3的边为对角线,则所得的平行四边形的周长是:2(54)18⨯+=; 若以边长为4的边为对角线,则所得的平行四边形的周长是:2(53)16⨯+=;若以边长为5的边为对角线,则所得的平行四边形的周长是:2(34)14⨯+=(此时是矩形,舍去);综上可得:所得的平行四边形的周长是:16或18.故答案为:16或18.【点睛】此题考查了平行四边形的性质以及勾股定理.注意掌握分类讨论思想的应用是解此题的关键.29【分析】如图,连接BD交AC于E,由四边形ABCD是菱形,推出AC∠BD,AE=EC,在Rt△EOD中,利用勾股定理求出DE,在Rt△ADE中利用勾股定理求出AD即可.【详解】如图,连接BD交AC于E.∠四边形ABCD是菱形,∠AC∠BD,AE=EC,∠OA=2OC,AC=3,∠CO=DO=2EO=1,AE=32,∠EO=12,DE=EB==,∠AD=【点睛】本题考查菱形的性质、勾股定理等知识,解题的关键是灵活应用勾股定理解决问题.30.20,22,26,28【分析】以直角三角形边长相等的边为公共边,拼接四边形,再计算周长;【详解】解:∠如图周长=20;∠如图周长=22;∠如图周长=26;∠如图周长=28;∠如图周长=22;∠四边形的周长为:20,22,26,28;故答案为:20,22,26,28.【点睛】本题考查了图形的拼接,四边形的周长;作出拼接图形是解题关键.31.10【分析】(1)根据题意结合图形直接写出答案即可解决问题;(2)根据勾股定理首先求出A C'的长度;再次利用勾股定理求出AE的长度,即可解决问题.【详解】解:(1)如图1,当A'与B重合时,EF=10;(2)如图2,设AE=x,则BE=8-x;∠四边形ABCD为矩形,∠BC=AD=10,DC=AB=8;∠B=∠C=90°;由题意得:=A D AD '=10;由勾股定理得:222A C A D DC 1006436''=-=-=∠A C 6BA 1064''==-=, ,在Rt∠A BE '中,由勾股定理得:222(8)4x x =-+解得:x=5,由勾股定理得:222EF =10+5=125∠EF =【点睛】该命题主要考查了翻折变换及其应用问题;能根据翻折变换的性质准确找出命题图形中隐含的等量关系是解题的关键.32.∠∠【分析】根据平行四边形的的性质可以得到AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,然后利用三角形的面积公式列式整理判断即可得到答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =CD ,AD =BC ,设点P 到AB 、BC 、CD 、DA 的距离分别为h 1、h 2、h 3、h 4,hAB 、hBC 分别为平行四边形的AB 边和BC 边的高则S 1=12AB •h 1,S 2=12BC •h 2,S 3=12CD •h 3,S 4=12AD •h 4,hAB = h 1+h 3,hBC =h 2+h 4 ∠12AB •h 1+12CD •h 3=12AB •hAB ,12BC •h 2+12AD •h 4=12BC •hBC ,又∠S 平行四边形ABCD =AB •hAB =BC •hBC ,∠S 2+S 4=S 1+S 3,故∠正确;根据S 3=2S 1只能判断h 3=2h 1,不能判断h 2=2h 4,即不能得出S 2=2S 4,故∠错误; 根据S 1+S 3=S 2+S 4,S 1+S 3=5,能得出ABCD 的面积为5×2=10,故∠正确;由题意只能得到S 2+S 4=S 1+S 3无法得到S 1+S 2=S 3+S 4,故∠错误;故答案为:∠∠.【点睛】本题主要考查了平行四边形的性质,三角形的面积,用平行四边形的面积表示出相对的两个三角形的面积是解题的关键.33.∠∠∠【分析】根据轴对称的性质得到直线l 垂直平分BD ,则根据线段垂直平分线的性质得AB AD =,CD CB =,由于AB=CD ,则AB BC CD BC ===,于是可判断四边形ABCD 为菱形,然后根据菱形的性质对4个结论进行判断.【详解】证明:∠直线l 是四边形ABCD 的对称轴,∴直线l 垂直平分BD ,AB AD ∴=,CD CB =,AB CD =,AB BC CD BC ∴===,∴四边形ABCD 为菱形,AC BD ∴⊥,//AB CD ,OA OC =,所以∠∠∠正确 .故答案为∠∠∠.【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.也考查了菱形的判定与性质.34.35)【分析】设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),由图1与图2的两个小正方形相同,得出a 与b 的关系,再求出矩形的边长和大正方形的边长,应用周长公式求得其周长,最后便可求得其比值.【详解】解:设图2的矩形分割成四个全等三角形的两直角边为a 、b (a >b ),小正方形的边长为a-b ,矩形的长为2a+a-b=3a-b ,宽为b ,∠矩形的周长为:2(3a-b+b )=6a ,由图2知,中间小正方形的边长为b ,∠a-b=b ,∠a=2b ,∠大正方形的周长为,==∠该矩形与拼成的正方形的周长之比:=故答案为:3:5).【点睛】本题主要考查了勾股定理,矩形的性质,正方形的性质,关键是根据图形求得全等直角三角形的两直角边与矩形和大正方形的边长的关系.35.134【分析】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,首先根据平行四边形的性质证明(),CGD EGM AAS ≅得出,DG GM =即可得出1,2HG FM =再利用勾股定理求出FM ,即可求得答案. 【详解】连接DG 并延长,交于AB 延长线于点M ,过点M 作MN ∠CB ,交于CB 延长线于点N ,如图,∠四边形ABCD 为平行四边形,∠CD ∠AB,AB CD ==∠CDG EMG ∠=∠又∠G 为CE 中点,∠,CG GE =在CGD △和EGM 中∠CDG EMG DGC MGE CG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩∠(),CGD EGM AAS ≅∠,DG GM = ,CD EM = ∠1,2HG FM = AB EM =, ∠,AE BM =∠点E 为AB 的中点,∠1,2AE EB AB ==∠12EB BM AB ===, 又∠45,B ∠=︒∠45,MBN ∠=︒∠,BN MN =设,BN MN x ==在Rt BMN 中,∠222,BN MN BM +=∠222x x +=, 解得,5,2x = 即5,2BN MN == ∠点F 为BC 的中点, ∠17,22BF BC == ∠75622FN BF BN =+=+=, 在Rt MNF △中,∠222,NF MN MF +=∠13,2MF = ∠113,24HG FM == 故填:134. 【点睛】本题考查平行四边形的性质,全等三角形的判定与性质,三角形中位线定理,勾股定理,解题关键是熟练掌握平行四边形的性质和三角形中位线定理.36.∠∠∠【分析】根据旋转的性质可知,∠DGH ∠∠DCB ,进而得知DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,之后可证∠ADF ∠∠GDF ,四边形AEGF 是菱形,再根据勾股定理可知AE 的长度,进而可以一一判断选出答案.【详解】解:根据旋转的性质可知,∠DGH ∠∠DCB ,∠DH =DB ,∠H =∠CBD =45°,∠DGH =∠DCB =90°,DG =DC =AD ,在Rt ∠AED 与Rt ∠GED 中,AD =DG ,ED =ED∠Rt ∠AED ∠Rt ∠GED (HL )∠∠ADE =∠GDE ,即DE 平分∠ADB ,故∠正确;在∠ADF 和∠GDF 中,AD =DG ,∠ADF =∠GDF ,DF =DF ,∠∠ADF ∠∠GDF (SAS )∠AF =GF ,∠DAF =∠DGF =45°又∠∠ABD =45°∠FG ∠AE∠∠DAC =45°,∠∠DAC =∠H ,∠AF ∠EG∠四边形AEGF 是平行四边形,又∠AF =GF∠平行四边形AEGF 是菱形,故∠正确;∠∠H =45°,∠HAE =90°∠AE =AH∠AE =AF =HD -AD =BD -AD∠正方形ABCD 的边长为1,根据勾股定理可知BD ==即HD∠AE 1∠BE =)11=2-∠正确; ∠四边形AEGF 是菱形∠FG =AE 1∠BC +FG =1∠错误;综上答案为:∠∠∠.【点睛】本题考查的是正方形的性质,菱形的判定与性质,勾股定理和直角三角形的性质,是一道综合性较强的题,能够充分调动所学知识是解题的关键.37.30cm 2。

初二数学经典四边形习题50道(附答案)

初二数学经典四边形习题50道(附答案)

初二数学经典四边形习题50道(附答案)1.在矩形ABCD中,已知AE垂直于BD于点E,且角DAE是角BAE的三倍。

求角EAC的度数。

2.在直角梯形ABCD中,BC=CD=a,且角BCD为60度。

点E和F分别为梯形的腰AB和DC的中点。

求EF的长度。

3.在等腰梯形ABCD中,AB平行于DC,AD=BC,E和F分别为AD和BC的中点。

BD平分角ABC,与EF交于点G,且EG=18,GF=10.求等腰梯形ABCD的周长。

4.在梯形ABCD中,AB平行于CD,以AD和EAC为邻边作平行四边形ACED。

DC的延长线交于BE于点F。

证明:F是BE的中点。

5.在梯形ABCD中,AB平行于CD,AC垂直于CB,AC平分角A,且角B为60度。

已知梯形的周长为20厘米。

求AB的长度。

6.从平行四边形ABCD的各顶点作对角线的垂线AE、BF、CG、DH,垂足分别是E、F、G、H。

证明:EF平行于GH。

7.在梯形ABCD中,对角线交点为E。

在平行边的一边BC的延长线上取一点F,使得三角形ABC和三角形EBF的面积相等。

证明:DF平行于AC。

8.在正方形ABCD中,直线EF平行于对角线AC,与边AB和BC相交于点E和F。

在DA的延长线上取一点G,使AG等于AD。

若EG与DF相交于点H,证明:AH等于正方形的边长。

9.以直角三角形ABC的边AB为边,在三角形ABC的外部作正方形ABDE。

AF是BC边的高,延长FA使AG等于BC。

证明:BG等于CD。

10.在正方形ABCD中,E和F分别是AB和AD延长线上的一点,且AE、AF和AC相等。

EF交BC于点G,交AC于点K,交CD于点H。

证明:EG等于GC等于CH等于HF。

11.在正方形ABCD的对角线BD上,取BE等于AB。

过点E作BD的垂线EF,与CD相交于点F。

证明:CF等于ED。

12.在平行四边形ABCD中,角A和角D的平分线相交于点XXX与DC和AB的延长线交于点G和F。

初中数学四边形专题训练50题含参考答案

初中数学四边形专题训练50题含参考答案

初中数学四边形专题训练50题含答案(单选、填空、解答题)一、单选题1.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的边数是( )A .4B .5C .6D .7 2.如图,用一根绳子检查一平行四边形书架的侧边是否和上、下底都垂直,只需要用绳子分别测量比较书架的两条对角线AC ,BD 就可以判断,其推理依据是( )A .矩形的对角线相等B .矩形的四个角是直角C .对角线相等的四边形是矩形D .对角线相等的平行四边形是矩形3.在Rt ABC 中,90,30,4,C A BC D E ∠=︒∠=︒=、分别为AC AB 、边上的中点,连接DE 到F ,使得2EF ED =,连接BF ,则BF 长为( )A .2B .C .4D .4.一个多边形的内角和是外角和的5倍,这个多边形边数为( ) A .14 B .12 C .10 D .8 5.在平面直角坐标系中,矩形ABCD 的位置如图所示,其中(1,1)B --,点A 在第二象限,//AB y 轴,3,4AB BC ==,则顶点D 的坐标为( )A.(3,2)B.(2,2)C.(3,3)D.(2,3)6.下列选项中,能判定四边形ABCD是平行四边形的是()A.AB//CD,AD=BC B.∠A=∠D,∠B=∠CC.AB//CD,∠A+∠B=180°D.∠A=∠C,∠B+∠D=180°7.下列命题正确的是()A.同一边上两个角相等的梯形是等腰梯形B.一组对边平行,一组对边相等的四边形是平行四边形C.如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形D.对角线互相垂直的四边形面积等于对角线乘积的一半8.下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能互相垂直D.平行四边形的对角线可以互相垂直9.如图,已知点D、E分别是△ABC的边AB、CB的中点,若AB=8,CE=6,AC=10,则△BDE的周长为()A.12B.15C.19D.2410.一个正多边形的每个外角都等于36°,那么它是()A.正五边形B.正六边形C.正八边形D.正十边形11.如图,将一边长AB为4的矩形纸片折叠,使点D与点B重合,折痕为EF,若EF=)A .32B .28C .30D .36 12.将如图甲所示的长方形沿着虚线剪开得到两个全等三角形,现拼成如图乙所示的图形,取BC 的中点O ,连接OA ,OD ,AD ,若22.5ACB ∠=︒,4BC =,则AOD △的周长是( )A .4B .C .4D .4+13.如图,ABD △是等边三角形,CBD △是等腰三角形,且BC DC =,点E 是边AD 上的一点,满足//CE AB ,如果8AB =,6CE =,那么BC 的长是( )A .6B .CD .14.如图,在矩形ABCD 中,3AB =,6BC =,点O 为对角线AC 和BD 的交点,延长BA 至E ,使AE AB =,以AE 为边向右侧作矩形AEFG ,点G 在AD 上,若4AG =,过点O 的一条直线平分该组合图形的面积,并分别交EF 、BC 于点P 、Q ,则2PQ 的值为( )A .39B .40C .41D .42 15.凸n 边形恰好只有三个内角是钝角,这样的多边形边数n 的最大值是( ) A .7 B .6 C .5 D .4 16.如图,点E 为菱形ABCD 边上的一个动点,并沿A →B →C →D 的路径移动,设点E 经过的路径长为x ,∠ADE 的面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )A .B .C .D .17.如图,AB CD =,AD BC =,4=AD ,6BE =,DCE △的面积为3,则四边形ABCD 的面积为( )A .10B .12C .15D .2018.如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .815 19.如图,矩形ABCD 中,2AB =,4BC =.点E ,G 分别在边BC ,AD 上,点F ,H 在对角线AC 上.若四边形EFGH 是菱形,则AG 的长是( )A .2BC .52D 20.如图,矩形ABCD 中,6,8AB BC ==.点E 、F 分别为边BC 、AD 上一点,连接EF ,将矩形ABCD 沿着EF 折叠,使得点A 落到边CD 上的点A '处,且2DA A C '=',则折痕EF 的长度为( )A .B .C D二、填空题21.▱ABCD 中,AC 、BD 交于点O ,已知6AB =,8AC =,10BD =,则DOC 的周长为______.22.如图,平行四边形OABC 的边OA 在x 轴上,顶点C 在反比例函数y =k x的图象上,BC 与y 轴相交于点D ,且D 为BC 的中点,若平行四边形OABC 的面积为6,则k =_____.23.四边形具有不稳定性.如图,矩形ABCD 按箭头方向变形成平行四边形A B C D '''',当变形后图形面积是原图形面积的一半时,则A '∠=________.24.如图,ABCD 的对角线交于点O .点M ,N ,P ,Q 分别是ABCD 四条边上不重合的点.下列条件能判定四边形MNPQ 是平行四边形的有_____(填序号). ∠,AQ CN AM CP ==;∠,MP NQ 均经过点O :∠NQ 经过点O ,AQ CN =.25.如图,DE 为ABC ∆的中位线,点F 在DE 上,且AFC ∠为直角,若6AC cm =,8BC cm =,则DF 的长为__________cm .26.在ABCD 中,3AD =,2AB =,则ABCD 的周长是______.27.如图,在▱ABCD 中,对角线 AC 、BD 相交于 O ,E 为 DC 边的中点,如果▱ABCD 的周长为 24, 且12AB BC =,则 OE 的长为_______.28.矩形纸片ABCD ,长8cm AD =,宽4cm AB =,折叠纸片,使折痕经过点B ,交AD 边于点E ,点A 落在点A '处,展平后得到折痕BE ,同时得到线段BA ',EA ',不再添加其它线段,当图中存在30角时,AE 的长为__________厘米.29.如图,将边长为4的正方形ABCD 沿着折痕EF 折叠,使点B 落在边AD 的中点G 处,则BE 的长为________.30.各角都相等的十五边形的每个内角的度数是_____度.31.如图,在Rt ABC 中,90ACB ∠=︒,以斜边AB 为边向下作正方形ADEB ,过点E 作EF BC ∥交AC 于点F ,过点C 作CG BE ∥交EF 于点G ,连接DG ,若3AF =,15DE =,则四边形CGEB 的面积为______.32.如图,矩形ABCD的两条对角线相交于点O,CD=A为圆心,AD长为半径画弧,此弧恰好经过点O,并与AB交于点E,则图中阴影部分的面积为_____.33.如图,在平行四边形ABCD中,AD=5,AB=3,BE平分∠ABC,则DE=_____.34.在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于A、B,在AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,则此正方形落在x轴正半轴的顶点坐标为_____.35.如图,在矩形ABCD中,点E在BC上,连接AE、DE,若2==,AD DE∠=︒,则CE的长为______________.BAE15AE=,四边形ABCD是平行四边形,且顶点A、B、36.如图,在半圆O中,直径10C在半圆上,点D在直径AE上,连接CE,若8AD=,则CE长为________.37.如图,正方形ABCD内接于圆O,点E为BC上一点,连接BE,若15∠=,CBE5BE =,则正方形ABCD 的边长为________,BE 的长为________.38.如图,ABCD 的顶点A 、B 的坐标分别是()1,0-、()0,2-,顶点C 、D 均在函数(0,0)k y k x x =>>的图象上,AD 交y 轴于点E ,若612ABE ABCD S S ==四边形,则k 的值为_____________.39.如图,将边长为4的正方形ABCD 纸片沿EF 折叠,点C 落在AB 边上的点G 处,点D 与点H 重合, CG 与EF 交于点P ,取GH 的中点Q ,连接PQ ,则GPQ 的周长最小值是__________.40.在ABC 中,已知45ABC ∠=,BD AC ⊥于D ,2CD =,3AD =,则BD 的长为________.三、解答题41.如图,二次函数2y x bx c =-++的图像经过()0A 1,,()03B -,两点.(1)求这个抛物线的解析式及顶点坐标;(2)在抛物线的对称轴上是否存在一点P ,使得O 、B 、C 、P 四点为顶点的四边形是平行四边形?若存在,请直接写出P 点坐标;若不存在,请说明理由.42.如图,点A 在双曲线y=(x >0)上,点B 在双曲线y=﹣(x <0)上,且AB 平行于x 轴,BC∠AO 交x 轴于点C ,交双曲线y=﹣(x <0)于点D ,连接AD . (1)设点A 的纵坐标为n ,用n 表示AB 的长为_________;(2)当OC=3时,求点D 的坐标.43.已知:如图,四边形DEBF 是平行四边形,且AE CF =.求证:四边形ABCD 是平行四边形.44.已知:点D 是ABC ∆的边BC 的中点,DE AB ⊥,DF AC ⊥,垂足分别为E 、F ,且BE CF =.(1)如图1,求证:AE AF =;(2)如图2,若90BAC ︒∠=,连接AD 交EF 于M ,连接BM 、CM ,在不添加任何辅助线的情况下,直接写出图中所有与AEF ∆面积相等的等腰三角形.45.已知:如图,已知∠O 的半径为1,菱形ABCD 的三个顶点A 、B 、D 在∠O 上,且CD 与∠O 相切.(1)求证:BC 与∠O 相切;(2)求阴影部分面积.46.在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.【动手操作】某数学小组对图1的矩形纸片ABCD 进行如下折叠操作:第一步:如图2,把矩形纸片ABCD 对折,使AD 与BC 重合,得到折痕MN ,然后把纸片展开;第二步:如图3,将图2中的矩形纸片沿过点B 的直线折叠,使得点A 落在MN 上的点A '处,折痕与AD 交于点E ,然后展开纸片,连接AA ',BA ',EA .【问题解决】(1)观察猜想:A BC '∠=______度(2)请判断图3中ABA '△的形状,并说明理由;(3)如图4,折痕BE 与MN 交于点F ,BA '的延长线交直线CD 于点P ,若1MF =,7BC =,请求出PD 的长.47.如图,在矩形ABCD 中,E 是对角线AC 上一点(不与A 、C 重合),过点E 作EF //CD ,且EF =DC ,连接DE 、BF 、CF .(1)如图1,若AE=AB,求证:四边形ABFE是菱形.DE∠AC时,求线段BF的长.(2)如图2,若AB=2,BC48.已知:ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点.(1)如图∠,求证:DF=BE;(2)如图∠,连接DE、BF,求证:四边形DEBF是平行四边形.49.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP∠AB交边CD于点P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP= 度;(2)求证:NM=NP;(3)当∠NPC为等腰三角形时,求∠B的度数.参考答案:1.B【分析】根据n 边形从一个顶点出发可引出()3n -条对角线,得出32n -=,求出n 即可.【详解】解:设这个多边形的边数是n ,由题意得32n -=,解得5n =.故选:B .【点睛】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n 边形从一个顶点出发可引出()3n -条对角线是解题的关键.2.D【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【详解】解:这种做法的依据是对角线相等的平行四边形为矩形,故选D .【点睛】本题主要考查对矩形的性质和判定的理解和掌握,能熟练地运用矩形的性质解决实际问题是解此题的关键.3.C【分析】根据直角三角形的性质求出AB ,进而求出AE 、EB ,根据三角形中位线定理得到DE ∠BC ,得到∠AED =∠AED =60°,根据等边三角形的判定定理和性质定理解答即可.【详解】解:在Rt ∠ABC 中,∠C =90°,∠A =30°,BC =4,∠AB =2BC =8,∠ABC =60°,∠E 为AB 边上的中点,∠AE =EB =4,∠D 、E 分别为A C 、AB 边上的中点,∠DE ∠BC ,∠∠AED =∠AED =60°,∠∠BEF =∠ABC =60°,在Rt ∠AED 中,∠A =30°,∠AE =2DE ,∠EF =2DE ,∠AE =EF ,∠∠BEF 为等边三角形,∠BF =BE =4,故选:C .【点睛】本题考查的是三角形中位线定理、等边三角形的判定和性质、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键. 4.B【分析】设这个多边形有n 条边,根据内角和是它的外角和的5倍,列出方程,然后解方程即可.【详解】解:设这个多边形有n 条边.由题意得:(2)1803605n -⨯︒=︒⨯,解得n =12.故这个多边形的边数是12.故选B【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握多边形的内角和公式为:2180()n -⨯︒,外角和为360°.5.A【分析】由矩形的性质可得3AB CD ==,4CB AD ==,////AD BC x 轴,////AB CD y 轴,则可求点D 坐标. 【详解】解:四边形ABCD 是矩形3AB CD ∴==,4CB AD ==,//AD BC ,//AB CD ,且//AB y 轴,////AD BC x ∴轴,////AB CD y 轴,(1,1)B --,3AB =,4BC =,∴点C 横坐标为3,点A 纵坐标为2,∴点D 坐标为(3,2),故选:A .【点睛】本题考查了矩形的性质,坐标与图形性质,熟练运用矩形的性质是本题的关键. 6.C【分析】平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形.根据平行四边形的判定定理逐个分析即可解答.【详解】解:A、AB//CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;B、∠A=∠D,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C、因为∠A+∠B=180°,所以AD//BC,又因为AB//CD,所以四边形ABCD是平行四边形,故此选项正确;D、∠A=∠C,∠B+∠D=180°不能判定四边形ABCD是平行四边形,故此选项错误;故选C.【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.7.D【详解】试题分析:A、同一底上两个角相等的梯形可能是等腰梯形也可能是直角梯形,故A选项错误;B、一组对边平行且相等的四边形不一定是平行四边形,故B选项错误;C、如果顺次连接一个四边形各边中点得到的是一个正方形,那么原四边形对角线相等且互相垂直,不是任意的四边形,故C选项错误;D、对角线互相垂直的四边形面积等于对角线乘积的一半,故D选项正确.故选D.考点:1.等腰梯形的判定;2.平行四边形的判定;3.正方形的判定.8.D【详解】试题分析:根据特殊四边形的性质逐一作出判断:A .梯形的对角线不一定相等,命题错误;B.当菱形满足一个角是直角,即为正方形时,菱形的对角线相等,命题错误;C.当矩形满足一组邻边相等,即为正方形时,矩形的对角线互相垂直,命题错误;D.当平行四边形满足一组邻边相等,即为菱形时,平行四边形的对角线可以互相垂直,命题正确.故选D.考点:特殊四边形的性质.9.B【分析】根据三角形中位线定理得到DE=12AC=5,根据中点定义可得BE=CE=6,BD=12AB=4,再根据三角形的周长公式得到BD+BE+DE,计算即可.【详解】解:∠点D、E分别是△ABC的边AB、CB的中点,∠DE=12AC=5,BE=CE=6,BD=12AB=4,∠△BDE的周长=BD+BE+DE=4+6+5=15,故选:B.【点睛】本题考查三角形中位线性质,熟练掌握三角形中位线性质是解题的关键.10.D【详解】试题分析:正多边形的边数=外角和÷每个外角的度数.考点:多边形的外角11.A【分析】连接BD交EF于O,由折叠的性质可推出BD∠EF,BO=DO,然后证明∠EDO∠∠FBO,得到OE=OF,设BC=x,利用勾股定理求BO,再根据∠BOF∠∠BCD,列出比例式求出x,即可求矩形面积.【详解】解:连接BD交EF于O,如图所示:∠折叠纸片使点D与点B重合,折痕为EF,∠BD∠EF,BO=DO,∠四边形ABCD是矩形,∠AD∠BC∠∠EDO=∠FBO在∠EDO和∠FBO中,∠∠EDO=∠FBO,DO=BO,∠EOD=∠FOB=90°∠∠EDO∠∠FBO(ASA)∠OE =OF =12EF ∠四边形ABCD 是矩形,∠AB =CD =4,∠BCD =90°,设BC =x ,BD∠BO , ∠∠BOF =∠C =90°,∠CBD =∠OBF ,∠∠BOF ∠∠BCD , ∠OB BC =OF CD,即:2x 解得:x =8,∠BC =8,∠S 矩形ABCD =AB •BC =4×8=32,故选:A .【点睛】本题考查矩形的折叠问题,熟练掌握折叠的性质,全等三角形的判定,以及相似三角形的判定与性质是解题的关键.12.D【分析】根据直角三角形斜边的中线等于斜边的一半可得AOC 和BOD 均为等腰三角形,由22.5ACB ∠=︒,可得:45AOB DOC ∠=∠=︒,证得AOD △为等腰直角三角形,根据勾股定理求得AD =【详解】解:由题意可知ABC 与DBC △全等,且都为直角三角形,∠点O 是BC 的中点, ∠122OA OD BC BO CO =====, ∠AOC 和BOD 均为等腰三角形,∠22.5ACB ∠=︒,∠22.5OAC ∠=︒,∠45AOB OAC ACB ∠=∠+∠=︒,同理可得:45DOC ∠=︒,∠18090AOD AOB COD ∠=︒-∠-∠=︒,在Rt AOD 中,AD∠AOD △的周长是224AD OA OD ++=+=+故选:D .【点睛】本题考查了矩形的性质,全等三角形的性质,直角三角形斜边的中线,勾股定理等知识,根据题意证出AOD △为等腰直角三角形是解题的关键.13.B【分析】连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,先确定AC 为对称轴,得到∠BAC =∠DAC ,∠ACB =∠ACD ,由CE∥AB ,可得∠ECA =∠BAC =∠EAC ,得等腰三角形AE =CE =6,求出AF =AE cos60°=3,EF =AE sin60°=EFGC 为矩形,求出GB = AF +FG -AB =1,在Rt △BCG 中,由勾股定理BC【详解】解:连结AC ,过E 作EF ∠AB 于F ,过C 作CG ∠AB 于G ,∠△ABC 为等边三角形,△BCD 为等腰三角形,AC 为对称轴,∠∠BAC =∠DAC ,∠ACB =∠ACD ,∠CE∥AB ,∠∠ECA =∠BAC =∠EAC ,∠AE =CE =6,∠AF =AE cos60°=61=32⨯,∠EF =AE sin60°=6 ∠CE∥AB ,EF ∠AB , CG ∠AB ,∠FE ∠EC ,CG ∠EC ,∠∠EFG =∠FEC =∠CGF =90°∠四边形EFGC 为矩形,∠EF =CG CE =FG =6,∠GB = AF +FG -AB =3+6-8=1,在Rt ∠BCG 中,由勾股定理BC =故选择:B .【点睛】本题考查等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理,掌握等边三角形性质,等腰三角形判定与性质,锐角三角函数,矩形判定与性质,勾股定理是解题关键.14.B【分析】根据题意可得PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,根据三角形中位线定理可得133,22ON BC AN ===,∠ANO =∠ABC =90°,32,2NH AM ==,∠AMH =90°,再由勾股定理可得OH 的长,再证明∠ASO ∠∠CQO ,可得SO =OQ ,即可求解.【详解】解:∠过点O 的一条直线平分该组合图形的面积,∠PQ 必过矩形EFGA 的对角线交点,连接AF ,EG 交于点H ,取AE 的中点M ,AB 的中点N ,连接HM ,ON ,过点H 作HT ∠ON 于T ,设PQ 与AD 的交点为S ,∠四边形ABCD 是矩形,∠AO =CO ,又∠点N 是AB 的中点,∠133,22ON BC AN ===,ON ∠BC , ∠∠ANO =∠ABC =90°,同理:32,2NH AM ==,∠AMH =90°,∠HT∠NO,∠四边形MHTN为矩形,∠MH=NT=2,MT=MN=3,∠TO=1,∠HO=∠AD∠BC,∠∠DAC=∠BCA,∠ASO=∠CQO,在∠ASO和∠CQO中,∠DAC ACBASO CQOAO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠ASO∠∠CQO(AAS),∠SO=OQ,同理PH=SH,∠2PQ HO==∠240PQ=.故选:B【点睛】本题考查了矩形的性质,三角形中位线定理,全等三角形的判定和性质,勾股定理,灵活运用这些性质解决问题是本题的关键.15.B【分析】由题意知在n边形的外角中恰好有3个锐角,则其余(n-3)个外角是直角或钝角,而n个外角中最多只能有4个直角或3个钝角,而4个直角已不可能,所以n-3≤3,由此即得答案.【详解】解:因为n 边形恰好只有三个内角是钝角,所以在n 边形的外角中恰好有3个锐角,所以其余(n -3)个外角是直角或钝角,又由于n 边形的外角和是360°,其n 个外角中最多只能有4个直角或3个钝角,而4个直角显然已不可能,所以n -3≤3,解得n ≤6,即n 的最大值为6.故选B.【点睛】本题考查了多边形的内角、外角的概念与外角和,从多边形的外角的角度入手分析是解题的关键.16.D【分析】分三段来考虑点E 沿A→B 运动,∠ADE 的面积逐渐变大;点E 沿B→C 移动,∠ADE 的面积不变;点E 沿C→D 的路径移动,∠ADE 的面积逐渐减小,据此选择即可.【详解】解:点E 沿A →B 运动,∠ADE 的面积逐渐变大,设菱形的边长为a ,∠A =β, ∠AE 边上的高为AB sinβ=a •sinβ,∠y =12•a •sinβ,点E 沿B →C 移动,∠ADE 的面积不变;点E 沿C →D 的路径移动,y =12(3a ﹣x )•sinβ,∠ADE 的面积逐渐减小.故选:D .【点睛】本题考查了动点问题的函数图像,分析判断几何动点问题的函数图象的题目一般有两种类型:(1)观察型(函数的图象有明显的增减性差异):根据题目描述,只需确定函数值在每段函数图象上随自变量的增减情况或变化的快慢即可得解.(2)计算型:先根据自变量的取值范围对函数进行分段,再求出每段函数的解析式,最后由每段函数的解析式确定每段函数的图象.17.B【分析】根据两组对边分别相等的四边形是平行四边形证明四边形ABCD 是平行四边形,再根据DCE △的面积为3计算出DH ,最后根据平行四边形的面积公式即可得到答案.【详解】解:过点D 作DH CE ⊥,垂足为H ,∠AB CD =,AD BC =,∠四边形ABCD 是平行四边形,∠2CE BE BC BE AD =-=-=, ∠112322DCE S CE DH DH =⨯=⨯⨯=, ∠3DH =,∠4312ABCD S BC DH =⨯=⨯=,故选:B .【点睛】本题考查平行四边形的判断,解题的关键是熟知两组对边分别相等的四边形是平行四边形.18.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∠四边形ABCD 为矩形,∠CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∠在∠AFD 和∠EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∠AFD EFB ∆∆≌(AAS ),∠AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∠315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.【分析】连接EG 交AC 于O ,根据菱形和矩形的性质证明∠CEO ∠∠AGO ,推出AO=CO ,由勾股定理求出AC 得到AO ,再证明∠AOG ∠∠ADC ,得到AG AO AC AD=,代入数值即可求出AG .【详解】解:连接EG 交AC 于O ,∠四边形EFGH 是菱形,∠EG ∠FH ,OE=OG ,∠四边形ABCD 是矩形,∠∠B =∠D =90°,AD BC ∥,∠∠ACB =∠CAD ,∠∠CEO ∠∠AGO ,∠AO=CO ,∠AC ==∠12AO AC == ∠∠AOG =∠D =90°,∠OAG =∠CAD ,∠∠AOG ∠∠ADC , ∠AG AO AC AD=,=, ∠AG =52故选:C .【点睛】此题考查了菱形的性质,矩形的性质,勾股定理,全等三角形的判定及性质,相似三角形的判定及性质,是图形类的综合题,熟练掌握各知识点是解题的关键.【分析】由2DA A C '=',6DC =,可求出DA ',A C '的长,再根据折叠和勾股定理可求出DF 和FA ',依据三角形相似可求出NC 、NA ',进而求出MF ,最后根据勾股定理求出EF .【详解】解:如图,过点E 作EM AD ⊥,垂足为M ,2DA A C ''=,6DC =, 243DA DC '==,123A C DC '==, 由折叠得,AF FA =',6AB A B =''=,设DF x =,则8FA FA x ='=-,在Rt DFA ∆'中,由勾股定理得,2224(8)x x +=-,解得3x =,即3DF =,835FA FA ∴='=-=,1809090NAC DA F ∠'+∠'=︒-︒=︒,90NAC A NC ∠'+∠'=︒,DA F A NC ∴∠'=∠',90C D ∴∠=∠=︒,∴∠A NC '∽∠FA D ',∴A C NC A N FD A D FA ''=='',即2345NC A N '==, 解得83NC =,103A N '=, 108633B N A B A N NC ∴'=''-'=-==, ∴∠()A CN ENB AAS '≅∆',103EN A N ∴='=, 108633EC EN NC MD ∴=+=+==, 633MF ∴=-=,在Rt EFM ∆中,EF故选:A .【点睛】本题考查矩形的性质、折叠轴对称、相似三角形、全等三角形以及勾股定理等知识,掌握折叠的性质和直角三角形的边角关系是得出答案的前提,建立图形中线段之间的关系是解决问题的关键.21.15【分析】根据平行四边形的对角线互相平分,求得OC 与OD 的长,继而可求得答案. 【详解】解:四边形ABCD 是平行四边形,142OC AC ∴==,152OD BD ==,6CD AB ==, OCD ∴△的周长为:64515CD OC OD ++=++=.故答案为:15.【点睛】本题重点考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:∠平行四边形两组对边分别平行;∠平行四边形的两组对边分别相等;∠平行四边形的两组对角分别相等;∠平行四边形的对角线互相平分.22.3-【分析】由D 为BC 的中点,平行四边形OABC 的面积为6,可得∠OCD 的面积为平行四边形OABC 的面积的14,再根据反比例函数系数k 的几何意义即可求出答案. 【详解】解:∠D 为BC 的中点,平行四边形OABC 的面积为6,∠∠OCD 的面积为6×14=1.5, ∠12|k |=1.5, ∠k <0,∠3k =-.故答案为:3-.【点睛】本题考查了反比例函数k 的几何意义,平行四边形的性质,求得∠OCD 的面积是解题的关键.23.30︒【分析】根据矩形和平行四边形的面积公式可知,平行四边形A 'B 'C 'D '的底边A D ''边上的高等于A B ''的一半,据此可得∠A '为30°.【详解】解:如图,过点B '作B E A D '⊥''于点E .设矩形ABCD 的边AD 长为a ,AB 长为b ,B E '长为c ,则ABCD S ab =矩形,A B C D Sac ''''=. ∠12A B C D ABCDS S ''''=矩形, ∠12ac ab =, ∠12c b =, ∠sin A '12c b ==, ∠30A ∠'=︒.【点睛】本题主要考查了四边形的不稳定性、矩形与平行四边形的面积公式、解直角三角形等相关知识,熟记特殊角的三角函数值是解答本题的关键.24.∠∠##∠∠【分析】∠根据平行四边形的性质结合已知条件,证明AMQ CPN ≌,DQP BNM ≌,可得MQ NP =,MN PQ =,根据两组对边相等的四边形是平行四边形,即可判断∠,∠根据平行四边形是中心对称图形,即可判断∠,根据已知条件不能判断∠.【详解】解:∠四边形ABCD 是平行四边形A C ∴∠=∠,B D ∠=∠,,AD BC AB CD == ∠,AQ CN AM CP ==∠AMQ CPN ≌∠MQ NP =,AQ CN AM CP ==∴,DQ BN DP BM ==又B D ∠=∠DQP BNM ∴≌MN PQ ∴=∴四边形MNPQ 是平行四边形故∠正确 ∠四边形ABCD 的对角线交于点O ,,MP NQ 均经过点O :,OQ ON OM OP ∴==∴四边形MNPQ 是平行四边形故∠正确∠NQ 经过点O ,AQ CN =,,M P 的位置未知,不能判断四边形MNPQ 是平行四边形 故∠不正确故答案为:∠∠【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.25.1【分析】根据三角形中位线定理求出DE ,根据直角三角形的性质求出EF ,结合图形计算即可.【详解】∠DE 为△ABC 的中位线, ∠DE=12BC=4(cm), ∠∠AFC 为直角,E 为AC 的中点, ∠FE=12AC=3(cm),∠DF=DE−FE=1(cm),故答案为1cm.【点睛】此题考查三角形中位线定理,解题关键在于掌握其性质定义.26.10【分析】平行四边形的两组对边相等,以此便可求解.【详解】解:如图:平行四边形ABCD 的周长为:2()2(32)10AD AB +=⨯+=.故答案是:10.【点睛】本题考查平行四边形两组对边相等的性质,解题的关键是掌握其性质. 27.4【分析】直接利用三角形中位线的性质,证明EO =AB ,然后根据平行四边形的性质列方程得出答案.【详解】解:∠四边形ABCD 是平行四边形,∠AB =DC ,BO =DO ,又∠E 为DC 边的中点,∠EO 是△DBC 的中位线,∠EO =12BC , ∠EO =AB∠▱ABCD 的周长为24,∠设AB =x ,则BC =2x ,则2(x +2x )=24,解得:x =4,故EO =4.故答案为4.【点睛】此题主要考查了平行四边形的性质、三角形中位线的性质等,正确得出EO 是△DBC 的中位线是解题关键.28 8-【分析】分∠ABE=30°或∠AEB=30°或∠ABA′=30°时三种情况,利用锐角三角函数进行求解即可.【详解】解:当∠ABE=30°时,∠AB=4cm ,∠A=90°,; 当∠AEB=30°时,则∠ABE=60°,∠AB=4cm ,∠A=90°,∠AE=AB·tan60°=;当∠ABE=15°时,∠ABA′=30°,延长BA′交AD 于F ,如下图所示,设AE=x ,则EA′=x ,sin 60x EF ==︒∠x +=∠8x =-∠8AE =-cm .8- 【点睛】本题考查了矩形与折叠,以及分类讨论的数学思想,分类讨论是解答本题的关键.29.2.5【分析】由折叠的性质可得CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,在Rt △AEG 中利用勾股定理求出x 的值.【详解】解:由题意,点C 与点H ,点B 与点G 分别关于直线EF 对称,∠CF=HF ,BE=GE ,设BE=GE=x ,则AE=4-x ,∠四边形ABCD 是正方形,∠∠A=90°,∠AE 2+AG 2=EG 2,∠B 落在边AD 的中点G 处,∠AG=2,∠(4-x )2+22=x 2,解得:x=2.5,∠BE=2.5.故答案为:2.5.【点睛】本题考查了折叠问题与勾股定理以及正方形的性质,掌握翻折的性质是解题的关键.30.156【分析】根据多边形的内角和公式即可得出结果.【详解】解:∠十五边形的内角和=(15﹣2)•180°=2340°,又∠十五边形的每个内角都相等,∠每个内角的度数=2340°÷15=156°.故答案为156.【点睛】本题考查了多边形的内角和计算公式.多边形内角和定理:多边形内角和等于(n ﹣2)•180°.31.81【分析】先证明四边形CGBE 是平行四边形, 然后证明CGF BAC ≌,再解直角三角形即可求得BH 的长度,进而根据BE BH ⨯即可求得答案.【详解】如图,设,AB CG 交于点H ,四边形ADEB 是正方形,15AB BE ∴==,EF BC ∥,CG BE ∥,∴四边形CGBE 是平行四边形,15CG BE AB ∴===,BE AB ⊥,CG AB ∴⊥,90ABC HCB ∴∠+∠=︒,90ACB ∠=︒,∴90ABC CAB ∠+∠=︒,HCB CAB ∴∠=∠,EF BC ∥,HCB CGF ∴∠=∠,90GFC ACB ∠=∠=︒,CGF BAC ∴∠=∠,∴CGF BAC ≌,CB FC ∴=,设CB x =,则3AC AF FC x =+=+,Rt ABC 中,222AB AC BC =+,即()222153x x =++,解得9x =或12x =-(舍), 9312,9AC BC ∴=+==,93cos 155BC CBA AB ∴∠===, 327cos 955HB BC CBA ∴=⋅∠=⨯=, ∴平行四边形CGEB 的面积为BE BH ⨯2715815BE BH =⨯=⨯=, 故答案为:81.【点睛】本题考查了正方形的性质,平行四边形的判定,全等三角形的性质与判定,勾股定理,解直角三角形等知识,熟练掌握知识间的联系,是解答本题的关键.32.43π 【分析】根据题意得到ADO ∆是等边三角形,从而得到角度,再结合特殊角的直角三角形三边关系得到4=AD ,8AC =,分别求出ACD S ∆=83AOD S π=扇形,43AOE S π=扇形,最后根据图形得到=ACD AOD AOE S S S S ∆-+阴影扇形扇形,代值求解即可. 【详解】解:矩形ABCD 的两条对角线相交于点O ,OA OB OC OD ∴===,以点A 为圆心,AD 长为半径画弧,此弧恰好经过点O ,AO AD OD ∴==,即ADO ∆是等边三角形,60DAO ∴∠=︒,30OAE ∠=︒,在Rt ACD ∆中,30ACD OAE ∠=∠=︒,90ADC ∠=︒,CD =4=AD ,8AC =, 11422ACD S AD CD ∆∴==⨯⨯ 260843603AOD S ππ︒=⨯⨯=︒扇形, 230443603AOE S ππ︒=⨯⨯=︒扇形, 844=333ACD AOD AOE S S S S πππ∆∴-+=+=阴影扇形扇形,故答案为:43π 【点睛】本题考查阴影图形面积,对于不规则图形面积求解,我们要根据题中图形转化为规则图形面积间接表示出来,在求解此题过程中涉及到矩形的性质、等边三角形的判定与性质、特殊角度的直角三角形三边关系、三角形面积公式和扇形面积公式,将阴影部分面积转化为常见图形面积来间接求解是解决问题的关键.33.2【分析】根据平行四边形性质求出AD∠BC ,由平行线的性质可得∠AEB=∠CBE ,然后由角平分线的定义知∠ABE=∠AEB ,所以∠ABE=∠AEB ,即可得AB=AE ,由此即可求出DE 的长.【详解】∠四边形ABCD 是平行四边形,∠AD∠BC ,∠∠AEB=∠CBE .∠BE 平分∠ABC ,∠∠ABE=∠CBE ,∠∠ABE=∠AEB ,∠AB=AE=3,∠DE=AD-AE=5-3=2.故答案是:2.【点睛】本题考查了平行四边形性质、三角形的角平分线的定义,平行线的性质的应用,证得AB=AE 是解题的关键.34.(1.5,0)或(1,0).。

初中数学八年级下册平行四边形练习题(含解析)

初中数学八年级下册平行四边形练习题(含解析)

易错专题03平行四边形(含解析)共39小题一.直角三角形斜边上的中线(共3小题)1.如图,在△ABC中,△B=50°,CD△AB于点D,△BCD和△BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则△ACD+△CED=()A.125°B.145°C.175°D.190°2.两个连续整数a、b满足a<√11<b,则以a、b为边的直角三角形斜边上的中线为.3.如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN△DE.(2)连接DM,ME,猜想△A与△DME之间的关系,并证明猜想.(3)当△A变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.二.三角形中位线定理(共5小题)4.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若△AFC=90°,则BC的长度为()A.10B.12C.14D.165.如图,在△ABC中,△ABC=90°,BC=5.若DE是△ABC的中位线,延长DE交△ABC 的外角△ACM的平分线于点F,且DF=9,则CE的长为.6.已知:如图,AD、CE分别是△ABC的角平分线和中线,AD△CE,AD=CE=4,则BC 的长等于.7.如图,在△ABC中,AB=6cm,AC=10cm,AD平分△BAC,BD△AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.8.(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF△BD,AG△CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF△BD,AG△CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.三.平行四边形的性质(共4小题)9.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是( )A .B .C .D .10.平行四边形的一条边长是12cm ,那么它的两条对角线的长可能是( )A .8cm 和16cmB .10cm 和16cmC .8cm 和14cmD .8cm 和12cm11.如图,平行四边形ABCD 中,点O 为对角线AC 、BD 的交点,点E 为CD 边的中点,连接OE ,如果AB =4,OE =3,则平行四边形ABCD 的周长为 .12.在平面直角坐标系中,已知△OBAC ,其中点O (0,0)、A (﹣6,﹣8)、B (m ,43m ﹣4),则△OBAC 的面积为 .四.平行四边形的判定(共2小题)13.在下列给出的条件中,不能判定四边形ABCD 是平行四边形的是 ( )A .AB △CD ,AB =CDB .AB △CD ,△A =△C C .AB =BC ,AD =DC D .AD △BC ,△A +△D =180°14.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出 个平行四边形.五.平行四边形的判定与性质(共4小题)15.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.对角线相等四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行且相等的四边形是平行四边形16.如图,已知△XOY=60°,点A在边OX上,OA=2.过点A作AC△OY于点C,以AC 为一边在△XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD△OY交OX于点D,作PE△OX交OY于点E.设OD=a,OE=b,则a+2b 的取值范围是.17.如图,在四边形ABCD中,△A=△B=△BCD=90°,AB=DC=4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=;(2)当t=时,点P运动到△B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.18.如图,BD 是△ABCD 的对角线,△ABD 的平分线BE 交AD 于点E ,△CDB 的平分线DF 交BC 于点F .求证:四边形DEBF 为平行四边形.六.菱形的性质(共3小题)19.如图,已知菱形ABCD 的边长为6,点M 是对角线AC 上的一动点,且△ABC =120°,则MA +MB +MD 的最小值是( )A .3√3B .3+3√3C .6+√3D .6√320.如图,在菱形ABCD 中,△A =100°,E ,F 分别是边AB 和BC 的中点,EP △CD 于点P ,则△FPC =( )A .35°B .45°C .50°D .55°21.如图,菱形ABCD 的顶点B 、C 在x 轴上(B 在C 的左侧),顶点A 、D 在x 轴上方,对角线BD 的长是23√10,点E (﹣2,0)为BC 的中点,点P 在菱形ABCD 的边上运动,点F 在y 轴的正半轴上,且△EFO =30°,当点F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于 .七.菱形的判定(共2小题)22.如图,在△ABC中,AB=AC,△B=60°,△F AC、△ECA是△ABC的两个外角,AD平分△F AC,CD平分△ECA.求证:四边形ABCD是菱形.23.如图,在△ABC中,△ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当△B满足什么条件时,四边形ACEF是菱形,并说明理由.八.菱形的判定与性质(共4小题)24.如图,AD是△ABC的角平分线,DE△AC交AB于点E,DF△AB交AC于点F,且AD 交EF于点O,则△AOF为()A.60°B.90°C.100°D.110°25.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.26.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:△BAC=△DAC,△AFD=△CFE.(2)若AB△CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得△EFD=△BCD,并说明理由.27.如图,已知点E,F分别是△ABCD的边BC,AD上的中点,且△BAC=90°.(1)求证:四边形AECF是菱形;(2)若△B=30°,BC=10,求菱形AECF面积.九.矩形的性质(共4小题)28.下列结论中,菱形具有而矩形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直29.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为.30.如图,在矩形ABCD中,点E在AD上,且BE=BC.(1)EC平分△BED吗?证明你的结论.(2)若AB=1,△ABE=45°,求BC的长.31.已知:如图,在△ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG△DB 交CB的延长线于G.(1)求证:△ADE△△CBF;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?请证明你的结论一十.矩形的判定(共1小题)32.下列各句判定矩形的说法(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边形是矩形;(6)对角线相等,且有一个角是直角的四边形是矩形;是正确有几个()A.2个B.3个C.4个D.5个一十一.矩形的判定与性质(共1小题)33.如图,直角三角形ABC中,△ACB=90°,AC=3,BC=4,点D是AB上的一个动点,过点D作DE△AC于E点,DF△BC于F点,连接EF,则线段EF长的最小值为.一十二.正方形的性质(共4小题)34.如图,以边长为4的正方形ABCD 的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于E 、F 两点,则线段EF 的最小值为( )A .2B .4C .√2D .2√235.将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1,A 2,…,A n 分别是正方形对角线的交点,则n 个正方形重叠形成的重叠部分的面积和为( )A .14 cm 2B .n−14cm 2C .n 4 cm 2D .(14)n cm 2 36.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为( )A .6B .7C .8D .937.如图,正方形ABCD 的边长为5,E 是AD 边上一点,AE =3,动点P 由点D 向点C 运动,速度为每秒2个单位长度,EP 的垂直平分线交AB 于M ,交CD 于N .设运动时间为t 秒,当PM △BC 时,t 的值为( )A .√2B .2C .√3D .32 一十三.正方形的判定(共1小题)38.下列说法正确的是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .每一条对角线都平分一组对角的四边形是菱形D .对角线互相垂直且相等的四边形是正方形一十四.正方形的判定与性质(共1小题)39.如图,正方形ABCD 的对角线交于点O ,以AD 为边向外作Rt△ADE ,△AED =90°,连接OE ,DE =6,OE =8√2,则另一直角边AE 的长为 .易错专题03平行四边形(含解析)共39小题参考答案与试题解析一.直角三角形斜边上的中线(共3小题)1.如图,在△ABC中,△B=50°,CD△AB于点D,△BCD和△BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则△ACD+△CED=()A.125°B.145°C.175°D.190°【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到△ACD=60°,根据△BCD和△BDC的角平分线相交于点E,即可得出△CED=115°,即可得到△ACD+△CED=60°+115°=175°.【解答】解:△CD△AB,F为边AC的中点,△DF=12AC=CF,又△CD=CF,△CD=DF=CF,△△CDF是等边三角形,△△ACD=60°,△△B=50°,△△BCD+△BDC=130°,△△BCD和△BDC的角平分线相交于点E,△△DCE+△CDE=65°,△△CED=115°,△△ACD+△CED=60°+115°=175°,故选:C.【点评】本题主要考查了直角三角形的斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.2.两个连续整数a 、b 满足a <√11<b ,则以a 、b 为边的直角三角形斜边上的中线为 2.5或2 .【分析】求出√11的范围,得出a =3,b =4,有两种情况:△当b 是斜边时,求出12b 即可;△当ab 为直角边时,由勾股定理求出斜边,再求出12斜边即可. 【解答】解:△3<√11<4,△a =3,b =4,△当b 是斜边时,以a 、b 为边的直角三角形斜边上的中线是2;△当ab 为直角边时,由勾股定理得:斜边=√32+42=5,△以a 、b 为边的直角三角形斜边上的中线是2.5;故答案为:2.5或2.【点评】本题考查了直角三角形斜边上的中线,勾股定理,实数大小比较等知识点的应用,主要应用直角三角形斜边上的中线等于斜边的一半.3.如图(1),已知锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,M 、N 分别是线段BC 、DE 的中点.(1)求证:MN △DE .(2)连接DM ,ME ,猜想△A 与△DME 之间的关系,并证明猜想.(3)当△A 变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.【分析】(1)连接DM ,ME ,根据直角三角形的性质得到DM =12BC ,ME =12BC ,得到DM =ME ,根据等腰直角三角形的性质证明;(2)根据三角形内角和定理、等腰三角形的性质计算;(3)仿照(2)的计算过程解答.【解答】(1)证明:如图(1),连接DM,ME,△CD、BE分别是AB、AC边上的高,M是BC的中点,△DM=12BC,ME=12BC,△DM=ME,又△N为DE中点,△MN△DE;(2)在△ABC中,△ABC+△ACB=180°﹣△A,△DM=ME=BM=MC,△△BMD+△CME=(180°﹣2△ABC)+(180°﹣2△ACB),=360°﹣2(△ABC+△ACB),=360°﹣2(180°﹣△A),=2△A,△△DME=180°﹣2△A;(3)结论(1)成立,结论(2)不成立,理由如下:连接DM,ME,在△ABC中,△ABC+△ACB=180°﹣△BAC,△DM=ME=BM=MC,△△BME+△CMD=2△ACB+2△ABC,=2(180°﹣△BAC),=360°﹣2△BAC,△△DME=180°﹣(360°﹣2△BAC),=2△BAC﹣180°.【点评】本题考查的是直角三角形的性质、三角形内角和定理,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.二.三角形中位线定理(共5小题)4.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若△AFC=90°,则BC的长度为()A.10B.12C.14D.16【分析】先证明EF=5,继而得到DE=6;再证明DE为△ABC的中位线,即可解决问题.【解答】解:如图,△△AFC=90°,E是AC的中点,△Rt△ACF中,EF=12AC=12×10=5,△DE=1+5=6;△D,E分别是AB,AC的中点,△DE为△ABC的中位线,△BC=2DE=12,故选:B.【点评】本题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键.5.如图,在△ABC中,△ABC=90°,BC=5.若DE是△ABC的中位线,延长DE交△ABC 的外角△ACM的平分线于点F,且DF=9,则CE的长为 6.5.【分析】依据三角形中位线定理,可得DE=12BC=2.5,DE△BC,再根据DE△BC,CF平分△ACM,可得△ECF=△FCM=△EFC,进而得出CE=FE=6.5.【解答】解:△BC=5,DE是△ABC的中位线,△DE=12BC=2.5,DE△BC,又△DF=9,△EF=9﹣2.5=6.5,△DE△BC,CF平分△ACM,△△ECF=△FCM=△EFC,△CE=FE=6.5,故答案为:6.5.【点评】本题主要考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6.已知:如图,AD、CE分别是△ABC的角平分线和中线,AD△CE,AD=CE=4,则BC 的长等于3√5.【分析】过E作EF△AD,交BC于F,依据EF是△ABD的中位线,可得EF=12AD=2,进而得到Rt△CEF中,CF=√EF2+CE2=√22+42=2√5,依据G是CE的中点,GD△EF,可得D是CF的中点,进而得到BC的长.【解答】解:如图,过E作EF△AD,交BC于F,则△CEF=90°,△E是AB的中点,△F是BD的中点,△EF是△ABD的中位线,△EF=12AD=2,△Rt△CEF中,CF=√EF2+CE2=√22+42=2√5,△AD平分△BAC,AD△CE,△△ACE=△AEC,△AC=AE,△G是CE的中点,△GD△EF,△D是CF的中点,△CD=DF=BF=√5,△BC=3√5,故答案为:3√5.【点评】本题主要考查了三角形中位线定理以及平行线分线段成比例定理的运用,解决问题的关键掌握:三角形的中位线平行于第三边,并且等于第三边的一半.7.如图,在△ABC中,AB=6cm,AC=10cm,AD平分△BAC,BD△AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.【分析】根据等腰三角形的判定和性质定理得到AB =AF =6,BD =DF ,求出CF ,根据三角形中位线定理计算即可.【解答】解:△AD 平分△BAC ,BD △AD ,△AB =AF =6,BD =DF ,△CF =AC ﹣AF =4,△BD =DF ,E 为BC 的中点,△DE =12CF =2.【点评】本题考查的是等腰三角形的判定和性质、三角形中位线定理的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(1)如图1,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF △BD ,AG △CE ,垂足分别是F 、G ,连接FG .求证:FG =12(AB +BC +AC ).[提示:分别延长AF 、AG 与直线BC 相交](2)如图2,若BD 、CE 分别是△ABC 的内角平分线,过点A 作AF △BD ,AG △CE ,垂足分别是F 、G ,连接FG .线段FG 与△ABC 的三边又有怎样的数量关系?写出你的猜想,并给予证明.【分析】(1)利用全等三角形的判定定理ASA 证得△ABF △△MBF ,然后由全等三角形的对应边相等进一步推出MB =AB ,AF =MF ,同理CN =AC ,AG =NG ,由此可以证明FG 为△AMN 的中位线,然后利用中位线定理求得FG =12(AB +BC +AC );(2)延长AF 、AG ,与直线BC 相交于M 、N ,与(1)类似可以证出答案.【解答】解:(1)如图1,△AF △BD ,△ABF =△MBF ,△△BAF =△BMF ,在△ABF 和△MBF 中,{∠AFB =∠MFB BF =BF ∠ABF =∠MBF ,△△ABF△△MBF(ASA),△MB=AB,△AF=MF,同理:CN=AC,AG=NG,△FG是△AMN的中位线,△FG=12MN,=12(MB+BC+CN),=12(AB+BC+AC).(2)猜想:FG=12(AB+AC﹣BC),证明:如图2,延长AG、AF,与直线BC相交于M、N,△由(1)中证明过程类似证△ABF△△NBF,△NB=AB,AF=NF,同理CM=AC,AG=MG,△FG=12MN,△MN=2FG,△BC=BN+CM﹣MN=AB+AC﹣2FG,△FG=12(AB+AC﹣BC).【点评】本题主要考查了三角形的中位线定理,三角形的内角和定理,等腰三角形的性质和判定等知识点,解此题的关键是作辅助线转化成三角形的中位线.三.平行四边形的性质(共4小题)9.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是()A.B.C.D.【分析】利用平行四边形的性质,根据三角形的面积和平行四边形的面积逐个进行判断,即可求解.【解答】解:A、因为高相等,三个底是平行四边形的底,根据三角形和平行四边形的面积可知,阴影部分的面积等于平行四边形的面积的一半,正确;B、因为两阴影部分的底与平行四边形的底相等,高之和正好等于平行四边形的高,所以阴影部分的面积等于平行四边形的面积的一半,正确;C、根据平行四边形的对称性,可知小阴影部分的面积等于小空白部分的面积,所以阴影部分的面积等于平行四边形的面积的一半,正确;D、无法判断阴影部分面积是否等于平行四边形面积一半,错误.故选:D.【点评】本题考查了平行四边形的性质,并利用性质结合三角形的面积公式进行判断,找出选项.10.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm 【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.11.如图,平行四边形ABCD中,点O为对角线AC、BD的交点,点E为CD边的中点,连接OE ,如果AB =4,OE =3,则平行四边形ABCD 的周长为 20 .【分析】平行四边形中对角线互相平分,则点O 是BD 的中点,而E 是CD 边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD =6,进一步即可求得△ABCD 的周长.【解答】解:△四边形ABCD 是平行四边形,△OB =OD ,OA =OC ,又△点E 是CD 边中点△AD =2OE ,即AD =6,△△ABCD 的周长为(6+4)×2=20.故答案为:20.【点评】此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛;三角形的中位线平行于第三边,并且等于第三边的一半.12.在平面直角坐标系中,已知△OBAC ,其中点O (0,0)、A (﹣6,﹣8)、B (m ,43m ﹣4),则△OBAC 的面积为 24 .【分析】由A (﹣6,﹣8)可得AO 的解析式为y =43x ,由B (m ,43m ﹣4),可得点B 在直线y =43x ﹣4上,设直线y =43x ﹣4与y 轴交于点D ,则AO △BD ,D (0,﹣4),依据S △ABO =S △ADO =12×4×6=12,即可得到S 平行四边形ABOC =2×12=24. 【解答】解:如图所示,由A (﹣6,﹣8)可得,AO 的解析式为y =43x ,又△B (m ,43m ﹣4), △点B 在直线y =43x ﹣4上,设直线y =43x ﹣4与y 轴交于点D ,则AO △BD ,D (0,﹣4),△S △ABO =S △ADO =12×4×6=12,△S 平行四边形ABOC =2×12=24,故答案为:24.【点评】本题主要考查了平行四边形的性质,解题时注意:平行四边形是中心对称图形.四.平行四边形的判定(共2小题)13.在下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB△CD,AB=CD B.AB△CD,△A=△CC.AB=BC,AD=DC D.AD△BC,△A+△D=180°【分析】根据平行四边形的判定即可判断A、C;根据平行线的性质和已知求出△B=△D,根据平行四边形的判定判断B即可;根据平行线的判定推出AD△BC,根据平行四边形的判定判断D即可.【解答】解:A,△AB△CD,AB=CD,△四边形ABCD是平行四边形,故本选项错误;B、△AB△CD,△△A+△D=180°,△B+△C=180°,△△A=△C,△△B=△D,△四边形ABCD是平行四边形,故本选项错误;C、根据AB=BC,AD=DC,不能判断四边形是平行四边形,故本选项正确;D、△△A+△D=180°,△AB△CD,△AD△BC,△四边形ABCD是平行四边形,故本选项错误;故选:C.【点评】本题考查了对平行线的性质和判定,平行四边形的判定等知识点的应用,关键是推出证明是四边形是平行四边形的条件,题型较好,是一道容易出错的题目.14.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出15个平行四边形.【分析】根据全等三角形的性质及平行四边形的判定,可找出现15个平行四边形.【解答】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.【点评】此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.五.平行四边形的判定与性质(共4小题)15.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.对角线相等四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行且相等的四边形是平行四边形【分析】根据矩形、菱形、正方形、平行四边形的判定定理判断即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,本选项说法错误;B、对角线相等平行四边形是矩形,本选项说法错误;C、对角线垂直且相等的平行四边形是正方形,本选项说法错误;D、一组对边平行且相等的四边形是平行四边形,本选项说法正确;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.如图,已知△XOY=60°,点A在边OX上,OA=2.过点A作AC△OY于点C,以AC为一边在△XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD △OY 交OX 于点D ,作PE △OX 交OY 于点E .设OD =a ,OE =b ,则a +2b 的取值范围是 2≤a +2b ≤5 .【分析】作辅助线,构建30度的直角三角形,先证明四边形EODP 是平行四边形,得EP =OD =a ,在Rt△HEP 中,△EPH =30°,可得EH 的长,计算a +2b =2OH ,确认OH 最大和最小值的位置,可得结论.【解答】解:如图1,过P 作PH △OY 交于点H ,△PD △OY ,PE △OX ,△四边形EODP 是平行四边形,△HEP =△XOY =60°,△EP =OD =a ,Rt△HEP 中,△EPH =30°,△EH =12EP =12a ,△a +2b =2(12a +b )=2(EH +EO )=2OH , 当P 在AC 边上时,H 与C 重合,此时OH 的最小值=OC =12OA =1,即a +2b 的最小值是2;当P 在点B 时,如图2,OC =1,AC =BC =√3,Rt△CHP 中,△HCP =30°,△PH =√32,CH =32,则OH 的最大值是:OC +CH =1+32=52,即(a +2b )的最大值是5,△2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度,掌握确认a+2b的最值就是确认OH最值的范围.17.如图,在四边形ABCD中,△A=△B=△BCD=90°,AB=DC=4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=6;(2)当t=8时,点P运动到△B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.【分析】(1)根据题意可得BP=2t,进而可得结果;(2)根据△A=△B=△BCD=90°,可得四边形ABCD是矩形,根据角平分线定义可得AF=AB=4,得DF=4,进而可得t的值;(3)根据题意分3种情况讨论:△当点P在BC上运动时,△当点P在CD上运动时,△当点P在AD上运动时,分别用含t的代数式表示△ABP的面积S即可;(4)当0<t<6时,点P在BC、CD边上运动,根据题意分情况讨论:△当点P在BC 上,点P到AD边的距离为4,点P到AB边的距离也为4,△当点P在BC上,点P到AD边的距离为4,点P到DE边的距离也为4,△当点P在CD上,点P到AB边的距离为8,但点P到AB、BC边的距离都小于8,进而可得当t=2s或t=3s时,点P到四边形ABED相邻两边距离相等.【解答】解:(1)BP=2t=2×3=6,故答案为:6;(2)作△B的角平分线交AD于F,△△ABF=△FBC,△△A=△ABC=△BCD=90°,△四边形ABCD是矩形,△AD△BC,△△AFB=△FBC,△△ABF=△AFB,△AF=AB=4,△DF=AD﹣AF=8﹣4=4,△BC+CD+DF=8+4+4=16,△2t=16,解得t=8.△当t=8时,点P运动到△ABC的角平分线上;故答案为:8;(3)根据题意分3种情况讨论:△当点P在BC上运动时,S △ABP =12×BP ×AB =12×2t ×4=4t ;(0<t <4); △当点P 在CD 上运动时,S △ABP =12×AB ×BC =12×4×8=16;(4≤t ≤6); △当点P 在AD 上运动时,S △ABP =12×AB ×AP =12×4×(20﹣2t )=﹣4t +40;(6<t ≤10);(4)当0<t <6时,点P 在BC 、CD 边上运动,根据题意分情况讨论:△当点P 在BC 上,点P 到四边形ABED 相邻两边距离相等,△点P 到AD 边的距离为4,△点P 到AB 边的距离也为4,即BP =4,△2t =4,解得t =2s ;△当点P 在BC 上,点P 到AD 边的距离为4,△点P 到DE 边的距离也为4,△PE =DE =5,△PC =PE ﹣CE =2,△8﹣2t =2,解得t =3s ;△当点P 在CD 上,如图,过点P 作PH △DE 于点H ,点P 到DE 、BE 边的距离相等,即PC =PH ,△PC =2t ﹣8,△S △DCE =S △DPE +S △PCE ,△12×3×4=12×5×PH +12×3×PC , △12=8PH ,△12=8(2t﹣8),解得t=19 4.综上所述:t=2或t=3或t=194时,点P到四边形ABED相邻两边距离相等.【点评】本题考查了平行四边形的性质、角平分线定义、三角形的面积、全等三角形的判定与性质,解决本题的关键是综合运用以上知识.18.如图,BD是△ABCD的对角线,△ABD的平分线BE交AD于点E,△CDB的平分线DF交BC于点F.求证:四边形DEBF为平行四边形.【分析】根据平行四边形性质和角平分线定义求出△FDB=△EBD,推出DF△BE,根据平行四边形的判定判断即可.【解答】解:△四边形ABCD是平行四边形,△AD△BC,AB△CD,△△CDB=△ABD,△DF平分△CDB,BE平分△ABD,△△FDB=12△CDB,△EBD=12△ABD,△△FDB=△EBD,△DF△BE,△AD△BC,即ED△BF,△四边形DEBF是平行四边形.【点评】本题考查了角平分线定义,平行四边形的性质和判定等的应用,关键是推出DF△BE,主要检查学生能否运用定理进行推理,题型较好,难度适中.六.菱形的性质(共3小题)19.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且△ABC=120°,则MA+MB+MD的最小值是()A.3√3B.3+3√3C.6+√3D.6√3【分析】过点D作DE△AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.【解答】解:如图,过点D作DE△AB于点E,连接BD,△菱形ABCD中,△ABC=120°,△△DAB=60°,AD=AB=DC=BC,△△ADB是等边三角形,△△MAE=30°,△AM=2ME,△MD=MB,△MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,△菱形ABCD的边长为6,△DE=√AD2−AE2=√62−32=3√3,△2DE=6√3.△MA+MB+MD的最小值是6√3.故选:D.【点评】本题考查了菱形的性质,等边三角形的判定与性质,解决本题的关键是掌握菱形的性质,等边三角形的判定与性质.20.如图,在菱形ABCD中,△A=100°,E,F分别是边AB和BC的中点,EP△CD于点P,则△FPC=()A.35°B.45°C.50°D.55°【分析】延长EF交DC的延长线于H点.证明△BEF△△CHF,得EF=FH.在Rt△PEH 中,利用直角三角形斜边上的中线等于斜边的一半,得△FPC=△FHP=△BEF.在等腰△BEF中易求△BEF的度数.【解答】解:延长EF交DC的延长线于H点.△在菱形ABCD中,△A=100°,E,F分别是边AB和BC的中点,△△B=80°,BE=BF.△△BEF=(180°﹣80°)÷2=50°.△AB△DC,△△FHC=△BEF=50°.又△BF=FC,△B=△FCH,△△BEF△△CHF.△EF=FH.△EP△DC,△△EPH=90°.△FP=FH,则△FPC=△FHP=△BEF=50°.故选:C.【点评】此题考查了菱形的性质、全等三角形的判定方法、直角三角形斜边上的中线等于斜边的一半等知识点,综合性较强.如何作出辅助线是难点.21.如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD 的长是23√10,点E (﹣2,0)为BC 的中点,点P 在菱形ABCD 的边上运动,点F 在y 轴的正半轴上,且△EFO =30°,当点F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于 2√103 .【分析】如图1中,当点P 是AB 的中点时,作FG △PE 于G ,连接EF .首先说明点G 与点E 重合时,FG 的值最大,如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设BC =2a .利用相似三角形的性质构建方程求解即可.【解答】解:如图1中,当点P 是AB 的中点时,作FG △PE 于G ,连接EF ,△E (﹣2,0),△EFO =30°,△OE =2,EF =4,△△FGE =90°,△FG ≤EF ,△当点G 与E 重合时,FG 的值最大.如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设BC =2a .△P A =PB ,BE =EC =a ,△PE △AC ,BJ =JH ,△四边形ABCD 是菱形,△AC △BD ,BH =DH =√103,BJ =√106,△PE △BD ,△△BJE =△EOF =△PEF =90°,△△EBJ =△FEO ,△△BJE △△EOF ,△BE EF =BJ EO ,△a 4=√1062, △a =√103,△BC =2a =2√103. 故答案为:2√103. 【点评】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.七.菱形的判定(共2小题)22.如图,在△ABC 中,AB =AC ,△B =60°,△F AC 、△ECA 是△ABC 的两个外角,AD 平分△F AC ,CD 平分△ECA .求证:四边形ABCD是菱形.【分析】根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.【解答】证明:△△B=60°,AB=AC,△△ABC为等边三角形,△AB=BC,△△ACB=60°,△F AC=△ACE=120°,△△BAD=△BCD=120°,△△B=△D=60°,△四边形ABCD是平行四边形,△AB=BC,△平行四边形ABCD是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键.23.如图,在△ABC中,△ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当△B满足什么条件时,四边形ACEF是菱形,并说明理由.。

(专题精选)初中数学四边形经典测试题及答案解析

(专题精选)初中数学四边形经典测试题及答案解析

(专题精选)初中数学四边形经典测试题及答案解析一、选择题1.在四边形ABCD 中,两对角线交于点O ,若OA =OB =OC =OD ,则这个四边形( ) A .可能不是平行四边形B .一定是菱形C .一定是正方形D .一定是矩形【答案】D【解析】【分析】根据OA=OC, OB=OD ,判断四边形ABCD 是平行四边形.然后根据AC=BD ,判定四边形ABCD 是矩形.【详解】解:这个四边形是矩形,理由如下:∵对角线AC 、BD 交于点O ,OA= OC, OB=OD ,∴四边形ABCD 是平行四边形,又∵OA=OC=OD=OB ,∴AC=BD ,∴四边形ABCD 是矩形.故选D .【点睛】本题考查了矩形的判断,熟记矩形的各种判定方法是解题的关键.2.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .8 【答案】B【解析】【分析】根据勾股定理先求出BO 的长,再根据平行四边形的性质即可求解.【详解】∵6AC =,∵AB ⊥AC ,∴BO=2234+=5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.3.如图,在菱形ABCD 中,点E 在边AD 上,30BE ADBCE ⊥∠=︒,.若2AE =,则边BC 的长为( )A 5B 6C 7D .22【答案】B【解析】【分析】 由菱形的性质得出AD ∥BC ,BC=AB=AD ,由直角三角形的性质得出3,在Rt △ABE 中,由勾股定理得:BE 2+22=3)2,解得:2,即可得出结果. 【详解】∵四边形ABCD 是菱形,∴AD BC BC AB =,∥.∵BE AD ⊥.∴BE BC ⊥.∴30BCE ∠=︒,∴2EC BE =, ∴223AB BC EC BE BE ==-=.在Rt ABE △中,由勾股定理得)22223BE BE +=, 解得2BE =,∴36BC BE ==故选B.【点睛】 此题考查菱形的性质,含30°角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键.4.正九边形的内角和比外角和多( )A .720︒B .900︒C .1080︒D .1260︒【答案】B【分析】根据多边形的内角和公式求出正九边形的内角和,减去外角和360°即可.【详解】∵正九边形的内角和是(92)1801260-⨯=o o,∴1260360-=o o 900︒,故选:B.【点睛】此题考查多边形的内角和公式、外角和,熟记公式是解题的关键.5.如图,在矩形ABCD 中, 4,6,AB BC ==点E 是AD 的中点,点F 在DC 上,且1,CF =若在此矩形上存在一点P ,使得PEF V 是等腰三角形,则点P 的个数是( )A .3B .4C .5D .6【答案】D【解析】【分析】 根据等腰三角形的定义,分三种情况讨论:①当EF 为腰,E 为顶角顶点时,②当EF 为腰,F 为顶角顶点时,③当EF 为底,P 为顶角顶点时,分别确定点P 的位置,即可得到答案.【详解】∵在矩形ABCD 中,461AB BC CF ===,,,点E 是AD 的中点,32184EF ∴==>.∴PEF V 是等腰三角形,存在三种情况:①当EF 为腰,E 为顶角顶点时,根据矩形的轴对称性,可知:在BC 上存在两个点P ,在AB 上存在一个点P ,共3个,使PEF V 是等腰三角形;②当EF 为腰,F 为顶角顶点时,186,Q∴在BC 上存在一个点P ,使PEF V 是等腰三角形;③当EF 为底,P 为顶角顶点时,点P 一定在EF 的垂直平分线上,∴EF 的垂直平分线与矩形的交点,即为点P ,存在两个点.综上所述,满足题意的点P 的个数是6.故选D .【点睛】本题主要考查等腰三角形的定义,矩形的性质,熟练掌握等腰三角形的定义和矩形的性质,学会分类讨论思想,是解题的关键.6.如图,四边形ABCD和四边形AEFG均为正方形,连接CF,DG,则DGCF=()A.23B.22C.33D.32【答案】B 【解析】【分析】连接AC和AF,证明△DAG∽△CAF可得DGCF的值.【详解】连接AC和AF,则22 AD AGAC AF==,∵∠DAG=45°-∠GAC,∠CAF=45°-GAC,∴∠DAG=∠CAF.∴△DAG∽△CAF.∴22 DG ADCF AC==.故答案为:B.【点睛】本题主要考查了正方形的性质、相似三角形的判定和性质,解题的关键是构造相似三角形.7.如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式.分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象.解:设AC与BD交于O点,当P在BO上时,∵EF∥AC,∴EF BPAC BO=即43y x=,∴43y x =;当P在OD上时,有643 DP EF y x DO AC-==即,∴y=483x -+.故选C .8.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .12【答案】A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数. 解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A .考点:多边形内角与外角.9.如图,四边形ABCD 是菱形,30ACD ∠=︒,2BD =,则AC 的长度为( )A .3B .2C .4D .2【答案】A【解析】【分析】 由菱形的性质,得到AC ⊥BD ,由直角三角形的性质,得到BO=1,BC=2,根据勾股定理求出CO ,即可求出AC 的长度.【详解】解,如图,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵2BD =,∴BO=1,在Rt △OBC 中,30BCO ACD ∠=∠=︒,∴BC=2, ∴22213CO =-=; ∴23AC =;故选:A.【点睛】本题考查了菱形的性质,勾股定理解直角三角形,解题的关键是熟练掌握菱形的性质,利用勾股定理求出OC 的长度.10.如图,在矩形ABCD 中,AB m =,6BC =,点E 在边CD 上,且23CE m =.连接BE ,将BCE V 沿BE 折叠,点C 的对应点C '恰好落在边AD 上,则m =( )A .33B .3C 3D .4【答案】A【解析】【分析】设AC′=x ,在直角三角形ABC′和直角三角形DEC′中分别利用勾股定理列出关于x 和m 的关系式,再进行求解,即可得出m 的值.【详解】解:设AC′=x ,∵AB=m ,BC=6,23CE m =, 根据折叠的性质可得:BC′=6,EC′=23CE m =, ∴C ′D=6-x ,DE=13m ,在△ABC ′中,AB 2+AC′2=BC′2,即2226x m +=,在△DEC ′中,C′D 2+DE 2=C′E 2,即()22212633x m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭, 化简得:()2236x m -=,代入2226x m +=中,得:()222366x x -=-,解得:x=3或x=6,代入2226x m +=,可得:当x=3时,m=33或33-(舍),当x=6时,m=0(舍),故m 的值为33,故选A.【点睛】本题考查了折叠的性质,勾股定理,解一元二次方程,有一定难度,解题的关键是根据折叠的性质运用勾股定理求解.11.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN .若四边形MBND 是菱形,则AM MD等于( )A .35B .23C .38D .45【答案】A【解析】试题分析:设AB=a,根据题意知AD=2a ,由四边形BMDN 是菱形知BM=MD ,设AM=b,则BM=MD=2a-b.在Rt △ABM 中,由勾股定理即可求值.试题解析:∵四边形MBND 是菱形,∴MD=MB .∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,∴MD=MB=2a-b=53b,∴3553AM bMD b==.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.12.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点()5,3D在边AB上,以C为中心,把CDB△旋转90︒,则旋转后点D的对应点'D的坐标是( )A.()2,10B.()2,0-C.()2,10或()2,0-D.()10, 2或()2,0-【答案】C【解析】【分析】先根据正方形的性质求出BD、BC的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q四边形OABC是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB△逆时针旋转90︒,此时旋转后点B的对应点B'落在y轴上,旋转后点D的对应点D¢落在第一象限由旋转的性质得:2,5,90B D BD BC BC CBD B'''''====∠=∠=︒10OB OC B C''∴=+=∴点D¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.13.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】 先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得21OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,23AD =∴243AB AD ==∴226BD AB AD =-= ∵四边形ABCD 是平行四边形∴132OB OD BD ===,12OA OC AC == ∴在Rt AOD △中,23AD =,3OD =∴2221OA AD OD =+=∴21OC OA ==. 故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.14.将一个边长为4的正方形ABCD 分割成如图所示的9部分,其中ABE △,BCF V ,CDG V ,DAH V 全等,AEH △,BEF V ,CFG △,DGH V 也全等,中间小正方形EFGH 的面积与ABE △面积相等,且ABE △是以AB 为底的等腰三角形,则AEH △的面积为( )A .2B .169C .32D .2【答案】C【解析】【分析】【详解】 解:如图,连结EG 并向两端延长分别交AB 、CD 于点M 、N ,连结HF ,∵四边形EFGH 为正方形,∴EG FH =,∵ABE △是以AB 为底的等腰三角形,∴AE BE =,则点E 在AB 的垂直平分线上,∵ABE △≌CDG V ,∴CDG V 为等腰三角形,∴CG DG =,则点G 在CD 的垂直平分线上,∵四边形ABCD 为正方形,∴AB 的垂直平分线与CD 的垂直平分线重合,∴MN 即为AB 或CD 的垂直平分线,则,EM AB GN CD ^^,EM GN =,∵正方形ABCD 的边长为4,即4AB CD AD BC ====,∴4MN =,设EM GN x ==,则42EG FH x ==-,∵正方形EFGH 的面积与ABE △面积相等, 即2114(42)22x x ?-,解得:121,4x x ==, ∵4x =不符合题意,故舍去,∴1x =,则S 正方形EFGH 14122==⨯⨯=V ABE S , ∵ABE △,BCF V ,CDG V ,DAH V 全等,∴2====V V V V ABE BCF CDG DAH S S S S ,∵正方形ABCD 的面积4416=⨯=,AEH △,BEF V ,CFG △,DGH V 也全等, ∴1(4=V AEH S S 正方形ABCD − S 正方形EFGH 134)(16242)42-=⨯--⨯=V ABE S , 故选:C .【点睛】本题考查了正方形的性质、全等三角形的性质和等腰三角形的性质,解题的关键是求得ABE △的面积.15.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72【答案】B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =V V , ∴18EFCABCD S S =V 四边形, ∴1176824AGH EFC ABCD S S S +=+=V V 四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.16.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .4【答案】A【解析】【分析】 因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形,故④选项正确,故选A .【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.17.如图,四边形ABCD 和EFGH 都是正方形,点E H ,在ADCD ,边上,点F G ,在对角线AC 上,若6AB ,则EFGH 的面积是( )A .6B .8C .9D .12【解析】【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由四边形EFGH是正方形,推出△AEF与△DFH是等腰直角三角形,于是得到DE=22EH=22EF,EF=22AE,即可得到结论.【详解】解:∵在正方形ABCD中,∠D=90°,AD=CD=AB,∴∠DAC=∠DCA=45°,∵四边形EFGH为正方形,∴EH=EF,∠AFE=∠FEH=90°,∴∠AEF=∠DEH=45°,∴AF=EF,DE=DH,∵在Rt△AEF中,AF2+EF2=AE2,∴AF=EF=22AE,同理可得:DH=DE=22EH又∵EH=EF,∴DE=2EF=2×2AE=12AE,∵AD=AB=6,∴DE=2,AE=4,∴EH=2DE=22,∴EFGH的面积为EH2=(22)2=8,故选:B.【点睛】本题考查了正方形的性质,等腰直角三角形的判定及性质以及勾股定理的应用,熟练掌握图形的性质及勾股定理是解决本题的关键.18.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD 于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.16【答案】D【解析】先证明四边形ABEF 是平行四边形,再证明邻边相等即可得出四边形ABEF 是菱形,得出AE ⊥BF ,OA=OE ,OB=OF=12BF=6,由勾股定理求出OA ,即可得出AE 的长. 【详解】如图所示:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠DAE=∠AEB ,∵∠BAD 的平分线交BC 于点E ,∴∠DAE=∠BAE ,∴∠BAE=∠BEA ,∴AB=BE ,同理可得AB=AF ,∴AF=BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形,∴AE ⊥BF ,OA=OE ,OB=OF=12BF=6, ∴2222=106AB OB --=8,∴AE=2OA=16.故选D .【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF 是菱形是解决问题的关键.19.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连结BF ,交AC 于点M ,连结DE ,BO .若∠BOC =60°,FO =FC ,则下列结论:①AE =CF ;②BF 垂直平分线段OC ;③△EOB ≌△CMB ;④四边形是BFDE 菱形.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用ASA定理证明△AOE≌△COF,从而判断①;利用线段垂直平分线的性质的逆定理可得结论②;在△EOB和△CMB中,对应直角边不相等,则两三角形不全等,从而判断③;连接BD,先证得BO=DO, OE=OF,进而证得OB⊥EF,因为BD、EF互相垂直平分,即可证得四边形EBFD是菱形,从而判断④.【详解】解:∵矩形ABCD中,O为AC中点∴∠DCA=∠BAC,OA=OC,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,故①正确∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故②正确;∵△BOC为等边三角形,FO=FC,∴BO⊥EF,BF⊥OC,∴∠CMB=∠EOB=90°,∴BO≠BM,∴△EOB与△CMB不全等;故③错误;连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,且BO=DO由①可知△AOE≌△COF,∴OE=OF∴四边形EBFD是平行四边形由②可知,OB=CB,OF=FC又∵BF=BF∴△OBF≌△OCF∴BD⊥EF∴平行四边形EBFD是菱形,故④正确所以其中正确结论的个数为3个;故选:C.【点睛】本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识.20.一个多边形的每一个外角都是72°,那么这个多边形的内角和为( )A.540°B.720°C.900°D.1080°【答案】A【解析】【详解】解:∵多边形的每一个外角都是72°,∴多边形的边数为:3605 72,∴该多边形的内角和为:(5-2)×180°=540°.故选A.【点睛】外角和是360°,除以一个外角度数即为多边形的边数.根据多边形的内角和公式可求得该多边形的内角和.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典四边形习题
50道(附答案)
1.已知:在矩形ABCD 中,A E ⊥BD 于E , ∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直角梯形ABCD 中,BC=CD=a
且∠BCD=60度,E 、F 分别为梯形的腰AB 、 DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC ,
AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10 求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD , AC 为邻边作平行四边形ACED ,DC 延长线
交BE 于F ,求证:F 是BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB , AC 平分∠A ,又∠B=60度,梯形的周长是 20cm, 求:AB 的长。

6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

7、已知:梯形ABCD 的对角线的交点为E
_ D
_ C
_B _ C
_ A _ B
_ A
_ B
_ E _A
_ B
若在平行边的一边BC 的延长线上取一点F , 使S ABC ∆=S EBF ∆,求证:DF ∥AC 。

8、在正方形ABCD 中,直线EF 平行于 对角线AC ,与边AB 、BC 的交点为E 、F , 在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,
求证:AH 与正方形的边长相等。

9、若以直角三角形ABC 的边AB 为边,
在三角形ABC 的外部作正方形ABDE ,
AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

10、正方形ABCD ,E 、F 分别是AB 、AD 延长线
上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC
于K ,交CD 于H ,求证:EG=GC=CH=HF 。

11、在正方形ABCD 的对角线BD 上,取BE=AB ,
若过E 作BD 的垂线EF 交CD 于F ,
求证:CF=ED 。

12、平行四边形ABCD 中,∠A 、∠D 的平分线相交于E ,AE 、
DE 与DC 、AB 延长线交于G 、F ,求证:AD=DG=GF=FA 。

13、在正方形ABCD 的边CD 上任取一点E ,
_B
_
C
_B
_ F
_ B _ C
_
F _ C
_ D _ B
_ F
_ F _ G
_ B _A _ E
延长BC到F,使CF=CE,
求证:BE⊥DF
完整的自己,其实散落在世界各地,你去每一个地方,你就学习到那边人看世界跟生命的角度,你就捡回来一片,然后可以一片一片地拼回完整的自己,你就会有一个比较不一样的世界观,跟看待生命的角度。

14、在四边形ABCD中,AB=CD,P、Q
分别是AD、BC中点,M、N分别是对角线AC、BD的中点,求证:PQ⊥MN。

15、平行四边形ABCD中,AD=2AB,
AE=AB=BF求证:CE⊥DF。

16、在正方形ABCD中,P是BD上一点,过P引PE⊥BC交BC于E,过P引PF⊥CD 于F,求证:AP⊥EF。

17、过正方形ABCD的顶点B引
对角线AC的平行线BE,
在BE上取一点F,
使AF=AC,若作菱形CAFÉ,
求证:AE及AF三等分∠BAC。

18、以⊿ABC的三边AB、BC、CA分别
为边,在BC的同侧作等边三角形ABD、BCE、CAF,求证:ADEF是平行四边形。

_B_C
_Q
_E_F
_A_B
_C
_D_F
_E
_F _B_C
19、M、N为⊿ABC的边AB、AC的中点,
E、F为边AC的三等分点,延长ME、NF 交于D点,连结AD、DC,求证:
⑴BFDE是平行四边形,
⑵ABCD是平行四边形。

20、平行四边形ABCD的对角线交于O,作OE⊥BC,AB=37cm, BE=26cm, EC=14cm, 求:平行四边形ABCD的面积。

21、在梯形ABCD中,AD∥BC,高AE=DF =12cm,两对角线BD=20cm,AC=15cm,
求梯形ABCD的面积。

22、在梯形ABCD中,二底AD、BC
的中点是E、F,在EF上任取一点O,
求证:S
OAB
∆=S
OCD

23、平行四边形ABCD中,EF平行于
对角线AC,且与AB、BC分别交于E、F,
求证:S
ADE
∆=S
CDF

24、梯形ABCD的底为AD、BC,若CD的中点为E
求证:S
ABE
∆=
2
1
S
ABCD
25、梯形ABCD的面积被对角线BD分成
3:7两部分,求这个梯形被中位线EF分成的两部分的面积的比。

_B_C
_E
_B_C
_E_F
_B_C
_F
_B_C
_F
_B_C
26、在梯形ABCD 中,AB ∥CD ,M 是BC 边 的中点,且MN ⊥AD 于N , 求证:S ABCD =MN ·AD 。

27、求证:四边形ABCD 的两条对角线之和小于它的周长而大于它的周长之半。

28、平行四边形ABCD 的对边AB 、 CD 的中点为E 、F , 求证:DE 、BF 三等分对角线AC 。

29、证明:顺次连结四边形的各边中点的四边形是平行四边形,其周长等于原四边形的对角线之和。

30、在正方形ABCD 的CD 边上取一点G , 在CG 上向原正方形外作正方形GCEF ,
求证:DE ⊥BG ,DE=BG 。

31、在直角三角形ABC 中,CD 是斜边AB 的高,∠A 的平分线AE 交CD 于F ,交BC 于E ,EG ⊥AB 于G ,求证:CFGE 是菱形。

_ A _ B
_ B _ C
_ C _ B _ E
32、若分别以三角形ABC 的边AB 、AC 为边,在三角形外作正方形ABDE 、ACFG , 求证:BG=EC ,BG ⊥EC 。

33、求证:对角线相等的梯形是等腰梯形。

34、正方形ABCD 中,M 为AB 的任意点, MN ⊥DM ,BN 平分∠CBF , 求证:MD=NM
35、在梯形ABCD 中,AD ∥BC ,AD=12cm , BC=28cm ,EF ∥AB 且EF 平分ABCD 的面积, 求:BF 的长。

36、平行四边形ABCD 中,E 为AB 上的任一点, 若CE 的延长线交DA 于F ,连结DE , 求证:S ADE ∆=S BEF ∆
37、过四边形ABCD 的对角线BD 的中点E 作AC 的平行线FEG ,与AB 、AC 的交点分别为 F 、G ,求证:AG 或FC 平分此四边形的面积,
38、若以三角形ABC 的边AB 、AC 为边
_
_ B _ C
_ F
_ A
_ B
_F
_D
_ A
_ F
向三角形外作正方形ABDE 、ACFG , 求证:S AEG ∆=S ABC ∆。

39、四边形ABCD 中,M 、N 分别是对角线 AC 、BD 的中点,又AD 、BC 相交于点P , 求证:S PMN ∆=
4
1
S ABCD 。

40、正方形ABCD 的边AD 上有一点E , 满足BE=ED+DC ,如果M 是AD 的中点, 求证:∠EBC=2∠ABM ,
41、若以三角形ABC 的边AB 、BC 为边向 三角形外作正方形ABDE 、BCFG ,N 为AC 中点,求证:DG=2BN ,BM ⊥DG 。

42、从正方形ABCD 的一个顶点C 作CE 平行 于BD ,使BE=BD ,若BE 、CD 的交点为F , 求证:DE=DF 。

43、平行四边形ABCD 中,直线FH 与AB 、 CD 相交,过A 、D 、C 、B ,向FH 作垂线, 垂足为G 、F 、E 、H , 求证:AG-DF=CE-BH 。

44、四边形ABCD 中,若∠A=∠C ,
求证各角平分线围成的四边形等腰梯形。

_ A
_ B
_ C
_B
_A _C _
N
45、正方形ABCD 中,∠EAF=45度 求证:BE+DF=EF 。

46、正方形ABCD 中,点P 与B 、C 的 连线和BC 的夹角为15度 求证:PA=PD=AD 。

47、四边形ABCD 中,AD=BC ,EF 为AB 、DC 的中点的连线,并分别与AD 、BC 延长线交于 M 、N ,求证:∠AME=∠BNE 。

48、正方形ABCD 中,MN ⊥GH , 求证:MN=HG 。

49、正方形ABCD 中,E 是边CD 的中点,F 是线段CE 的中点
求证:∠DAE=2
1
∠BAF 。

50、等腰梯形ABCD 中,DC ∥AB , AB>CD ,AD=BC ,AC 和BD 交于O , 且所夹的锐角为60度,E 、F 、M 分别 为OD 、OA 、BC 的中点。

求证:三角形EFM 为等边三角形。

_ B _ E
_ F
_ B
_ A
_A _ B
_ E
_ N
_ C
_ B
_ E
答案。

相关文档
最新文档