MIMO技术杂谈(二):犹抱琵琶半遮面--MIMO信道中隐藏的秘密
移动通信的MIMO技术
移动通信的MIMO技术移动通信技术一直在不断发展和演进,以满足用户对更高速、更可靠的通信需求。
多输入多输出(MIMO)技术作为其中一种重要的发展方向,其在提高通信性能和增强信号覆盖方面具有显著优势。
本文将对MIMO技术的原理、应用和未来发展进行探讨。
一、MIMO技术的原理MIMO技术利用多个天线进行数据传输和接收,通过同时传输多个数据流,提高信号传输速率和系统容量。
其基本原理是利用多个天线在发射端同时发送不同数据流,接收端的多个天线则同时接收这些数据流,并通过解调和复合技术还原出原始信号。
通过利用天线之间的空间多样性和分集增益,MIMO技术可以有效提高系统的吞吐量、抗干扰能力和信号覆盖范围。
二、MIMO技术的应用1.无线局域网(WLAN):MIMO技术已广泛应用于Wi-Fi网络中,通过增加天线数量和使用多个频段,可以提高网络的传输速率和覆盖范围,为用户提供更稳定、更快速的无线接入体验。
2.移动通信:MIMO技术在4G LTE和5G移动通信标准中得到了广泛应用。
通过利用多个天线进行空间复用和频谱复用,可以提高系统的峰值传输速率,降低信道干扰,提升用户体验和网络容量。
3.无线电广播和电视:MIMO技术在无线电广播和电视传输中也有应用,通过使用多个天线发送和接收信号,可以提高信号的覆盖范围和质量,减少信号受阻和衰减的影响,提升音视频传送的效果。
4.车联网:MIMO技术在车载通信中也有应用,通过利用车载天线进行信号传输和接收,可以提升车联网系统的可靠性和传输速率,支持高速移动环境下的数据传输和车辆间通信。
三、MIMO技术的进一步发展1.大规模MIMO:大规模MIMO是MIMO技术的一种演进形式,通过进一步增加天线数量和采用更高级的信号处理技术,将可以实现更高的信号传输速率和更强的抗干扰能力。
大规模MIMO将在未来的5G和6G通信系统中得到广泛应用。
2.智能反馈技术:智能反馈技术是指通过对信道状态信息进行精确测量和预测,并将其作为反馈信号发送到发射端,以实现更高效的MIMO数据传输。
MIMO技术杂谈(二):犹抱琵琶半遮面--MIMO信道中隐藏的秘密
MIMO技术杂谈(二):犹抱琵琶半遮面--MIMO信道中隐藏的秘密犹抱琵琶半遮面--MIMO信道中隐藏的秘密无线通信中,最让人难以捉摸的,就是那看不见,摸不着的无线信道了。
但是,正因为它的变化莫测,才让无线通信具有了独特的魅力。
正如Tse在他的大作《无线通信基础》(Fundamentalof Wireless Communication)中说的:衰落和干扰,让无线通信的研究变得有趣。
然而衰落本身来无影,去无踪,研究中,我们也只能通过概率统计的方法,才能捕获它扑朔的身影。
无线信道根据其自身特点和研究需要,可以建模成多种模型。
其中最经典的,江湖人称“独立同分布模型(independentlyand identically distribute,简称i.i.d)”。
比如在介绍一个传播环境时,我们说“……在一个4x1的MISO系统中,假设每条路径的传输成功率都是1/2……”描述的就是这种模型。
其中“独立”和“同分布”俩个名词都源自概率论。
“独立”是说每条路径的传输成功与否,相互之间并不影响;而“同分布”表示概率分布相同,即成功率都是1/2。
我们已经知道,对付这种信道最有效的方法之一就是分集,获得的分集增益越多,传输的可靠性就越高。
但是,分集技术的应用并没有让江湖太平多久,“衰落相关性”的出现,又在江湖上掀起了一阵波澜。
为了更好的理解相关性的概念,我们先来看一个例子。
比方说我们有一车货物要从A地运到B地,有3条路可以选择,分别经过城市X,Y,Z。
但X市和Y市的地理位置非常接近。
在出发前我们听到天气预报说X市会有大雨,那我们一定会选择绕道走Z市,而不选择Y市。
为什么?答案很简单,X与Y市离得那么近,若X市大雨,Y市天气也好不到哪去,这种天气间相互影响的现象就说明X市与Y市的天气具有相关性。
所以用一句话概括相关性,就是“他好,我也好”。
原来我们有3条路可选,但因为X与Y市天气条件近似,实则只有两条路线可选,其中一条神秘的“消失”了,这种现象对MIMO系统会产生什么样的影响呢?在MIMO系统中,“衰落相关性”扮演者同样的角色。
mimo技术工作原理
mimo技术工作原理MIMO技术工作原理MIMO(Multiple-Input Multiple-Output)技术是一种无线通信技术,通过在发送和接收端使用多个天线,可以显著提高无线通信系统的性能。
本文将详细介绍MIMO技术的工作原理及其优势。
一、MIMO技术的基本原理MIMO技术利用了多个天线之间的独立性,通过在发送端同时发送多个独立的数据流,并在接收端同时接收这些数据流,从而提高了系统的吞吐量和可靠性。
MIMO系统的天线数目被称为传输链路的MIMO 阶数,通常用MxN来表示,其中M是发送端的天线数目,N是接收端的天线数目。
在MIMO系统中,发送端通过线性组合来发送多个数据流。
例如,对于一个2x2的MIMO系统,发送端可以使用两个天线分别发送两个数据流,并通过线性组合将它们发送出去。
接收端的天线收到经过信道传输后的信号,并通过信道估计和解调来恢复出发送端发送的数据。
二、空间复用技术MIMO技术中的一个重要概念是空间复用技术。
通过在发送端使用多个天线,MIMO系统可以将不同的数据流同时发送到空间中的不同位置,从而实现空间复用。
接收端的多个天线可以分别接收到这些数据流,并通过信道估计和解调来恢复出原始的数据。
空间复用技术可以显著提高系统的吞吐量和可靠性。
通过将多个数据流同时发送,MIMO系统可以充分利用空间资源,增加数据的传输速率。
此外,由于多个数据流之间是独立的,即使某些数据流受到干扰或衰落,其他数据流仍然可以正常传输,从而提高了系统的可靠性。
三、空时编码技术除了空间复用技术外,MIMO技术还可以利用空时编码技术来提高系统的性能。
空时编码技术通过在发送端对不同的数据流进行编码,并利用多个天线分别发送编码后的数据流,从而实现数据的冗余传输。
在接收端,利用接收到的多个数据流,可以通过信道估计和解码来恢复出原始的数据。
由于编码后的数据流之间存在冗余,即使某些数据流受到干扰或衰落,接收端仍然可以通过其他数据流来恢复出原始的数据,从而提高了系统的可靠性。
通俗易懂的MIMO技术简介3篇
通俗易懂的MIMO技术简介第一篇:什么是MIMO技术?MIMO技术全称Multiple Input Multiple Output,中文翻译为“多输入多输出”,是一项近年来日益受到重视的无线通信技术。
简单来说,MIMO技术就是利用多个天线进行数据传输和接收,从而提高无线通信系统的可靠性和吞吐量。
MIMO技术的发展始于上世纪90年代,当时是由于无线通信系统中的多径效应导致信号传输质量下降,而MIMO是通过一定的技术手段来利用多个信道进行信号传输和接收,从而提高系统的性能表现。
在传统的单天线系统中,信号只能通过一个天线进行传输和接收,如有多径效应或者干扰等问题出现,就会影响信号的传输和接收质量。
而在MIMO系统中,可以利用多个天线同时进行传输和接收,从而提高了系统的可靠性和吞吐量,降低了误码率和传输延迟。
MIMO技术不仅适用于无线通信系统,也可以应用于Wi-Fi、蓝牙、雷达等领域,既能提高系统的性能表现,也可以降低功耗和成本。
随着5G时代的到来,MIMO技术将会得到更加广泛的应用和发展。
第二篇:MIMO技术的原理和实现方式MIMO技术的实现基于两个基本概念:时空编码和空间复用。
其中,时空编码是指将数据信号与多个天线传输的信号进行编码,以此提高传输的可靠性和吞吐量;空间复用是指在多个天线上进行数据的同时传输,以此提高系统的吞吐量和信号质量。
时空编码主要有两种方式:空时块码(STBC)和空时分组码(STGC)。
其中,STBC是在时间和空间两个方向进行数据编码,以此提高传输可靠性,适用于多径效应较强的无线环境;STGC则是在时间和频域两个方向进行数据编码,以此提高传输速率,适用于高速无线通信环境。
空间复用技术则主要有两种方式:空分多路复用(SDM)和空时多路复用(STDM)。
其中,SDM是通过将数据进行分割,然后分别发送到多个天线上,以此提高系统的吞吐量;STDM则是通过将不同的数据序列分成多个时间片段,在不同天线上传输,以此降低多径效应和干扰对系统的影响。
mimo技术
mimo技术MIMO技术是一种通信技术,全称是多输入多输出技术。
它的发展历程源于20世纪末名为MIMO的信息论研究,而现代MIMO技术则发源于20世纪末至21世纪初的通信领域中,通过研究多输入多输出天线(Multiple Input Multiple Output, MIMO)系统而取得的技术。
MIMO技术的出现是由于在现代通信中,信道的扩散带宽越来越窄,导致信噪比变低,从而降低信息的传输速率和可靠性。
而MIMO技术则可以克服这个问题,其主要目的是增加无线信号的传输速率和稳定性。
其核心思想是通过多个天线之间的异构性来增加数据的传输信道数,从而提高信道的传输带宽和信号品质。
MIMO技术的基本原理是通过在发送端和接收端采用多个天线,利用多个天线之间的异构性,将数据分成多个子流,经过不同的天线发射,在接收端进行合并,从而增加信道的容量和传输速率。
其中,MIMO技术主要可以分为两个方向:空间多路复用技术(Spatial Multiplexing,SM)和空间分集技术(Spatial Diversity,SD)。
空间多路复用技术(SM)是一种利用空间供给多个用户同步进行的数据传输技术。
在SM技术中,发送端会将不同的数据流分别经过不同的天线发射,接收端则通过接收到不同天线上的信号,将其分别解调和合成,最终得到原始数据流。
SM 技术主要适用于有限的发射功率和不断增加的用户量的信道。
空间分集技术(SD)则是一种通过在发射端或接收端增加多个天线的技术,通过差异化的传输,让接收端可以同时接收多个信号,从而降低噪声干扰和提高信号质量。
SD技术可以分为多种形式,包括时空分集、时度分集等技术,主要适用于复杂的移动环境以及需要高速可靠数据传输的场景。
MIMO技术的应用有很广泛。
在无线通信领域中,MIMO技术已被广泛应用于Wi-Fi、蓝牙、LTE、5G等技术的研究和应用中。
同时,在雷达探测、无线电广播、智能交通系统等领域中,MIMO技术也得到了广泛应用。
MIMO技术概述
迫零波束成型实际上是先进行用户调度然后再进行功率分配,最优功 率分配则可以使用功率注水使容量最大化
MIMO-OFDM
OFDM是一种多载波传输技术,通过串并转换把高速串行数据分散到N个相互 正交的子载波上进行传输,各个子载波的符号速率减为高速数据符号速率的 N分之一,子载波的符号持续时间可以增大为串行数据符号的N倍,时延扩展 与符号周期的比值也降低为原来的N分之一。通过在OFDM符号之间插入持续 时间大于信道最大传输延迟时间的循环前缀CP(Cyclic Prefix),就可以有效的 消除符号间干扰(Inter-Symbol Interference,ISI)
分层空时结构
V-BLAST接收机结构:
简单接收机结构: 匹配滤波器:利用接收天线阵列对数据流的接受空间进行波束成形, 在低信噪比时的性能接近于容量 解相关器:将接收信号投影到与其他所有数据流的接收信号特征图相 互正交的子空间上。 MMSE:实现不活感兴趣的数据流能量与消除数据间干扰的最优折中 的线性接收机,在低信噪比时和高信噪比时均接近最优性能 串行消除:利用译码运算后的结构对数据流进行顺序译码,从而消除 译码数据流对接收信号的影响
MIMO-OFDM
系统框图
MIMO-OFDM
系统框图
最新进展
MIMO技术是第三代和未来移动通信系统实现高数据速率、 大系统容量,提高传输质量的重要途径。
其中,基于分立式多天线的MIMO技术中的分层空时结构 和空时分组码都成为近年来移动通信领域的研究热点。 空时分组码译码的低复杂度使其成为最广泛应用的一种空 时编码,3GPP就以其作为发送分集的一种方式。 分层空时结构可以获得极高的数据速率,是未来移动通信 系统中为了获得大系统容量而极有可能采用的方案之一, 3GPP标准已将其作为MIMO技术中的一个重要提案
MIMO天线各种技术分析
MIMO天线各种技术分析多入多出(MIMO)系统指在发射端和接收端同时使用多个天线的通信系统。
研究证明,MIMO技术非常适用于城市内复杂无线信号传播环境下的无线宽带通信系统,在室内传播环境下的频谱效率可以达到20~40 bit/s/Hz;而使用传统无线通信技术在移动蜂窝中的频谱效率仅为1~5 bit/s/Hz,在点到点的固定微波系统中也只有10~12 bit/s/Hz。
通常,射频信号多径会引起衰落,因而被视为有害因素。
然而研究结果表明,对于MIMO系统来说,多径可以作为一个有利因素加以利用。
MIMO技术作为提高数据传输速率的重要手段得到人们越来越多的关注,被认为是新一代无线通信技术的革命。
1 MIMO系统的3种主要技术当前,MIMO技术主要利用发射分集的空时编码、空间复用和波束成型等3种多天线技术来提升无线传输速率及品质。
1.1 发射分集的空时编码基于发射分集技术的空时编码主要有2种,即空时分组码(STBC)和空时格码(STTC)。
虽然空时编码方案不能直接提高数据率,但是通过这些并行空间信道独立、不相关地传输信息,从而使信号在接收端获得分集增益,为数据实现高阶调制创造条件。
1.1.1 空时分组码(STBC)STBC在发射端对数据流进行联合编码以减小由于信道衰落和噪声所导致的符号错误率,它通过在发射端增加信号的冗余度,使信号在接收端获得分集增益,空时分组码是将同一信息经过正交编码后从多根天线发射出去。
MIMO系统的原理如图1所示,传输信息流s(k)经过空时编码形成N个信息子流ci(k),i=1,...,N。
这N个信息子流由N个天线发射出去,经空间信道后由M个接收天线接收。
多天线接收机利用先进的空时编码处理能够分开并解码这些数据子流,从而实现最佳的处理。
特别是这N个子流同时发射信号,各发射信号占用同一频带,因而并未增加带宽。
若各发射接收天线间的通道响应独立不相关,则多入多出系统可以创造多个并行空间信道。
宽带无线通信中MIMO技术的研究
a1
TX RX
b2
RX
输入 数据
串 并 变 换
a
2
TX RX TX RX
b3
a3
V-BLAST 信号处理
输出 数据
am
TX
RX
发射天线数:m 接受天线数:n t 向量符号: a [ a1 a 2 ...a m ]
RX
bn
图2 VBLAST系统框图
5、MIMO-OFDM系统(1)
•
MIMO-OFDM系统中的空频分组编码(SFBC)技术: 空频分组码,他是在空域和频域两维方向上进行编码的一 种联合编码技术 ,空频分组码设计的码子也要求满足正 交性,因此空频分组码的码子形式与空时分组码是完全一 样的。 • MIMO-OFDM系统根据编码技术的不同可以分为以下几类: (1)空时分组码OFDM(STBC-OFDM) (2)空时网格码OFDM(STTC-OFDM) (3)垂直分层空时码OFDM(VBLAST-OFDM) (4)空频分组码OFDM系统(SFBC-OFDM)
a1
OFDM 调制
TX
RX RX
OFDM解调 V-BLAST OFDM解调 信号处 理和解 码器 接 收 数 据
输 入 数 据
向 量 编 码 器
a2
OFDM 调制
TX
RX
am TX
OFDM解调
OFDM 调制
信道估计
图4. VBLAST-OFDM系统框图
5、MIMO-OFDM系统(6)
(3)SFBC-OFDM系统
4、MIMO系统中的空时编码技术 (2)
• (2)空时分组码:空时网格码虽然能获得很大的编码增 益和分集增益,但是由于在接收端采用维特比译码,其译 码复杂度随着天线数和网格码状态数的增加成指数增加, 因此在实际中应用有些困难。这就有了空时分组编码的出 现。 空时分组码则是根据码子的正交设计原理来构造空时码 子 ,空时分组码最早由Alamouti提出的。其设计原则就是 要求设计出来的码子各行各列之间满足正交性。 接收时 采用最大似然检测算法进行解码,由于码子之间的正交性, 在接收端只需做简单的线性处理即可。
MIMO技术介绍
MIMO技术介绍MIMO(Multiple-Input Multiple-Output)是一种无线通信技术,它通过在发送端和接收端使用多个天线来实现更高的频谱效率、更好的信号质量和更远的传输距离。
MIMO技术是由无线电通信中的多径效应所驱动的,这意味着信号从发送端到接收端会经历多个传播路径,并且会受到多种干扰的影响。
MIMO技术通过在发送端和接收端增加天线数量来增强信号的传输质量和信道容量。
MIMO技术可以追溯到20世纪60年代,在那个时候,人们开始研究多天线系统。
然而,由于当时计算能力的限制,直到近20年后才开始真正广泛应用。
现代MIMO技术发展起来主要依赖于两个重要的理论突破:空间复用理论和空间多样性理论。
空间复用理论是MIMO技术的基础,也是MIMO技术实现高频谱效率的关键。
通过在发送端和接收端使用多个天线,MIMO技术可以在同一频率上同时传输多个数据流。
在传统的无线通信系统中,每个频率只能传输一个数据流,而MIMO技术可以将多个数据流通过不同的路径并行地传输,从而提高频谱利用率和传输速率。
空间多样性理论是MIMO技术中的另一个重要概念。
它利用了多天线系统中多个信号间的独立性,以及每个接收天线对信号的不同接收质量。
通过在多个天线之间传输同样的数据,接收端可以通过综合不同路径上的信号来提高信号质量和抵抗干扰。
通过利用多个输入和输出,MIMO技术可以显著改善信号的可靠性和可达性。
MIMO技术的好处不仅仅体现在提高频谱效率上。
通过在发送端和接收端使用多个天线,MIMO技术可以提高信号的鲁棒性和抗干扰能力。
在无线通信中,信号往往会受到多径衰落、多径干扰以及其他用户的干扰。
MIMO技术可以通过综合多个信号来抵消这些干扰,从而提高信号质量和系统性能。
此外,MIMO技术还可以提供更好的覆盖范围和更远的传输距离,从而实现更可靠的无线通信。
实际应用中,MIMO技术已经广泛应用于4G和5G无线通信系统中。
在4G系统中,MIMO技术已经成为提高系统性能的关键技术之一、通过在发送端和接收端使用多个天线,4G系统可以显著提高频谱效率和传输速率,实现高速数据传输和多用户接入。
新技术讲座大作业——关于MIMO技术的简单介绍
新技术讲座报告关于MIMO技术的简单介绍姓名:沈云彬学号:02116026任课教师:史琰完成日期:2014.04.17关于MIMO技术的简单介绍摘要:我根据一些关于MIMO的论文、资料的理解,简单介绍了MIMO及其应用背景,并对MIMO技术的优点和在雷达中的应用作了简单的介绍。
MIMO技术室最近很热门的一项技术,随着人们对更高速率和带宽的要求,MIMO技术显得愈发重要。
关键词:MIMO技术、应用背景、优点、MIMO雷达一、MIMO介绍MIMO(Multiple-Input Multiple-Output)(多入多出技术),是应用于WLAN的一项核心技术,通过多根天线在不同频率下工作从而使无线网络实现带宽增倍或者增强信号的功能。
现在MIMO已经广泛应用于军用和民用上,MIMO阵列对空成像雷达、MIMO SAR雷达其实就是一个MIMO的典型应用,民用上,就连简单的路由器已具备了简单的MIMO技术。
实际上多输入多输出(MIMO)技术由来已久,早在1908年马可尼就提出用它来抗衰落。
在20世纪70年代有人提出将多入多出技术用于通信系统,但是对无线移动通信系统多入多出技术产生巨大推动的奠基工作则是上世纪90年代由AT&TBell实验室的学者完成的。
二、MIMO的应用背景随着科学技术的发展,我们对天线的要求也越来越高。
首先,为了实现更高的传输速率,我就需带宽更宽的天线。
像WCDMA的3G网络就是用了两个不同的频率范围来进行接收和发送数据,还有WIFI的信号为了防止干扰,按照频率分成13个信道,另外我们的蜂窝通信系统也是根据频率分成许多信道来减少干扰和增加容量,种种应用使得天线的工作频率变得很宽。
其次,为了让手机等终端有更好的通用性,我们也需要让天线在多个完全不同的频率上工作,像多网通用的手机,我们既要支持900MHz的GSM,也要支持大约1800-2000Mhz的3G网络,相当于把一根天线当多根天线使用,否则我们就需要使用多根天线来实现。
通俗易懂的MIMO技术简介
通俗易懂的MIMO技术简介MIMO概述MIMO技术已经广泛应用在许多现代通信标准中,特别是消费领域。
原因是相对于SISO,MIMO技术有很明显的优势。
MIMO是多路输入多路输出的意思,指的是当一个报文在发射端被一根或者多跟天线传输,而在接收侧被一根或者多根天线接收的情况。
与之比对的是单输入单输出(SISO),SISO 指发送和接收都用1根天线,而另外有种说法叫单输入多输出(SIMO),SIMO指发送用一根,接收有多根天线。
可能有人会对SIMO的输入和输出定义有点奇怪,其实这是因为当初在贝尔实验室最开始定义这个名称时,工程师在发送和接收侧都是分别测试的,而不是整个无线链路测试,因此他们把“IN”定义为发送功能,“OUT”定义为了接收,一直沿用至今。
什么是多天线技术?在发送和接收侧的多天线引入了信号自由度的概念,这在SISO系统是没有的。
这里的自由度主要指的是空间自由度。
这种空间自由度可以被定义三种,分别为“分集”,“复用”或者这两种的组合。
分集(diversity )简单点来说,分集意味着重复:举个例子,多根天线接收同一个信号,就代表发射分集。
由于每根天线在接收数据时也接收到了各自的噪声,但由于各个噪声的不相关性,合并多个天线信号能够消除部分噪声,从而得质量更好的信号。
打个比方,如果从两个不同的方面来看同一个物件,那么得到的评价也会更可靠。
需要说明的是,分集并不一定要多个接收天线才能实现,后面就会讲到,分集也可以使用多个发送天线通过空时编码(STC )技术来实现。
空间复用(Spatial Multiplexing )第二个主要的MIMO 技术为空间复用,空间复用可以在不增加带宽和发送功率的情况下通过成对的MIMO 发送、接收来增加系统吞吐量。
空间复用增加的吞吐量与发送或接收天线数目(较少的那个)成线性关系。
空间复用中,每个传输天线发送不同的bit 流信息,每个接收天线收到来自所有传输天线的线性综合信息。
mimo的技术原理及应用
mimo的技术原理及应用什么是MIMO技术?多输入多输出(Multiple-Input Multiple-Output,简称MIMO)技术是无线通信领域中的一项关键技术。
它利用多个天线进行无线信号的发送和接收,以提高通信系统的性能和容量。
通过在空间域中利用多个发射天线和接收天线,MIMO技术能够实现更高的数据传输速率、更好的信号覆盖范围以及更可靠的通信连接。
MIMO的工作原理MIMO技术的核心原理是基于多天线之间的空间分集效应和信道编码原理。
具体来说,MIMO系统利用多个独立的信道发送并接收多个数据流,利用时、频或空间上的多样性来提高系统的性能。
MIMO系统中的多个发射天线和接收天线之间相互独立,可以独立地发送和接收不同的数据流。
MIMO技术实现了空间复用,即通过在不同的天线之间传输相互独立的数据流,从而提高系统的容量和覆盖范围。
同时,MIMO技术还可以利用信道编码技术来提高系统的可靠性。
通过将冗余信息添加到发送的数据中,MIMO系统能够在存在信道衰落和噪声干扰的情况下更好地恢复原始数据。
MIMO技术的应用MIMO技术在无线通信系统中得到了广泛的应用。
以下是几个常见的应用场景:1.无线局域网(WLAN)MIMO技术被广泛应用于无线局域网(WLAN)中,尤其是在IEEE 802.11n和IEEE 802.11ac标准中。
通过利用MIMO技术,WLAN系统能够在同样的频率带宽下提供更高的数据传输速率和更好的覆盖性能。
MIMO技术为无线网络用户提供了更快的网速和更稳定的网络连接。
2.移动通信系统MIMO技术也被广泛应用于移动通信系统中,例如4G LTE和5G网络。
移动通信系统中的MIMO技术可以显著提高系统的容量和覆盖范围,同时提供更稳定的信号质量。
MIMO技术能够帮助移动通信系统实现高速数据传输和更好的服务质量。
3.无线电广播和电视MIMO技术还可以应用于无线电广播和电视信号的传输中。
通过利用MIMO技术,广播和电视系统可以在同样的频谱资源下提供更多的频道和更好的信号覆盖。
MIMO技术杂谈(三):知己知彼,百战不殆
MIMO技术杂谈(三):知己知彼,百战不殆由于前一阵太忙,隔了这么久才更新第三篇,实在抱歉!之间还不小心还忽略掉了一些论坛消息的处理,请各位见谅。
这篇文章略有些长,中间有一些矩阵分解概念,但内容还算充足,希望对大家有所帮助。
不对的地方也请各位通信战友指正!知己知彼,百战不殆--信道信息的获取和应用上一回我们说到了变化莫测的MIMO信道,并且留下了一个美好的假设:“如果在发送数据之前,我们能够提前获得信道信息,是不是能对发送策略有指导作用,并且有效的帮助我们提升通信系统的性能呢?”本回内容,我们就来回答这些问题。
还记得上回开篇在介绍“相关性”时举得例子么?这里简单的回顾一下:假设有一车货物要从A地运到B地,有3条路可以选择,分别经过城市X,Y,Z。
在出发前我们听到天气预报说X市会有大雨,于是我们选择绕道走Z市,从而避开了受天气影响的X市和Y市。
这里,正是因为我们听到了天气预报,才能选出最佳的出行路线,所以“天气预报信息”为我们的出行提供了非常有效的帮助。
在无线通信系统中,“信道状态信息(ChannelCondition Information,CSI)”就相当于这个例子中的“天气信息”,那么如果我们能够在发送端掌握到及时、准确的“信道状态信息”,是不是就能“避开”那些信道条件不好的传播路径,从而提升通信系统的性能?答案当然是肯定的。
不过,发送端获得“信道状态信息”后,究竟能为MIMO通信系统带来多少好处,我们还是得从数学的角度进行分析,谁让数学是通信的基础呢。
首先我们可以想象一下,我们心目中最佳的信道矩阵,或者叫传输矩阵,应该具有什么样的结构?拿2x2MIMO 系统举例来说,它的传输矩阵具有以下形式(忽略噪声的影响):我们可以很快看出,最佳的传输矩阵H,应该具有的形式是:当传输矩阵拥有这种“对角阵”的形式时,X1和X2和它进行矩阵相乘后,得到的仍然是X1和X2,就好像X1和X2各自通过了一条“透明”的子信道到达接收端,两者之间也没有任何干扰。
MIMO技术
MIMO:新一代移动通信核心技术多输入多输出(MIMO)技术是指在发射端和接收端分别使用多个发射天线和接收天线,信号通过发射端和接收端的多个天线传送和接收,从而改善每个用户的服务质量(误比特率或数据速率)。
MIMO技术对于传统的单天线系统来说,能够大大提高频谱利用率,使得系统能在有限的无线频带下传输更高速率的数据业务。
目前,各国已开始或者计划进行新一代移动通信技术(后3G或者4G)的研究,争取在未来移动通信领域内占有一席之地。
随着技术的发展,未来移动通信宽带和无线接入融合系统成为当前热门的研究课题,而MIMO系统是人们研究较多的方向之一。
本文重点介绍MIMO技术的五大研究热点。
MIMO信道的建模和仿真为了更好地利用MIMO技术,必须深入研究MIMO信道特性,尤其是空间特性。
与传统信道不同的是,MIMO信道大多数情况下都具有一定的空间相关性,而不是相互独立的。
在2001年11月的3GPP会议中,朗讯、诺基亚、西门子和爱立信公司联合提出了标准化MIMO 信道的建议。
3GPP和3GPP2推荐的链路级MIMO信道的建模方法有两个:基于相关(Corrlration-Based)的方法和基于子径(EAGC-A14H)的方法。
尽管3GPP和3GPP2对链路级的信道参数进行了定义,但是对于如何实现并没有达成共识。
研究信道的相关性对系统容量的影响成为MIMO技术的研究方向之一。
另外,目前对MIMO系统的研究都是假定在理想信道条件下进行的,而实际上在接收端无线传播环境中是不可能知道信道冲激响应的,因此要进行信道估计。
由于在MIMO系统中进行信道估计时,天线之间存在着干扰,因此,研究在天线之间存在干扰时的信道估计方法也是目前研究的热点。
MIMO系统的天线选择技术因为多天线需要多射频RF电路,而RF又非常昂贵,因此,寻找具有MIMO天线优点且低价格、低复杂度的最优天线子集选择技术极具吸引力。
多天线选择发送接收系统就是利用一定的准则从M根发送天线中选择MS根天线用于发送信号,同样在接收端从N根接收天线中选择NS根用于接收信号,这样就构成了选择的MS×NS的MIMO系统。
无线通信系统中的MIMO技术
无线通信系统中的MIMO技术MIMO技术(Multiple-Input Multiple-Output)是无线通信系统中的一项重要技术。
它利用多个天线来同时传输多路信号,可以提高无线信号的传输速率和信道的容量,从而提高了无线通信的性能。
本文将就该技术的原理、发展、应用等方面进行分析和探讨。
一、MIMO技术的原理MIMO技术中,发送器和接收器分别拥有多个发送/接收天线,并通过信道中的多个传播路径传输多路信号。
由于各路径存在不同的传播特性,因此单独的一条路径无法传送足够的信息。
但是通过利用多个天线同时传输多路信号,可以在不增加带宽的情况下,提高了无线系统的总吞吐量。
MIMO技术的实质是空间复用(Spatial Multiplexing)技术,即通过多个天线在空间上选择不同的信道,将多路信号同步传送到接收机。
二、MIMO技术的发展历程早在20世纪70年代,学者们就已经研究并提出了MIMO技术的理论。
但是由于当时通信领域的技术和设备并不完善,导致MIMO技术无法广泛应用。
随着通信技术的提高,越来越多的学者开始将MIMO技术应用于实际无线通信中。
到了21世纪初,MIMO技术得到了广泛的研究和应用。
2003年,国际电信联盟(ITU)就开始研究推广MIMO技术,因为MIMO技术可以显著提高WiFi, UMTS, CDMA2000, LTE等无线通信系统的性能。
不仅如此,MIMO技术还得到了IEEE、3GPP、4G LTE等国际电信组织的认可和推荐,成为LTE、WCDMA等无线通信标准之一,并应用于WiFi、宽带无线接入(WiMAX)、行动通信等领域。
三、MIMO技术的应用MIMO技术已经广泛应用于当前的无线通信系统中,其中最典型的应用是在WiFi和4G LTE网络中。
在无线局域网中,MIMO 技术可以提高Wi-Fi网络的覆盖范围和速度,同时提高用户接收到的数据质量和减少信道多径效应。
在4G LTE网络中,MIMO技术可以提高网络的容量和频谱效率,从而提高数据传输的速度和质量。
浅谈mimo技术综述
浅谈MIMO技术
STBC编码
以双天线为例,又称为Alamouti STBC编 码器,其结构如下图所示。
浅谈MIMO技术
STBC编码 信源发出的二进制比特信息首先进行数字调 制,调制为M=2m进制的符号。然后Alamouti STBC编码器选取连续的两个符号,根据下式映 射为发送信号矩阵。
浅谈MIMO技术
与原来的单天线系统相比,信道容量获得 了L倍的增益,这是由于各个天线的子信道之 间的耦合的结果。
浅谈MIMO技术
MIMO的基本原理 如果信道系数的幅度随机变化,MIMO信道的 容量为一随机变量,它的平均值可以表示为
式中,r 为信道矩阵H得秩, r = min(nR , nT ) 下图是MIMO信道容量累计概率分布曲线图, 它反映了信道容量累计分布与发射和接收天线 数得变换关系。
1995年Teladar给出了在衰落情况下 的MIMO容量;1996年Foshinia给出了一 种多入多出处理算法——对角-贝尔实验 室分层空时(D-BLAST)算法;1998年 Tarokh等讨论了用于多入多出的空时码; 1998年Wolniansky等人采用垂直-贝尔实 验室分层空时(V-BLAST)算法建立了一个 MIMO实验系统,在室内试验中达到了 20bit/s/Hz以上的频谱利用率。
浅谈MIMO技术
MIMO的基本原理
(2)正交传输信道的MIMO系统
对于正交传输的MIMO系统,即多根天线构 成的并行子信道相互正交,单个子信道之间不 存在相互干扰。为方便起见,假定收发两端的 天线数相等(nR = nT = L),信道矩阵可以表 示为: I L为L×L的单位矩阵
浅谈MIMO技术
MIMO的基本原理 信道容量为:
浅谈MIMO技术
mimo技术的原理
mimo技术的原理MIMO(Multiple-Input Multiple-Output)技术是一种用于增强通信系统性能的技术。
它通过利用多个天线和空间多路复用技术来实现高速数据传输和增加信号容量。
MIMO技术的原理可以从信号模型、空间复用和信道估计三个方面来详细解释。
信号模型是理解MIMO技术原理的基础。
在传统的SISO(Single-Input Single-Output)系统中,只有一个天线用于发送和接收信号。
而在MIMO系统中,发送端和接收端都有多个天线。
假设发送端有Nt个天线,接收端有Nr个天线,那么可以构成一个NxM的信号模型,其中N=min(Nt, Nr)。
每个天线都可以独立地发送和接收信号。
MIMO技术利用空间复用原理来传输信号。
在传统的无线通信系统中,信号在空间中是以点对点的方式传输的。
而MIMO技术通过同时利用多个天线,将信号分散在空间中的不同位置上,以实现更高的数据传输速率和容量。
通过将数据分为多个子流并将其分别发送到不同的天线上,MIMO技术可以同时传输多个子流,从而显著提升系统吞吐量。
MIMO技术还需要进行信道估计来准确地传输和接收信号。
信道估计是指将接收到的信号与事先发送的已知信号进行比较,以估计信道状态信息。
在MIMO系统中,由于存在多个天线,信道状态信息更加复杂。
MIMO系统需要对信道进行更准确的估计。
常用的信道估计方法包括最小均方误差(MMSE)估计、最大似然(ML)估计等。
通过准确的信道估计,MIMO系统可以更好地解决多径效应和干扰等问题,提高信号传输质量。
总结起来,MIMO技术的原理是通过信号模型的建立,利用空间复用和信道估计来实现高速数据传输和增加信号容量。
MIMO技术在无线通信领域已经得到广泛应用,例如4G和5G移动通信系统中都采用了MIMO技术来提升系统性能。
随着技术的不断发展,MIMO技术也将在更多的应用场景中得到应用,比如物联网和智能交通等领域。
移动通信系统中的MIMO技术分析
移动通信系统中的MIMO技术分析作者:马淑娟蒋青来源:《数字技术与应用》2013年第03期摘要:随着无线移动通信系统的飞速发展,需要更好的服务质量和更高的数据传输速率,所以使得对系统容量的需求日益增长。
新型无线宽带移动通信系统中的关键技术-多输入多输出(Multiple Input Multiple Output, MIMO)技术可以极大地提高系统容量,同时还可以提供阵列、分集、复用等增益[1]。
文章从技术的发展,原理,系统结构,主要技术,应用以及标准化进展几方面详细探讨MIMO无线通信技术,为以后深入认识和研究MIMO技术奠定基础。
关键词:移动通信系统 MIMO技术发展应用中图分类号:TN929.5 文献标识码:A 文章编号:1007-9416(2013)03-0046-021 引言随着无线通信的迅速发展,如何利用有限的频谱资源提供高速率、高质量的移动通信服务已成为关注的重点。
常规的单天线收发通信系统已经无法解决新一代无线通信系统的大容量、高可靠性的需求问题,面临着严峻挑战。
结合空时处理技术的多输入多输出(MIMO)技术,能成倍的提升系统容量和可靠性无需增加系统带宽[1]。
2 MIMO技术概念MIMO允许多个天线同时发送和接收多个空间流,并能够区分发往或来自不同空间方位的信号。
MIMO技术实质上是为系统提供空间复用增益和空间分集增益,目前针对MIMO信道所进行的研究也主要围绕这两个方面。
2.1 MIMO技术的发展MIMO无线通信技术是天线分集与空时处理技术相结合的产物,它源于天线分集与智能天线技术,具有二者的优越性,属于广义的智能天线的范畴。
MIMO的早期概念在70年代就被提出了;1985年,贝尔实验室的Jack Salz和Jack Winters发表了波束成型(beamforming)论文;1993年,Thomas Kailath和Arogyaswami Paulraj提出了利用MIMO的空分复用(Spatial multiplexing)概念;1996年, Gerard J. Foschini提出了贝尔实验室分层空时(BLAST : Bell laboratories layered space-time)技术;1998年,贝尔实验室演示了第一台空分复用实验室原型机;2001年后,多家公司开发出了基于MIMO技术的WiFi或WiMAX商用系统;至今,所有第四代移动通信(4G)候选标准(例如LTE-A,WiMAX等)都将采用MIMO技术。
MIMO技术杂谈----谈分集与复用的权衡资料
MIMO技术杂谈(一)--浅谈分集与复用的权衡无线通信世界在过去的几十年中的发展简直是爆发式的,MIMO(多发多收)技术的出现更是将通信理论推向了另一个高峰。
它已经成为当今乃至今后很多年内的主流物理层技术。
所以,理解一些MIMO技术的思想,对于理解通信收发原理,乃至通信系统设计,都是很有帮助的。
笔者不才,通信小兵一名,冒昧在此布下一贴,愿与大家一同探讨MIMO技术心得。
希望我们能够通过彼此的交流学习,共同体验到无线通信之美。
然而笔者能力有限,若有不足及错误之处,还请广大通信战友指正。
鱼与熊掌能否兼得?--浅谈分集与复用的权衡在无线通信的世界里,分集和复用是两项最基本的技术。
提到分集,就不得不说起经典的“罗塞塔”石碑。
在这块1799年被世人发现的石碑上,分别用埃及象形文,埃及草书与古希腊文三种文字刻着埃及国王托勒密五世诏书。
这种记录方式对现代的研究者来说简直是福音,只要有一种文字能够被识别,诏书的内容就得以保存。
在无线通信中,分集的思想与之类似。
它把一个数据重复发送多次,以保证接收端能够正确收到。
罗塞塔石碑分集的方式有很多种。
在传统的单发单收(SingleInput,SingleOutput;SISO)系统中,可以通过时间来实现分集。
在多发多收(MultipleInput,MultipleOutput;MIMO)系统中,收发双方拥有多根天线,分集可以在不同的天线上实现,这种方法也叫做空间分集。
例如,我们想把符号“X”从发送端传递给接收端,如果采用时间分集,只要在不同的时刻t1,t2,…分别发送X就可以了;若采用空间分集,则可以将X在不同的天线上进行发送。
有两件事情需要注意:第一,分集的次数越多,传输的成功率就越高;第二,在空间上的分集,节省了时间资源。
然而,我们很快就发现了一个问题:不管在时间上还是空间上的分集,传输的效率并不高。
比如在图2中,尽管我们有4根发送天线,但由于发送内容相同,一个时刻(t1)实际上只传输了一个符号(X)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MIMO技术杂谈(二):犹抱琵琶半遮面--MIMO信道中隐藏的秘密犹抱琵琶半遮面--MIMO信道中隐藏的秘密
无线通信中,最让人难以捉摸的,就是那看不见,摸不着的无线信道了。
但是,正因为它的变化莫测,才让无线通信具有了独特的魅力。
正如Tse在他的大作《无线通信基础》(Fundamentalof Wireless Communication)中说的:衰落和干扰,让无线通信的研究变得有趣。
然而衰落本身来无影,去无踪,研究中,我们也只能通过概率统计的方法,才能捕获它扑朔的身影。
无线信道根据其自身特点和研究需要,可以建模成多种模型。
其中最经典的,江湖人称“独立同分布模型(independentlyand identically distribute,简称i.i.d)”。
比如在介绍一个传播环境时,我们说“……在一个4x1的MISO系统中,假设每条路径的传输成功率都是1/2……”描述的就是这种模型。
其中“独立”和“同分布”俩个名词都源自概率论。
“独立”是说每条路径的传输成功与否,相互之间并不影响;而“同分布”表示概率分布相同,即成功率都是1/2。
我们已经知道,对付这种信道最有效的方法之一就是分集,获得的分集增益越多,传输的可靠性就越高。
但是,分集技术的应用并没有让江湖太平多久,“衰落相关性”的出现,又在江湖上掀起了一阵波澜。
为了更好的理解相关性的概念,我们先来看一个例子。
比方说我们有一车货物要从A地运到B地,有3条路可以选择,分别经过城市X,Y,Z。
但X市和Y市的地理位置非常接近。
在出发前我们听到天气预报说X市会有大雨,那我们一定会选择绕道走Z市,而不选择Y市。
为什么?答案很简单,X与Y市离得那么近,若X市大雨,Y市天气也好不到哪去,这种天气间相互影响的现象就说明X市与Y市的天气具有相关性。
所以用一句话概括相关性,就是“他好,我也好”。
原来我们有3条路可选,但因为X与Y市天气条件近似,实则只有两条路线可选,其中一条神秘的“消失”了,这种现象对MIMO系统会产生什么样的影响呢?
在MIMO系统中,“衰落相关性”扮演者同样的角色。
先来看一个2x1的MISO系统,为了保证传输质量,我们采用发送分集技术。
从上一篇文章《鱼与熊掌能否兼得?--浅谈分集与复用的权衡》中我们已经知道,2x1的MISO 系统有两条传播路径,最大分集增益是2。
现在考虑下面的环境:假设发送端到接收端的距离特别远,远远大于A与B的天线间距,这时我们突然发现,两条传播路径几乎平行到达天线C,并且这两条传播路径挨得特别近。
此时,如果沿这个传播方向上发生严重的衰落,两条传播路径上的信号会同时受到影响,这便是“衰落相关性”的厉害。
既然两条路径挨得如此近,又经历相同的衰落,我们干脆把它们合并成一条,2x1的MISO系统退化成了1x1的SISO系统!
怪哉,怪哉,我们使用了两根发送天线,效果居然和单天线系统相当,这太令人失望了。
那好,我们在接收端也使用2根天线,组成2x2的MIMO系统,别忘了,2x2的MIMO系统拥有的分集增益可是4。
现在的情况又如何呢?我们依然考虑上述传播环境,奇怪的事情再次发生,4条传播路径纠缠在一起,几乎无法区分。
同样,若这个传播方向上的衰落很严重的话,4条传播路径将无一幸免。
2x2的MIMO系统也退化成了SISO系统!
不可思议,连武功高强的MIMO系统也败下阵来,这就好比被人连点了“檀中”、“百会”、“命门”三大要穴的武林高手,纵有千般本领,也施展不出。
难道MIMO系统的一世英名终将毁在“衰落相关性”手上?正所谓魔
高一尺,道高一丈,小小的“衰落相关性”不至于成为MIMO技术的绊脚石,待我们仔细分析分析它的特性,定能找到破解之法。
现在困扰我们最大的问题,就是传播路径纠缠在一起,若能分离出各条路径,问题也就迎刃而解了。
我们回到2x2的MIMO系统上,灵感来了,如果我们加大天线间的距离,不就能区别出传播路径了么?沿着这个思路,我们首先拉大两个发送天线的间距。
现在,尽管路径1和2,3和4之间还无法区分,但两天线间的路径已经明显分离了,换言之,我们恢复出了两个分集增益,成功了第一步。
接下来,我们再拉大接收天线间的距离,现在,4条路径都清晰可辨,MIMO系统获得了重生!
通过加大天线间间距来恢复分集增益的做法,看似有效,实则有些“简单粗暴”。
试想,若我们的手机将来装配了多天线,为了保证MIMO系统的性能,难道让手机顶着牛角一样分叉的天线么?那么除了增大天线间距离的办
法,还有没有别的思路呢?我们再看下面的传播环境:发送端到接收端的传播距离依然很远,且天线间保持小间距,不同的是,这次在周围有很多反射体存在。
本来天线小间距的分集特性就不好,现在又有反射体来捣乱,形式不容乐观。
但是,奇妙的事情发生了,原来令我们头疼的反射体,这一次却阴差阳错的帮了我们的大忙。
正是由于它们的存在,清晰的分离出了4条传播路径,居然让小天线间距的2x2MIMO系统同样获得了4个分集增益。
看来“真气所至,草木皆为利刃”。
无线通信中,如何发现并利用一切可能的资源,实现“变废为宝”,实乃一大学问。
我们来分析一下刚才的例子。
虽然天线间间距很小,但大量反射体的存在实际上打乱了信号的传播路径,让信号从“不同”的角度到达接收端,间接的实现了路径分离的效果。
所以总结以上发现,我们找到了破解“衰落相关性”的秘籍,那就是:增大天线间距,或者差异化信号的发射角度(DoD,Direction of Departure),到达角度(DoA,Direction of Arrival)。
现实中MIMO通信网络的部署也能从上述分析中得到启示:在一个典型的小区蜂窝网中,基站往往架设在较高的地方,四面开阔,极少有反射体和遮挡物,所以基站的发射信号角度范围相对集中,为了保证MIMO系统享有较好的性能,通常在基站侧要拉大天线间的间距(至少为5到10倍波长);而在用户侧情况就不同了。
我们周围充斥着大量的建筑,墙体,用户本身就处在天然的,丰富的反射体包围中,所以用户设备一般不需要太大的天线间距就可以满足性能的需求了(一般为波长的0.5倍到1倍),现在你不用担心将来的手机长着像牛角一样分叉的天线了。
闲话:
随着MIMO技术的广泛应用,多天线间的空间相关性问题逐渐引起了研究人员的高度重视。
理论上,我们主要的分析方法还是建立合适的传播模型,用数学的方法进行推导,得出各参数间的相互关系,从而对实际通信系统的设计做出建议。
比如,图表9中画出的模型,就是经典的“One-Ring”一环模型。
它能够形象的表现出角度扩展(AS,Angle Spread),传播距离,发射角度,到达角度,天线间距等等因素之间的关系,为我们的分析提供了方便。
随着研究的深入,人们发现,70%以上的通信量都发生在室内,在典型的室内环境中,除了四周的墙体,天花板和地板也是不可忽视的反射体,“一环”模型已再不满足室内环境研究的需求,于是,“一球”模型孕育而生,信道模型从二维迈入了三维(3D)时代。
再后来,无线用户数量爆棚,运营商不得不通过分裂的小区等措施,来容纳更多的用户数。
微小区(Micro-cell),微微小区(Pico-cell),微微微小区(Femto-cell)……的概念也不断被提出。
现在无线路由器已经深入到千家万户,也许在不久的将来Femto基站也要入住室内空间,这样,发送端与接收端将同时处在丰富的反射体包围中,所以,发送端也需要建模成“3D球体”,我们可以亲切的称这种模型为“二球”模型。
结束语:既然无线信道如此难以捉摸且变化多端,如果我们能掌握住它的动向,在它出招之前,以一招“未卜先知”首先克制住对方,对于我们岂不大为有利?这就是下一回将讨论的内容:“知己知彼,百战不殆 -- 信道信息的获取和应用”。