河南省信阳九中2019年中考数学模拟试卷(4月份) 解析版

合集下载

2019年4月2019届九年级第二次模拟大联考(河南卷)数学卷(考试版)

2019年4月2019届九年级第二次模拟大联考(河南卷)数学卷(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)……………内…………………外…… 学校绝密★启用前2019届九年级第二次模拟大联考(河南)数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.-2的绝对值是 A .2B .12C .-2D .-122.某校组织学生参观绿博园时,了解到某种花的花粉颗粒的直径大约为0.0000065米,将0.0000065用科学记数法表示应为 A .76.510-⨯B .66.510-⨯C .56.510-⨯D .60.6510-⨯3.下列计算正确的是 A .a 3+a 3=a 6B .(x -3)2=x 2-9C .a 3·a 3=a 6D 4.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是A .9B .8C .7D .65.如图,已知AB ∥CD ,∠1=∠2,∠EFD =56°,则∠D =A .60°B .58°C .28°D .62°6.某校团委组织“阳光助残”献爱心捐款活动,九年级(2)班学生捐款如表:学生捐款的中位数和众数是A .10元,15元B .15元,15元C .10元,20元D .16元,17元7.如图,在ABCD 中,用直尺和圆规作∠BAD 的平分线AE 交BC 于点E .若∠BCD =80°,则∠AEC 的度数为A .80°B .100°C .120°D .140°8.将三粒均匀的分别标有:1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是A .1216B .172C .136D .1129.如图.在直角坐标系中,矩形ABCO 的边OA 在x 轴上,边OC 在y 轴上,点B 的坐标为(1,3),将矩形沿对角线AC 翻折,B 点落在D 点的位置,且AD 交y 轴于点E .那么点D 的坐标为数学试题 第3页(共6页) 数学试题 第4页(共6页)○………………装………………○………………○………………卷只装订封○………………装………………○………………○………………A .412()55-, B .213()55-, C .113()25-,D .312(55-,10.如图,C 是半圆⊙O 内一点,直径AB 的长为4 cm ,∠BOC =60°,∠BCO =90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过的区域(图中阴影部分)的面积为A .43πB .πC .4πD第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 110-3-1=__________.12.不等式组211112x x -≤⎧⎪⎨-<⎪⎩的整数解的个数为__________.13.抛物线y =x 2-2x +m 与x 轴只有一个交点,则m 的值为__________.14.如图,四边形ABCD 是菱形,∠DAB =50°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =__________度.15.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,点D 是边AB 上的动点,将△ACD 沿CD 所在的直线折叠至△CDA 的位置,CA'交AB 于点E .若△A'ED 为直角三角形,则AD 的长为__________.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8分)先化简,再求值:(2x +y )2+(x -y )(x +y )-5x (x -y ),其中x ,y 1.17.(本小题满分9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2∶1,请结合统计图解答下列问题: (1)本次活动抽查了__________名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是__________度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(本小题满分9分)如图,在平面直角坐标系中,四边形ABCD 是菱形,点A (0,4),B (-3,0),反比例函数y =kx(k 为常数,k ≠0,x >0)的图象经过点D . (1)填空:k =__________. (2)已知在y =kx的图象上有一点N ,y 轴上有一点M ,且四边形ABMN 是平行四边形,求点M 的坐标.19.(本小题满分9分)如图,△ABC 内接于⊙O 且AB =AC ,延长BC 至点D ,使CD =CA ,连接AD 交⊙O 于点E ,连接BE 、CE . (1)求证:△ABE ≌△CDE ;(2)填空:①当∠ABC 的度数为__________时,四边形AOCE 是菱形;………订…………………………○……………订…………………………○……___________考号___②若AE=6,EF=4,DE的长为__________.20.(本小题满分9分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1∶3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度.如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1≈1.41≈3.16)21.(本小题满分10分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元;信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元.请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品和一件乙种产品分别需要多少分钟;(2)2019年3月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?22.(本小题满分10分)如图1,正方形ABCD和正方形AEFG,连接DG,BE.(1)发现当正方形AEFG绕点A旋转,如图2,①线段DG与BE之间的数量关系是__________;②直线DG与直线BE之间的位置关系是__________.(2)探究如图3,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE,证明:直线DG⊥BE.(3)应用在(2)情况下,连接GE(点E在AB上方),若GE∥AB,且AB AE=1,则线段DG是多少?(直接写出结论)23.(本小题满分11分)如图,抛物线y=ax2+bx-2经过点A(4,0),B(1,0).(1)求出抛物线的解析式;(2)点D是直线AC上方的抛物线上的一点,求△DCA面积的最大值;(3)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.数学试题第5页(共6页)数学试题第6页(共6页)。

2019年河南省信阳市中考数学一模试卷(备用卷)解析版

2019年河南省信阳市中考数学一模试卷(备用卷)解析版

2019年河南省信阳市中考数学一模试卷(备用卷)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4B.c﹣b>0C.ac>0D.a+c>02.(3分)根据有关基础资料和国民经济核算方法,我国2018年上半年国内生产总值为41.8961万亿元,其中41.8961万亿用科学记数法可表示为()A.41.896 1×1012B.4.189 61×1013C.0.418 961×1014D.4.189 61×10123.(3分)如图,是由6个同样大小的正方体摆成的几何体,如果将最上层的正方体分别移到①号、②号、③号或④号正方体的上面(接触面所有的棱都重合),会得到4种新的几何体,那么所得到的4种几何体的()A.主视图都相同B.左视图都相同C.俯视图都相同D.三视图都不相同4.(3分)下列运算正确的是()A.x2•x3=x6B.(x3)2=x5C.(﹣2x2y)3=﹣8 x6y3D.﹣x+2x=﹣3x5.(3分)下表是某校合唱团成员的年龄分布年龄/岁13141516频数515x10﹣x 对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差6.(3分)“折竹抵地”问题源自《九章算术》,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈(1丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断处离地面的高度为()A.5.8尺B.4.2尺C.3尺D.7尺7.(3分)已知关于x的一元二次方程(2﹣a)x2﹣2x+1=0有两个不相等的实数根,则整数a的最小值是()A.1B.2C.3D.48.(3分)规定:“上升数”是一个右边数位上的数字比左边数位上的数字大的自然数(如23,567,3467等).一不透明的口袋中装有3个大小、形状完全相同的小球,其上分别标有数字1,2,3,从袋中随机摸出1个小球(不放回),其上所标数字作为十位上的数字,再随机摸出1个小球,其上所标数字作为个位上的数字,则组成的两位数是上升数的概率为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,∠ACB=36°,AB=BC,AC=2,则AB的长度是()A.﹣1B.1C.D.10.(3分)如图,锐角三角形ABC中,BC=6,BC边上的高为4,直线MN交边AB于点M,交AC于点N,且MN∥BC,以MN为边作正方形MNPQ,设其边长为x(x>0),正方形MNPQ与△ABC公共部分的面积为y,则y与x的函数图象大致是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:(﹣)﹣2﹣2cos60°=.12.(3分)如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.13.(3分)不等式组的整数解有个.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B 为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是.15.(3分)如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:(x+y)2+2(x﹣y)(x+y)+(x﹣y)2﹣y2,其中x=,y=﹣.17.(9分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?18.(9分)如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x﹣4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=也经过A点.连接BC.(1)求k的值;(2)判断△ABC的形状,并求出它的面积.(3)若点P为x正半轴上一动点,在点A的右侧的双曲线上是否存在一点M,使得△PAM是以点A为直角顶点的等腰直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.19.(9分)如图,⊙O与直线MN相切于点A,点B是圆上异于点A的一点,∠BAN的平分线与⊙O交于点C,连接BC.(1)求证:△ABC是等腰三角形;(2)①若∠CAN=15°,⊙O的半径为2,则AB=;②当∠CAN=时,四边形OACB为菱形.20.(9分)河南旅游宣传口号“HENAN,WHERECHINABEGAN”(心灵故乡,老家河南;中国历史开始的地方),荣获2017海南世界休闲旅游博览会年度旅游传播口号大奖.如图,某河堤上有一个旅游宣传标语牌,小明在河堤底部A处测得标语牌顶部C处的仰角为45°,然后沿坡度为1:2的斜坡AF攀行20m,在坡顶F处又测得标语牌底部D处的仰角为76°,已知FH与水平面AB平行,CD与AB垂直,且CD=2m,点A,B,C,D,F,H在同一平面内,过点D作DN⊥FH于点N,求标语牌顶部到河堤顶部的距离CN.(结果精确到1m.参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01,≈1.41,≈2.24)21.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?22.(10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程.操作发现(1)①如图(1),B为线段CE上一点,分别以BC,BE为边作正方形ABCD与正方形BEFG,点P为BC上一点,且CP=BE,连接DP,FP,那么DP与FP有什么关系?直接写出答案.②如图(2),B为线段CE上一点,分别以BC,BE为斜边作等腰直角三角形ABC与等腰直角三角形DBE,点P为CE的中点,连接AP,DP,那么AP与DP有什么数量关系?请给予证明.数学思考(2)如图(3),B为线段CE上一点,分别以BC,BE为斜边作直角三角形ABC与直角三角形DBE,且△ABC∽△DBE,点P为CE的中点,连接AP,DP,那么AP与DP 有什么数量关系?请给予证明.拓展探究(3)如图(4),B为线段CE外一点,连接BC,BE,分别以BC,BE为斜边作直角三角形ABC与直角三角形DBE,且△ABC∽△DBE,点P为CE的中点,连接AP,DP,那么(2)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.23.(11分)如图,顶点为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)交y轴于点C(0,3),交x轴于A,B两点,直线l过AC两点,点P是位于直线l下方抛物线上的动点,过点P作PQ∥y轴,交直线l于点Q.(1)求抛物线的解析式;(2)求线段PQ的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在点G,使△BCG为直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.2019年河南省信阳市中考数学一模试卷(备用卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4B.c﹣b>0C.ac>0D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.2.(3分)根据有关基础资料和国民经济核算方法,我国2018年上半年国内生产总值为41.8961万亿元,其中41.8961万亿用科学记数法可表示为()A.41.896 1×1012B.4.189 61×1013C.0.418 961×1014D.4.189 61×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:41.8961万亿=41 896 100 000 000=4.189 61×1013,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,是由6个同样大小的正方体摆成的几何体,如果将最上层的正方体分别移到①号、②号、③号或④号正方体的上面(接触面所有的棱都重合),会得到4种新的几何体,那么所得到的4种几何体的()A.主视图都相同B.左视图都相同C.俯视图都相同D.三视图都不相同【分析】根据三视图观察的角度得出新几何体的三视图与原几何体的三视图相比,俯视图没有发生改变;【解答】解:最上层的正方体分别移到①号、②号、③号或④号正方体的上面(接触面所有的棱都重合),俯视图都相同,均为1、1、2,最上层的正方体分别移到①号、③号、④号时,主视图为1,2,1,移到②号正方体的上面时,主视图为1,1,2,最上层的正方体分别移到①号、②号时,左视图为2,1,1,放在③号时,左视图为1,2,1,放在④号时,左视图为1,1,2,故选:C.【点评】本题考查了从不同方向观察物体和几何,是训练学生的观察能力、分析能力和动手操作能力.4.(3分)下列运算正确的是()A.x2•x3=x6B.(x3)2=x5C.(﹣2x2y)3=﹣8 x6y3D.﹣x+2x=﹣3x【分析】根据整式运算的法则即可求出答案.【解答】解:(A)原式=x5,故A错误;(B)原式=x6,故B错误;(D)原式=x,故D错误;故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.(3分)下表是某校合唱团成员的年龄分布年龄/岁13141516频数515x10﹣x 对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.(3分)“折竹抵地”问题源自《九章算术》,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈(1丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断处离地面的高度为()A.5.8尺B.4.2尺C.3尺D.7尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+42=(10﹣x)2.解得:x=4.2,∴折断处离地面的高度为4.2尺,故选:B.【点评】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.7.(3分)已知关于x的一元二次方程(2﹣a)x2﹣2x+1=0有两个不相等的实数根,则整数a的最小值是()A.1B.2C.3D.4【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于a 的不等式,求出a的取值范围.还要注意二次项系数不为0,最后确定最小整数值.【解答】解:∵关于x的一元二次方程(2﹣a)x2﹣2x+1=0有两个不相等的实数根,∴△=4﹣4(2﹣a)>0,且2﹣a≠0,解得a>1,且a≠2,则a的最小整数值是3.故选:C.【点评】考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.(3分)规定:“上升数”是一个右边数位上的数字比左边数位上的数字大的自然数(如23,567,3467等).一不透明的口袋中装有3个大小、形状完全相同的小球,其上分别标有数字1,2,3,从袋中随机摸出1个小球(不放回),其上所标数字作为十位上的数字,再随机摸出1个小球,其上所标数字作为个位上的数字,则组成的两位数是上升数的概率为()A.B.C.D.【分析】画树状图展示所有6种等可能的结果数,找出组成的两位数是上升数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中组成的两位数是上升数的结果数为3,所以组成的两位数是上升数的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.9.(3分)如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,∠ACB=36°,AB=BC,AC=2,则AB的长度是()A.﹣1B.1C.D.【分析】首先证明DA=ED=EC,设AB=x,则AD=DE=EC=x,由△DAE∽△CAD,可得AD2=AE•AC,由此构建方程即可解决问题.【解答】解:∵AB=BC,∠ACB=36°,∴∠BAC=∠ACB=36°,∠B=∠CED=108°,∴∠AED=72°,∴CA=CD,∠ACD=36°,∴∠CAD=∠CDA=72°,∴∠ADE=∠ACD=36°,∴DA=ED=EC,设AB=x,则AD=DE=EC=x,∵∠DAE=∠CAD,∠ADE=∠ACD,∴△DAE∽△CAD,∴AD2=AE•AC,∴x2=(2﹣x)•2,∴x=﹣1或﹣﹣1(舍弃),∴AB=﹣1,故选:A.【点评】本题考查相似三角形的应用,等腰三角形的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.10.(3分)如图,锐角三角形ABC中,BC=6,BC边上的高为4,直线MN交边AB于点M,交AC于点N,且MN∥BC,以MN为边作正方形MNPQ,设其边长为x(x>0),正方形MNPQ与△ABC公共部分的面积为y,则y与x的函数图象大致是()A.B.C.D.【分析】根据题意画出符合的两种情况:分别求出函数的解析式,再判断图象即可.【解答】解:作AD⊥BC于D点,交MN于E点,公共部分分为三种情形:①在三角形内;②刚好一边在BC上,此时为正方形;③正方形有一部分在三角形外,此时为矩形.①②情况中0<x≤2.4,公共部分是正方形时的面积,∴y=x2,③是2.4<x<6,公共部分是矩形时如图所示:作AD⊥BC于D点,交MN于E点,设DE=a,∵MN∥BC,∴=,即=,∴ED=4﹣x,∴y=x(4﹣x)=﹣x2+4x,∴y与x的函数图象大致是D,故选:D.【点评】本题考查了相似三角形的判定与性质,矩形的对边平行且相等,正方形的对边平行且相等的性质,根据相似三角形的对应高的比等于对应边的比列出比例式是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:(﹣)﹣2﹣2cos60°=3.【分析】原式利用负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=4﹣1=3,故答案为:3【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.(3分)如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为240°.【分析】过C作CG∥AB,过D作DH∥EF,依据AB∥EF,可得AB∥EF∥CG∥DH,进而得出∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,可得∠BCD+∠CDE=35°+180°+25°=240°.【解答】解:如图所示,过C作CG∥AB,过D作DH∥EF,∵AB∥EF,∴AB∥EF∥CG∥DH,∴∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,∴∠BCD+∠CDE=35°+180°+25°=240°,故答案为:240°.【点评】本题主要考查了平行线的性质,解题时注意运用:两直线平行,同旁内角互补;两直线平行,内错角相等.13.(3分)不等式组的整数解有4个.【分析】先求出不等式组的解集,再求出不等式组的整数解,即可得出答案.【解答】解:∵解不等式①得:x>﹣1.6,解不等式②得:x<3,∴不等式组的解集是﹣1.6<x<3,∴不等式组的整数解为﹣1,0,1,2,共4个,故答案为:4.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B 为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是﹣.【分析】根据题意和图形可知阴影部分的面积是扇形ACE与扇形BCD的面积之和与Rt △ABC的面积之差.【解答】解:∵在Rt△ABC,∠C=90°,∠A=30°,AC=,∴∠B=60°,BC=tan30°×AC=1,阴影部分的面积S=S扇形ACE +S扇形BCD﹣S△ACB=+﹣=﹣,故答案为:﹣.【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.15.(3分)如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为2或5﹣.【分析】分两种情况:①当点P在菱形对角线AC上时,由折叠的性质得:AN=PN,AM=PM,证出∠AMN=∠ANM=60°,得出AN=AM=2;②当点P在菱形对角线BD上时,设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60°,求出BM=AB﹣AM=1,证明△PDN∽△MBP,得出==,求出PD=x,由比例式=,求出x的值即可.【解答】解:分两种情况:①当点P在菱形对角线AC上时,如图1所示::由折叠的性质得:AN=PN,AM=PM,∵四边形ABCD是菱形,∠BAD=60°,∴∠PAM=∠PAN=30°,∴∠AMN=∠ANM=90°﹣30°=60°,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60°,∵AB=3,∴BM=AB﹣AM=1,∵四边形ABCD是菱形,∴∠ADC=180°﹣60°=120°,∠PDN=∠MBP=∠ADC=60°,∵∠BPN=∠BPM+60°=∠DNP+60°,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴==,即==,∴PD=x,∴=x解得:x=5﹣或x=5+(不合题意舍去),∴AN=5﹣,综上所述,AN的长为2或5﹣;故答案为:2或5﹣.【点评】本题考查了翻折变换的性质、菱形的性质、相似三角形的判定与性质、等腰三角形的判定以及分类讨论等知识;熟练掌握翻折变换的性质,证明三角形相似是关键.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:(x+y)2+2(x﹣y)(x+y)+(x﹣y)2﹣y2,其中x=,y=﹣.【分析】根据完全平方公式、平方差公式和合并同类项可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x+y)2+2(x﹣y)(x+y)+(x﹣y)2﹣y2=x2+2xy+y2+2x2﹣2y2+x2﹣2xy+y2﹣y2=4x2﹣y2当x=,y=﹣时,原式=4×()2﹣()2=3+2+2﹣(3﹣2+2)=3+2+2﹣3+2﹣2=4.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.17.(9分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有10名留守学生,B类型留守学生所在扇形的圆心角的度数为144;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B 类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【解答】解:(1)2÷20%=10(人),×100%×360°=144°,故答案为:10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×=480(人),答:估计该校将有480名留守学生在此关爱活动中受益.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(9分)如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x﹣4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=也经过A点.连接BC.(1)求k的值;(2)判断△ABC的形状,并求出它的面积.(3)若点P为x正半轴上一动点,在点A的右侧的双曲线上是否存在一点M,使得△PAM是以点A为直角顶点的等腰直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)过点A分别作AM⊥y轴于M点,AN⊥x轴于N点,根据直角三角形的性质可设点A的坐标为(a,a),因为点A在直线y=3x﹣4上,即把A点坐标代入解析式即可算出a的值,进而得到A点坐标,然后再利用待定系数法求出反比例函数解析式;(2)利用勾股定理逆定理即可判断出三角形ABC是直角三角形,利用三角形的面积公式即可得出结论.(3)由SAS易证△AOP≌△ABQ,得出∠OAP=∠BAQ,那么△APQ是所求的等腰直角三角形.根据全等三角形的性质及函数图象与点的坐标的关系得出结果.【解答】解:(1)如图1,过点A分别作AQ⊥y轴于Q点,AN⊥x轴于N点,∵△AOB是等腰直角三角形,∴AQ=AN.设点A的坐标为(a,a),∵点A在直线y=3x﹣4上,∴a=3a﹣4,解得a=2,则点A的坐标为(2,2),∵双曲线y=也经过A点,∴k=4;(2)由(1)知,A(2,2),∴B(4,0),∵直线y=3x﹣4与y轴的交点为C,∴C(0,﹣4),∴AB2+BC2=(4﹣2)2+22+42+(﹣4)2=40,AC2=22+(2+4)2=40,∴AB2+BC2=AC2,∴△ABC是直角三角形;S=AB×BC=××=8,△ABC(3)如图2,假设双曲线上存在一点M,使得△PAM是等腰直角三角形.∴∠PAM=90°=∠OAB,AP=AM连接AM,BM,由(1)知,k=4,∴反比例函数解析式为y=,∴∠OAP=∠BAM,在△AOP和△ABM中,,∴△AOP≌△ABM(ASA),∴∠AOP=∠ABM,∴∠OBM=∠OBA+∠ABM=90°,∴点M的横坐标为4,∴M(4,1)即:在双曲线上存在一点M(4,1),使得△PAM是以点A为直角顶点的等腰三角形【点评】此题是反比例函数综合题,主要考查了反比例函数解析式的确定、等腰直角三角形的性质、勾股定理、全等三角形的判定等知识及综合应用知识、解决问题的能力.19.(9分)如图,⊙O与直线MN相切于点A,点B是圆上异于点A的一点,∠BAN的平分线与⊙O交于点C,连接BC.(1)求证:△ABC是等腰三角形;(2)①若∠CAN=15°,⊙O的半径为2,则AB=2;②当∠CAN=30°时,四边形OACB为菱形.【分析】(1)先利用切线的性质判断出∠CAN+∠CAD=90°,再判断出∠CAD+∠ADC =90°,得出∠CAN=∠ADC,进而得出∠CAN=∠B,即可得出结论;(2)①先求出∠BAN=30°,进而判断出△AOC是等边三角形即可得出结论;②先判断出△AOC是等边三角形,进而求出∠OAC=60°,得出∠BAN=30°,即可得出结论.【解答】解:(1)如图1,连接AO并延长交⊙O于D,连接CD,∵MN是⊙O的切线,∴∠DAN=90°,∴∠DAC+∠CAN=90°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ADC+∠DAC=90°,∴∠CAN=∠ADC,∵∠ADC=∠B,∴∠B=∠CAN,∵AC是∠BAN的角平分线,∴∠CAN=∠CAB,∴∠CAB=∠B,∴AC=BC,∴△ABC是等腰三角形;(2)①如图2,连接OA,∵MN是⊙O的切线,∴∠OAN=90°∵AC是∠BAN的角平分线,∠CAN=15°,∴∠BAN=2∠CAN=30°,∴∠OAB=60°,∵OA=OB,∴△OAB是等边三角形,∴AB=OA=2,故答案为2;②如图3,连接OC,∴OA=OC,∵四边形OACB是菱形,∴OA=AC,∴OA=AC=OC,∴△OAC是等边三角形,∴∠OAC=60°,∵∠OAN=90°,∴∠CAN=90°﹣60°=30°,故答案为:30°.【点评】此题是圆的综合题,主要考查了切线的性质,等边三角形的判定和性质,菱形的性质,作出辅助线是解本题的关键.20.(9分)河南旅游宣传口号“HENAN,WHERECHINABEGAN”(心灵故乡,老家河南;中国历史开始的地方),荣获2017海南世界休闲旅游博览会年度旅游传播口号大奖.如图,某河堤上有一个旅游宣传标语牌,小明在河堤底部A处测得标语牌顶部C处的仰角为45°,然后沿坡度为1:2的斜坡AF攀行20m,在坡顶F处又测得标语牌底部D处的仰角为76°,已知FH与水平面AB平行,CD与AB垂直,且CD=2m,点A,B,C,D,F,H在同一平面内,过点D作DN⊥FH于点N,求标语牌顶部到河堤顶部的距离CN.(结果精确到1m.参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01,≈1.41,≈2.24)【分析】如图,作FE⊥AB于E,延长CN交AB于M.则四边形EFNM是矩形.设FN=EM=xm.根据AM=CM构建方程即可解决问题.【解答】解:如图,作FE⊥AB于E,延长CN交AB于M.则四边形EFNM是矩形.设FN=EM=xm.在Rt△AFE中,∵∠AEF=90°,AF=20,FE:AE=1:2,∴EF=4,AE=8,在Rt△DFN中,DN=FN•tan76°=4.01x(m),在Rt△ACM中,∵∠CAM=45°,∴AM=MC,∴8+x=4+4.01x+2,∴x≈2,∴CN=2+8.02≈10(m),答:标语牌顶部到河堤顶部的距离CN为10m.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.21.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)506070销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.22.(10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程.操作发现(1)①如图(1),B为线段CE上一点,分别以BC,BE为边作正方形ABCD与正方形BEFG,点P为BC上一点,且CP=BE,连接DP,FP,那么DP与FP有什么关系?直接写出答案.②如图(2),B为线段CE上一点,分别以BC,BE为斜边作等腰直角三角形ABC与等腰直角三角形DBE,点P为CE的中点,连接AP,DP,那么AP与DP有什么数量关系?请给予证明.数学思考(2)如图(3),B为线段CE上一点,分别以BC,BE为斜边作直角三角形ABC与直。

河南省信阳市2019届中考数学一模试卷(含解析)

河南省信阳市2019届中考数学一模试卷(含解析)

2019年河南省信阳市中考数学一模试卷一、选择题下列各小题均有四个答案,其中只有一个是正确的,将正确答案前的字母填入题后的括号内1.﹣2的倒数是()A. B.2 C.﹣D.﹣22.太阳半径约为696000km,将696000用科学记数法表示为()A.696×103B.69.6×104C.6.96×105D.0.696×1063.一个几何体零件如图所示,则它的俯视图是()A. B. C. D.4.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40° B.50° C.60° D.70°5.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:捐款金额(元) 5则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元6.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥17.如图,BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°8.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣9.共甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为()A. B. C. D.10.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),将线段OA绕原点O逆时针旋转30°,得到线段OB,则点B的坐标是()A.(0,2) B.(2,0) C.(1,﹣)D.(﹣1,)二、填空题11.计算tan45°=.12.若a=2b≠0,则的值为.13.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.14.如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是.15.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.三、解答题(本题有8个小题,共75分)16.(8分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.17.(9分)如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.18.(9分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?19.(9分)如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.20.(9分)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)21.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种..果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?22.(10分)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为,求此时线段EF的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为,此时AE与BF的数量关系是;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.23.(11分)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B 和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.2019年河南省信阳市中考数学一模试卷参考答案与试题解析一、选择题下列各小题均有四个答案,其中只有一个是正确的,将正确答案前的字母填入题后的括号内1.﹣2的倒数是()A. B.2 C.﹣D.﹣2【考点】17:倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣2的倒数是,故选C.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.太阳半径约为696000km,将696000用科学记数法表示为()A.696×103B.69.6×104C.6.96×105D.0.696×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将696000用科学记数法表示为:6.96×105.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体零件如图所示,则它的俯视图是()A. B. C. D.【考点】U2:简单组合体的三视图.【分析】根据从上面看得到的视图是俯视图,再结合几何体零件的实物图观察,即可判断出这个几何体零件的俯视图是哪个.【解答】解:这个几何体零件的俯视图是一个正中间有一个小正方形的矩形,所以它的俯视图是选项C中的图形.故选:C.【点评】此题主要考查了简单组合体的三视图,要熟练掌握,考查了对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40° B.50° C.60° D.70°【考点】JA:平行线的性质.【分析】先根据平行线的性质求出∠1+∠2的度数,再由∠1=∠2得出∠2的度数,进而可得出结论.【解答】解:∵a∥b,∠3=40°,∴∠1+∠2=180°﹣40°=140°,∠2=∠4.∵∠1=∠2,∴∠2=×140°=70°,∴∠4=∠2=70°.故选D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.5.学校团委组织“阳光助残”捐款活动,九年一班学生捐款情况如下表:则学生捐款金额的中位数是()A.13人B.12人C.10元D.20元【考点】W4:中位数.【分析】根据题意得出按照从小到大顺序排列的第25个和第26个数据都是20(元),它们的平均数即为中位数.【解答】解:∵10+13+12+15=50,按照从小到大顺序排列的第25个和第26个数据都是20(元),∴它们的平均数即为中位数, =20(元),∴学生捐款金额的中位数是20元;故选:D.【点评】本题考查了中位数的定义、平均数的计算;熟练掌握中位数的定义,正确求出中位数是解决问题的关键.6.若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1【考点】AA:根的判别式.【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.如图,BD是⊙O的直径,点A、C在⊙O上, =,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°【考点】M5:圆周角定理.【分析】直接根据圆周角定理求解.【解答】解:连结OC,如图,∵=,∴∠BDC=∠BOC=∠AOB=×60°=30°.故选D.【点评】本题考查了圆周角定理定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.8.在平面直角坐标系中,将抛物线y=﹣x2向下平移1个单位长度,再向左平移1个单位长度,得到的抛物线的解析式是()A.y=﹣x2﹣x﹣B.y=﹣x2+x﹣C.y=﹣x2+x﹣D.y=﹣x2﹣x﹣【考点】H6:二次函数图象与几何变换.【分析】根据平移的规律:左加右减,上加下减,求出得到的抛物线的解析式是多少即可.【解答】解:将抛物线y=﹣x2向下平移1个单位长度,得到的抛物线的解析式是:y=﹣x2﹣1,再向左平移1个单位长度,得到的抛物线的解析式是:y=﹣(x+1)2﹣1=﹣x2﹣x﹣.故选:A.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.9.共甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为()A. B. C. D.【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)=.故选:C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之.10.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),将线段OA绕原点O逆时针旋转30°,得到线段OB,则点B的坐标是()A.(0,2) B.(2,0) C.(1,﹣)D.(﹣1,)【考点】R7:坐标与图形变化﹣旋转.【分析】作AC⊥x轴于点C,根据勾股定理求出OA的长,根据正切的概念求出∠AOC的度数,根据旋转的概念解答即可.【解答】解:作AC⊥x轴于点C,∵点A的坐标为(1,),∴OC=1,AC=,则OA==2,tan∠AOC==,∴∠AOC=60°,∴将线段OA绕原点O逆时针旋转30°,得到线段OB,则点B的坐标是(0,2),故选:A.【点评】本题考查的是坐标与图形的变化﹣旋转问题,掌握旋转的性质、熟记锐角三角函数的定义是解题的关键.二、填空题11.计算tan45°= 1 .【考点】T5:特殊角的三角函数值.【分析】根据特殊角的三角函数值计算.【解答】解:tan45°=1.【点评】本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.【相关链接】特殊角三角函数值:sin30°=,cos30°=,tan30°=,cot30°=;sin45°=,cos45°=,tan45°=1,cot45°=1;sin60°=,cos60°=,tan60°=,cot60°=.12.若a=2b≠0,则的值为.【考点】6D:分式的化简求值.【分析】把a=2b代入原式计算,约分即可得到结果.【解答】解:∵a=2b,∴原式==,故答案为:【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.13.观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.【考点】37:规律型:数字的变化类.【分析】观察已知一组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,写出第n个数即可.【解答】解:根据题意得:这一组数的第n个数是.故答案为:.【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.14.如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是.【考点】MO:扇形面积的计算;MC:切线的性质.【分析】根据题意可以求出各个扇形圆心角的度数,然后根据题目中的条件求出阴影部分的面积,本题得以解决.【解答】解:∵点B、C把分成三等分,ED是⊙O的切线,∠E=45°,∴∠ODE=90°,∠DOC=45°,∴∠BOA=∠BOC=∠COD=45°,∵OD=1,∴阴影部分的面积是: +=,故答案为:.【点评】本题考查扇形面积的计算、切线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.15.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.【考点】PB:翻折变换(折叠问题).【分析】先根据勾股定理求出BF,再根据△AMC′∽△BC′F求出AM即可.【解答】解:根据折叠的性质可知,FC=FC′,∠C=∠FC′M=90°,设BF=x,则FC=FC′=9﹣x,∵BF2+BC′2=FC′2,∴x2+32=(9﹣x)2,解得:x=4,∵∠FC′M=90°,∴∠AC′M+∠BC′F=90°,又∵∠BFC′+BC′F=90°,∴∠AC′M=∠B FC′∵∠A=∠B=90°∴△AMC′∽△BC′F∴∵BC′=AC′=3,∴AM=.故答案为:.【点评】本题主要考查了折叠的性质和相似三角形的判定与性质,能够发现△AMC′∽△BC′F是解决问题的关键.三、解答题(本题有8个小题,共75分)16.先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后算减法,根据x2+2x﹣15=0得出x2+2x=15,代入代数式进行计算即可.【解答】解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.17.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求证:四边形ABFE是菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据对角相等的四边形是平行四边形,可证得四边形ABFE是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.【解答】(1)证明:∵ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS).(2)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.【点评】此题考查了全等三角形的判定与性质,等腰三角形的性质、旋转的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.18.某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A 类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为50 ,扇形统计图中A类所对的圆心角是72 度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点评】本题考查条形统计图、扇形统计图、用本估计总体,解题的关键是明确题意,利用数形结合的思想解答.19.如图,已知,A(0,4),B(﹣3,0),C(2,0),D为B点关于AC的对称点,反比例函数y=的图象经过D点.(1)证明四边形ABCD为菱形;(2)求此反比例函数的解析式;(3)已知在y=的图象(x>0)上一点N,y轴正半轴上一点M,且四边形ABMN是平行四边形,求M点的坐标.【考点】GB:反比例函数综合题.【分析】(1)由A(0,4),B(﹣3,0),C(2,0),利用勾股定理可求得AB=5=BC,又由D为B点关于AC的对称点,可得AB=AD,BC=DC,即可证得AB=AD=CD=CB,继而证得四边形ABCD为菱形;(2)由四边形ABCD为菱形,可求得点D的坐标,然后利用待定系数法,即可求得此反比例函数的解析式;(3)由四边形ABMN是平行四边形,根据平移的性质,可求得点N的横坐标,代入反比例函数解析式,即可求得点N的坐标,继而求得M点的坐标.【解答】解:(1)∵A(0,4),B(﹣3,0),C(2,0),∴OA=4,OB=3,OC=2,∴AB==5,BC=5,∴AB=BC,∵D为B点关于AC的对称点,∴AB=AD,CB=CD,∴AB=AD=CD=CB,∴四边形ABCD为菱形;(2)∵四边形ABCD为菱形,∴D点的坐标为(5,4),反比例函数y=的图象经过D点,∴4=,∴k=20,∴反比例函数的解析式为:y=;(3)∵四边形ABMN是平行四边形,∴AN∥BM,AN=BM,∴AN是BM经过平移得到的,∴首先BM向右平移了3个单位长度,∴N点的横坐标为3,代入y=,得y=,∴M点的纵坐标为:﹣4=,∴M点的坐标为:(0,).【点评】此题属于反比例函数综合题,考查了菱形的性质与判定、待定系数法求函数的解析式以及平行四边形的性质.注意掌握坐标与图形的关系是关键.20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.【点评】本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.21.(10分)(2016•丹东)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种..果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【考点】HE:二次函数的应用.【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.(2)列出方程解方程组,再根据实际意义确定x的值.(3)构建二次函数,利用二次函数性质解决问题.【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.【点评】本题考查二次函数的应用、一次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会构建二次函数解决实际问题中的最值问题,属于中考常考题型.22.(10分)(2014•江西)如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF 的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF ;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.【考点】RB:几何变换综合题.【分析】(1)由旋转性质,易得△EFD是等边三角形;利用等边三角形的性质、勾股定理求出EF的长;(2)①四边形EFGH是正方形;利用三角形全等证明AE=BF;②求面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.【解答】解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x2+42=[(4﹣x)]2,解得:x1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH是菱形,由△EGM≌△FHN,可知EG=FH,∴四边形EFGH的形状为正方形.∴∠HEF=90°∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,∴△AEH≌△BFE(ASA)∴AE=BF.②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.【点评】本题是几何变换综合题,以旋转变换为背景考查了正方形、全等三角形、等边三角形、等腰直角三角形、勾股定理、二次函数等知识点.本题难度不大,着重对于几何基础知识的考查,是一道好题.23.(11分)(2016•攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B 和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P 点的坐标及四边形ABPC的最大面积;(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB 和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣2x﹣3;(2)如图1,连接BC,过P作y轴的平行线,交BC于点M,交x轴于点H,在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S△ABC=AB•OC=×4×3=6,∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),∵P点在第四限,∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∴S△PBC=PM•OH+PM•HB=PM•(OH+HB)=PM•OB=PM,∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,∵PM=﹣x2+3x=﹣(x﹣)2+,∴当x=时,PM max=,则S△PBC=×=,此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+=,即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;(3)①当点Q在x轴下方时,如图2,设直线m交y轴于点N,交直线l于点G,则∠AGB=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AOC和Rt△NOB中中小学最新教育资料∴Rt△AOC≌Rt△NOB(ASA),∴ON=OA=1,∴N点坐标为(0,﹣1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,∴直线m解析式为y=x﹣1;②当点Q在x轴上方时,此时直线m与①中的直线m关于x轴对称,∴解析式为y=﹣x+1;综上可知存在满足条件的直线m,其解析式为y=x﹣1或y=﹣x+1.【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等.在(2)中确定出PM的值最大时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键.本题考查知识点较多,综合性较强,特别是第(2)问和第(3)问难度较大.中小学最新教育资料。

2019年河南省中招考试数学试卷及答案(解析版)

2019年河南省中招考试数学试卷及答案(解析版)
答案:D
解析:根据统计学知识;
(A)“打开电视,正在播放河南新闻节目”是随机事件,(A)错误。
(B)某种彩票中奖概率为10%是指买十张一定有一张中奖是随机事件,(B)错误。
(C)神州飞船发射前需要对零部件进行抽样检查要全面检查。
(D)了解某种节能灯的使用寿命适合抽样调查,(D)正确。
故选B
6:将两个长方体如图放置,到所构成的几何体的左视图可能是( )
S扇形ACC/= ×AC2= ×3=
S阴影= S扇形ACC/-2×S△D/FC= -2×
= + -
15.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D/落在∠ABC的角平分线上时,DE的长为.
答案: 或
解析:过D/作FH⊥AB交AB于F,交CD于H;
答案:C
解析:根据三视图可知,C正确。
7.如图, ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB =4,AC =6,则BD的长是( )
(A)8 (B) 9 (C)10 (D)11
答案:C
解析:根据平行四边形的性质勾股定理可得,Rt△ABO,OA= AC= ×6=3,AB=4,∴OB=5,又BD=2OA=2×5=10.故C正确。
二、填空题(每小题3分,共21分)
9.计算: =.
答案:1
解析:原式=3-2=1
10.不等式组 的所有整数解的和是.
答案:-2
解析:不等式组的解集是:-2≤x<2,满足条件的整数是-2,-1,0,1.它们的和为-2.
11.在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于 BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB的度数为.

河南省信阳市2019届数学中考一模试卷

河南省信阳市2019届数学中考一模试卷

河南省信阳市2019届数学中考一模试卷一、单选题(共10题;共20分)1.比较﹣1 ,,﹣1 ,的大小,结果正确的是()A. ﹣1 <﹣1 <<B. ﹣1 <﹣1 <<C. ﹣1 <﹣1 <<D. ﹣1 <﹣1 <<2.共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A. 4.9×104B. 4.9×105C. 0.49×104D. 49×1043.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A. B. C. D.4.下列各运算中,计算正确的是()A. a12÷a3=a4B. (3a2)3=9a6C. (a﹣b)2=a2﹣ab+b2D. 2a•3a=6a25.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A. 20°B. 30°C. 40°D. 70°6.如图,AB是⊙O的直径,点C,D在⊙O上,且点C,D在AB的异侧,连接AD,BD,OD,OC,若∠ABD =15°,且AD∥OC,则∠BOC的度数为()A. 120°B. 105°C. 100°D. 110°7.如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A. 50°B. 60°C. 70°D. 80°8.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是().A. B. C. D.9.如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C 时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A. B.C. D.二、填空题(共5题;共5分)10.计算:(π﹣3.14)0+3﹣1=________.11.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是________.12.甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为________.13.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是________.14.如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE 沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为________.三、解答题(共8题;共98分)15.先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值。

2019年河南省普通高中中考数学模拟试卷(4月份)解析版

2019年河南省普通高中中考数学模拟试卷(4月份)解析版

2019年河南省普通高中中考数学模拟试卷(4月份)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)在实数0,﹣1.5,1,﹣中,比﹣2小的数是( )A.0B.﹣1.5C.1D.﹣2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为( )A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)如图,一个正方体切去一个三棱锥后所得几何体的俯视图是( )A.B.C.D.4.(3分)方程x2﹣2x=0的根是( )A.x1=x2=0B.x1=x2=2C.x1=0,x2=2D.x1=0,x2=﹣25.(3分)下列说法正确的是( )A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%”是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S 2=0.4,则甲的成绩更稳定乙D.数据6,6,7,7,8的中位数与众数均为76.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有( )A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠27.(3分)如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC,AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③连接AP,交BC于点D.若CD=3,BD=5,则AC的长为( )A.4B.5C.6D.78.(3分)我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y个,则下列关于x、y的二元一次方程组中符合题意的是( )A.B.C.D.9.(3分)如图,在Rt△ABC中,∠C=30°,AB=4,D,F分别是AC,BC的中点,等腰直角三角形DEH的边DE经过点F,EH交BC于点G,且DF=2EF,则CG的长为( )A.2B.2﹣1C.D. +110.(3分)如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是( )A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:(﹣3)0﹣2﹣1= .12.(3分)一个不透明的袋子中装有若干个大小相同的白球,现取8个与白球除颜色外完全相同的黑球放入袋子中,摇匀之后,随机摸出一个球,记下颜色并放回,经过大量重复试验后,发现摸出黑球的频率稳定在0.1附近,则估计袋子中原有白球约 个.13.(3分)不等式组的最小整数解是 .14.(3分)如图,在Rt△ABC中,AB=2,BC=1.将边BA绕点B顺时针旋转90°得线段BD,再将边CA绕点C顺时针旋转90°得线段CE,连接DE,则图中阴影部分的面积是 .15.(3分)如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F 为直角三角形,则AE的长为 .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.17.(9分)为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了 名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为 ;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP= 时,四边形AOCP是菱形;②连接BP,当∠ABP= 时,PC是⊙O的切线.19.(9分)如图1,是全国最大的瓷碗造型建筑,座落于江西景德镇,整体造型概念来自“宋代影青斗笠碗”,造型庄重典雅,象征“万瓷之母”.小敏为了计算该建筑物横断面(瓷碗橫断面ABCD 为等腰梯形)的高度,如图2,她站在与瓷碗底部AB位于同一水平面的点P处测得瓷碗顶部点D 的仰角为45°,而后沿着一段坡度为0.44(坡面与水平线夹角的正切值)的小坡PQ步行到点Q(此过程中AD,AP,PQ始终处于同一平面)后测得点D的仰角减少了5°.已知坡面PQ的水平距离为20米,小敏身高忽略不计,试计算该瓷碗建筑物的高度.(参考数据:sin40°≈0.64,tan40°≈0.84)20.(9分)如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A.B两点,与反比例函数y2=的图象分别交于C.D两点,点D(2,﹣3),OA=2.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)直接写出k1x+b﹣≥0时自变量x的取值范围.(3)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,直接写出P点的坐标.21.(10分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 ;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D 落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.23.(11分)如图,抛物线y=ax2+bx+6过点A(6,0),B(4,6),与y轴交于点C.(1)求该抛物线的解析式;(2)如图1,直线的解析式为y=x,抛物线的对称轴与线段BC交于点P,过点P作直线的垂线,垂足为点H,连接OP,求△OPH的面积;(3)把图1中的直线y=x向下平移4个单位长度得到直线y=x﹣4,如图2,直线y=x﹣4与x轴交于点G.点P是四边形ABCO边上的一点,过点P分别作x轴、直线l的垂线,垂足分别为点E,F.是否存点P,使得以P,E,F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.2019年河南省普通高中中考数学模拟试卷(4月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)在实数0,﹣1.5,1,﹣中,比﹣2小的数是( )A.0B.﹣1.5C.1D.﹣【分析】先根据实数的大小比较法则比较数的大小,再判断即可.【解答】解:﹣<﹣2<﹣1.5<0<1,即比﹣2小的数是﹣,故选:D.【点评】本题考查了估算无理数的大小和实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为( )A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000039=3.9×10﹣8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,一个正方体切去一个三棱锥后所得几何体的俯视图是( )A.B.C.D.【分析】俯视图是从上向下看得到的视图,结合选项即可作出判断.【解答】解:所给图形的俯视图是D选项所给的图形.故选:D.【点评】本题考查了简单组合体的三视图,属于基础题,关键掌握俯视图是从上向下看得到的视图.4.(3分)方程x2﹣2x=0的根是( )A.x1=x2=0B.x1=x2=2C.x1=0,x2=2D.x1=0,x2=﹣2【分析】直接利用因式分解法将方程变形进而求出答案.【解答】解:x2﹣2x=0x(x﹣2)=0,解得:x1=0,x2=2.故选:C.【点评】此题主要考查了因式分解法解方程,正确分解因式是解题关键.5.(3分)下列说法正确的是( )A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%”是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S 2=0.4,则甲的成绩更稳定乙D.数据6,6,7,7,8的中位数与众数均为7【分析】直接利用随机事件以及众数、中位数的定义以及方差的定义分别分析得出答案.【解答】解:A、打开电视机,正在播放《达州新闻》”是随机事件,故此选项错误;B、天气预报“明天降水概率50%,是指明天有50%下雨的可能,故此选项错误;C、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定,正确;D、数据6,6,7,7,8的中位数为7,众数为:6和7,故此选项错误;故选:C.【点评】此题主要考查了随机事件以及众数、中位数的定义以及方差的定义,正确把握相关定义是解题关键.6.(3分)如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有( )A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2【分析】根据平行四边形的性质.菱形的判定方法即可一一判断.【解答】解:A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不一定是菱形.D、正确.可以证明平行四边形ABCD的邻边相等,即可判定是菱形.故选:C.【点评】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是熟练掌握菱形的判定方法.7.(3分)如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心,以小于AC的长为半径作弧,分别交AC,AB于点M,N;②分别以点M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③连接AP,交BC于点D.若CD=3,BD=5,则AC的长为( )A.4B.5C.6D.7【分析】作DE⊥AB,由作图知AP平分∠BAC,依据∠C=∠AED=90°知CD=DE=3,结合BD=5知BE=4,再证Rt△ACD≌Rt△AED得AC=AE,设AC=AE=x,由AC2+BC2=AB2得x2+82=(x+4)2,解之可得答案.【解答】解:如图所示,过点D作DE⊥AB于点E,由作图知AP平分∠BAC,∵∠C=∠AED=90°,∴CD=DE=3,∵BD=5,∴BE=4,∵AD=AD,CD=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,设AC=AE=x,由AC2+BC2=AB2得x2+82=(x+4)2,解得:x=6,即AC=6,故选:C.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握角平分线的尺规作图及角平分线的性质、勾股定理等知识点.8.(3分)我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y个,则下列关于x、y的二元一次方程组中符合题意的是( )A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.9.(3分)如图,在Rt△ABC中,∠C=30°,AB=4,D,F分别是AC,BC的中点,等腰直角三角形DEH的边DE经过点F,EH交BC于点G,且DF=2EF,则CG的长为( )A.2B.2﹣1C.D. +1【分析】由已知得出DF∥AB,BC=AB=4,DF=AB=2,CF=BF,CF=BC=2,求出EF=1,求出△EGF是等腰直角三角形,得出GF=EF=1,即可得出CG=CF﹣GF=2﹣1.【解答】解:∵Rt△ABC中,∠C=30°,AB=4,D,F分别是AC,BC的中点,∴DF∥AB,BC=AB=4,DF=AB=2,CF=BF,∴CF=BC=2,∵DF=2EF,∴EF=1,∵等腰直角三角形DEH的边DE经过点F,∴DE⊥BC,∴△EGF是等腰直角三角形,∴GF=EF=1,∴CG=CF﹣GF=2﹣1,故选:B.【点评】本题考查了三角形中位线定理、勾股定理、直角三角形的性质、等腰直角三角形的性质等知识;熟练掌握三角形中位线定理是解题的关键.10.(3分)如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是( )A.B.C.D.【分析】当点N在AD上时,可得前半段函数图象为开口向上的抛物线的一部分;当点N在DC上时,MN长度不变,可得后半段函数图象为一条线段.【解答】解:设∠A=α,点M运动的速度为a,则AM=at,当点N在AD上时,MN=tanα×AM=tanα•at,此时S=×at×tanα•at=tanα×a2t2,∴前半段函数图象为开口向上的抛物线的一部分,当点N在DC上时,MN长度不变,此时S=×at×MN=a×MN×t,∴后半段函数图象为一条线段,故选:C.【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:(﹣3)0﹣2﹣1= .【分析】本题涉及零指数幂、负整数指数幂2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣3)0﹣2﹣1=1﹣=.故答案为:.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.12.(3分)一个不透明的袋子中装有若干个大小相同的白球,现取8个与白球除颜色外完全相同的黑球放入袋子中,摇匀之后,随机摸出一个球,记下颜色并放回,经过大量重复试验后,发现摸出黑球的频率稳定在0.1附近,则估计袋子中原有白球约 72 个.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:设袋子中原有白球n个,依题意有:=0.1,解得:n=72.∴袋子中原有白球72个,故答案为:72.【点评】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.13.(3分)不等式组的最小整数解是 0 .【分析】首先分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,从而得出答案.【解答】解:解不等式x+1>0,得:x>﹣1,解不等式1﹣x≥0,得:x≤2,则不等式组的解集为﹣1<x≤2,所以不等式组的最小整数解为0,故答案为:0.【点评】此题主要考查了解一元一次不等式(组),关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(3分)如图,在Rt△ABC中,AB=2,BC=1.将边BA绕点B顺时针旋转90°得线段BD,再将边CA绕点C顺时针旋转90°得线段CE,连接DE,则图中阴影部分的面积是 ﹣ .【分析】作EF⊥CD于F,根据勾股定理骑车AC,根据旋转变换的性质求出EF,根据扇形面积公式、三角形的面积公式计算,得到答案.【解答】解:作EF⊥CD于F,由旋转变换的性质可知,EF=BC=1,CD=CB+BD=3,由勾股定理得,CA==,则图中阴影部分的面积=△ABC的面积+扇形ABD的面积+△ECD的面积﹣扇形ACE的面积=×1×2++×3×1﹣=﹣,故答案为:﹣.【点评】本题考查的是扇形面积计算、旋转变换的性质,掌握扇形面积公式:S=是解题的关键.15.(3分)如图,在Rt△ABC中,∠C=90°,BC=2,AC=2,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若△AB′F为直角三角形,则AE的长为 3或 .【分析】利用三角函数的定义得到∠B=30°,AB=4,再利用折叠的性质得DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,讨论:当∠AFB′=90°时,则∴BF=cos30°=,则EF=﹣(4﹣x)=x﹣,于是在Rt△B′EF中利用EB′=2EF得到4﹣x=2(x﹣),解方程求出x得到此时AE的长;若B′不落在C点处,作EH⊥AB′于H,连接AD,如图,证明Rt△ADB′≌Rt△ADC得到AB′=AC=2,再计算出∠EB′H=60°,则B′H=(4﹣x),EH=(4﹣x),接着利用勾股定理得到(4﹣x)2+[(4﹣x)+2]2=x2,方程求出x得到此时AE的长.【解答】解:∵∠C=90°,BC=2,AC=2,∴tan B===,∴∠B=30°,∴AB=2AC=4,∵点D是BC的中点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F∴DB=DC=,EB′=EB,∠DB′E=∠B=30°,设AE=x,则BE=4﹣x,EB′=4﹣x,当∠AFB′=90°时,在Rt△BDF中,cos B=,∴BF=cos30°=,∴EF=﹣(4﹣x)=x﹣,在Rt△B′EF中,∵∠EB′F=30°,∴EB′=2EF,即4﹣x=2(x﹣),解得x=3,此时AE为3;若B′不落在C点处,作EH⊥AB′于H,连接AD,如图,∵DC=DB′,AD=AD,∴Rt△ADB′≌Rt△ADC,∴AB′=AC=2,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(4﹣x),EH=B′H=(4﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴(4﹣x)2+[(4﹣x)+2]2=x2,解得x=,此时AE为.综上所述,AE的长为3或.故答案为3或.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系和勾股定理.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4,,解①得:x≤1,解②得:x>﹣3,故不等式组的解集为:﹣3<x≤1,把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.17.(9分)为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了 100 名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为 36° ;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?【分析】(1)用“戏曲”的人数除以其所占百分比可得;(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;(3)用360°乘以“戏曲”人数所占百分比即可得;(4)用总人数乘以样本中“书法”人数所占百分比可得.【解答】解:(1)学校本次调查的学生人数为10÷10%=100名,故答案为:100;(2)“民乐”的人数为100×20%=20人,补全图形如下:(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为360°×10%=36°,故答案为:36°;(4)估计该校喜欢书法的学生人数为2000×25%=500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP= 120° 时,四边形AOCP是菱形;②连接BP,当∠ABP= 45° 时,PC是⊙O的切线.【分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=PA,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【解答】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=PA,∵OA=OP,∴OA=OP=PA,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点评】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.19.(9分)如图1,是全国最大的瓷碗造型建筑,座落于江西景德镇,整体造型概念来自“宋代影青斗笠碗”,造型庄重典雅,象征“万瓷之母”.小敏为了计算该建筑物横断面(瓷碗橫断面ABCD 为等腰梯形)的高度,如图2,她站在与瓷碗底部AB位于同一水平面的点P处测得瓷碗顶部点D 的仰角为45°,而后沿着一段坡度为0.44(坡面与水平线夹角的正切值)的小坡PQ步行到点Q(此过程中AD,AP,PQ始终处于同一平面)后测得点D的仰角减少了5°.已知坡面PQ的水平距离为20米,小敏身高忽略不计,试计算该瓷碗建筑物的高度.(参考数据:sin40°≈0.64,tan40°≈0.84)【分析】分别过点D,P向水平线作垂线,与过点Q的水平线分别交于点N,M,DN与PA交于点H,如解图所示,则四边形PMNH是矩形.设DH=xm,想办法构建方程即可解决问题.【解答】解:分别过点D,P向水平线作垂线,与过点Q的水平线分别交于点N,M,DN与PA交于点H,如解图所示,则四边形PMNH是矩形.∴PM=HN,PH=MN.由题意可知∠DPA=45°,∠DQN=45°﹣5°=40°.在Rt△DHP中,∵∠DPA=45°,∴DH=PH.设该瓷碗建筑物的高度DH为xm,则PH=DH=MN=xm.在Rt△PQM中,∵tan∠PQM==0.44,QM=20,∴PM=0.44QM=0.44×20=8.8,∴DN=DH+HN=x+8.8,QN=QM+MN=x+20.在Rt△DQN中,tan∠DQN=,∴≈0.84,解得x≈50.答:该瓷碗建筑物的高度约为50米.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.(9分)如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A.B两点,与反比例函数y2=的图象分别交于C.D两点,点D(2,﹣3),OA=2.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)直接写出k1x+b﹣≥0时自变量x的取值范围.(3)动点P(0,m)在y轴上运动,当|PC﹣PD|的值最大时,直接写出P点的坐标.【分析】(1)把点D的坐标代入反比例函数,利用待定系数法即可求得反比例函数的解析式,作DE⊥x轴于E,根据题意求得A的坐标,然后利用待定系数法求得一次函数的解析式;(2)根据图象即可求得k1x+b﹣≥0时,自变量x的取值范围;(3)作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,由C'和D的坐标可得,直线C'D为y=x﹣,进而得到点P的坐标.【解答】解:(1)∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=﹣;如图,作DE⊥x轴于E∵OA=2∴A(﹣2,0),∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,,解得k1=﹣,b=﹣,∴y=﹣x﹣;(2)由图可得,当k1x+b﹣≥0时,x≤﹣4或0<x≤2.(3)由,解得或,∴C(﹣4,),作C(﹣4,)关于y轴的对称点C'(4,),延长C'D交y轴于点P,∴由C'和D的坐标可得,直线C'D为y=x﹣,令x=0,则y=﹣,∴当|PC﹣PD|的值最大时,点P的坐标为(0,﹣).【点评】本题考查了反比例函数和一次函数的交点问题,待定系数法求一次函数和二次函数的解析式,方程组的解等知识,解题的关键是灵活应用所学知识解决问题,学会利用轴对称解决最值问题,属于中考压轴题.21.(10分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【分析】(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,根据“总利润=盆数×每盆的利润”可得函数解析式;(2)将盆景的利润加上花卉的利润可得总利润关于x的函数解析式,配方成顶点式,利用二次函数的性质求解可得.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.【点评】本题主要考查二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,据此列出函数解析式及二次函数的性质.22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为 BC=DC+EC ;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D 落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.【分析】(1)证明△BAD≌△CAE,根据全等三角形的性质解答;(2)连接CE,根据全等三角形的性质得到BD=CE,∠ACE=∠B,得到∠DCE=90°,根据勾股定理计算即可;(3)作AE⊥AD,使AE=AD,连接CE,DE,证明△BAD≌△CAE,得到BD=CE=9,根据勾股定理计算即可.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.【点评】本题考查的是全等三角形的判定和性质、勾股定理、以及旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.(11分)如图,抛物线y=ax2+bx+6过点A(6,0),B(4,6),与y轴交于点C.(1)求该抛物线的解析式;(2)如图1,直线的解析式为y=x,抛物线的对称轴与线段BC交于点P,过点P作直线的垂线,垂足为点H,连接OP,求△OPH的面积;(3)把图1中的直线y=x向下平移4个单位长度得到直线y=x﹣4,如图2,直线y=x﹣4与x轴交于点G.点P是四边形ABCO边上的一点,过点P分别作x轴、直线l的垂线,垂足分别为点E,F.是否存点P,使得以P,E,F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.【分析】(1)把A(6,0),B(4,6)代入解析式,求解即可;。

2019年河南省信阳市中考数学一模试卷 解析版

2019年河南省信阳市中考数学一模试卷  解析版

2019年河南省信阳市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)比较﹣1,,﹣1,的大小,结果正确的是()A.﹣1<﹣1<<B.﹣1<﹣1<<C.﹣1<﹣1<<D.﹣1<﹣1<<2.(3分)共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104B.4.9×105C.0.49×104D.49×1043.(3分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,你认为从左面看到的这个几何体的形状图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a25.(3分)郑州某中学在备考2018 河南中考体育的过程中抽取该校九年级20 名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.072 56.(3分)如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°7.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°8.(3分)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.50°B.60°C.70°D.80°9.(3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x 的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B →D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P 的运动时间为t,则S关于t的函数图象大致为()A .B .C .D .二、填空题(本大题共5小题,每小题3分,共15分) 11.(3分)计算:(π﹣3.14)0+3﹣1= .12.(3分)关于x 的一元二次方程x 2﹣6x +b =0有两个不相等的实数根,则实数b 的取值范围是 . 13.(3分)甲、乙、丙三名学生各自随机选择到A 、B 两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为 .14.(3分)如图,在Rt △AOB 中,∠AOB =90°,OA =2,OB =1,将Rt △AOB 绕点O 顺时针旋转90°后得到Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得到线段ED ,分別以O 、E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分的面积是 .15.(3分)如图,矩形ABCD 中,AB =4,AD =6,点E 为AD 中点,点P 为线段AB 上一个动点,连接EP ,将△APE 沿PE 折叠得到△FPE ,连接CE ,CF ,当△ECF 为直角三角形时,AP 的长为 .三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简÷,然后从﹣1,0,2中选一个合适的x的值,代入求值.17.(9分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:BE=EC.(2)填空:①若∠B=30°,AC=2,则DE=;②当∠B=°时,以O,D,E,C为顶点的四边形是正方形.19.(9分)4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.414).20.(9分)如图,在平面直角坐标系xOy中,A(0,3),B(1,0),连接BA,将线段BA绕点B顺时针旋转90°得到线段BC,反比例函数y=的图象G经过点C.(1)请直接写出点C的坐标及k的值;(2)若点P在图象G上,且∠POB=∠BAO,求点P的坐标;(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Q作x轴的平行线与图象G交于点M,与直线OP交于点N,若点M在点N左侧,结合图象,直接写出m的取值范围.21.(10分)某文具店经销甲、乙两种不同的笔记本.已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,马阳光同学买4本甲种笔记本和3本乙种笔记本共用了47元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时该文具店获利最大?(3)店主经统计发现平均每天可售出甲种笔记本350本和乙种笔记本150本.如果甲种笔记本的售价每提高1元,则每天将少售出50本甲种笔记本;如果乙种笔记本的售价每提高1元,则每天少售出40本乙种笔记本,为使每天获取的利润更多,店主决定把两种笔记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少元时,才能使该文具店每天销售甲、乙两种笔记本获取的利润最大?22.(10分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD 的长.23.(11分)在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C (0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.2019年河南省信阳市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)比较﹣1,,﹣1,的大小,结果正确的是()A.﹣1<﹣1<<B.﹣1<﹣1<<C.﹣1<﹣1<<D.﹣1<﹣1<<【分析】根据有理数大小比较的方法即可求解.【解答】解:由有理数大小比较的方法可知,﹣1<﹣1<<.故选:B.【点评】本题考查有理数比较大小的方法:①正数都大于0,负数都小于0,正数大于一切负数;②两个负数,绝对值大的反而小.2.(3分)共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104B.4.9×105C.0.49×104D.49×104【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:49万=4.9×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a 与n的值是解题的关键.3.(3分)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,你认为从左面看到的这个几何体的形状图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得左视图.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以从左面看到的这个几何体的形状图是:故选:D.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.(3分)郑州某中学在备考2018 河南中考体育的过程中抽取该校九年级20 名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.072 5【分析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【解答】解:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选:B.【点评】此题考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.6.(3分)如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=75°,求出∠FDC=35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.7.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°【分析】根据直径所对的圆周角是90°和平行线的性质解答即可.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.【点评】此题考查圆周角定理,关键是根据直径所对的圆周角是90°和平行线的性质解答.8.(3分)如图,在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD,则∠BAD的度数为()A.50°B.60°C.70°D.80°【分析】根据内角和定理求得∠BAC=95°,由中垂线性质知DA=DC,即∠DAC=∠C=30°,从而得出答案.【解答】解:在△ABC中,∵∠B=50°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=100°,由作图可知MN为AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:C.【点评】本题主要考查作图﹣基本作图,熟练掌握中垂线的作图和性质是解题的关键.9.(3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x 的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b【分析】由m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根可得出二次函数y=(x ﹣a)(x﹣b)﹣1的图象与x轴交于点(m,0)、(n,0),将y=(x﹣a)(x﹣b)﹣1的图象往上平移一个单位可得二次函数y=(x﹣a)(x﹣b)的图象,画出两函数图象,观察函数图象即可得出a、b、m、n的大小关系.【解答】解:∵m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,∴二次函数y=(x﹣a)(x﹣b)﹣1的图象与x轴交于点(m,0)、(n,0),∴将y=(x﹣a)(x﹣b)﹣1的图象往上平移一个单位可得二次函数y=(x﹣a)(x﹣b)的图象,二次函数y=(x﹣a)(x﹣b)的图象与x轴交于点(a,0)、(b,0).画出两函数图象,观察函数图象可知:m<a<b<n.故选:A.【点评】本题考查了抛物线与x轴的交点,画出两函数图象,利用数形结合解决问题是解题的关键.10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B →D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P 的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【分析】根据题意易知道当P在BD上由B向D运动时,△BPQ的高PQ和底BQ都随着t的增大而增大,那么S△BPQ就是PQ和BQ两个一次函数相乘再乘以二分之一,结果是一个二次函数,然后根据它们的斜率乘积的正负性判别抛物线开口方向;当P在DE上有D向E运动时,高PQ不变,底BQ随着t的增大而增大,则S△BPQ是一个一次函数,然后根据斜率的正负性判别图象上升还是下降;当P在EC上由E向C运动时高PQ逐渐减小,底BQ逐渐增大,S△BPQ的图象会是一二次函数,再根据PQ和BQ两个一次函数的斜率乘积的正负性来判断抛物线开口方向.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.=PQ•BQ,∴S△BPQ①当点P在BD上,Q在BC上时(即0s≤t≤2s),BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=t,∴S=PQ•BQ=•t•t=t2△BPQ的图象是关于t(0s≤t≤2s)的二次函数.此时S△BPQ∵>0,∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s),PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1,=PQ•BQ=••(t﹣1)=t﹣;∴S△BPQ此时S的图象是关于t(2s<t≤4s)的一次函数.△BPQ∵斜率>0随t的增大而增大,直线由左向右依次上升.∴S△BPQ③P在EC上时,由∠C=45°易求得EC=•=(即4s<t≤4+s)PQ=﹣(t﹣4)(4s<t≤4+s),BQ=3+(t﹣4),∴S△BPQ=PQ•BQ=﹣(t﹣4)2﹣(t﹣4)+3,∴抛物线开口向下.故选:D.【点评】本题考查了动点问题的函数图象、二次函数的性质、三角函数、三角形面积公式;关键面积公式求出分段函数是解题关键.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:(π﹣3.14)0+3﹣1=.【分析】直接利用零指数幂的性质以及负指数幂的性质进而化简得出答案.【解答】解:原式=1+=.故答案为:.【点评】此题主要考查了零指数幂的性质以及负指数幂的性质,正确化简各数是解题关键.12.(3分)关于x的一元二次方程x2﹣6x+b=0有两个不相等的实数根,则实数b的取值范围是b <9.【分析】根据判别式的意义得到△=(﹣6)2﹣4b>0,然后解不等式即可.【解答】解:根据题意得△=(﹣6)2﹣4b>0,解得b<9.故答案为:b<9.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.13.(3分)甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果与甲、乙、丙三名学生在同一书店购书的情况数,然后根据概率公式求解即可求得答案.【解答】解:画树状图得:由树状图知共有8种等可能结果,其中甲、乙、丙三名学生在同一书店购书的有2种情况,∴甲、乙、丙三名学生到同一个书店购书的概率为=,故答案为:.【点评】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=2,OB=1,∴AB==,由旋转,得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,DE=AB,∴△DHE≌△BOA(AAS),∴DH=OB=1,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×3×1+×1×2+﹣=,故答案为:.【点评】本题考查的是扇形面积的计算、旋转的性质、全等三角形的性质,掌握扇形的面积公式和旋转的性质是解题的关键.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【分析】分两种情况进行讨论:当∠CFE=90°时,△ECF是直角三角形;当∠CEF=90°时,△ECF是直角三角形,分别根据直角三角形的勾股定理列方程求解即可.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.【点评】本题考查了折叠问题,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质以及勾股定理.解题时注意:折叠前后两图形全等,即对应线段相等;对应角相等.本题有两种情况,需要分类讨论,避免漏解.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简÷,然后从﹣1,0,2中选一个合适的x 的值,代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再由分式有意义的条件选取合适的x 的值代入计算可得.【解答】解:原式=•﹣=﹣==﹣,当x =2时,原式=﹣.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.17.(9分)某品牌牛奶供应商提供A ,B ,C ,D 四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人? (2)补全上面的条形统计图;(3)扇形统计图中C 对应的中心角度数是 144° ;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A ,B 口味的牛奶共约多少盒? 【分析】(1)利用A 类别人数及其百分比可得总人数;(2)总人数减去A 、B 、D 类别人数,求得C 的人数即可补全图形; (3)360°×C 类别人数所占比例可得;(4)总人数乘以样本中A 、B 人数占总人数的比例即可.【解答】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点评】本题考查条形统计图、扇形统计图等知识.结合生活实际,绘制条形统计图,扇形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:BE=EC.(2)填空:①若∠B=30°,AC=2,则DE=3;②当∠B=45°时,以O,D,E,C为顶点的四边形是正方形.【分析】(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;②由等腰三角形的性质,得到∠ODA=∠A=45°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【解答】(1)证明:连接DO;如图所示:∵∠ACB=90°,AC为直径,∴EC为⊙O的切线;又∵ED也为⊙O的切线,∴EC=ED,又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°又∵∠B+∠A=90°,∴∠BDE=∠B,∴BE=ED,∴BE=EC;(2)解:①∵∠ACB=90°,∠B=30°,AC=2,∴AB=2AC=4,∴BC==6,∵AC为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC,∴DE=BC=3,故答案为:3;②当∠B=45°时,四边形ODEC是正方形,理由如下:∵∠ACB=90°,∴∠A=45°,∵OA=OD,∴∠ADO=45°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO是矩形,∵OD=OC,∴矩形DECO是正方形.故答案为:45.【点评】本题考查了圆的切线性质、解直角三角形的知识、切线长定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.19.(9分)4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈,cos67°≈,tan67°≈,≈1.414).【分析】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.,设AF=BF=x,则CM=BF=x,DM=HE=40﹣x,AH=x+30﹣1.5=x+28.5,在Rt△AHE中,根据tan67°=,构建方程即可解决问题.【解答】解:如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40﹣x,AH=x+30﹣1.5=x+28.5,在Rt△AHE中,tan67°=,∴=,解得x=19.9m.∴AM=19.9+30=49.9m.∴风筝距地面的高度49.9m.【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用此时构建方程解决问题.20.(9分)如图,在平面直角坐标系xOy中,A(0,3),B(1,0),连接BA,将线段BA绕点B顺时针旋转90°得到线段BC,反比例函数y=的图象G经过点C.(1)请直接写出点C的坐标及k的值;(2)若点P在图象G上,且∠POB=∠BAO,求点P的坐标;(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Q作x轴的平行线与图象G交于点M,与直线OP交于点N,若点M在点N左侧,结合图象,直接写出m的取值范围.【分析】(1)过C点作CH⊥x轴于H,如图,利用旋转的性质得BA=BC,∠ABC=90°,再证明△ABO≌△BCH得到CH=OB=1,BH=OA=3,则C(4,1),然后把C点坐标代入y=中可计算出k的值;(2)画出过点C的反比例函数y=的草图,结合条件点P在图象G上,根据相似三角形的判定和性质即可得到结论;(3)由Q(0,m),得到OQ=m,得到M(,m),N(3m,m),根据点M在点N左侧,列不等式即可得到结论.【解答】解:(1)过C点作CH⊥x轴于H,如图,∵线段AB绕点B顺时针旋转90°,得到线段BC,∴BA=BC,∠ABC=90°,∵∠ABO+∠CBH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBH,在△ABO和△BCH中,∴△ABO≌△BCH(AAS),∴CH=OB=1,BH=OA=3,∴C(4,1),∵点C落在函数y=(x>0)的图象上,∴k=4×1=4;(2)过O作OP∥BC交y=的图象于点P,过P作PG⊥x轴于G,∵∠POG=∠OAB,∵∠AOB=∠PGO,∴△OAB∽△OHP,∴PG:OG=OB:OA=1:3,∵点P在y=上,∴3y P•y P=4,∴y P=,∴点P的坐标为(2,);(3)∵Q(0,m),∴OQ=m,∵OM∥x轴,与图象G交于点M,与直线OP交于点N,∴M(,m),N(3m,m),∵点M在点N左侧,∴<3m,∵m>0,∴m>.【点评】本题考查了坐标与图形变化﹣旋转,三角形全等的判定与性质,相似三角形的判定和性质,反比例函数图象上点的坐标特征,正确作出辅助线是解题的关键.21.(10分)某文具店经销甲、乙两种不同的笔记本.已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,马阳光同学买4本甲种笔记本和3本乙种笔记本共用了47元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时该文具店获利最大?(3)店主经统计发现平均每天可售出甲种笔记本350本和乙种笔记本150本.如果甲种笔记本的售价每提高1元,则每天将少售出50本甲种笔记本;如果乙种笔记本的售价每提高1元,则每天少售出40本乙种笔记本,为使每天获取的利润更多,店主决定把两种笔记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少元时,才能使该文具店每天销售甲、乙两种笔记本获取的利润最大?【分析】(1)设甲种笔记本的进价是m元,乙种笔记本的进价是(10﹣m)元.根据王同学买4本甲种笔记本和3本乙种笔记本共用了47元,列出方程即可解决问题.(2)设购入甲种笔记本n本,根据购入这两种笔记本共60本,花费不超过296元,列出不等式即可解决问题.(3)设把两种笔记本的价格都提高x元的总利润为W元.构建二次函数,利用二次函数的性质解决最值问题.【解答】解:(1)设甲种笔记本的进价是m元,乙种笔记本的进价是(10﹣m)元.由题意4(m+2)+3(10﹣m+1)=47,解得m=6,答:甲种笔记本的进价是6元,乙种笔记本的进价是4元.(2)设购入甲种笔记本n本,则6n+4(60﹣n)≤296,解得n≤28,答:购入甲种笔记本最多28本,此时获利最大.(3)设把两种笔记本的价格都提高x元的总利润为W元.则W=(1+x)(350﹣50x)+(1+x)(150﹣40x)=﹣90(x﹣2)2+810,∵a<0,∴抛物线开口向下,∴x=2时,W=810,最大∴x=2时,最大利润为810元.【点评】本题考查二次函数的性质、一元一次方程、一元一次不等式等知识,解题的关键是学会设未知数关键方程或不等式或二次函数解决问题,属于中考常考题型.22.(10分)(1)观察猜想如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为;(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD 的长.【分析】(1)观察猜想:证明△ADB≌△EAC,可得结论:BC=AB+AC=BD+CE;(2)问题解决:作辅助线,同理证明:△ABC≌△DEA,可得DE=AB=2,AE=BC=4,最后利用勾股定理求BD的长;(3)拓展延伸:同理证明三角形全等,设AF=x,DF=y,根据全等三角形对应边相等列方程组可得结论.【解答】解:(1)观察猜想结论:BC=BD+CE,理由是:如图①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AC,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:BD==2;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,设AF=x,DF=y,。

河南省信阳九中2019年中考数学模拟试卷附答案解析

 河南省信阳九中2019年中考数学模拟试卷附答案解析

河南省信阳九中2019年中考数学模拟试卷含答案解析一.选择题(共10小题)1.在﹣,﹣,﹣2,﹣1中,最小的数是()A.B.C.﹣2 D.﹣12.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×1053.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.4.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16C.平均分为7.78 D.方差为26.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.如图,AB为⊙O的直径,弦CD⊥AB,连结OD,AC,若∠CAO=70°,则∠BOD的度数为()A.110°B.140°C.145°D.150°8.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36 B.24 C.18 D.169.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m10.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是()A.①②都对B.①②都错C.①对②错D.①错②对二.填空题(共5小题)11.计算:()﹣1﹣(3.14﹣π)0=.12.关于x的一元二次方程4x2+4ax+a+1=0有两个相等的实数根,则的值等于.13.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.14.已知线段AB=2,以点A为旋转中心,如果将AB顺时针旋转120°,那么线段AB所扫过的图形的面积为(答案保留π)15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为.三.解答题(共8小题)16.先化简,再求值:(x﹣2+)÷,其中x=﹣.17.某初级中学正在开展“文明城市创建人人参与,志愿服务我当先行”的“创文活动”.为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校七年级大约有多少志愿者?18.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线交BC于点E.(1)求证:EB=EC;(2)当△ABC满足什么条件时,四边形ODEC是正方形?证明你的结论.19.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈1.11,tan58°≈1.60.20.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.21.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?22.在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F 作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.23.抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.参考答案与试题解析一.选择题(共10小题)1.在﹣,﹣,﹣2,﹣1中,最小的数是()A.B.C.﹣2 D.﹣1【分析】根据有理数的大小比较法则比较即可.【解答】解:在﹣,﹣,﹣2,﹣1中,最小的数是﹣2,故选:C.2.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据55000用科学记数法表示为5.5×104.故选:B.3.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.4.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16C.平均分为7.78 D.方差为2【分析】根据中位数,众数,平均数,方差等知识即可判断;【解答】解:观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为9.故选:A.6.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.7.如图,AB为⊙O的直径,弦CD⊥AB,连结OD,AC,若∠CAO=70°,则∠BOD的度数为()A.110°B.140°C.145°D.150°【分析】根据题意求出∠C的度数,根据圆周角定理求出∠AOD的度数,根据邻补角的概念求出答案.【解答】解:∵CD⊥AB,∠CAO=70°,∴∠C=20°,∴∠AOD=40°,∴∠BOD=140°,故选:B.8.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36 B.24 C.18 D.16【分析】由直线EM为线段AB的垂直平分线,根据线段垂直平分线定理:可得AM=BM,同理可得BN=NC,然后表示出三角形BMN的三边之和,等量代换可得其周长等于AC的长;【解答】解:∵直线ME为线段AB的垂直平分线,∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NF为线段BC的垂直平分线,∴NB=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△BMN的周长=BM+MN+BN=AM+MN+NC=AC=24(等量代换),故选:B.9.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m【分析】先把方程化为一般式,再计算判别式的值得到△=37(m2﹣4),然后根据m的范围得到△<0,从而根据判别式的意义可得到正确选项.【解答】解:方程整理为x2+7mx+3m2+37=0,△=49m2﹣4(3m2+37)=37(m2﹣4),∵0<m<2,∴m2﹣4<0,∴△<0,∴方程没有实数根.故选:A.10.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是()A.①②都对B.①②都错C.①对②错D.①错②对【分析】根据图象,分析得到AB=a,AB+BC=5,E在BC上时在利用△ABE∽△ECF,用x表示y,根据最大值求得a,进而得到二次函数解析式.当y=时,求x.当E在AB 上y=时,求出x.可判断结论均正确.【解答】解:由已知,AB=a,AB+BC=5当E在BC上时,如图,∵E作EF⊥AE∴△ABE∽△ECF∴∴∴y=﹣∴当x=∴﹣解得a1=3,a2=(舍去)∴y=﹣当y=时,=﹣解得x1=,x2=当E在AB上时,y=时,x=3﹣=故①②正确故选:A.二.填空题(共5小题)11.计算:()﹣1﹣(3.14﹣π)0= 1 .【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:()﹣1﹣(3.14﹣π)0=2﹣1=1.故答案为:1.12.关于x的一元二次方程4x2+4ax+a+1=0有两个相等的实数根,则的值等于﹣3 .【分析】由根的判别式△>0列式,可得:a2﹣a﹣1=0,则a2=a+1,代入中,依次降次可得结果.【解答】解:∵方程4x2+4ax+a+1=0有两个相等的实数根,∴△=(4a)2﹣4×4(a+1)=0,16a2﹣16a﹣16=0,a2﹣a﹣1=0,∴a2=a+1,则========﹣3;故答案为:﹣3.13.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为:.14.已知线段AB=2,以点A为旋转中心,如果将AB顺时针旋转120°,那么线段AB所扫过的图形的面积为(答案保留π)【分析】利用扇形的面积公式计算即可.【解答】解:由题意:扇形的面积==,故答案为.15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为 3 .【分析】先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x,在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=8,AD=6,∴BD==10,∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=4,设AE=EF=x,在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+42,解得x=3,∴AE=3,故答案为3.三.解答题(共8小题)16.先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.17.某初级中学正在开展“文明城市创建人人参与,志愿服务我当先行”的“创文活动”.为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校七年级大约有多少志愿者?【分析】(1)根据百分比=所占人数÷总人数计算即可求得总人数,再求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题.【解答】解:(1)因为总人数为20÷40%=50(人)则八年级志愿者被抽到的人数为50×30%=15(人)九年级志愿者被抽到的人数为人数为50×20%=10(人),补全条形图如下:(2)600×40%=240(人)答:该校七年级大约有240名志愿者.18.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线交BC于点E.(1)求证:EB=EC;(2)当△ABC满足什么条件时,四边形ODEC是正方形?证明你的结论.【分析】(1)利用EC为⊙O的切线,ED也为⊙O的切线可求EC=ED,再求得EB=EC,EB=ED可知点E是边BC的中点;(2)当△ABC是等腰直角三角形时,四边形ODEC是正方形,由等腰三角形的性质,得到∠ODA=∠A=45°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【解答】解:(1)证明:连接CD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠ADC=90°.∵DE是⊙O的切线,∴DE=CE(切线长定理).∴∠DCE=∠CDE,又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠EBD=∠EDB.∴DE=BE,∴CE=BE.(2)当△ABC是等腰直角三角形时,四边形ODEC是正方形.理由如下:∵△ABC是等腰直角三角形.∴∠B=45°,∴∠DCE=∠CDE=45°,则∠DEB=90°,又∵OC=OD,∠ACB=90°,∴∠OCD=∠ODC=45°,∴∠ODE=90°,∴四边形ODEC是矩形,∵EC=ED,∴四边形ODEC是正方形.19.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈1.11,tan58°≈1.60.【分析】首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应用其公共边构造关系式,进而可求出答案.【解答】解:如图作AE⊥CD交CD的延长线于E.则四边形ABCE是矩形,∴AE=BC=78,AB=CE,在Rt△ACE中,EC=AE•tan58°≈125(m)在Rt△AED中,DE=AE•tan48°,∴CD=EC﹣DE=AE•tan58°﹣AE•tan48°=78×1.6﹣78×1.11≈38(m),答:甲、乙建筑物的高度AB约为125m,DC约为38m.20.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.21.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?【分析】(1)根据AB为xm,BC就为(24﹣3x),利用长方体的面积公式,可求出关系式.(2)将s=45m代入(1)中关系式,可求出x即AB的长.(3)当墙的宽度为最大时,有最大面积的花圃.此故可求.【解答】解:(1)根据题意,得S=x(24﹣3x),即所求的函数解析式为:S=﹣3x2+24x,又∵0<24﹣3x≤10,∴,(2)根据题意,设AB长为x,则BC长为24﹣3x∴﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m;(3)S=24x﹣3x2=﹣3(x﹣4)2+48∵墙的最大可用长度为10m,0≤BC=24﹣3x≤10,∴,∵对称轴x=4,开口向下,∴当x=m,有最大面积的花圃.即:x=m,最大面积为:24×﹣3×()2=m222.在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F 作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.【分析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.【解答】(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.(2)作CQ⊥AC,交AF的延长线于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.23.抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,∴a=x2﹣x1,∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).。

2019年河南省信阳市中考数学一模试卷(备用卷)(解析版)

2019年河南省信阳市中考数学一模试卷(备用卷)(解析版)

2019年河南省信阳市中考数学一模试卷(备用卷)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4B.c﹣b>0C.ac>0D.a+c>02.根据有关基础资料和国民经济核算方法,我国2018年上半年国内生产总值为41.8961万亿元,其中41.8961万亿用科学记数法可表示为()A.41.896 1×1012B.4.189 61×1013C.0.418 961×1014D.4.189 61×10123.如图,是由6个同样大小的正方体摆成的几何体,如果将最上层的正方体分别移到①号、②号、③号或④号正方体的上面(接触面所有的棱都重合),会得到4种新的几何体,那么所得到的4种几何体的()A.主视图都相同B.左视图都相同C.俯视图都相同D.三视图都不相同4.下列运算正确的是()A.x2•x3=x6B.(x3)2=x5C.(﹣2x2y)3=﹣8 x6y3D.﹣x+2x=﹣3x5.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差6.“折竹抵地”问题源自《九章算术》,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈(1丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断处离地面的高度为()A.5.8尺B.4.2尺C.3尺D.7尺7.已知关于x的一元二次方程(2﹣a)x2﹣2x+1=0有两个不相等的实数根,则整数a的最小值是()A.1B.2C.3D.48.规定:“上升数”是一个右边数位上的数字比左边数位上的数字大的自然数(如23,567,3467等).一不透明的口袋中装有3个大小、形状完全相同的小球,其上分别标有数字1,2,3,从袋中随机摸出1个小球(不放回),其上所标数字作为十位上的数字,再随机摸出1个小球,其上所标数字作为个位上的数字,则组成的两位数是上升数的概率为()A.B.C.D.9.如图,将△ABC绕点C顺时针旋转,点B的对应点为点E,点A的对应点为点D,当点E恰好落在边AC上时,连接AD,∠ACB=36°,AB=BC,AC=2,则AB的长度是()A.﹣1B.1C.D.10.如图,锐角三角形ABC中,BC=6,BC边上的高为4,直线MN交边AB于点M,交AC于点N,且MN∥BC,以MN为边作正方形MNPQ,设其边长为x(x>0),正方形MNPQ与△ABC 公共部分的面积为y,则y与x的函数图象大致是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.计算:(﹣)﹣2﹣2cos60°=.12.如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为.13.不等式组的整数解有个.14.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B为圆心,AC,BC 的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是.15.如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:(x+y)2+2(x﹣y)(x+y)+(x﹣y)2﹣y2,其中x=,y=﹣.17.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?18.如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x﹣4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=也经过A点.连接BC.(1)求k的值;(2)判断△ABC的形状,并求出它的面积.(3)若点P为x正半轴上一动点,在点A的右侧的双曲线上是否存在一点M,使得△PAM是以点A为直角顶点的等腰直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.19.如图,⊙O与直线MN相切于点A,点B是圆上异于点A的一点,∠BAN的平分线与⊙O交于点C,连接BC.(1)求证:△ABC是等腰三角形;(2)①若∠CAN=15°,⊙O的半径为2,则AB=;②当∠CAN=时,四边形OACB为菱形.20.河南旅游宣传口号“HENAN,WHERECHINABEGAN”(心灵故乡,老家河南;中国历史开始的地方),荣获2017海南世界休闲旅游博览会年度旅游传播口号大奖.如图,某河堤上有一个旅游宣传标语牌,小明在河堤底部A处测得标语牌顶部C处的仰角为45°,然后沿坡度为1:2的斜坡AF攀行20m,在坡顶F处又测得标语牌底部D处的仰角为76°,已知FH与水平面AB 平行,CD与AB垂直,且CD=2m,点A,B,C,D,F,H在同一平面内,过点D作DN⊥FH 于点N,求标语牌顶部到河堤顶部的距离CN.(结果精确到1m.参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01,≈1.41,≈2.24)21.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?22.(10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程.操作发现(1)①如图(1),B为线段CE上一点,分别以BC,BE为边作正方形ABCD与正方形BEFG,点P为BC上一点,且CP=BE,连接DP,FP,那么DP与FP有什么关系?直接写出答案.②如图(2),B为线段CE上一点,分别以BC,BE为斜边作等腰直角三角形ABC与等腰直角三角形DBE,点P为CE的中点,连接AP,DP,那么AP与DP有什么数量关系?请给予证明.数学思考(2)如图(3),B为线段CE上一点,分别以BC,BE为斜边作直角三角形ABC与直角三角形DBE,且△ABC∽△DBE,点P为CE的中点,连接AP,DP,那么AP与DP有什么数量关系?请给予证明.拓展探究(3)如图(4),B为线段CE外一点,连接BC,BE,分别以BC,BE为斜边作直角三角形ABC 与直角三角形DBE,且△ABC∽△DBE,点P为CE的中点,连接AP,DP,那么(2)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.23.(11分)如图,顶点为(2,﹣1)的抛物线y=ax2+bx+c(a≠0)交y轴于点C(0,3),交x 轴于A,B两点,直线l过AC两点,点P是位于直线l下方抛物线上的动点,过点P作PQ∥y 轴,交直线l于点Q.(1)求抛物线的解析式;(2)求线段PQ的最大值及此时点P的坐标;(3)在抛物线的对称轴上是否存在点G,使△BCG为直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.2019年河南省信阳市中考数学一模试卷(备用卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:41.8961万亿=41 896 100 000 000=4.189 61×1013,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据三视图观察的角度得出新几何体的三视图与原几何体的三视图相比,俯视图没有发生改变;【解答】解:最上层的正方体分别移到①号、②号、③号或④号正方体的上面(接触面所有的棱都重合),俯视图都相同,均为1、1、2,最上层的正方体分别移到①号、③号、④号时,主视图为1,2,1,移到②号正方体的上面时,主视图为1,1,2,最上层的正方体分别移到①号、②号时,左视图为2,1,1,放在③号时,左视图为1,2,1,放在④号时,左视图为1,1,2,故选:C.【点评】本题考查了从不同方向观察物体和几何,是训练学生的观察能力、分析能力和动手操作能力.4.【分析】根据整式运算的法则即可求出答案.【解答】解:(A)原式=x5,故A错误;(B)原式=x6,故B错误;(D)原式=x,故D错误;故选:C.【点评】本题考查学生的运算能力,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺,利用勾股定理解题即可.【解答】解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+42=(10﹣x)2.解得:x=4.2,∴折断处离地面的高度为4.2尺,故选:B.【点评】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.7.【分析】若一元二次方程有两不等实数根,则根的判别式△=b2﹣4ac>0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0,最后确定最小整数值.【解答】解:∵关于x的一元二次方程(2﹣a)x2﹣2x+1=0有两个不相等的实数根,∴△=4﹣4(2﹣a)>0,且2﹣a≠0,解得a>1,且a≠2,则a的最小整数值是3.故选:C.【点评】考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.【分析】画树状图展示所有6种等可能的结果数,找出组成的两位数是上升数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中组成的两位数是上升数的结果数为3,所以组成的两位数是上升数的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.9.【分析】首先证明DA=ED=EC,设AB=x,则AD=DE=EC=x,由△DAE∽△CAD,可得AD2=AE•AC,由此构建方程即可解决问题.【解答】解:∵AB=BC,∠ACB=36°,∴∠BAC=∠ACB=36°,∠B=∠CED=108°,∴∠AED=72°,∴CA=CD,∠ACD=36°,∴∠CAD=∠CDA=72°,∴∠ADE=∠ACD=36°,∴DA=ED=EC,设AB=x,则AD=DE=EC=x,∵∠DAE=∠CAD,∠ADE=∠ACD,∴△DAE∽△CAD,∴AD2=AE•AC,∴x2=(2﹣x)•2,∴x=﹣1或﹣﹣1(舍弃),∴AB=﹣1,故选:A.【点评】本题考查相似三角形的应用,等腰三角形的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.10.【分析】根据题意画出符合的两种情况:分别求出函数的解析式,再判断图象即可.【解答】解:作AD⊥BC于D点,交MN于E点,公共部分分为三种情形:①在三角形内;②刚好一边在BC上,此时为正方形;③正方形有一部分在三角形外,此时为矩形.①②情况中0<x≤2.4,公共部分是正方形时的面积,∴y=x2,③是2.4<x<6,公共部分是矩形时如图所示:作AD⊥BC于D点,交MN于E点,设DE=a,∵MN∥BC,∴=,即=,∴ED=4﹣x,∴y=x(4﹣x)=﹣x2+4x,∴y与x的函数图象大致是D,故选:D.【点评】本题考查了相似三角形的判定与性质,矩形的对边平行且相等,正方形的对边平行且相等的性质,根据相似三角形的对应高的比等于对应边的比列出比例式是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11.【分析】原式利用负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=4﹣1=3,故答案为:3【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.【分析】过C作CG∥AB,过D作DH∥EF,依据AB∥EF,可得AB∥EF∥CG∥DH,进而得出∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,可得∠BCD+∠CDE=35°+180°+25°=240°.【解答】解:如图所示,过C作CG∥AB,过D作DH∥EF,∵AB∥EF,∴AB∥EF∥CG∥DH,∴∠1=∠B=35°,∠2=∠E=25°,∠GCD+∠HDC=180°,∴∠BCD+∠CDE=35°+180°+25°=240°,故答案为:240°.【点评】本题主要考查了平行线的性质,解题时注意运用:两直线平行,同旁内角互补;两直线平行,内错角相等.13.【分析】先求出不等式组的解集,再求出不等式组的整数解,即可得出答案.【解答】解:∵解不等式①得:x >﹣1.6,解不等式②得:x <3, ∴不等式组的解集是﹣1.6<x <3,∴不等式组的整数解为﹣1,0,1,2,共4个,故答案为:4.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.14.【分析】根据题意和图形可知阴影部分的面积是扇形ACE 与扇形BCD 的面积之和与Rt △ABC 的面积之差.【解答】解:∵在Rt △ABC ,∠C =90°,∠A =30°,AC =, ∴∠B =60°,BC =tan30°×AC =1,阴影部分的面积S =S 扇形ACE +S 扇形BCD ﹣S △ACB =+﹣=﹣,故答案为:﹣. 【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.15.【分析】分两种情况:①当点P 在菱形对角线AC 上时,由折叠的性质得:AN =PN ,AM =PM ,证出∠AMN =∠ANM =60°,得出AN =AM =2;②当点P 在菱形对角线BD 上时,设AN =x ,由折叠的性质得:PM =AM =2,PN =AN =x ,∠MPN =∠A =60°,求出BM =AB ﹣AM =1,证明△PDN ∽△MBP ,得出==,求出PD =x ,由比例式=,求出x 的值即可.【解答】解:分两种情况:①当点P 在菱形对角线AC 上时,如图1所示::由折叠的性质得:AN =PN ,AM =PM ,∵四边形ABCD 是菱形,∠BAD =60°,∴∠PAM =∠PAN =30°,∴∠AMN=∠ANM=90°﹣30°=60°,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60°,∵AB=3,∴BM=AB﹣AM=1,∵四边形ABCD是菱形,∴∠ADC=180°﹣60°=120°,∠PDN=∠MBP=∠ADC=60°,∵∠BPN=∠BPM+60°=∠DNP+60°,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴==,即==,∴PD=x,∴=x解得:x=5﹣或x=5+(不合题意舍去),∴AN=5﹣,综上所述,AN的长为2或5﹣;故答案为:2或5﹣.【点评】本题考查了翻折变换的性质、菱形的性质、相似三角形的判定与性质、等腰三角形的判定以及分类讨论等知识;熟练掌握翻折变换的性质,证明三角形相似是关键.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.【分析】根据完全平方公式、平方差公式和合并同类项可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(x+y)2+2(x﹣y)(x+y)+(x﹣y)2﹣y2=x2+2xy+y2+2x2﹣2y2+x2﹣2xy+y2﹣y2=4x2﹣y2当x=,y=﹣时,原式=4×()2﹣()2=3+2+2﹣(3﹣2+2)=3+2+2﹣3+2﹣2=4.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.17.【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【解答】解:(1)2÷20%=10(人),×100%×360°=144°,故答案为:10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×=480(人),答:估计该校将有480名留守学生在此关爱活动中受益.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.【分析】(1)过点A分别作AM⊥y轴于M点,AN⊥x轴于N点,根据直角三角形的性质可设点A的坐标为(a,a),因为点A在直线y=3x﹣4上,即把A点坐标代入解析式即可算出a的值,进而得到A点坐标,然后再利用待定系数法求出反比例函数解析式;(2)利用勾股定理逆定理即可判断出三角形ABC是直角三角形,利用三角形的面积公式即可得出结论.(3)由SAS易证△AOP≌△ABQ,得出∠OAP=∠BAQ,那么△APQ是所求的等腰直角三角形.根据全等三角形的性质及函数图象与点的坐标的关系得出结果.【解答】解:(1)如图1,过点A分别作AQ⊥y轴于Q点,AN⊥x轴于N点,∵△AOB是等腰直角三角形,∴AQ=AN.设点A的坐标为(a,a),∵点A在直线y=3x﹣4上,∴a=3a﹣4,解得a=2,则点A的坐标为(2,2),∵双曲线y=也经过A点,∴k=4;(2)由(1)知,A(2,2),∴B(4,0),∵直线y=3x﹣4与y轴的交点为C,∴C(0,﹣4),∴AB2+BC2=(4﹣2)2+22+42+(﹣4)2=40,AC2=22+(2+4)2=40,∴AB2+BC2=AC2,∴△ABC是直角三角形;S=AB×BC=××=8,△ABC(3)如图2,假设双曲线上存在一点M,使得△PAM是等腰直角三角形.∴∠PAM=90°=∠OAB,AP=AM连接AM,BM,由(1)知,k=4,∴反比例函数解析式为y=,∴∠OAP=∠BAM,在△AOP和△ABM中,,∴△AOP≌△ABM(ASA),∴∠AOP=∠ABM,∴∠OBM=∠OBA+∠ABM=90°,∴点M的横坐标为4,∴M(4,1)即:在双曲线上存在一点M(4,1),使得△PAM是以点A为直角顶点的等腰三角形【点评】此题是反比例函数综合题,主要考查了反比例函数解析式的确定、等腰直角三角形的性质、勾股定理、全等三角形的判定等知识及综合应用知识、解决问题的能力.19.【分析】(1)先利用切线的性质判断出∠CAN+∠CAD=90°,再判断出∠CAD+∠ADC=90°,得出∠CAN=∠ADC,进而得出∠CAN=∠B,即可得出结论;(2)①先求出∠BAN=30°,进而判断出△AOC是等边三角形即可得出结论;②先判断出△AOC是等边三角形,进而求出∠OAC=60°,得出∠BAN=30°,即可得出结论.【解答】解:(1)如图1,连接AO并延长交⊙O于D,连接CD,∵MN是⊙O的切线,∴∠DAN=90°,∴∠DAC+∠CAN=90°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ADC+∠DAC=90°,∴∠CAN=∠ADC,∵∠ADC=∠B,∴∠B=∠CAN,∵AC是∠BAN的角平分线,∴∠CAN=∠CAB,∴∠CAB=∠B,∴AC=BC,∴△ABC是等腰三角形;(2)①如图2,连接OA,∵MN是⊙O的切线,∴∠OAN=90°∵AC是∠BAN的角平分线,∠CAN=15°,∴∠BAN=2∠CAN=30°,∴∠OAB=60°,∵OA=OB,∴△OAB是等边三角形,∴AB=OA=2,故答案为2;②如图3,连接OC,∴OA=OC,∵四边形OACB是菱形,∴OA=AC,∴OA=AC=OC,∴△OAC是等边三角形,∴∠OAC=60°,∵∠OAN=90°,∴∠CAN=90°﹣60°=30°,故答案为:30°.【点评】此题是圆的综合题,主要考查了切线的性质,等边三角形的判定和性质,菱形的性质,作出辅助线是解本题的关键.20.【分析】如图,作FE⊥AB于E,延长CN交AB于M.则四边形EFNM是矩形.设FN=EM =xm.根据AM=CM构建方程即可解决问题.【解答】解:如图,作FE⊥AB于E,延长CN交AB于M.则四边形EFNM是矩形.设FN=EM =xm.在Rt△AFE中,∵∠AEF=90°,AF=20,FE:AE=1:2,∴EF=4,AE=8,在Rt△DFN中,DN=FN•tan76°=4.01x(m),在Rt△ACM中,∵∠CAM=45°,∴AM=MC,∴8+x=4+4.01x+2,∴x≈2,∴CN=2+8.02≈10(m),答:标语牌顶部到河堤顶部的距离CN为10m.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.21.【分析】(1)根据题意可以设出y与x之间的函数表达式,然后根据表格中的数据即可求得y 与x之间的函数表达式;(2)根据题意可以写出W与x之间的函数表达式;(3)根据(2)中的函数解析式,将其化为顶点式,然后根据成本每千克40元,规定每千克售价不低于成本,且不高于80元,即可得到利润W随售价x的变化而变化的情况,以及售价为多少元时获得最大利润,最大利润是多少.【解答】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),,得,即y与x之间的函数表达式是y=﹣2x+200;(2)由题意可得,W=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,即W与x之间的函数表达式是W=﹣2x2+280x﹣8000;(3)∵W=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,40≤x≤80,∴当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,当x=70时,W取得最大值,此时W=1800,答:当40≤x≤70时,W随x的增大而增大,当70≤x≤80时,W随x的增大而减小,售价为70元时获得最大利润,最大利润是1800元.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质和二次函数的顶点式解答.22.【分析】(1)①如图1中,结论:PD=PF,PD⊥PF.证明△DCP≌△PEF(SAS)即可解决问题.②如图2中,结论:PA=PD.作AM⊥BC于M,DN⊥BE于N,设BC=2a,BE=2b.证明△AMP≌△PND(SAS)即可解决问题.(2)如图3中,结论:PA=PD.取BC的中点M,BE的中点N,连接AM,DN,PM,PN.设BC=2a,BE=2b.证明△AMP≌△PND(SAS)即可解决问题.(3)如图4中,结论:PA=PD.取BC的中点M,BE的中点N,连接AM,DN,PM,PN.设BC=2a,BE=2b.证明△AMP≌△PND(SAS)即可解决问题.【解答】解:(1)①如图1中,结论:PD=PF,PD⊥PF.理由如下:∵四边形ABCD,四边形BEFG都是正方形,∴CD=CB,BE=EF,∠C=∠E=90°,∵PC=BE,∴BC=PE,PC=EF,∴CD=PE,∴△DCP≌△PEF(SAS),∴PD=PF,∠DPC=∠PFE,∵∠PFE+∠FPE=90°,∴∠DPC+∠FPE=90°,∴∠DPF=90°,∴DP⊥PF.②如图2中,结论:PA=PD.理由:作AM⊥BC于M,DN⊥BE于N,设BC=2a,BE=2b.∵△ACB,△DBE都是等腰直角三角形,∴AM=CM=BM=a,DN=BN=EN=b,∴PC=PE=EC=a+b,∴PM=DN=b,PN=AM=a,∵∠AMP=∠PND=90°,∴△AMP≌△PND(SAS),∴PA=PD.(2)如图3中,结论:PA=PD.理由:取BC的中点M,BE的中点N,连接AM,DN,设BC=2a,BE=2b.∵△ACB,△DBE都是直角三角形,∴AM=CM=BM=a,DN=BN=EN=b,∴PC=PE=EC=a+b,∴PM=DN=b,PN=AM=a,∵△ABC∽△DBE,∴∠C=∠E,∵MA=MC,ND=NE,∴∠C=∠MAC,∠E=∠NDE,∵∠APM=∠C+∠MAC=2∠C,∠BND=∠E+∠NDE=2∠E,∴∠AMP=∠DNB,∴△AMP≌△PND(SAS),∴PA=PD.(3)如图4中,结论:PA=PD.理由:取BC的中点M,BE的中点N,连接AM,DN,PM,PN.设BC=2a,BE=2b.∵△ACB,△DBE都是直角三角形,∴AM=CM=BM=a,DN=BN=EN=b,∵PC=PE,∴PM=BE=b,PN=BC=a,∴PM=DN=b,PN=AM=a,∵△ABC∽△DBE,∴∠ACB=∠BED,∵MA=MC,ND=NE,∴∠ACM=∠MAC,∠BED=∠NDE,∵∠APB=∠ACM+∠MAC=2∠ACM,∠BND=∠BEE+∠NDE=2∠BED,∴∠AMB=∠DNB,∵PM∥BN,PN∥BM,∴四边形PMBN是平行四边形,∴∠PMB=∠PNB,∴∠AMP=∠PND,∴△AMP≌△PND(SAS),∴PA=PD.【点评】本题属于相似形综合题,考查了相似三角形的性质,全等三角形的判定和性质,正方形的性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23.【分析】(1)先设出顶点式解析式,把(0,3)代入解答即可;(2)利用待定系数法得出直线AC的解析式,进而利用两点间距离解答即可;(3)分三种情况得出点的坐标即可.【解答】解:(1)设抛物线y=ax2+bx+c(a≠0)的顶点式解析式为:y=a(x﹣2)2﹣1,把x=0,y=3代入解析式,可得:4a﹣1=3,解得:a=1,所以解析式为:y=(x﹣2)2﹣1=x2﹣4x+3;(2)设y=0,把y=0代入解析式可得:x2﹣4x+3=0,解得:x1=1,x2=3,所以点B坐标为(1,0),点A坐标为(3,0),设直线AC的解析式为:y=kx+b,把A(3,0),C(0,3)代入解析式可得:,解得:,所以直线AC的解析式为:y=﹣x+3,设点P的坐标为(x,x2﹣4x+3),点Q的坐标为(x,﹣x+3),所以PQ=﹣x+3﹣x2+4x﹣3=﹣x2+3x﹣6,因为,所以当x=1.5时,线段PQ的最大值为,此时点P的坐标为(1.5,);(3)∵抛物线y=﹣x2+4x﹣3的对称轴方程为x=2,设G(2,m),∴BC2=10,BG2=(2﹣1)2+m2,CG2=(3﹣m)2+22,当△BCG为直角三角形时,①当∠CBG=90°时,BC2+BG2=CG2,即10+1+m2=(3﹣m)2+22,解得:m=,②当∠BGC=90°时,BG2+CG2=BC2,即(3﹣m)2+22+(2﹣1)2+m2=10,m1=1,m2=2,③当∠GCB=90°时,CG2+BC2=BG2,即(3﹣m)2+22+10=(2﹣1)2+m2,解得:m=,∴F(2,),(2,1),(2,2),(2,)【点评】本题考查了二次函数的综合题,根据函数的解析式求点的坐标,直角三角形的判定和性质,勾股定理,存在性问题,在求有关存在性问题时要注意分析题意分情况讨论结果.。

2019年河南省信阳市中考数学一模试卷

2019年河南省信阳市中考数学一模试卷

2019年河南省信阳市中考数学一模试卷一、选择题(每小题3分,共30分)1.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.2018年4月10日,历时四个月的“2018中国茶叶区域公用品牌价值评估”结果出炉,信阳毛尖较去年增加3.61亿元,以63.52亿元蝉联品牌价值排行榜第二名,并被评选为“最具品牌带动力”的三大品牌之一数据63.52亿元用科学记数法表示为()A.3.61×108B.3.61×107C.63.52×108D.6.352×109 3.如图,是一个正方体的表面展开图,则原正方体中“学”字所在的面相对的面上标的字是()A.我B.是C.优D.生4.下列运算正确的是()A.a2•a3=a6B.(a3)2=a9C.D.(sin30°﹣π)0=15.如图所示是小明在某条道路所统计的某个时段来往车辆的车速情况,下列说法中正确的是()A.中位数是52.5B.众数是8C.众数是52D.中位数是536.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》7.关于x的一元二次方程(a﹣1)x2﹣2x+3=0没有实数根,则整数a的最小值是()A.0B.1C.2D.38.点P的坐标是(m,n),从﹣5,﹣3,0,4,7这五个数中任取一个数作为m的值,再从余下的四个数中任取一个数作为n的值,则点P(m,n)在平面直角坐标系中第二象限内的概率是()A.B.C.D.9.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1C.y=2x﹣1D.y=1﹣2x10.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题(每小题3分,共15分)11.计算=.12.如图,在平行线l1,l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1,l2上,若∠1=65°,则∠2的度数是.13.如果不等式组的解集是x<1,那么m的值是.14.如图①,在正方形ABCD中,点E是AB的中点,点P是对角线AC上一动点.设PC 的长度为x,PE与PB的长度和为y,图②是y关于x的函数图象,则图象上最低点H 的坐标为.15.如图,四边形ABCD是菱形,AB=2,∠ABC=30°,点E是射线DA上一动点,把△CDE沿CE折叠,其中点D的对应点为点D′,若CD′垂直于菱形ABCD的边时,则DE的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.17.(9分)雾霾天气严重影响市民的生活质量.在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:请根据统计图表回答下列问题:(1)本次被调查的市民共有多少人?并求m和n的值;(2)请补全条形统计图,并计算扇形统计图中扇形区域D所对应的圆心角的度数;(3)若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.18.(9分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.19.(9分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且∠ACE+∠AFO=180°.(1)求证:EM是⊙O的切线;(2)若∠A=∠E,BC=,求阴影部分的面积.(结果保留π和根号).20.(9分)茗阳阁位于河南省信阳市河区茶韵路一号,建成于2007年4月29日,是一栋由多种中国古建筑元素,由雕栏飞檐、勾心斗角、斗拱图腾等多种形式的中国古建筑元素汇聚而成,具有浓郁地方古建筑特色的塔式阁楼茗阳阁是信阳新建的城市文化与形象的代表建筑之一,同时茗阳阁旁的风景也是优美至极.某数学课外兴趣小组为了测量建在山丘DE上的茗阳阁CD的高度,在山脚下的广场上A处测得建筑物点D(即山顶)的仰角为20°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,已知山丘DE高37.69米.求塔的高度CD.(结果精确到1米,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)21.(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.22.(10分)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=.23.(11分)如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(﹣2,0)、B(4,0)、C(0,﹣8),与直线y=x﹣4交于B,D两点(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为直线BD下方抛物线上的一个动点,试求出△BDP面积的最大值及此时点P 的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.2019年河南省信阳市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:由数轴可得:a<b<c<d,故选:D.2.【解答】解:将63.52亿元用科学记数法表示为6.352×109元.故选:D.3.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“是”与“秀”是相对面,“优”与“学”是相对面,“我”与“生”是相对面.故选:C.4.【解答】解:A.a2•a3=a5,此选项错误;B.(a3)2=a6,此选项错误;C.=4,此选项错误;D.(sin30°﹣π)0=1,此选项正确;故选:D.5.【解答】解:因为本次调查的车辆总数为2+5+8+6+4+2=27辆,所以中位数为第14个数据,即中位数为52,众数为52,故选:C.6.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.7.【解答】解:∵关于x的一元二次方程(a﹣1)x2﹣2x+3=0没有实数根,∴a﹣1≠0且△<0,∴a≠1且△=4﹣4×3×(a﹣1)<0,∴a>且a≠1,∴整数a的最小值是2.故选:C.8.【解答】解:画树状图为:共有20种等可能的结果数,其中点P(m,n)在平面直角坐标系中第二象限内的结果数为4,所以点P(m,n)在平面直角坐标系中第二象限内的概率==.故选:B.9.【解答】解:由作图可知,点P在第二象限的角平分线上,横坐标与纵坐标互为相反数,∵P(2x,y+1),∴2x+y+1=0,∴y=﹣2x﹣1,故选:B.10.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.二、填空题(每小题3分,共15分)11.【解答】解:=4﹣2=2故答案为:2.12.【解答】解:如图,过点C作CD∥l1,则∠1=∠ACD.∵l1∥l2,∴CD∥l2,∴∠2=∠DCB.∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°.故答案为:25°.13.【解答】解:解不等式2x﹣1>3x﹣3得,x<2,∵不等式组的解集是x<1,∴m=1.故答案为:1.14.【解答】解:如图,连接PD.∵B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE,∴当D、P、E共线时,PE+PB的值最小,如下图:观察图象可知,当点P与A重合时,PE+PB=3,∴AE=EB=1,AD=AB=2,在Rt△AED中,DE=,∴PB+PE的最小值为,∴点H的纵坐标为,∵AE∥CD,∴=2,∵AC=2,∴PC=2×=,∴点H的横坐标为,∴H(,).故答案为:(,).15.【解答】解:分4种情况:①当D'C⊥AD时,如图1,设DE=D'E=x,由折叠得:CD=CD'=2,∵四边形ABCD是菱形,∴∠D=∠B=30°,∴∠D=∠D'=30°,Rt△CFD中,CF=CD=1,∴D'F=CD'﹣CF=2﹣1=1,Rt△D'FE中,cos30°=,∴,∴DE=D'E=;②当CD'⊥AB时,如图2,过E作EF⊥CD于F,∵AB∥CD,∴∠B+∠BCD=180°,∵∠B=30°,∴∠BCD'=60°,∠DCD'=150°﹣60°=90°,由折叠得∠ECD=∠DCD'=45°,∴△ECF是等腰直角三角形,设CF=EF=x,则ED=2x,DF=x,∵CD=CF+DF=2,∴x+x=2,x=﹣1,∴DE=2x=2﹣2;③当CD'⊥BC时,如图3,延长D'C交AD于F,则D'C⊥ED,Rt△CFD中,∠D=30°,CD=2,∴CF=1,DF=,Rt△D'EF中,D'F=3,∠D'=30°,∴EF=,∴DE=EF+DF=2;④当D'C⊥CD时,如图4,延长D'C交DE于F,∵∠DCD'=90°,∴∠FCD=90°,∵CD=2,∠FDC=30°,∴CF=,DF=2FC=,由折叠得:∠ECD=∠ECD'==135°,∴∠DEC=∠D'EC=15°,∴∠FEB=∠FD'E=30°,∴EF=D'F=+2,∴DE=EF+DF=2+2,综上所述,DE的长为或2或2﹣2或2+2.故答案为为或2或2﹣2或2+2.三、解答题(本大题共8个小题,满分75分)16.【解答】解:原式==a+1,把a=﹣1代入a+1=.17.【解答】解:(1)本次被调查的市民共有:90÷45%=200人,∵C组的人数是200×15%=30(人)、D组的人数是200﹣90﹣60﹣30=20(人),∴m=×100%=30%,n=×100%=10%;(2)补全的条形统计图如下图所示:扇形区域D所对应的圆心角的度数为:360°×10%=36°;(3)100×(45%+30%)=75(万).∴若该市有100万人口,市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数约为75万人.18.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).19.【解答】解:(1)连接OC,∵OF⊥AB,∴∠AOF=90°,∴∠A+∠AFO+90°=180°,∵∠ACE+∠AFO=180°,∴∠ACE=90°+∠A,∵OA=OC,∴∠A=∠ACO,∴∠ACE=90°+∠ACO=∠ACO+∠OCE,∴∠OCE=90°,∴OC⊥CE,∴EM是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠BCE+∠BCO=90°,∴∠ACO=∠BCE,∵∠A=∠E,∴∠A=∠ACO=∠BCE=∠E,∴∠ABC=∠BCO+∠E=2∠A,∴∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,∴OB=BC=,∴阴影部分的面积=﹣××=﹣.20.【解答】解:设CD=x米.在Rt△BCE中,∵∠CEB=90°,∠CBE=45°,∴EC=BE=(x+37.69)米,在Rt△ADE中,∵tan20°=,∴0.36=,解得x≈17.64.答:塔的高度CD为17.64米.21.【解答】解:(1)设甲,乙两种型号设备每台的价格分别为x万元和y万元,由题意得:,解得:,则甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)设购买甲型设备m台,乙型设备(10﹣m)台,则:12m+10(10﹣m)≤110,∴m≤5,∵m取非负整数∴m=0,1,2,3,4,5,∴有6种购买方案.(3)由题意:240m+180(10﹣m)≥2040,∴m≥4∴m为4或5.当m=4时,购买资金为:12×4+10×6=108(万元),当m=5时,购买资金为:12×5+10×5=110(万元),则最省钱的购买方案为,选购甲型设备4台,乙型设备6台.22.【解答】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.23.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标是A(﹣2,0)、B (4,0),∴设该抛物线解析式为y=a(x+2)(x﹣4),将点C(0,﹣8)代入函数解析式代入,得a(0+2)(0﹣4)=﹣8,解得a=1,∴该抛物线的解析式为:y=(x+2)(x﹣4)或y=x2﹣2x﹣8.联立方程组:,解得(舍去)或,即点D的坐标是(﹣1,﹣5);(2)如图所示:过点P作PE∥y轴,交直线AB与点E,设P(x,x2﹣2x﹣8),则E(x,x﹣4).∴PE=x﹣4﹣(x2﹣2x﹣8)=﹣x2+3x+4.∴S△BDP=S△DPE+S△BPE=PE•(x p﹣x D)+PE•(x B﹣x E)=PE•(x B﹣x D)=(﹣x2+3x+4)=﹣(x﹣)2+.∴当x=时,△BDP的面积的最大值为.∴P(,﹣).(3)设直线y=x﹣4与y轴相交于点K,则K(0,﹣4),设G点坐标为(x,x2﹣2x﹣8),点Q点坐标为(x,x﹣4).∵B(4,0),∴OB=OK=4.∴∠OKB=∠OBK=45°.∵QF⊥x轴,∴∠DQG=45°.若△QDG为直角三角形,则△QDG是等腰直角三角形.①当∠QDG=90°时,过点D作DH⊥QG于H,∴QG=2DH,QG=﹣x2+3x+4,DH=x+1,∴﹣x2+3x+4=2(x+1),解得:x=﹣1(舍去)或x=2,∴Q1(2,﹣2).②当∠DGQ=90°,则DH=QH.∴﹣x2+3x+4=x+1,解得x=﹣1(舍去)或x=3,∴Q2(3,﹣1).综上所述,当△QDG为直角三角形时,点Q的坐标为(2,﹣2)或(3,﹣1).。

河南省信阳市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

河南省信阳市2019-2020学年中考中招适应性测试卷数学试题(4)含解析

河南省信阳市2019-2020学年中考中招适应性测试卷数学试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A.最低温度是32℃B.众数是35℃C.中位数是34℃D.平均数是33℃2.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()A.32,31 B.31,32 C.31,31 D.32,353.下列运算结果正确的是()A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a24.如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF 于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④PG2AE﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有()个.A.2 B.3 C.4 D.55.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.6.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.7.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°8.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A.28×109B.2.8×108C.2.8×109D.2.8×10109.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为()A.62°B.38°C.28°D.26°10.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.611.一个圆锥的底面半径为52,母线长为6,则此圆锥的侧面展开图的圆心角是()A.180°B.150°C.120°D.90°12.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB 为圆O 的直径,弦CD ⊥AB ,垂足为点E ,连接OC ,若OC =5,CD =8,则AE =______.14.在直径为的圆柱形油槽内装入一些油后,截面如图所示如果油面宽,那么油的最大深度是_________.15.如图,线段 AB 是⊙O 的直径,弦 CD ⊥AB ,AB=8,∠CAB=22.5°,则 CD 的长等于___________________________.16.如图为两正方形ABCD 、CEFG 和矩形DFHI 的位置图,其中D ,A 两点分别在CG 、BI 上,若AB=3,CE=5,则矩形DFHI 的面积是_____.17.在平面直角坐标系中,点O 为原点,平行于x 轴的直线与抛物线L :y=ax 1相交于A ,B 两点(点B 在第一象限),点C 在AB 的延长线上.(1)已知a=1,点B 的纵坐标为1.如图1,向右平移抛物线L 使该抛物线过点B ,与AB 的延长线交于点C ,AC 的长为__.(1)如图1,若BC=AB ,过O ,B ,C 三点的抛物线L 3,顶点为P ,开口向下,对应函数的二次项系数为a 3,3a a=__.18.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?20.(6分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?21.(6分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO 与AB重合,连接OD,PD,得△OPD。

河南省信阳市中考数学4月模拟试卷

河南省信阳市中考数学4月模拟试卷

河南省信阳市中考数学4月模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·海南模拟) 如图所示的几何体的俯视图为()A .B .C .D .2. (2分)(2017·宁波) 2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为()A . 吨B . 吨C . 吨D . 吨3. (2分)如图,数轴上点P表示的数可能是()A .B .C . -3.2D .4. (2分)下列说法中正确的是()A . 会重合的图形一定是轴对称图形B . 中心对称图形一定是重合的图形C . 两个成中心对称的图形的对称点连线必过对称中心D . 两个会重合的三角形一定关于某一点成中心对称5. (2分) (2016八上·平凉期中) 正六边形的每个内角度数是()A . 60°B . 90°C . 108°D . 120°6. (2分)(2020·通州模拟) 如果x2+x﹣3=0,那么代数式(﹣1)÷ 的值为()A . ﹣B . 0C .D . 37. (2分)(2020·丰台模拟) 使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A .B .C .D .8. (2分) (2018八上·金堂期中) 象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为()A . (-3,3)B . (3,2)C . (0,3)D . (1,3)二、填空题 (共8题;共10分)9. (1分)(2017·玉田模拟) 要使代数式有意义,则x的取值范围是________.10. (1分)(2018·辽阳) 将一张矩形纸条与一块三角板如图放置,若∠1=36°,则∠2=________.11. (1分) (2017八下·万盛期末) 一组数据1,﹣1,0,﹣1,1的方差________.12. (1分)(2017·道外模拟) 如图,△ABC是⊙O的内接三角形,CD⊥AB于D,若AD=3,BC=10,CD=6,则⊙O的半径为________.13. (2分) (2017七下·滦县期末) 用6块相同的长方形地砖拼成一个矩形,如图所示,那么每个长方形地砖的面积是________ cm2 .14. (1分)(2017·大祥模拟) 反比例函数的图象与坐标轴有________个交点,图象在________象限,当x>0时函数值y随x的增大而________.15. (2分)(2020·宁波模拟) 在Rt△ABC中,∠BAC=90°,AB=9,AC=12,点D在直线AC上,AD= DC,DE⊥BC于点E,连结AE,则△ADE与△ABE面积的比值等于________ 。

河南省信阳市九年级下学期数学中考模拟试卷(4月)

河南省信阳市九年级下学期数学中考模拟试卷(4月)

河南省信阳市九年级下学期数学中考模拟试卷(4月)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)-5的相反数是()A . 5B . -5C . ±5D .2. (2分)(2019·邹平模拟) 如图所示图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分) 2011年徐州市接待国内外旅游人数约为24 800 000人次,该数据用科学计数法表示为()A . 2.48×107B . 2.48×106C . 0.248×108D . 248×1054. (2分) (2017七下·黔东南期末) 不等式组的解集在数轴上表示正确的是()A .B .C .D .5. (2分)若a-b=2,a-c=1,则(2a-b-c)2+(c-b)2的值为()A . 10B . 9C . 2D . 16. (2分)(2017·巴中) 下列说法正确的是()A . “打开电视机,正在播放体育节目”是必然事件B . 了解夏季冷饮市场上冰淇淋的质量情况适合用普查C . 抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为D . 甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则乙的射击成绩较稳定7. (2分) (2018七上·运城月考) 下列图形不是正方体展开图的是()A .B .C .D .8. (2分)若|x+2|+|y﹣3|=0,则x﹣y的值为()A . 5B . -5C . 1或﹣1D . 以上都不对9. (2分)反比例函数y=的图象上,当x<0时,y随x的增大而增大,则m的取值范围是()A . m>-2B . m<0C . m<-2D . m>010. (2分)如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于()A .B .C .D . 811. (2分)如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),由此函数的最小值()A . 0B .C . 1D .12. (2分)观察以下数组:(1),(3、5),(7、9、11),(13、15、17、19),….问2005在第()组.A . 44B . 45C . 46D . 无法确定二、填空题 (共5题;共5分)13. (1分)(2012·福州) 分解因式:x2﹣16=________.14. (1分) (2017九上·江门月考) 一个不透明的袋中装有2个红球和4个黄球,这些球除颜色外完全相同.从袋中随机摸出一个球,摸到黄球的概率是________.15. (1分)(2018·衢州模拟) AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为________.16. (1分) (2015九上·宁波月考) △ABC中,∠A、∠B均为锐角,且,则△ABC的形状是________.17. (1分)(2019·苏州模拟) 已知关于的方程(为实数)两非负实数根,则的最小值是________.三、解答题 (共5题;共50分)18. (5分) (2019·云梦模拟) 计算:19. (5分) (2020八上·郑州期末)(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;(2)先化简( - )÷ ,并回答:原代数式的值可以等于-1吗?为什么?20. (10分) (2019七上·萧山期中) 我们将两数的和与积相等的等式称为“和谐”等式.(1)计算并完成下列等式的填空:① ________;② ________;③ ________;……(2)按此等式的规律,请再写出符合这个规律的一个“和谐”等式;(3)请表示第n个“和谐”等式的规律.21. (15分)(2016·深圳模拟) 如图①,在平面直角坐标系中,直线y=﹣ x+ 与x轴交于C点,与y轴交于点E,点A在x轴的负半轴,以A点为圆心,AO为半径的圆与直线的CE相切于点F,交x轴负半轴于另一点B.(1)求⊙A的半径;(2)连BF、AE,则BF与AE之间有什么位置关系?写出结论并证明.(3)如图②,以AC为直径作⊙O1交y轴于M,N两点,点P是弧MC上任意一点,点Q是弧PM的中点,连CP,NQ,延长CP,NQ交于D点,求CD的长.22. (15分) (2016九上·伊宁期中) 如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共5题;共50分)18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年河南省信阳九中中考数学模拟试卷(4月份)一.选择题(共10小题)1.在﹣,﹣,﹣2,﹣1中,最小的数是()A.B.C.﹣2 D.﹣12.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×1053.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.4.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16C.平均分为7.78 D.方差为26.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.如图,AB为⊙O的直径,弦CD⊥AB,连结OD,AC,若∠CAO=70°,则∠BOD的度数为()A.110°B.140°C.145°D.150°8.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36 B.24 C.18 D.169.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m10.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是()A.①②都对B.①②都错C.①对②错D.①错②对二.填空题(共5小题)11.计算:()﹣1﹣(3.14﹣π)0=.12.关于x的一元二次方程4x2+4ax+a+1=0有两个相等的实数根,则的值等于.13.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.14.已知线段AB=2,以点A为旋转中心,如果将AB顺时针旋转120°,那么线段AB所扫过的图形的面积为(答案保留π)15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为.三.解答题(共8小题)16.先化简,再求值:(x﹣2+)÷,其中x=﹣.17.某初级中学正在开展“文明城市创建人人参与,志愿服务我当先行”的“创文活动”.为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校七年级大约有多少志愿者?18.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线交BC于点E.(1)求证:EB=EC;(2)当△ABC满足什么条件时,四边形ODEC是正方形?证明你的结论.19.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈1.11,tan58°≈1.60.20.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.21.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?22.在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F 作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.23.抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.参考答案与试题解析一.选择题(共10小题)1.在﹣,﹣,﹣2,﹣1中,最小的数是()A.B.C.﹣2 D.﹣1【分析】根据有理数的大小比较法则比较即可.【解答】解:在﹣,﹣,﹣2,﹣1中,最小的数是﹣2,故选:C.2.2018年10月24日港珠澳大桥全线通车,港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”,港珠澳大桥总长度55000米,则数据55000用科学记数法表示为()A.55×105B.5.5×104C.0.55×105D.5.5×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据55000用科学记数法表示为5.5×104.故选:B.3.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C.4.下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16C.平均分为7.78 D.方差为2【分析】根据中位数,众数,平均数,方差等知识即可判断;【解答】解:观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为9.故选:A.6.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.7.如图,AB为⊙O的直径,弦CD⊥AB,连结OD,AC,若∠CAO=70°,则∠BOD的度数为()A.110°B.140°C.145°D.150°【分析】根据题意求出∠C的度数,根据圆周角定理求出∠AOD的度数,根据邻补角的概念求出答案.【解答】解:∵CD⊥AB,∠CAO=70°,∴∠C=20°,∴∠AOD=40°,∴∠BOD=140°,故选:B.8.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36 B.24 C.18 D.16【分析】由直线EM为线段AB的垂直平分线,根据线段垂直平分线定理:可得AM=BM,同理可得BN=NC,然后表示出三角形BMN的三边之和,等量代换可得其周长等于AC的长;【解答】解:∵直线ME为线段AB的垂直平分线,∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NF为线段BC的垂直平分线,∴NB=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△BMN的周长=BM+MN+BN=AM+MN+NC=AC=24(等量代换),故选:B.9.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m【分析】先把方程化为一般式,再计算判别式的值得到△=37(m2﹣4),然后根据m的范围得到△<0,从而根据判别式的意义可得到正确选项.【解答】解:方程整理为x2+7mx+3m2+37=0,△=49m2﹣4(3m2+37)=37(m2﹣4),∵0<m<2,∴m2﹣4<0,∴△<0,∴方程没有实数根.故选:A.10.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=时,点E的运动路程为或或,则下列判断正确的是()A.①②都对B.①②都错C.①对②错D.①错②对【分析】根据图象,分析得到AB=a,AB+BC=5,E在BC上时在利用△ABE∽△ECF,用x表示y,根据最大值求得a,进而得到二次函数解析式.当y=时,求x.当E在AB 上y=时,求出x.可判断结论均正确.【解答】解:由已知,AB=a,AB+BC=5当E在BC上时,如图,∵E作EF⊥AE∴△ABE∽△ECF∴∴∴y=﹣∴当x=∴﹣解得a1=3,a2=(舍去)∴y=﹣当y=时,=﹣解得x1=,x2=当E在AB上时,y=时,x=3﹣=故①②正确故选:A.二.填空题(共5小题)11.计算:()﹣1﹣(3.14﹣π)0= 1 .【分析】直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案.【解答】解:()﹣1﹣(3.14﹣π)0=2﹣1=1.故答案为:1.12.关于x的一元二次方程4x2+4ax+a+1=0有两个相等的实数根,则的值等于﹣3 .【分析】由根的判别式△>0列式,可得:a2﹣a﹣1=0,则a2=a+1,代入中,依次降次可得结果.【解答】解:∵方程4x2+4ax+a+1=0有两个相等的实数根,∴△=(4a)2﹣4×4(a+1)=0,16a2﹣16a﹣16=0,a2﹣a﹣1=0,∴a2=a+1,则========﹣3;故答案为:﹣3.13.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是,故答案为:.14.已知线段AB=2,以点A为旋转中心,如果将AB顺时针旋转120°,那么线段AB所扫过的图形的面积为(答案保留π)【分析】利用扇形的面积公式计算即可.【解答】解:由题意:扇形的面积==,故答案为.15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为 3 .【分析】先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x,在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=8,AD=6,∴BD==10,∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=4,设AE=EF=x,在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+42,解得x=3,∴AE=3,故答案为3.三.解答题(共8小题)16.先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.17.某初级中学正在开展“文明城市创建人人参与,志愿服务我当先行”的“创文活动”.为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校七年级大约有多少志愿者?【分析】(1)根据百分比=所占人数÷总人数计算即可求得总人数,再求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题.【解答】解:(1)因为总人数为20÷40%=50(人)则八年级志愿者被抽到的人数为50×30%=15(人)九年级志愿者被抽到的人数为人数为50×20%=10(人),补全条形图如下:(2)600×40%=240(人)答:该校七年级大约有240名志愿者.18.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线交BC于点E.(1)求证:EB=EC;(2)当△ABC满足什么条件时,四边形ODEC是正方形?证明你的结论.【分析】(1)利用EC为⊙O的切线,ED也为⊙O的切线可求EC=ED,再求得EB=EC,EB=ED可知点E是边BC的中点;(2)当△ABC是等腰直角三角形时,四边形ODEC是正方形,由等腰三角形的性质,得到∠ODA=∠A=45°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【解答】解:(1)证明:连接CD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠ADC=90°.∵DE是⊙O的切线,∴DE=CE(切线长定理).∴∠DCE=∠CDE,又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠EBD=∠EDB.∴DE=BE,∴CE=BE.(2)当△ABC是等腰直角三角形时,四边形ODEC是正方形.理由如下:∵△ABC是等腰直角三角形.∴∠B=45°,∴∠DCE=∠CDE=45°,则∠DEB=90°,又∵OC=OD,∠ACB=90°,∴∠OCD=∠ODC=45°,∴∠ODE=90°,∴四边形ODEC是矩形,∵EC=ED,∴四边形ODEC是正方形.19.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈1.11,tan58°≈1.60.【分析】首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应用其公共边构造关系式,进而可求出答案.【解答】解:如图作AE⊥CD交CD的延长线于E.则四边形ABCE是矩形,∴AE=BC=78,AB=CE,在Rt△ACE中,EC=AE•tan58°≈125(m)在Rt△AED中,DE=AE•tan48°,∴CD=EC﹣DE=AE•tan58°﹣AE•tan48°=78×1.6﹣78×1.11≈38(m),答:甲、乙建筑物的高度AB约为125m,DC约为38m.20.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.21.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?【分析】(1)根据AB为xm,BC就为(24﹣3x),利用长方体的面积公式,可求出关系式.(2)将s=45m代入(1)中关系式,可求出x即AB的长.(3)当墙的宽度为最大时,有最大面积的花圃.此故可求.【解答】解:(1)根据题意,得S=x(24﹣3x),即所求的函数解析式为:S=﹣3x2+24x,又∵0<24﹣3x≤10,∴,(2)根据题意,设AB长为x,则BC长为24﹣3x∴﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m;(3)S=24x﹣3x2=﹣3(x﹣4)2+48∵墙的最大可用长度为10m,0≤BC=24﹣3x≤10,∴,∵对称轴x=4,开口向下,∴当x=m,有最大面积的花圃.即:x=m,最大面积为:24×﹣3×()2=m222.在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F 作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.【分析】(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.【解答】(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.(2)作CQ⊥AC,交AF的延长线于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,FG⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.23.抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,∴a=x2﹣x1,∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).。

相关文档
最新文档