一元一次方程经典拔高题(一)

合集下载

一元一次方程拔高题

一元一次方程拔高题

一、解答题(共16小题,满分150分)1、解方程﹣[x﹣(x﹣)]﹣=x+.2、已知下面两个方程3(x+2)=5x,①4x﹣3(a﹣x)=6x﹣7(a﹣x)②有相同的解,试求a的值.3、已知方程2(x+1)=3(x﹣1)的解为a+2,求方程2[2(x+3)﹣3(x﹣a)]=3a的解.4、解关于x的方程(mx﹣n)(m+n)=0.5、解方程,(a+x﹣b)(a﹣b﹣x)=(a2﹣x)(b2+x)﹣a2b2.6、已知(m2﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x﹣2m)+m的值.7、已知关于x的方程a(2x﹣1)=3x﹣2无解,试求a的值.8、k为何正数时,方程k2x﹣k2=2kx﹣5k的解是正数?9、若abc=1,解方程++=110、若a,b,c是正数,解方程11、设n为自然数,[x]表示不超过x的最大整数,解方程:x+2[x]+3[x]+4[x]+…+[x]=.12、已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.13、解下列方程:(1)(2)(3){}=114、解下列关于x的方程:(1)a2(x﹣2)﹣3a=x+1;(2)ax+b﹣(3)15、a为何值时,方程有无数个解?无解?16、当k取何值时,关于x的方程3(x+1)=5﹣kx分别有(1)正数解;(2)负数解;(3)不大于1的解.答案与评分标准一、解答题(共16小题,满分150分)1、解方程﹣[x﹣(x﹣)]﹣=x+.考点:解一元一次方程。

专题:计算题。

分析:先去小括号,再去中括号,然后移项合并、化系数为1可得出答案.解答:解:去小括号得:﹣[x﹣x+]﹣=x+,去中括号得:﹣x+x+﹣=x+,移项合并得:,系数化为1得:x=﹣.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.2、已知下面两个方程3(x+2)=5x,①4x﹣3(a﹣x)=6x﹣7(a﹣x)②有相同的解,试求a的值.考点:同解方程。

一元一次方程拔高题

一元一次方程拔高题

若关于x 的一元一次方程2332x k x k --+=1的解是x=-1,则k 的值是( ) A .27 B .1 C .-1311 D .04.(方程的思想)如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的( )A .b a a+ B .b a b + C .h a b + D .h a h + 若关于x 的方程2236kx mx nk+-=+,无论K 为何值时,它的解总是1x =,求m 、n 的值。

关于x 的一元一次方程22(1)(1)80m x m x --++=求代数式200()(2)m x x m m +-+的值。

甲、乙、丙三人在长400 m 的环形跑道上,同时同地分别以每秒6m 、4m 、8 m 的速度跑步出发,并且甲、乙反向,甲、丙同向.当丙遇到乙时,即反向迎甲而跑,遇上乙时,又反向迎乙,如此练习下去,直到甲、乙、丙三人相遇为止,求丙跑了多少米.某牛奶加工厂现有鲜奶9吨.若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片每天可加工1吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多,为什么?某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3小时,已知船在静水中的速度是每小时8千米,水流速度是每小时2千米,若A 、C 两地距离为2千米,则A 、B 两地之间的距离是 .。

七年级一元一次方程拔高题

七年级一元一次方程拔高题

七年级一元一次方程的解(拔高题)(一) 例题例1、(1)解关于x 的方程ax=b(2)当a 为何值时,关于x 的方程314x+2(3-a)=|a|x+35;①有唯一解 ②有无数个解③无解例2①解关于x 的方程a c b x --+b a c x --+c c a x ---3=0,(a 1+b 1+c1≠0) ②已知abc=1,12++a ab ax +12++b bc bx +12++b ca cx =1,求x . 例3解关于x 的方程(含绝对值)(1)51||-x -1=5||6x - (2)|4x+2|=|x-1| (3)|2x+3|-|x-4|=6 (4)|x-|2x+1||=3 例4下列变形 A 若ac=bc ,则a=b B 若c a =c b ,则a=b ,C|a|=|b|,则a=b, D 若a 2=b 2则a=b 正确的是 。

例5已知关于x 的方程ax+b=c 的解是x=1,则|c-a-b|的值是 。

例6当x 为何值时, 5x-3与5-3x 的绝对值相等。

例7学校安排学生宿舍,若每间住8人,则少12个床位,若每间住9人,则恰好空出2间宿舍,设宿舍有x 间,则由人数相等,可列方程 。

例8某船在静水中的速度是24千米每时,水流速度是2千米每时,该船先顺流而下,后又逆流而上返回出发地,共航行6小时。

设该船行驶x 千米后返回,可列方程 。

例9某车间有工人68人,平均每人每天可加工大齿轮16个或小齿轮10个,又知两个大齿轮与三个小齿轮配成一套,应安排 名工人加工大齿轮, 名工人加工小齿轮。

(二)练习1.解方程(1)23-x -514+x =1 (2)312-x -6110+x =412+x -1 2.关于x 方程3x-a=1与21x-(a-3)=2x+1的解相同,求x 。

3.如果a,b 为定值,关于x 的方程32a kx +=2+6bk x -无论k 为何值,它的解总是1,求 a,b 的值。

人教版七年级数学上册第3章一元一次方程拔高题及易错题(供参考)

人教版七年级数学上册第3章一元一次方程拔高题及易错题(供参考)

人教版七年级数学 第3章 一元一次方程 拔高及易错题精选(全卷总分150分) 姓名 得分 一、选择题(每题4分,共32分)1.关于x 的方程a(a-1)x 2-ax+5=0是一元一次方程,那么a 是( )A. 0B. -1C. 0或1D. 12.假设xy=xz 成立,那么以下式子未必成立的是( )A .y=zB .x (y+1)=x (z+1)C .xy 2=xyzD .x (y -1) =x (z -1)3.“●■▲”别离表示三种不同的物体.如下图,天平①②维持平稳.若是要使天平③也平稳,那么应在天平③的右端放( )个“■”.① ② ③A. 3B. 4C. 5D. 64.假设方程2ax -3=5x+b 无解,那么a ,b 应知足( )A .a≠25,b≠3B .a=25,b=-3C .a≠25,b=-3D .a=25,b≠-3 5.下表是2021年6月份的月历表,任意圈出一横行或一竖列相邻的三个数,那么这三个数的和不可能是( )A. 24B. 43C. 57D. 696.某种商品的进价为800元,出售时的标价为1200元,后来由于该商品积存,商店预备打折出售,但要维持利润率为5%.那么应打 ( )A. 6折B. 7折C. 8折D. 9折7.学友书店推出售书优惠方案:一次性购书不超过100元,不享受优惠;一次性购书超过100元但不超过200元一概打九折;一次性购书超过200元一概打八折。

若是王明同窗一次性购书付款162元,那么他所购书的原价为( )A. 180元B. 202.5元C. 180元或202.5元D. 180元或200元8.某种出租车收费标准是:起步价7元(即行驶距离不超过3 km 需付7元车费),超过了3 km 以后,每增加1 km 加收2.4元(不足1 km 按1 km 计),某人乘这种出租车从甲地到乙地支付车费19元,设这人从甲地到乙地通过的路程为x km ,那么x 的最大值是( )A .11B .8C .7D .5二、填空题(每题5分,共50分)9.已知(m -3)x 2 m +5=0是关于x 的一元一次方程,那么m= .10.不论x 取何值等式2ax+b=4x -3恒成立,那么a+b= .11.求1+2+22+23+…+22021的值,可令S =1+2+22+23+…+22021,那么2S =2+22+23+24+…+22021,因此2S-S =22021-1,因此1+2+22+23+…+22021=22021-1.仿照以上推理,计算出1+5+52+53+…+52021的值是 .12.一列火车匀速行驶,通过一条长600m 隧道需要45s 的时刻,隧道顶部一盏固定的灯在火车上垂直照射的时刻为15s ,那么火车的长为 .13.如图,有一种足球由32块黑白相间的牛皮缝制而成.黑皮可看成正五边形,白皮可看成正六边形,每块白皮有三条边和黑皮连在一路,因此黑皮的边数能够依照白皮的边数确信;另外黑皮的边数还能够依照一块黑皮有5条边,设白皮有x 块,那么黑皮有(32-x )块.依照边的关系可列方程为 .14.芜湖市对城区骨干道进行绿化,打算把某一段公路的一侧全数栽上樟树,要求路的两头各栽一棵,而且每两棵树的距离相等,若是每隔5m 栽1棵树,那么树苗缺21棵;若是每隔6m 载1棵树,那么树苗正好用完,设原有树苗x 棵,那么依照题意列出的方程为 .15.某人搭船从A 地顺流而下到B 地,然后又沿原路逆流而上到C 地,共搭船4 h.已知船在静水中的速度为每小时7.5 km ,水流速度为每小时2.5 km.假设A ,C 两地的距离为10 km ,那么A ,B 两地的距离为 km.16.某村修一条沟渠,打算天天修 31,第一天只完成当天打算的80%,第二天比原打算多修60 m ,而且第二天终止后恰好剩下41,那么要修的沟渠全长 m. 17.一天,闻名的数学家笛卡儿点了两支蜡烛念书,这两支蜡烛的长度相同,但粗细不同.已知粗蜡烛可点5h ,细蜡烛可点4h ,临睡时把蜡烛吹灭,这时所剩粗蜡烛的长度是细蜡烛长度的4倍,那么这两支蜡烛已经点了 h.18.某商店的冰箱先按原价提高40%,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚270元,那么冰箱的原价是 元,现售价是 元.三、解答题(共68分)18.(6分)已知等式 (a -5)c=a -5,其中c≠1,求a 2-2a -1的值.19.(10分)某同窗在解关于y 的方程12312-+=-a y y 去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a 的值及其此方程的解.20.(10分)要制作一个如下图(图中阴影部份为底与盖,且底的长边是x的2倍,SⅠ=SⅡ)的钢盒子,在钢片的四个角上别离截去两个相同的正方形与两个相同的小长方形,然后折合起来即可,求有盖盒子的高x.21.(10分)小李从家骑摩托车到火车站,假设每小时行驶30km,那么比火车的开车时刻早15min抵达火车站;假设每小时行驶18km,那么比火车的开车时刻晚15min抵达火车站。

人教版七年级数学上册第三章《一元一次方程》应用题解答题拔高训练及答案

人教版七年级数学上册第三章《一元一次方程》应用题解答题拔高训练及答案

第三章《一元一次方程》应用题解答题拔高训练(一)1.春节临近,许多商场利用打折的优惠措施吸引顾客,若某商品原标价为x元/件,现商场以八折优惠售出.(1)该商品现在售价为元/件(用含x的代数式表示);(2)若打八折后商场从该商品中仍可获利20元/件,但是打六折则要亏损20元/件,求该商品每件的进价是多少元.2.在课间活动中,小英、小丽和小敏在操场上画出A,B两个区域,一起玩投包游戏,沙包落在A区域所得分值与落在B区域所得分值不同,当每人各投沙包四次时,其落点和四次总分如图所示.(1)沙包落在A区域和B区域所得分值分别是多少?(2)求出小敏的四次总分.3.为了节约用水,自来水公司对水价作出规定:当用水量不超过10吨时,每吨收费1.2元;当超过10吨时,超过部分每吨收费1.5元.某个月一户居民交费18元,则这户居民这个月用水多少吨?4.将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?5.某公司生产一种产品,每件成本价是400元,销售价为510元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,经过市场调研,预测下一季度这种商品每件销售价会降低4%,销售量将提高10%,要使销售利润(销售利润=销售价﹣成本价)保持不变,该商品每件的成本应降低多少元?6.小明步行速度是每时5千米.某日他从家去学校,先走了全程的,改乘速度为每时20千米的公共汽车到校,比全部步行的时间快了2时.小明家离学校多少千米?7.如图,已知数轴上点A表示的数为8,B是数轴上的一点,AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.8.一辆汽车以每小时40千米的速度由甲地驶向乙地,车行驶3小时后,因遭雨,平均速度被迫每小时减少10千米,结果到乙地比预算的时间晚45分钟,求甲、乙两地的距离?9.某件商品标价为13200元,若降价以九折出售,仍可获利10%,该商品的进价是多少元?10.某市出租车的收费标准如下:起步价5元,即3千米以内(含3千米)收费5元,超过3千米的部分,每千米收费1.3元.(不足1千米按1千米计算)(1)假如你乘出租车行驶7千米应付多少钱?(2)若小红付出租车费16.7元,则小红最多乘坐多少千米?11.甲厂和乙厂都有某种仪器可供其他厂使用,其中甲厂可提供10台,乙厂可提供4台,已知丙厂需要8台,丁厂需要6台,从甲厂到丙厂、丁厂每台仪器需运费分别为400元和800元,乙厂到丙厂、丁厂每台仪器的运费分别为300元和500元.设甲厂运往丙厂的仪器为x台.(1)请用含x的代数式填写下表中的空格:起点/终点丙厂丁厂甲厂x乙厂(2)现计划用7600元运送这批仪器,请你设计一种调运方案,使丙厂、丁厂能得到所需的仪器,而且费用正好用完;(3)试问有无可能使总运费为8000元?若可能,请求出甲厂运往丙厂的仪器台数;若不可能,请说明理由.12.如图,在数轴上有两点A、B,A表示的数为6,B在A的左侧,且AB=10.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动.(1)请直接写出点B表示的数为;(2)经过多少时间,线段AP和BP的长度之和为18?(3)若点M、N分别在线段AP和BP上,且AM=2014PM,BN=2014PN.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请画出图形,并求出线段MN的长.13.如图,是舟山﹣嘉兴的高速公路示意图,王老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了20千米/小时,比去时少用了1小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见表:大桥名称舟山跨海大桥杭州湾跨海大桥大桥长度48千米36千米过桥费100元80元我省交通部门规定:轿车的高速公路通行费w(元)的计算方法为:w=am+b+5,其中a 元/(千米)为高速公路里程费,m(千米)为高速公路里程数(不包括跨海大桥长),b (元)为跨海大桥过桥费.若王老师从舟山到嘉兴所花的高速公路通行费为277.4元,求轿车的高速公路里程费a.14.某校七年级共三个班,在一次捐款活动中,1班的捐款为2、3班捐款和的一半,2班捐款为七年级捐款的,3班捐款380元,求七年级的捐款总数.15.我省公布的居民用电电价听证方案如下:第一档电量第二档电量第三档电量月用电量210度以下,每度价格0.55元月用电量210度至350度,每度比第一档提价0.05元月用电量350度以上,每度比第一档提价格0.15元例:某户月用电量400度,则需缴电费为210×0.55+(350﹣210)×(0.55+0.05)+(400﹣350)×(0.55+0.15)=234.5(元).(1)如果按此方案计算,小华家5月份的电费为139.5元,请你求出小华家5月份的用电量;(2)依据方案请你回答:若小华家某月的电费为248元,则小华家该月用电量是多少?属于第几档?16.县政府在江华瑶族自治县成立60周年县庆来临之际,为了做好城市的美化、亮化工作,政府在瑶都大道两旁安装了瑶鼓节能型路灯(每边两端必需各安装1盏).现在每两盏灯距离大约是40米,安装一边用了251盏;如果改用另一种型号的节能型路灯,且每两盏灯的距离改为50米,安装一边需要多少盏?17.霞霞和瑶瑶两位学生在数学活动课中,把长为30cm,宽为10cm的长方形白纸条粘合起来,霞霞按图(1)所示方法粘合起来得到长方形ABCD,粘合部分的长度为acm;瑶瑶按图(2)所示方法粘合起来得到长方形A1B1C1D1,粘合部分的长度为bcm.图形理解:若霞霞和瑶瑶两位学生按各自要求分别粘合2张白纸条(如图3),则DC=cm,D1C1=cm(用a或b的代数式表示);若霞霞和瑶瑶两位学生按各自要求分别粘合n张白纸条(如图1、2),则DC=cm(用a和n的代数式表示),D1C1=cm(用b和n的代数式表示).问题解决:若a=b=6,霞霞用7张为30cm,宽为10cm的长方形白纸条粘合成一个长方形ABCD,瑶瑶用n张长为30cm,宽为10cm的长方形白纸条粘合成一个长方形A1B1C1D1.若长方形ABCD的面积与长方形A1B1C1D1的面积相等,求n的值?拓展应用:若a=6,b=4,现有长为30cm,宽为10cm的长方形白纸条共30张.问如何分配30张长方形白纸条,才能使霞霞和瑶瑶按各自要求粘合起来的长方形面积相等(要求30张长方形白纸条全部用完)?若能,请求出霞霞和瑶瑶分别分配到几张长方形白纸条;若不能,请说明理由.18.某企业的两个分厂开展“献爱心”活动,捐赠生活物资若干,甲厂可支援外地4车,乙厂可支援外地10车,现在决定给A地8车,B地6车,每车的运费如表:设甲厂运往A地的生活物资为x车.(1)用含x的代数式填表:终点起点运量A地B地甲厂x乙厂终点起点A地B地甲厂550元800元乙厂300元560元(2)若总运费为6750元,则甲厂A地的生活物资应为多少车?19.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数;当t=3时,OP=(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?(3)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时PR相距2个单位长度?20.小李和小刘在甲、乙两处之间的直道上练习跑步,小李每秒跑6米,小刘每秒跑8米.(1)两人在甲处同时跑,小刘比小李提前4秒到达乙处,求甲、乙之间的距离;(2)若小李在甲处,小刘在乙处同时相向跑,两人相遇的位置距甲处有多远?(3)两人都在甲处向乙处跑,小李跑了3秒钟后,小刘才开始跑,几秒后,小刘能追上小李?参考答案1.解:(1)由题意可得:该商品现在售价为:0.8x元/件;故答案为:0.8x;(2)设该商品第件的售价是x元,根据题意可得:0.8x﹣20=0.6x+20,解得:x=200,则200×0.8﹣20=140(元).答:该商品每件的进价是140元.2.解:(1)设沙包落在A区域得分为x,则落在B区域得分为(34﹣3x),由题意可列方程2x+2(34﹣3x)=32,解得x=9,34﹣3x=34﹣27=7.故沙包落在A区域得分为9分,落在B区域得分为7分.(2)小敏四次总分为:9×1+7×3=9+21=30(分).故小敏四次总分为30分.3.解:设这户居民这个月用水x吨,依题意有1.2×10+1.5(x﹣10)=18,解得x=14.答:这户居民这个月用水14吨.4.解:设笼的总数为x个.则4x+1=5(x﹣1),解得x=6,4x+1=25.答:鸡的总数为25只,共有6个笼.5.解:设该产品每件的成本价应降低x元,则根据题意得[510(1﹣4%)﹣(400﹣x)]×(1+10%)×50000=(510﹣400)×50000,解这个方程得x=10.4.答:该产品每件的成本价应降低10.4元.6.解:设小明家离学校x千米,根据题意得:=++2,解得:x=20.答:小明家离学校20千米.7.解:(1)∵AB=12,AO=8,∴BO=4,∴点B在数轴上表示的数为﹣4,点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,则AP=6t,∴点P表示的数为8﹣6t;故答案为﹣4,8﹣6t;(2)设x秒后P点追上Q点,则6t﹣4t=12,解得:t=6;(3)①点P在AB中间,∵AM=PM,BN=PN,∴MN=AB=6;②点P在B点左侧,PM=PA=(PB+AB),PN=PB,∴MN=PM﹣PN=PA﹣PB=AB=6,综上所述,MN在点P运用过程中长度无变化.8.解:设甲、乙两地的距离为x千米,由题意得+3﹣=,解得:x=210.答:甲、乙两地的距离为210千米.9.解:设该商品的进价是x元,由题意得13200×0.9﹣x=x×10%,解得:x=10800.答:该商品的进价是10800元.10.解:(1)5+1.3×(7﹣3)=5+1.3×4=5+5.2=10.2(元)答:出租车行驶7千米应付10.2元;(2)设小红最多乘坐x千米,由题意得5+1.3(x﹣3)=16.7解得:x=12答:小红最多乘坐12千米.11.解:(1)填表如下:起点/终点丙厂丁厂甲厂x10﹣x乙厂8﹣x x﹣4故答案为8﹣x,10﹣x,x﹣4.(2)400x+800(10﹣x)+300(8﹣x)+500(x﹣4)=7600,解得x=4,经检验,x=4符合题意,所以甲厂运往丙厂4台,运往丁厂6台,乙厂运往丙厂4台,运往丁厂0台;(3)400x+800(10﹣x)+300(8﹣x)+500(x﹣4)=8000,解得x=2,经检验,当x=2时,乙厂运往丁厂的仪器台数为负数,不合题意,故不可能.12.解:(1)AB=6﹣(﹣4)=10,即点B的数为﹣4;(2)若此时P在线段AB上,则AP+BP恒为10,故此时P必在点B的左侧.设经过t秒,则4t+4t﹣10=18,解得t=3.5,(3)线段MN的长度不发生变化,都等于.理由如下:分两种情况:①当点P在点A、B两点之间运动时:MN=MP+NP=,②当点P运动到点B的左侧时:MN=MP﹣NP=,综上所述,线段MN的长度不发生变化,都等于.13.借:(1)设从舟山去嘉兴的速度为x千米/小时,根据题意得:4.5x=3.5(x+20)解得x=70所以舟山与嘉兴两地间的路程为4.5×70=315(千米);(2)m=315﹣48﹣36,b=100+80,∵w=am+b+5=277.4∴277.4=a(315﹣48﹣36)+(100+80)+5解得:a=0.4答:轿车的高速公路里程费为0.4元.14.解:设七年级的捐款总数为x元,则2班捐款为x,1班捐款为(380+x),依题意得:x+(380+x)+380=x,解得x=1140.答:七年级的捐款总数是1140元.15.解:(1)用电量为210度时,需要缴纳210×0.55=115.5元,用电量为350度时,需要缴纳210×0.55+(350﹣210)×(0.55+0.05)=199.5元,故可得小华家5月份的用电量在第二档,设小华家5月份的用电量为x度,则210×0.55+(x﹣210)×(0.55+0.05)=139.5,解得:x=250,即小华家5月份的用电量为250度.(2)由(1)得,小华家该月用电量在第三档.设小华家该月用电量为y,根据题意得210×0.55+(350﹣210)×(0.55+0.05)+(y﹣350)×(0.55+0.15)=248,解得y≈419.答:若小华家某月的电费为248元,则小华家该月用电量约是419度,属于第三档.16.解:设安装一边需要x盏,可得:50x=40×(251﹣1),解得:x=200.答:安装一边需要200盏.17.解:图形理解:粘合2张白纸条,则DC=30×2﹣a=60﹣acm,D1C1=10×2﹣b=20﹣bcm;粘合n张白纸条,则DC=30n﹣a(n﹣1)cm,D1C1=10n﹣b(n﹣1)cm.故答案为:60﹣a;20﹣b;30n﹣a(n﹣1);10n﹣b(n﹣1).问题解决:由题意可得:10×[30×7﹣6×(7﹣1)]=30×[10n﹣6×(n﹣1)],∴1560=120n,∴n=13.答:n的值为13.拓展应用:设分给霞霞x张,则分给瑶瑶30﹣x张.根据题意得:10×[30x﹣6(x﹣1)]=30×[10×(30﹣x)﹣4×(30﹣x﹣1)],即420x=5460,解得x=13,则30﹣x=17.答:应分配给霞霞13张,瑶瑶17张.18.解:(1)设甲厂运往A地的机器为x台,则乙地运往A地的机器为(8﹣x)台,甲厂运往B地的机器为(4﹣x)台,乙厂运往B地的机器为:(2+x)台,从而填写表格即可:终点运量起点A地B地甲厂x4﹣x乙厂8﹣x2+x (2)由题意得,550x+300(8﹣x)+800(4﹣x)+560(2+x)=6750,解得:x=3.答:甲厂A地的生活物资应为3车.19.解:(1)∵数轴上点A表示的数为6,B是数轴上一点,且AB=10,∴BO=4,∴数轴上点B表示的数为:﹣4,∵动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,∴当t=3时,OP=18;故答案为:﹣4,18;(2)如图1,设点R运动x秒时,在点C处追上点P,则OC=6x,BC=8x,∵BC﹣OC=OB,∴8x﹣6x=4,解得:x=2,∴点R运动2秒时,在点C处追上点P.(3)设点R运动x秒时,PR=2.分两种情况:如图2,一种情况是当点R在点P的左侧时,8x=4+6x﹣2,即x=1;如图3,另一种情况是当点R在点P的右侧时,8x=4+6x+2,即x=3.综上所述R运动1秒或3秒时PR相距2个单位.20.解诶:(1)设小刘到达乙处所用的时间为t秒,则8t=6(t+4),解得t=12,则8×12=96(米).答:求甲、乙之间的距离是96米;(2)设小李、小刘经过x秒后相遇,则(6+8)x=96,解得x=则6x=6×=.答:两人相遇的位置距甲处有米.(3)设y秒后,小刘能追上小李.则6(3+y)=8y,解得y=9.答:9秒后,小刘能追上小李.。

一元一次方程经典拔高题(一)

一元一次方程经典拔高题(一)

一元一次方程练习(二)一、填空题(每题3分,共30分):1.若方程12ax x b -=+有无数多个解,则 ( )A 、0a ≠,1b ≠-B 、2a ≠,1b =-C 、2a =,1b ≠-D 、2a =,1b =-2、把方程0.10.5 1.20.2x -=化为 ①0.5 1.22x -=;②5122x -=;③5 1.22x -=;④0.10.50.24x -=,其中,正确的是( ) A 、③和④ B 、只有③ C 、②和④ D 、只有②3、某企业今年的产值为a 万元,比四年前增加了25%,则四年前的产值为 ( )A 、(25%)a -万元B 、(125%)a -万元C 、125%a +万元D 、125%a -万元 4、一只小艇在逆水中航行速度为16km /h ,水流速度为4km /h ,往返于A 、B 两地之间共用5h ,则A 、B 两地间距离为 ( ) A 、40km B 、42km C 、46km D 、48km5、小强与叔叔沿400m 跑道跑步,叔叔速度为3m /s ,小强速度为2m /s ,若小强与叔叔同时同地同向跑,( )秒后第二次相遇。

A 、800 B 、600 C 、400 D 、2006、某幼儿园过“六·一”去金石滩旅游,开始时每组6人,后来又调整为每组8人,结果组数比开始时减少了3组,则这个幼儿园的人数为 ( ) A 、48人 B 、62人 C 、72人 D 、74人7、某汽车停车场预计“十·一”国庆节这天将停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.若国庆节这天停车场的收费金额为10000元,则小车停放辆次为 ( )A 、100辆B 、200辆C 、300辆D 、400辆8.已知关于x 的方程5324x k +=与530x +=的解相同,则k 的值为( )A 、7B 、8-C 、9D 、10-9、某项工作,甲单独做需要x 天完成,乙单独做需y 天完成,两人合做完成这项任务的天数为( )A 、11x y +B 、xy x y +C 、1x y +D 、1xy10.某商品,若单价降低110,要保持销售总收入不变,销售量应增加( ) A 、110 B 、19 C 、18 D 、17二、选择题(每题3分,共30分):1、当a = 时,代数式12x x --与代数式223x +-的值相等。

一元一次方程应用题(精选拔高-题型全-含详细答案-可编辑) (1)

一元一次方程应用题(精选拔高-题型全-含详细答案-可编辑) (1)

一元一次方程的应用1、列方程解应用题的基本步骤和方法:注意:(1)初中列方程解应用题时,怎么列简单就怎么列(即所列的每一个方程都直接的表示题意),不用担心未知数过多,简化审题和列方程的步骤,把难度转移到解方程的步骤上.(2)解方程的步骤不用写出,直接写结果即可.(3)设未知数时,要标明单位,在列方程时,如果题中数据的单位不统一,必须把单位换算成统一单位,尤其是行程问题里需要注意这个问题.2、设未知数的方法:设未知数的方法一般来讲,有以下几种:(1)“直接设元”:题目里要求的未知量是什么,就把它设为未知数,多适用于要求的未知数只有一个的情况;(2)“间接设元”:有些应用题,若直接设未知数很难列出方程,或者所列的方程比较复杂,可以选择间接设未知数,而解得的间接未知数对确定所求的量起中介作用.(3)“辅助设元”:有些应用题不仅要直接设未知数,而且要增加辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知量,可以在解题时消去.(4)“部分设元”与“整体设元”转换:当整体设元有困难时,可以考虑设其一部分为未知数,反之亦然,如:数字问题.模块一:数字问题(1)多位数字的表示方法:一个两位数的十位数字、个位数字分别为a 、b ,(其中a 、b 均为整数,19a ≤≤,09b ≤≤)则这个两位数可以表示为10a b +.一个三位数的百位数字为a ,十位数字为b ,个位数字为c ,(其中均为整数,且19a ≤≤,09b ≤≤,09c ≤≤)则这个三位数表示为:10010a b c ++.(2)奇数与偶数的表示方法:偶数可表示为2k ,奇数可表示为21k +(其中k 表示整数).(3)三个相邻的整数的表示方法:可设中间一个整数为a ,则这三个相邻的整数可表示为1,,1a a a -+.【例1】 一次数学测验中,小明认为自己可以得满分,不料卷子发下来一看得了96分,原来是由于粗心把一个题目的答案十位与个位数字写颠倒了,结果自己的答案比正确答案大了36,而正确答案的个位数字是十位数字的2倍.正确答案是多少?【解析】此题中数据96与列方程无关.与列方程有关的量就是小明粗心后所涉及的量.设正确答案的十位数字为x ,则个位数字为2x , 依题意,得(102)(102)36x x x x ⨯+-+=,解之得4x =. 于是28x =.所以正确答案应为48.【答案】48【例2】 某年份的号码是一个四位数,它的千位数字是2,如果把2移到个位上去,那么所得的新四位数比原四位数的2倍少6,求这个年份.【解析】设这个年份的百位数字、十位数字、个位数字组成的三位数为x ,则这个四位数字可以表示为21000x ⨯+,根据题意可列方程:()1022210006x x +=⨯+-,解得499x =【答案】2499年【例3】 有一个四位数,它的个位数字是8,如果将个位数字8调到千位上,则这个数就增加117,求这个四位数.【解析】设由原数中的千位数字、百位数字和十位数字组成的三位数为x ,则这个四位数可以表示为108x +,则调换后的新数可以表示为8000x +,根据题意可列方程1088000117x x +=+-,解得875x =,所以这个四位数为8758【答案】8758【例4】 五一放假,小明的爸爸开车带着小明和妈妈去郊游,他们在公路上匀速行驶,下表是小明每隔1小时看到的路边里程碑上数的信息.你能确定小明在7:00时看到的里程碑上的数是多少吗?【解析】设小明在7:00时看到的两位数的十位数字是x ,则个位数字是7x -,根据题意可列方程:()()()()10071071071007x x x x x x x x +---+=-+-+-⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦,解得1x =,所以76x -=.【答案】小明在7:00时看到的两位数是16.模块二:日历问题(1)、在日历问题中,横行相邻两数相差1,竖列相邻两数相差7.(2)、日历中一个竖列上相邻3个数的和的最小值时24,最大值时72,且这个和一定是3的倍数. (3)、一年中,每月的天数是有规律的,一、三、五、七、八、十、十二这七个月每月都是31天,四、六、九、十一这四个月每月都是30天,二月平年28天,闰年29天,所以,日历表中日期的取值是有范围的.【例5】 下表是2011年12月的日历表,请解答问题:在表中用形如下图的平行四边形框框出4个数,(1)若框出的4个数的和为74,请你通过列方程的办法,求出它分别是哪4天? (2)框出的4个数的和可能是26吗?为什么?【解析】(1)设第一个数是x ,则根据平行四边形框框出4个数得其他3天可分别表示为1x +,6x +,7x +.根据题意可列方程:()()()16774x x x x ++++++=,解得15x =; 所以它分别是:15,16,21,22;(2)设第一个数为x ,则41426x +=,3x =,本月3号是周六,由平行四边形框框出4个数, 得出结论:无法构成平行四边形.【答案】(1)15,16,21,22;(2)无法构成平行四边形.【例6】 如图,框内的四个数字的和为28,请通过平移长方形框的方法,使框内的数字之和为68,这样的长方形的位置有几个?能否使框内的四个数字之和为49?若能,请找出这样的位置;若不能,请说明理由.【解析】(1)设四个数字是a ,1a +,7a +,8a +,根据题意可列方程:17868a a a a ++++++=,解得13a =.则平移后的四个数是13、14、20、21.(2)设四个数字是x ,1x +,7x +,8x +,则41649x +=,334x =.不合题意,舍去. 【答案】平移后的四个数是13、14、20、21,这样的长方形的位置只有1个;不存在能使四个数字的和为49的长方形.【例7】 把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表.(1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是________________.(2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x 的值;若不能,则说明理由.【解析】(1)∵记左上角的一个数为x ,∴另三个数用含x 的式子表示为:8x +,16x +,24x +.(2)不能.假设能够框住这样的4个数,则:()()()81624244x x x x ++++++=,解得49x =. ∵49是第七行最后一个数,∴不可以用如图方式框住.【答案】(1)8x +,16x +,24x +;(2)不能.模块三:和差倍分问题和、差、倍问题关键要分清是几倍多几和几倍少几.(1)当较大量是较小量的几倍多几时,=⨯较大量较小量倍数+多余量; (2)当较大量是较小量的几倍少几时,=⨯较大量较小量倍数-所少量.【例8】 一部拖拉机耕一片地,第一天耕了这片地的23;第二天耕了剩下部分的13,还剩下42公顷没耕完,则这片地共有多少公顷?【解析】设这片地共有x 公顷,第一天耕了这片地的23,则耕地23x 公顷,第二天耕了剩下部分的13,则第二天耕地1211339x x ⎛⎫⨯-= ⎪⎝⎭(公顷),根据题意可列方程:214239x x x --=,解得189x =.【答案】189.【例9】 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群羊的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?【解析】设这群羊共有x 只,根据题意可列方程:112110024x x x +++=,解得36x =. 【答案】36【例10】 有粗细不同的两支蜡烛,细蜡烛之长时粗蜡烛之长的2倍,细蜡烛点完需1小时,粗蜡烛点完需2小时,有一次停电,将这样的两支未使用过的蜡烛同时点燃,来电时,发现两支蜡烛所剩的长度一样,问停电的时间有多长?【解析】设停电时间为x 小时,粗蜡烛长l 米,则细蜡烛长2l 米,那么细蜡烛每小时点燃2l 米,粗蜡烛没小时点燃2l 米,根据题意可列方程:222l l l x l x -⋅=-,解得23x =【答案】停电时间为23小时【例11】 2006年我市在全国率先成为大面积实施“三免一补”的州市,据悉,2010年我市筹措农村义务教育经费与“三免一补”专项资金3.6亿元【由中央、省、市、县(区)四级共同投入,其中,中央投入的资金约2.98亿元,市级投入的资金分别是县(区)级、省级投入资金的1.5倍、18倍】,且2010年此项资金比2009年增加1.69亿元.(1)2009年我市筹措农村义务教育经费与“三免一补”专项资金多少亿元?(2)2010年省、市、县(区)各级投入的农村义务教育经费与“三免一补”专项资金各多少亿元? (3)如果按2009-2010年筹措此项资金的年平均增长率计算,预计2011年,我市大约需要筹措农村义务教育经费与“三免一补”专项资金多少亿元(结果保留一位小数)?【解析】(1)3.61 1.69 1.91-=(亿元).(2)设市级投入x 亿元,则县级投入23x 亿元,省级投入118x 亿元,由题意得:212.98 3.6318x x ++=,解得0.36x =.所以20.243x =(亿元),10.0218x =(亿元).(3) 1.693.61 6.81.91⎛⎫⨯+≈ ⎪⎝⎭(亿元). 【答案】(1)1.91亿元;(2)省、市、县分别投入0.02亿元、0.36亿元、0.24亿元;(3)6.8亿元.模块四:行程问题一、 行程问题路程=速度×时间 相遇路程=速度和×相遇时间 追及路程=速度差×追及时间二、 流水行船问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度水流速度=12×(顺流速度-逆流速度) 三、 火车过桥问题火车过桥问题是一种特殊的行程问题,需要注意从车头至桥起,到车尾离桥止,火车所行距离等于桥长加上车长,列车过桥问题的基本数量关系为:车速×过桥时间=车长+桥长.【例12】 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙背向而行.甲每分钟走40米,乙每分钟走38米,丙每分钟走36米.出发后,甲和乙相遇后3分钟和丙相遇,求花圃的周长.【解析】设甲、乙相遇时间为t 分钟,则甲、丙相遇时间为()3t +分钟,根据题意,由相遇路程相等可列方程()()383634036t -=⨯+【答案】8892米【例13】 某人从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开车时间迟到15分钟,现在此人打算在火车开车前10分钟到达火车站,则此人此时骑摩托车的速度应为多少?【解析】设此人从家里出发到火车开车的时间为x 小时,根据题意可列方程:151530()18()6060x x -=+,解得1x =,此人打算在火车开车前10分钟到达,骑摩托车的速度应为1530(1)602710160⨯-=-(千米/时) 【答案】27【例14】 甲、乙两车同时从A ,B 两地出发,相向而行,在A ,B 两地之间不断往返行驶.甲车到达B 地后,在B 地停留了2个小时,然后返回A 地;乙车到达A 地后,马上返回B 地;两车在返回的途中又相遇了,相遇的地点距离B 地288千米.已知甲车的速度是每小时60千米,乙车的速度是每小时40千米.请问:A ,B 两地相距多少千米?【解析】设A 、B 两地相距x 千米,根据题意可列方程:228828824060x x -+-=,解得420x = 【答案】420千米【例15】 某人骑自行车从A 地先以每小时12千米的速度下坡后,再以每小时9千米的速度走平路到B 地,共用了55分钟.回来时,他以每小时8千米的速度通过平路后,再以每小时4千米的速度上坡,从B 地到A 地共用112小时,问A 、B 两地相距多少千米?【解析】间接设未知数,设从A 地到B 地共用x 小时,根据题意可列方程:5531293438602t t t t ⎛⎫⎛⎫+-⨯=⨯+-⨯ ⎪ ⎪⎝⎭⎝⎭,解得14t =,所以A 、B 两地相距55129960t t ⎛⎫+-⨯= ⎪⎝⎭(千米)【答案】9千米【例16】 一人步行从甲地去乙地,第一天行若干千米,自第二天起,每一天都比前一天多走同样的路程,这样10天可以到达乙地;如果每天都以第一天所行的相同路程步行,用15天才能到达乙地;如果每天都以第一种走法的最后一天所行的路程步行到乙地,需要几天?【解析】设a 是第一次第一天走的路程,b 是第二天起每天多走的路程,x 是所求的天数.则根据题意可列方程:1523456789a a a b a b a b a b a b a b a b a b a b =++++++++++++++++++()()()()()()()()(), 解得9a b =.又()159a x a b =+,解得7.5x =.【答案】7.5天【例17】 一只小船从甲港到乙港逆流航行需2小时,水流速度增加一倍后,再从甲港到乙港航行需3小时,水流速度增加后,从乙港返回甲港需航行多少小时?【解析】设小船在静水中的速度为a ,原来的水速为b ,则2()3(2)a b a b -=-,解得4a b =,故所求时间为2()1(2)a b a b -=+(小时).【答案】1【例18】 一个人乘木筏在河面顺流而下,漂到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流速度为多少?【解析】因为向上游了10分钟,所以返回追赶也要10分钟(流水中的相遇时间与追及时间都与水流速度无关),即水流20分钟的路程为1500米,水流速度为11.5 4.53÷=(千米∕时).【答案】水流速度为4.5千米/时【例19】 一小船由A 港到B 港顺流需行6小时,由B 港到A 港逆流需行8小时,一天,小船从早晨6点由A 港出发顺流行至B 港时,发现一救生圈在途中掉落在水中,立即返回,1小时后找到救生圈.问: (1)若小船按水流速度由A 港漂流到B 港需多少小时? (2)救生圈是何时掉入水中的?【解析】(1)设小船在静水中的速度为a ,水流速度为b ,则6()8()a b a b +=-,解得7a b =,故小船按水流速度由A 港漂流到B 港所需时间为6()48a b b+=(小时); (2)设小船行驶x 小时后,救生圈掉入水中,则(61)()1(6)()x b a b x a b -++-⨯=-+,将7a b =代入上式,得到5x =,故救生圈是上午11点掉入水中的【答案】48;5模块五:工程问题工作总量=工作时间×工作效率 各部分工作量之和=1【例20】 有甲、乙、丙三个水管,独开甲管5小时可以注满一池水;甲、乙两管齐开,2小时可注满一池水;甲、丙两管齐开,3小时注满一池水.现把三管一齐开,过了一段时间后甲管因故障停开,停开后2小时水池注满.问三管齐开了多少小时?【解析】由题意知,甲管注水效率为15,甲、乙两管的注水效率之和为12,甲、丙两管的注水效率之和为13,设三管齐开了x 小时,根据题意可列方程:()1112215235x x ⎛⎫++-+= ⎪⎝⎭,解得419x =【答案】419小时【例21】 检修一住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天.前7天由甲、乙两人合作,但乙中途离开了一段时间,后2天由乙、丙两人合作完成,问乙中途离开了几天?【解析】设乙中途离开了x 天,根据题意可列方程()1111772114181812x ⎛⎫⨯+-+⨯+= ⎪⎝⎭,解得3x = 【答案】乙中途离开了3天【例22】 某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费. (1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱为什么?【解析】(1)设该中学库存x 套桌凳,根据题意可列方程:201624x x-=,解得960x =. (2)方案①所需费用:()9608010540016⨯+=(元); 方案②所需费用:()96012010520024⨯+=(元); 方案③所需费用:()960801201050401624⨯++=+(元). 综上,方案③最省钱.【答案】(1)960套;(2)方案③最省钱.模块六:商品销售问题在现实生活中,购买商品和销售商品时,经常会遇到进价、标价、售价、打折等概念,在了解这些基本概念的基础上,还必须掌握以下几个等量关系:()=1+⨯标价进价利润率利润=售价-进价 =100%⨯利润利润率进价利润=进价×利润率实际售价=标价×打折率【例23】 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,求经销这种商品原来的利润率.【解析】设经销这种商品原来的利润率为x ,原进价为a ,根据题意可列方程:(1)(1 6.4%)(18%)a x a x +=-++,解得17%x =.【答案】17%【例24】 某商品月末的进货价为比月初的进货价降了8%,而销售价不变,这样,利润率月末比月初高10%,问月初的利润率是多少?【解析】设月初进货价为a 元,月初利润率为x ,则月初的销售价为()1a x +元,月末进货价为()18%a -元,销售价为()()18%110%a x -++⎡⎤⎣⎦元,根据月初销售价与月末销售价相等可列方程:()()()118%110%a x a x +=-++⎡⎤⎣⎦,解得0.15x =.【答案】15%【例25】 某公司生产一种饮料是由A ,B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是多少?【解析】原料液A 的成本价为15元/千克,原料液B 的成本价为10元/千克,涨价后,原A 价格上涨20%,变为18元;B 上涨10%,变为11元,总成本上涨12%, 设每100千克成品中,二原料比例A 占x 千克,B 占(100-x )千克,则涨价前每100千克成本为()1510100x x +-,涨价后每100千克成本为()1811100x x +-, 根据题意可列方程:()()()18111001510100112%x x x x +-=+-⨯+⎡⎤⎣⎦,解得1007x =,所以6001007x -=即二者的比例是::1:6A B =,则涨价前每千克的成本为156075777+=(元),销售价为127.57元,利润为7.5元.原料涨价后,每千克成本变为12元,成本的25%为3元,保证利润为7.5元, 则利润率为:()7.512350%÷+=.【答案】50%.模块七:方案决策问题在实际生活中,做一件事情往往会有多种选择,这就需要从几种方案中,选择最佳方案,如网络的使用,到不同旅行社购票等,一般都要运用方程解答,把每一种方案的结果先算出来,进行比较后得出最佳方案.【例26】 某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代为租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:投资者按商铺标价一次性付清铺款,每年可以获得的租金为商铺标价的10%.方案二:投资者按商铺标价的八五折一次性付清铺款,2年后每年可以获得的租金为商铺标价的10%,但要缴纳租金的10%作为管理费用.(1)请问:投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:=100%⨯投资收益投资收益率实际投资额)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益将相差5万元.问:甲、乙两人各投资了多少万元?【解析】(1)设商铺标价为x 万元,则按方案一购买,则获投资收益()120%110%50.7x x x -+⋅⨯=,投资收益率为0.7100%70%x x⨯= 按方案二购买,则获投资收益()()120%0.8510%110%30.62x x x -+⋅⨯-⨯=, 投资收益率为0.62100%72.9%0.85x x⨯≈. 所以投资者选择方案二获得的投资收益率高.(2)由题意得,0.70.625x x -=,解得62.5x =,所以甲投资了62.5万元,乙投资了53.125万元【答案】略【例27】 有一个只允许单向通过的窄道口,通常情况下,每分钟可以通过9人.一天王老师到达道口时,发现由于拥挤,每分钟只能有3人通过道口,此时,自己前面还有36个人等待通过,通过道口后,还需7分钟到达学校.(1)若绕道而行,要15分钟到达学校。

人教版七年级数学上册第三章《一元一次方程》应用题综合拔高训练(一)

人教版七年级数学上册第三章《一元一次方程》应用题综合拔高训练(一)

《一元一次方程》应用题综合拔高训练(一)一.选择题1.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏2.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为()A.21元B.19.8元C.22.4元D.25.2元3.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元B.27元C.28元D.29元4.已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2:3,甲桶果汁与乙桶果汁的体积比为4:5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满几个大纸杯()A.64 B.100 C.144 D.2255.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最多可以打()折.A.6折B.7折C.8折D.9折6.某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元B.27元C.28元D.29元7.如图是某超市中“漂柔”洗发水的价格标签,一售货员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价是()A.15.36元B.16元C.23.04元D.24元8.为确保信息安全,信息需要加密传输,发送方由明文⇒密文(加密),接收方由密文⇒明文(解密).已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为()A.4,5,6 B.6,7,2 C.2,6,7 D.7,2,6 9.一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是()A.180元B.200元C.240元D.250元10.已知甲、乙、丙三人各有一些钱,其中甲的钱是乙的2倍,乙比丙多1元,丙比甲少11元,求三人的钱共有多少元()A.30 B.33 C.36 D.39二.填空题11.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水m3.12.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.13.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.14.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为元.15.某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省元.三.解答题16.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.17.2020年5月份,省城太原开展了“活力太原•乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张).某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?19.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?20.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一.选择题1.解:设需更换的新型节能灯有x盏,则70(x﹣1)=36×(106﹣1),70x=3850,x=55,则需更换的新型节能灯有55盏.故选:B.2.解:设该商品的进价是x元,由题意得:(1+20%)x=28×(1﹣10%),解得:x=21故选:A.3.解:设电子产品的标价为x元,由题意得:0.9x﹣21=21×20%解得:x=28∴这种电子产品的标价为28元.故选:C.4.解:设乙桶内的果汁最多可装满x个大杯,则甲桶内的果汁最多可装满个大杯.由题意得:120×2=×3,解得:x=100.∴乙桶内的果汁最多可装满100个大杯.故选:B.5.解:设打x折时,利润率为20%.根据题意得800×(1+20%)=1200×,解得x=8.故选:C.6.解:设标价是x元,根据题意则有:0.9x=21(1+20%),解可得:x=28,故选:C.7.解:设原价是x元,根据题意得:80%x=19.2解得:x=24.故选:D.8.解:由题意知a+1=7,2b+4=18,3c+9=15,解得明文a=6,b=7,c=2,故选:B.9.解:根据题意得:该商品的实际售价=250×80%=200(元).故选:B.10.解:本题可设丙的钱数为x元,那么甲的钱数为(x+11)元,乙的钱数为(x+1)元,根据“甲的钱是乙的2倍”可得出:x+11=2(1+x),解得:x=9.因此丙有9元,那么甲应该有20元,乙应该有10元,所以三人的钱的总数为9+20+10=39元,故选:D.二.填空题(共5小题)11.解:设该用户居民五月份实际用水x立方米,故20×2+(x﹣20)×3=64,故x=28.故答案是:28.12.解:设正方形的边长为a,因为甲的速度是乙的速度的3倍,时间相同,甲乙所行的路程比为3:1,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×=,乙行的路程为2a ×=,在CD边相遇;②第一次相遇到第二次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在AD边相遇;③第二次相遇到第三次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在AB边相遇;④第三次相遇到第四次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在BC边相遇;⑤第四次相遇到第五次相遇甲乙行的路程和为4a,甲行的路程为4a×=3a,乙行的路程为4a×=a,在CD边相遇;…因为2015=503×4+3,所以它们第2015次相遇在边AB上.故答案为:AB.13.解:设当日售出成人票x张,儿童票(100﹣x)张,可得:50x+30(100﹣x)=4000,解得:x=50.答:当日售出成人票50张.故答案为:50.14.解:设该商品每件的进价为x元,则150×80%﹣10﹣x=x×10%,解得x=100.即该商品每件的进价为100元.故答案是:100.15.解:(1)若第二次购物超过300元,设此时所购物品价值为x元,则90%x=288,解得x=320.两次所购物价值为180+320=500>300.所以享受9折优惠,因此应付500×90%=450(元).这两次购物合并成一次性付款可节省:180+288﹣450=18(元).(2)若第二次购物没有过300元,两次所购物价值为180+288=468(元),这两次购物合并成一次性付款可以节省:468×10%=46.8(元)故答案是:18或46.8.三.解答题(共5小题)16.解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=a,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.17.解:设该电饭煲的进价为x元,则标价为(1+50%)x元,售价为80%×(1+50%)x 元,根据题意,得80%×(1+50%)x﹣128=568,解得x=580.答:该电饭煲的进价为580元.18.解:设这些学生共有x人,根据题意得,解得x=48.答:这些学生共有48人.19.解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而增大,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.20.解:(1)50×(1﹣50%)=25(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260﹣x)辆,依题意有50(260﹣x)+25x=9000,解得x=160.故明年改装的无人驾驶出租车是160辆.。

一元一次方程拔高题

一元一次方程拔高题

一元一次方程拔高题一.计算题(共30小题)1.x−1-x/3 =x+2/6−1 x+4/5 +1=x− x-5/3 1/2(x−2)−1=x-2/32.解方程(1)2x+3=11-6x (2)x+2/4-2x-3/6 =1.3.解方程:(1)x+2=6-3x;(2)2x-1/3-2x-3/4=14.解方程:x+4/5 −x+5=x+3/3-x-2/2 x-1/2 =4−2x-4/35.解方程:(1)2(3y-1)=7(y-2)+3;(2)x-3/5-1= x-4/36.k取何值时,代数式k+1/3值比3k+1/2的值小1.7.解方程:(1)5(x-1)-2(x+1)=3(x-1)+x+1;(2)0.02x/0.03 +1=-0.18x+0.18/0.12 − 1.5-3x/28.解方程:(1)4x-3(5-x)=6;(2)3x+1/2 −2=3x-2/10 − 2x+3/59.解下列方程(1)2− x+5/6=x−x-1/3 (2)1.5x/0.6 −1.5-x/2 =0.5.10.计算:0.1x-0.2/0.02−x+1/0.5=3 2x-1/3 −10x-1/6 =2x+1/4 −1.11.解方程:(1)9x-3(x-1)=6 (2)x+1/2 -1= 3x-1/0.512.解方程:(1)2x-9=5x+3 (2)5x-7/6 +1=3x-1/413.解下列方程:(1)2(x+1)=3(x-2);(2)x+4/5 +1=x− x-5/314.解方程.(1)3x+5=4x+1;(2)3x-1/4 −1=5x-7/615.解下列方程(1)5x-(2-x)=1;(2)2−x+5/6=x−x-1/316.解方程:2x-1/3 − 2x-3/4=1.1−2x-5/6 =3-x/4 3x-2/3 = x+2/6-1.17.解方程:①5(x+8)-5=6(2x-7)②2x-1/3 =x+2/4−118.解方程:x/2 −5x+11/6=1+ 2x-4/3 2x-1/3 −5-x/6 =x+3/2 −1.x/3 − 3x+1/6=1−x -1/2 19.解方程:(1)3-6(x- 2/3)=1;(2)x+2/3 - 1-x/6=2.20.解方程:(1)2y+3=11-2y;(2)4-x/3 =x-3/4−2二.填空题(共30小题)1.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有盏灯.2.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.3.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.4.某商品按进价提高40%后标价,再打8折销售,售价为2240元,则这种电器的进价元.5.某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款60元和288元.如果小敏把这两次购物改为一次性购物,则应付款元.6.某工厂去年生产某种产品一件,所获取的利润率为59%,今年由于物价上涨,工厂生产这种产品的成本增加了6%,而今年与去年该产品的出厂售价一样,所以今年该工厂生产该产品一件所获取的利润率为.7.把棱长为4的正方体分割成29个棱长为整数的正方体(且没有剩余),其中棱长为1的正方体的个数为。

《一元一次方程的解法》拔高练习

《一元一次方程的解法》拔高练习

7.3一元一次方程的解法一、选择题1.对于方程,下列移项错误的是( )5332+=+x x A .B .3532-=-x x x x 2353-=-C .D .3532-=--x x 3532-=+x x 2.与方程的解相同的方程是( )x x 312=-A . B . C . D .x -=-1132=-x x 132=+x x 123=-x x 3.在下列方程的变形中,正确的是( )A .由得B .由得128=+x 812+=x x x 375=+735=-x x C .由得 D .由得x +=3535-=x 54=-x 45-=x 4.将方程变形,正确的是( )x x 532=-A . B .352=-x x xx 253+=-C . D .325=-x x x x 235=-5.甲数的5倍加4是乙数,设甲数为x ,则乙数与甲数的差可以表示为( )A .B .4C .D .45+x 44+x 44--x 6.三个连续自然数的和是27,则设其中的一个自然数是x ,下列方程错误的是( )A .B .2721=++++x x x 2711=+++-x x xC .D .2712=+-+-x x x 227-=++x x x 7.三角形三边长之比为2:2:3,最长边为15,则周长为( )A .35B .20C .15D .108.三个连续奇数的和是15,它们的积是( )A .15B .21C .105D .3159.若是方程的解,则m 的值为( )2-=x m mx +=-156A .3 B .-3 C .7 D .-710.黄豆发芽后,其自身的重量可以增加7倍,那么要得到黄豆芽240千克,需要黄豆的千克数是( )A .30B .C .35D .40723411.方程的解是( )412+=-x x A . B . C . D .2=x 3=x 4=x 5=x 12.如果是关于x 的方程的根,则m 的值是( )0=x 423=-m x A . B .- C .2 D .-2343413.陈华以8折的优惠价钱买了一双鞋子,节省了20元,那么他买鞋子时实际用了( )A .60元B .80元C .100元D .150元14.足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个队打14场负5场共得19分,那么这个队胜了( ).A .3场B .4场C .5场D .6场15.小宁买了20本练习本,店主给他八折优惠(即以标价的80%出售),结果便宜了1.60元,则每本练习本的标价是( ).A .0.20元B .0.40元C .0.60元D .0.80元16.如果代数式与互为倒数,那x 的值是( )23-x 21A .0 B . C .- D .323234二、填空题1.若与是相反数,则的值为___________.25+x 92+-x x 2.若代数式与代数式的值相等,则.312-m 341+m ____=m 3.在下列解方程的每一步后面的括号里填上依据.解:由,153-=-x x 得,) (153-=-x x ,) (42=x .) (2=x (1)合并同类项 (2)移项法则 (3)系数化为14.当时,与的值相等.____=m 13-m m 25.设某数为x ,若比它的2倍少7的数是它本身,则可列方程为__________.6.如果是关于x 的一元一次方程的解,则2-=x m x x -=+4153.____1=-m m 7.关于x 的方程,移项,可得___________,合并,可得x x 523=+_____________,方程的解为.1=x 8.方程的解是__________.112=+-y 9.方程变形为的错误是_____________.32532+=-x x 53232+=+x x 10.若与互为相反数,则. 6--x 71____=x 11.当时,与的值互为相反数.____=n 84+n 103-n 12.有一个长方形,它的长与宽之比为3:2,其周长为10cm ,则它的长___cm .13.若是关于x 的方程的解,则k 的值是_______.2=x 0132=-+k x 14.以为根的一元一次方程是_____(填写满足条件的一个方程即可)1=x .15.厦门日报1月24日报道了2003年非师范类大中专毕业生和研究生(厦门生源)的就业形势,其中关于研究生学历的工作岗位是供大于求.具体的情况是:实际需要研究生的人数比实际毕业的研究生的人数多1124人,它们之间的比是309:28,则实际需要研究生_____人,实际毕业的研究生有________人.16.买5个练习本和2枝笔共花了23.9元,已知一枝笔是3.2元,则每个练习本_________元.17.由地理知识可知,各地气温的差异受海拔高度的影响明显,海拔高度每升高100m ,气温降低0.6℃,已知重庆的海拔高度是260m ,峨眉山的海拔高度是3099m ,则当重庆市的气温是28℃时,峨眉山的山顶的气温为________.三、解答题1.解下列一元一次方程:(1)(2)21632=++x x y y 3942-=-(3) (4)32685+=-+a a a 45.15.03=--m m m(5) (6)3221+=-x x xx 45.15.35+-=+(7) (8)x -=31413+=+x x (9) (10)132-=x 3443=-x (11) (12)2131-=-x x x 3265543-=-(13) (14)454436+=-y y 132-=x x 2.有若干本连环画册分给小朋友,每人8本,则余14本;每人9本,则少3本,问共有几个小朋友分这批连环画册?3.一长方体的长、宽、高之比为5:4:3,长比高长4cm ,那么这个长方体的体积是多少? 不行4.三个连续偶数的和比其中最大的一个大10,求这三个偶数.5.A 、B 两地相距1000千米,甲、乙两列火车分别从A 、B 两地同时出发相向而行,两车在途中相遇.甲车在相遇后15小时到达B 地,乙车在相遇后小时到达A 地.若乙车的速度是甲车速度的1.5倍,分别求两车的速度.3266.某工厂接受一批生产新型机器的任务,完成总任务的14%后,又生产了58台,还剩下200台没完成,问共需要生产多少台新型机器才能完成任务?7.某种商品的进价是400元,标价为600元,打折销售时的利润率为5%,那么此商品是按几折销售的?8.中草药是我国医学界在药物方面的重大成就.某种中草药含有甲、乙、丙、丁四种草药成分.这四种成分的重量之比是外0.7:1:2:4.7.现在要配制这种中草药2100克,四种草药分别需要多少克?9.某同学在A 、B 两家超市发现他看中的复读机的单价相同,书包单价也相同.复读机和书包单价之和是452元,且复读机的单价比书包单价的4倍少8元.(1)求该同学看中的复读机和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,A 超市所有商品打8折销售,B 超市全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用).但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买省钱?10.为了预防常见传染病的发生,保障学校师生的健康,学校准备印制宣传手册.现有两家公司可以印制手册,甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费.如果学校派你去联系这批宣传授册的印制事宜,你会选择哪家公司,说明理由.11.篮球赛的组织者要出售球票,需要付给售票处12%的酬金,如果组织者要在扣除酬金后,每张球票净得12元,如果按精确到0.1元的要求,你能否计算出球票定在多少钱比较合适.12.小春从家到学校,如果每分钟走100米,就会迟到3分钟;如果每分钟走150米,就会早到3分钟,请你分析说明小者每分钟走多少米才能按时到校?13.有位顾客到商店购鞋,仅知道自己的旧尺码为43码,而不知道自己的新鞋号,他记得自己旧尺码加上一个数后折半计算为新鞋号,由于他儿子的新旧尺码都是整数,因而他知道儿子穿鞋的旧尺码为40码,新鞋号是25号,现在请你帮这位顾客计算一下他的新鞋号.14.足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?15.作研究过日历吗?如果仔细研究你会发现,日历中存在着很多数学问题.做做下面的游戏:(1)准备好一份某个月的日历,任意圈出一列上的四个数字,并计算出它们的和,然后把你得到的和告诉你的同伴,看看他能否知道你圈出的是哪几个数字;(2)用正方形在你准备的日历上圈出2×2的一组数据,并且计算出它们的和,再让你的同伴猜猜是哪些数据.参考答案一、选择题1. D2.B 3.C 4.A 5.C 6.D 7.A 8.C 9.D 1 0.A 11.D 12.D13.B 14.C (设这个队胜了场,则.解得x 19)514(13=--⋅+x x 5=x 15.B (设每本练习本的标价是元,则,解得x 60.120%8020-=⋅x x )40.0=x 16.D .由题意,易解223=-x 34=x 二、填空题1. 2.8 3.(2) (1) (3) 4. 1 5.311-x x =-726. 7., 8. 23-235=-x x 22=x 0=y 9.从右边移项到左边没有改变符号 10. 11. 2x 765-7212..6 13.-1 14. 15.1236;112022=-x 16.答案:3.5.设练习本每个元,则,易解得x 9.2322.35=⨯+x (元).5.3=x 17.答案:11℃.峨眉山和重庆的海拔高度差为2099-260=2839m ,所以和重庆市的气温比,峨眉山的山顶的气温要降低在.而C 17C 6.01002839︒≈︒⨯(设山顶的气温为℃),则.C 17C 28︒=-︒x x C 11︒=x 三、解答题1.(1) (2) (3) (4) (5) 3=x 513=y 35=a 4=m 10-=x (6)5-=x (7) (8) (9) (10) (11) 3-=x 0=x 23-=x 916-=x 65=x(12) (13) (14)521-=x 1=y 52=x 2.设共有x 个小朋友分这批连环画册,则1739148=-=+x x x 3.设每份为x ,则,即长为5×2=10,宽为4×2=8,高2435==-x x x 为3×2=6,体积是10×8×6=480(cm )34.设中间的偶数为x ,则,所以三个偶数610222=++=+++-x x x x x 为4,6,8.5.设甲车的速度是x 千米/时,则;所以乙车4010003265.115==⨯+x x x 的速度是千米/时.605.1=x 6.设共需生产x 台机器才能完成任务,则30020058%14==++x xx 7.设按x 折销售,则7%)51(40010600=+=⨯x x 8.设需甲、乙、丙、丁四种草药分别是0.7、、2、4.7,则x x x x ,需甲、乙、丙、丁四种草药分别是175克、25021007.427.0==+++x x x x x 250克、500克、1175克.9.(1)设书包的单价是x 元,则,则书包92元,9245284==-+x x x 随身听元.36084=-x (2)在超市A 购买随身听与书包各一件需花费现金:元6.361%80452=⨯元,所以可以在超市A 购买.在超市B 可先花费现金360元购买随身听,400<再利用得到的90元返券,加上2元现金购买书包,总计花费362元<400元,所以可以在超市B 购买,但361.6<362,所以在超市A 购买更省钱.10.设印刷x 册时,两家公司收费相同,则;则印500815005==+x xx 刷500册以上选择甲公司,印刷500册以下应选择乙公司.11.设球票应定在x 元,则.6.1312%12≈=-x x x 12.设小春按时到校需x 分钟,则,则1515031501003100=⨯-=⨯+x x x 家与学校距离(米),小春速度为(米/分)180********=⨯+x 120151800=÷13.解法一:由旧尺码加上一个数折半为新鞋号,可得新鞋号的2倍减去旧尺码等于这个常数,所以,设他的新鞋号为号,则这个常数为,由x 432-x 儿子的新、旧鞋码,得这个常数为2×25-40,所以,易得号.40252432-⨯=-x 5.26=x 解法二:设这个常数为x ,则由儿子的新旧鞋码得,解得.25240=+x 10=x 所以,他的新鞋号(号).5.2621043=+=14.设黑色皮块有3x 个,则白色皮块有5x 个,根据题意,得,3253=+x x 解得(个),则个,个4=x 123=x 205=x 所以,黑色皮块有12个,白色皮块有20个.15.略。

一元一次方程拔高训练

一元一次方程拔高训练

一、用分类讨论思想解一元一次方程
1.解关于x的方程2ax+2=12x+3b.
2.方程2ax-3b=4x+9有无数个解,求a+b的值
3.是否存在整数k,使关于x的方程(k-5)x+3=-(4+5x)在整数范围内有解?若有解,请求出各个解。

二、数形结合思想
1. 如图,大正方形的边长为a,小正方形的边长为b。

(1)用式子表示图中阴影部分的面积
(2)并求当a=10,b=4时,阴影部分的面积2.如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位长度/秒.
(1)A,B两点同时出发相向而行,在原点处相遇,求B点的运动速度;
(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?
(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,C点在-10处,求此时B点的位置.
3. 如图,数轴上有两点A、B,对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A、点B的距离相等,求点P对应的x的值.
(2)数轴上是否存在点P,使得点P到点A、点B的距离之和为10?若存在,请求出x的值;若不存在,说明理由.
(3)点A、B分别以3个单位长度/分,2个单位长度/分的速度向右运动,同时点P以4个单位长度/分的速度从O点向左运动,当遇到A时,点P立即以同样的速度向右运动,并不停往返于点A与点B之间,求当点A 与点B重合时,点P所经过的总路程是多少?
(第1题图)。

(word完整版)一元一次方程拔高题

(word完整版)一元一次方程拔高题

一、解答题(共16小题,满分150分)1、解方程﹣[x﹣(x﹣)]﹣=x+.2、已知下面两个方程3(x+2)=5x,①4x﹣3(a﹣x)=6x﹣7(a﹣x)②有相同的解,试求a的值.3、已知方程2(x+1)=3(x﹣1)的解为a+2,求方程2[2(x+3)﹣3(x﹣a)]=3a的解.4、解关于x的方程(mx﹣n)(m+n)=0.5、解方程,(a+x﹣b)(a﹣b﹣x)=(a2﹣x)(b2+x)﹣a2b2.6、已知(m2﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x﹣2m)+m的值.7、已知关于x的方程a(2x﹣1)=3x﹣2无解,试求a的值.8、k为何正数时,方程k2x﹣k2=2kx﹣5k的解是正数?9、若abc=1,解方程++=110、若a,b,c是正数,解方程11、设n为自然数,[x]表示不超过x的最大整数,解方程:x+2[x]+3[x]+4[x]+…+[x]=.12、已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.13、解下列方程:(1)(2)(3){}=114、解下列关于x的方程:(1)a2(x﹣2)﹣3a=x+1;(2)ax+b﹣(3)15、a为何值时,方程有无数个解?无解?16、当k取何值时,关于x的方程3(x+1)=5﹣kx分别有(1)正数解;(2)负数解;(3)不大于1的解.答案与评分标准一、解答题(共16小题,满分150分)1、解方程﹣[x﹣(x﹣)]﹣=x+.考点:解一元一次方程。

专题:计算题。

分析:先去小括号,再去中括号,然后移项合并、化系数为1可得出答案.解答:解:去小括号得:﹣[x﹣x+]﹣=x+,去中括号得:﹣x+x+﹣=x+,移项合并得:,系数化为1得:x=﹣.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.2、已知下面两个方程3(x+2)=5x,①4x﹣3(a﹣x)=6x﹣7(a﹣x)②有相同的解,试求a的值.考点:同解方程。

一元一次方程拔高题

一元一次方程拔高题

一元一次方程拔高题1.某商人一次卖出两件衣服,一件赚了15%,另一件赔了15%,卖价都是1955元,在这次生意中商品经营()A.不赚不赔B.赚90元C.赚100元D.赔90元2.若方程2ax﹣3=5x+b无解,则a,b应满足()A.a≠,b≠3B.a=,b=﹣3C.a≠,b=﹣3D.a=,b≠﹣33.新华书店销售甲、乙两种书籍,分别卖得1560元和1350元,其中甲种书籍盈利25%,而乙种书籍亏本10%,则这一天新华书店共盈亏情况为()A.盈利162元B.亏本162元C.盈利150元D.亏本150元4.某人以3千米每小时的速度在400米的环形跑道上行走,他从A处出发,按顺时针方向走了1分钟,再按逆时针方向走3分钟,然后又按顺时针方向走7分钟,这时他想回到出发地A处,至少需要的时间是()分钟.A.5B.3C.2D.15.已知a是任意有理数,在下面各题中结论正确的个数是()①方程ax=0的解是x=1;②方程ax=a的解是x =1;③方程ax=1的解是x=;④方程|a|x=a的解是x=±1.A.0B.1C.2D.36.若k为整数,则使得方程kx﹣5=9x+3的解也是整数的k值有()A.2个B.4个C.8个D.16个7.某商场五一期间举行优惠销售活动,采取“满一百元送二十元,并且连环赠送”的酬宾方式,即顾客每消费满100元(100元可以是现金,也可以是购物券,或二者合计)就送20元购物券,满200元就送40元购物券,依此类推,现有一位顾客第一次就用了16 000元购物,并用所得购物券继续购物,那么他购回的商品大约相当于它们原价的()A.90%B.85%C.80%D.75%8.如果关于x的方程3x﹣5+a=bx+1有唯一的一个解,则a与b必须满足的条件为()A.a≠2b B.a≠b且b≠3C.b≠3D.a=b且b≠39.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分10.当a=0时,方程ax+b=0(其中x是未知数,b是已知数)()A.有且只有一个解B.无解C.有无限多个解D.无解或有无限多个解11.方程|2x﹣1|=4x+5的解是()A.x=﹣3或x=﹣B.x=3或x=C.x=﹣D.x=﹣312.已知方程|x|=ax+2有一个整数解,则整数a的值为.13.(1)(2)(3)﹣=3(4).(5)(6)[2(x﹣)+]=6x.{[(x﹣1)﹣1]﹣1}﹣1=3.(10)2[x﹣(x﹣)]═x(11).(9)14.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+3|+(b﹣9)2=0数轴上有一动点C,从A点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t秒(t>0),(1)点A表示的数为,点B表示的数为.(2)点C表示的数(用含t的代数式表示);(3)当点C运动秒时,点C和点B之间距离为4;(4)若数轴上另有一动点D,同时从B点出发,以每秒1个单位长度的速度沿数轴向左匀速运动,当点C和点D之间距离为6时,求时间t的值.15.如图,在数轴上点A表示数a,点C表示数c,且|a+10|+(c﹣20)2=0.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.(1)求AC的值;(2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C的速度分别为每秒3个单位长度,每秒4个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t 的值.②若点A向左运动,点C向右运动,2AB﹣m×BC的值不随时间t的变化而改变,请求出m的值.16.定义:若线段AB上有一点P,当P A=PB时,则称点P为线段AB的中点.已知数轴上A,B两点对应数分别为a 和b,(a+2)2+|b﹣4|=0,P为数轴上一动点,对应数为x.(1)a=,b=;(2)若点P为线段AB的中点,则P点对应的数x为.若B为线段AP的中点时则P点对应的数x为.(3)若点A、点B同时向左运动,它们的速度都为1个单位长度/秒,与此同时点P 从﹣16处以2个单位长度/秒向右运动.①设运动的时间为t秒,直接用含t的式子填空AP=;BP=.②经过多长时间后,点A、点B、点P三点中其中一点是另外两点的中点?17.如图,在数轴上A点表示a,B点表示b,AB表示A点和B点之间的距离.若C到A、B两点间的距离相等,且a、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动.若AP+BQ=2PQ,求时间t 的值;(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前,请探究BM与BP之间的数量关系,并说明理由.18.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足|a﹣1|+|ab+4|+|a﹣b+c|=0.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时开始相向运动,设运动时间是t秒(t>0).i)若点C以每秒3个单位长度的速度向右与点A,B同时运动,t为何值时,点C为线段AB的中点?ii)是否存在一个常数k,使得2BC﹣k•AB的值在一定时间范围内不随运动时间t的改变而改变,若存在,求出k的值;若不存在,请说明理由.19.十一期间,哈市各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?20.在“元旦”期间,某超市推出如下购物优惠方案:①一次性购物在100元(不含100元)以内时不享受优惠;②一次性购物在100元(含100元)以上,300元(不含300元)时,一律享受9折优惠;③一次性购物在300元(含300元)以上时,一律享受8折优惠.小杨在本超市购物分别付款80元,261元,如果小杨改在本超市一次性购买与上两次相同的商品,应付款多少元?21.渔夫在静水划船总是每小时5里,现在逆水行舟,水流速度是每小时3里;一阵风把他帽子吹落在水中,假如他没有发现,继续向前划行;等他发觉时人与帽子相距2.5里;于是他立即原地调头追赶帽子,原地调转船头用了10分钟.计算:(1)求顺水速度,逆水速度是多少?(2)从帽子丢失到发觉经过了多少时间?(3)从发觉帽子丢失到捡回帽子经过了多少时间?22.某圆柱形饮料瓶由铝片加工做成.现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做瓶底几个?(2)这若干张铝片的张数是多少?3)若一个瓶身与两个瓶底配成一套,则这若干张铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?23.列方程解应用题:如图,现有两条乡村公路AB、BC,AB长为1200米,BC长为1600,一个人骑摩托车从A处以20m/s的速度匀速沿公路AB、BC向C处行驶;另一人骑自行车从B处以5m/s的速度从B向C行驶,并且两人同时出发.(1)求经过多少秒摩托车追上自行车?(2)求两人均在行驶途中时,经过多少秒两人在行进路线上相距150米?24.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税.(1)王叔叔十月份税后的工资是多少元?(2)王叔叔将该月税后工资的一半存入银行,然后用余额购买一部定价为3000元的某品牌手机,恰好遇到手机店开展活动,该款手机打八折,则买完手机后还剩下多少元?(3)某家超市正在开展促销活动,促销方案如下:商品原价优惠方案不超过500元不打折超过500元但不超过800元的部分打八折超过800元的部分打七五折若王叔叔在此次促销活动中付款980元,问他购买的商品原价是多少元?25.东方风景区的团体参观门票价格规定如下表:购票人数1~5051~100101~150150以上价格(元/人)5 4.54 3.5某校七年级(1)班和(2)班共104人去东方风景区,当两班都以班为单位分别购票时,则一共需付492元.(1)你认为有更省钱的购票方式吗?如果有,能节省多少元?(2)若(1)班人数多于(2)班人数,求(1)(2)班的人数各是多少?(3)若七年级(3)班45人也一同前去参观时,如何购票显得更为合理?请你设计一种更省钱的方案,并求出七年级3个班共需多少元?26.甲、乙两车从相距360千米的A、B两地匀速相向而行,甲车从A地出发,乙车从B地出发.(1)若甲车比乙车先出发1小时,则两车在乙车出发后经2小时相遇;若乙车比甲车先出发2.5小时,则两车在甲车出发后经1.5小时相遇.问甲、乙两车每小时各行驶多少千米?(2)若甲车先出发,3小时后乙车也出发.甲车到达B地后立即返回(忽略掉头等时间),结果与乙车同时到达A 地.已知甲车速度是乙车速度的1.25倍,问乙车出发后多少时间两车第一次相遇?27.将一副直角三角板如图1,摆放在直线MN上(直角三角板ABC和直角三角板EDC,∠EDC=90°,∠DEC=60°,∠ABC=90°,∠BAC=45°),保持三角板EDC不动,将三角板ABC绕点C以每秒5°的速度顺时针旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转.(1)如图2,当AC为∠DCE的角平分线时,求此时t的值.(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB的数量关系;(3)在旋转过程中,当三角板ABC的其中一边平行于三角板EDC的某一边时,求此时t等于(直接写出答案即可).28.如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒3°的速度旋转,同时射线OB 绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位秒)(1)当t=2时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到63°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB是由射线OM、射线OA、射线ON中的其中两条组成的角(指大于0°而小于180°的角)的平分线?如果存在,请求出t的值;如果不存在,请说明理由.29.已知m满足的条件为:代数式2m的值与代数式的值的和等于5;n=,试求mn的值.1.D.2D.3.A.4.B.5.A.6.C.7.C.8.C.9.A.10.D.11.C.12.(1)﹣3,9;(2)﹣3+2t;(3)4或8;(4)t=2或6,13.(1)30;(2)﹣13或23;(3)①∵AB=BC,∴|(1+t)﹣(﹣10+3t)|=|(1+t)﹣(20﹣4t)|∴t=或,②∵2AB﹣m×BC=2×(11+4t)﹣m(19+3t)=(8﹣3m)t+22﹣19m,且2AB﹣m×BC的值不随时间t的变化而改变,∴8﹣3m=0,∴m=.14.﹣2、4(2)1、10.(3)①AP=﹣3t+14或14﹣3t或|14﹣3t|,BP=20﹣3t或3t﹣20或|20﹣3t|.②经过s、s、s后,点A、点B、点P三点中其中一点是15.3(2 或;(3)2BM﹣BP=12.16.1、﹣4、﹣5.(2)k=﹣时17.∴选择丙商城最实惠.370元.(3)n ≈9.5,18.①∵80+261/90%=370,370>300,∴x=(80+290)×80%=296②∵80+261÷0.8=406.25∴x=(80+362.25)×0.8=32519.顺水速度是每小时8里,逆水速度是每小时2里.(2)0.5小时.(3)8y=2.5+3×(y+)解得y=.∴y+=20.80个.(2)=15(3)a=6.21.7910(2)7910×=3955 3955﹣3000×80%=1555(3)500+300×80%+(x﹣800)×75%=980 x=1120 22.492﹣416=76元.(2)∴(1)班有56人,(2)班有48人.(3)∴3个班按151人购票更省钱,共需528.5元.23.解得x=80.(2)设经过y秒两人相距150米,第一种情况:摩托车还差150米追上自行车时,20y﹣1200=5y﹣150解得y=70第二种情况:摩托车超过自行车150米时,20y=150+5y+1200解得y=90.24.3s;(2)15°;(3)分四种情况:①当AB∥DE时,如图4,∠ACE=45°+30°=5°t,t=15;②当AB∥CE时,如图5,则∠BCE=∠B=90°,∴∠ACE=90°+45°=5°t,t=27;③当AB∥CD时,如图6,则∠DCB=∠B=90°,∠ACE=30°+90°+45°=5°t,t=33;④当AC∥DE时,如图7,∴∠ACD=∠D=90°,∴∠ACE=90°+30°=5t,t=24;⑤当BC∥DE时,90°+30°+45°=5°t∴t=33故答案为:15s或24s或27s或33s25.(1)168°;(2)t的值分别为12、24秒时,26.甲车每小时行驶80千米,乙车每小时行驶60千米.(2)乙车出发后小时两车第一次相遇.系数化为1得,m=﹣7,a、b同号时,n=1+1=2或n=﹣1+(﹣1)=﹣2,a、b异号时,n=0,所以,当m=﹣7、n=2时,mn=(﹣7)×2=﹣14,当m=﹣7,n=﹣2时,mn=(﹣7)×(﹣2)=14,当m=﹣7,n=0时,mn=(﹣7)×0=0,综上所述,mn的值为﹣14或14或0.。

苏科版七年级数学上册第四章《一元一次方程》应用题拔高训练(一)

苏科版七年级数学上册第四章《一元一次方程》应用题拔高训练(一)

第四章《一元一次方程》应用题拔高训练(一)1.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.则此人第三天走的路程为()A.96里B.48里C.24里D.12里2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是()A.160元B.180元C.200元D.220元3.欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关4.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元5.一商店以每件150元的价格卖出两件不同的商品,其中一件盈利25%,另一件亏损25%,则商店卖这两件商品总的盈亏情况是()A.亏损20元B.盈利30元C.亏损50元D.不盈不亏6.蚊香长度y(厘米)与燃烧时间t(小时)之间的函数表达式为y=105﹣10t.则蚊香燃烧的速度是()A.10厘米/小时B.105厘米/小时C.10.5厘米/小时D.不能确定7.某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为()A.5 B.6 C.7 D.88.如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分()A.43 B.44 C.45 D.469.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元10.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是()A.25台B.50台C.75台D.100台11.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.10012.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24 B.28 C.31 D.3213.永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明山景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:0014.某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元15.一件服装以120元销售,可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元16.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费是1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为()A.5.5公里B.6.9公里C.7.5公里D.8.1公里17.阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时.若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何时没电?()A.晚上7点20分B.晚上7点40分C.晚上8点20分D.晚上8点40分18.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.38 B.39 C.40 D.4119.“六一”期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是()A.65元B.80元C.100元D.104元20.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?()A.4个B.5个C.10个D.12个21.把一根长100cm的木棍锯成两段,若使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为()A.70cm B.65cm C.35cm D.35cm或65cm22.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.180元B.120元C.80元D.60元23.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是()A.7岁B.8岁C.9岁D.10岁24.如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.2425.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元参考答案1.解:设此人第三天走的路程为x里,则其它五天走的路程分别为4x里,2x里,x里,x里,x里,依题意,得:4x+2x+x+x+x+x=378,解得:x=48.故选:B.2.解:设这种衬衫的原价是x元,依题意,得:0.6x+40=0.9x﹣20,解得:x=200.故选:C.3.解:设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,∴x(1+20%)=y(1﹣20%),整理得:3x=2y,该服装店卖出这两件服装的盈利情况为:0.2x﹣0.2y=0.2x﹣0.3x=﹣0.1x,即赔了0.1x元,故选:B.4.解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.5.解:设盈利的商品的进价为x元,亏损的商品的进价为y元,根据题意得:150﹣x=25%x,150﹣y=﹣25%y,解得:x=120,y=200,∴150+150﹣120﹣200=﹣20(元).故选:A.6.解:设时间t1时蚊香长度为y1,时间t2时蚊香长度为y2∴y1=105﹣10t1,y2=105﹣10t2则:速度=(y1﹣y2)÷(t1﹣t2)=[(105﹣10t1)﹣(105﹣10t2)]÷(t1﹣t2)=﹣10∴蚊香燃烧的速度是10厘米/小时故选:A.7.解:根据题意得:200×﹣80=80×50%,解得:x=6.故选:B.8.解:设长方形的宽为x公分,抽出隔板后之水面高度为h公分,长方形的长为130+70=200(公分)×40+×50=200•x•h,解得:h=44,故选:B.9.解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选:C.10.解:设今年购置计算机的数量是x台,去年购置计算机的数量是(100﹣x)台,根据题意可得:x=3(100﹣x),解得:x=75.故选:C.11.解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.12.解:如果甲尺的刻度0对准乙尺的刻度4,设此时甲尺的刻度21会对准乙尺刻度x,根据题意得36(x﹣4)=21×48,解得x=32.答:此时甲尺的刻度21会对准乙尺的刻度32.故选:D.13.解:设开幕式当天该景区游客人数饱和的时间约为x点,则(x﹣8)×(1000﹣600)=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.14.解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.15.解:设这件服装的进价为x元,依题意得:(1+20%)x=120,解得:x=100,则这件服装的进价是100元.故选:A.16.解:设人坐车可行驶的路程最远是xkm,根据题意得:5+1.6(x﹣3)=11.4,解得:x=7.观察选项,只有B选项符合题意.故选:B.17.解:设他的游戏机还需要x小时没电.则依题意得×8=1﹣x,解得x=小时=4小时40分钟.所以,他的游戏机到晚上7点40分没电.故选:B.18.解:小明买了x个面包.则15x﹣15(x+1)×90%=45解得x=39故选:B.19.解:设书包每个的进价是x元,根据题意得130×0.8﹣x=30%x,解得x=80.答:书包每个的进价是80元.故选:B.20.解:设有x个小朋友,由题意得,3x﹣3=2x+2,解得:x=5.故选:B.21.解:设一段为x,则另一段为(2x﹣5),由题意得,x+2x﹣5=100,解得:x=35(cm),则另一段为:65(cm).故选:A.22.解:设这款服装的进价为x元,由题意,得300×0.8﹣x=60,解得:x=180.300﹣180=120,∴这款服装每件的标价比进价多120元.故选:B.23.解:设小郑今年的年龄是x岁,则小郑的妈妈是(28+x)岁,由题意,得5x=28+x,解得:x=7.故选:A.24.解:六人份需20×6=120克砂糖,尚需120﹣50=70克砂糖,又20克砂糖=6小匙糖浆,所求=70÷20×6=21(小匙).故选:C.25.解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故选:A.。

人教版七年级数学上册第3章一元一次方程拔高题及易错题(含两套试题及答案)

人教版七年级数学上册第3章一元一次方程拔高题及易错题(含两套试题及答案)

23.(10 分)某人沿河流逆流游泳而上, 途中不慎将矿泉水壶失落, 水壶沿河水漂流而下, 10min 后此人发现并立即返身回游,请问:此人返游多少时间后可以追上矿泉水壶?
21.(10 分 )小李从家骑摩托车到火车站,若每小时行驶 30km,则比火车的开车时间早 15min 到达火车站;若每小时行驶 18km,则比火车的开车时间晚 15min 到达火车站。 现在小李打算在火车开车前 10min 到达火车站,此时小李的摩托车的速度应是多少?
划多修 60 m,并且第二天结束后刚好剩下 1 ,则要修的水渠全长
m.
4
17.一天,著名的数学家笛卡儿点了两支蜡烛读书,这两支蜡烛的长度相同,但粗细
不同.已知粗蜡烛可点 5h,细蜡烛可点 4h,临睡时把蜡烛吹灭,这时所剩粗蜡烛的长
度是细蜡烛长度的 4 倍,那么这两支蜡烛已经点了
h.
18.某商店的冰箱先按原价提高 40%,然后在广告中写上大酬宾八折优惠,结果每台

5 A .a≠
,b≠3
B.a= 5 ,b=- 3
2
2
C. a≠5 ,b=- 3 2
5.下表是 2015 年 6 月份的月历表 , 任意圈出一横行或一
D.a= 5 ,b≠- 3 2
竖列相邻的三个数 , 则这三个数的和不可能是(

A. 24
B. 43
C. 57
D. 69
6.某种商品的进价为 800 元,出售时的标价为 1200 元, 后来由于该商品积压, 商店准备打折出售, 但要保持利润

11.求 1+2+22+23+…+22014 的值,可令 S= 1+2+22+23+…+22014,则 2S=2+22+23+24+…

一元一次方程拔高题

一元一次方程拔高题

一元一次方程拔高题1、把方程0.5x -0.010.2-0.5=0.4x -0.61.2的分母化为整数,正确的是( ).A.5x -12-0.5=4x -612B.5x -12-0.5=4x -0.612 C.5x -12-0.5=0.4x -612 D.5x -0.12-0.5=4x -6122、某项工作,甲单独做要4天完成,乙单独做要6天完成,若甲先做1天后,然后甲、乙合作完成此项工作,若设甲一共做了x 天,所列方程是( ).A.x +14+x 6=1B.x 4+x +16=1C.x 4+x -16=1D.x 4+14+x 6=13、若关于x 的方程(m 2-1)x 2-(m +1)x +8=0是一元一次方程,有四位学生求得m 的值分别如下:①m =±1;②m =1;③m =-1;④m =0.其中错误的个数是( ).A .1B .2C .3D .44、若“Δ”是新规定的某种运算符号,设xΔy =xy +x +y ,则2Δm =-16中,m 的值为( ).A .8B .-8C .6D .-65、文化商场同时卖出两台电子琴,每台均卖960元,以成本计算。

其中一台盈利20%,另一台亏本20%,则这次出售中商场( ) A :不赔不赚 B :赚160元 C :赚80元 D :赔80元6、下列变形中,正确的是() A 、若ac=bc ,那么a=b 。

B 、若c bc a =,那么a=b C 、a=b,那么a=b 。

D 、若a 2=b 2那么a=b7、初一(5)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4 张少26张,这个班共展出邮票的张数是 ( ) A.164 B.178 C.168 D.1748、古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+319、某超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元,一律九折;(3)一次性购物超过300元,一律八折.王波两次购物分别付款80元、252元.如果王波一次性购买与上两次相同的商品,则应付款为( ).A.288元B.332元C.288元或316元D.332元或363元 10、参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是( ).住院医疗费(元) 报销率(%) 不超过500元的部分 0 超过500~1000元的部分 60 超过1000~3000元的部分 80 ……A.1000元B.1250元C.1500元D.2000元10、若关于x 的方程()23202k x kx -+-=k 是一元一次方程,则k =____,方程的解为____.11、当m =_______时,方程5443x x +=-的解和方程2(1)2(2)x m m +-=-的解相同。

人教版七年级数学上册第三章《一元一次方程》应用题填空题拔高训练(一)

人教版七年级数学上册第三章《一元一次方程》应用题填空题拔高训练(一)

人教版七年级数学上册第三章《一元一次方程》应用题专题训练1.暑假期间,亮视眼镜店开展学生配镜优惠活动.某款式眼镜的广告如下,请你为广告牌填上原价.原价:元暑假八折优惠,现价:160元2.幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方﹣﹣九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m的值为.3.“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是元.4.有一列数,按一定的规律排列成,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是.5.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.6.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是元.7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.8.文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元”,小华说:“那就多买一个吧,谢谢,”根据两人的对话可知,小华结账时实际付款元.9.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.10.一个书包的标价为115元,按8折出售仍可获利15%,该书包的进价为元.11.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,10x=7.7777…,所以10x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.12.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为元.13.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为元.14.已知:派派的妈妈和派派今年共36岁,再过5年,派派的妈妈的年龄是派派年龄的4倍还大1岁,当派派的妈妈40岁时,则派派的年龄为岁.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是元.16.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.17.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)18.一件服装的标价为200元,打八折销售后可获利50元,则该件服装的成本价是元.19.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件元.20.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.21.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.22.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是元.23.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑的台数比台式电脑的台数的还少5台,则购置的笔记本电脑有台.24.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了千克.参考答案1.解:设广告牌上的原价为x元,依题意,得:0.8x=160,解得:x=200.故答案为:200.2.解:依题意,得:2+m+4=15,解得:m=9.故答案为:9.3.解:设该书包的进价为x元,根据题意得:130×80%﹣x=30%x,整理得:1.3x=104,解得:x=80,则该书包的进价是80元.故答案为:80.4.解:设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.5.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为:100或85.由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为20007.解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.8.解:设小华购买了x个笔袋,根据题意得:18(x﹣1)﹣18×0.9x=36,解得:x=30,∴18×0.9x=18×0.9×30=486.答:小华结账时实际付款486元.故答案为:486.9.解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.10.解:设该书包的进价为x元,根据题意得:115×0.8﹣x=15%x,解得:x=80.答:该书包的进价为80元.故答案为:80.11.解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.根据题意,得0.8x=x﹣40x=200.200﹣40=160(元)故答案是:160.13.解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.14.解:设今年派派的年龄为x岁,则妈妈的年龄为(36﹣x)岁,根据题意得:36﹣x+5=4(x+5)+1,解得:x=4,∴36﹣x﹣x=28,∴40﹣28=12(岁).故答案为:12.15.解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.16.解:设这台空调的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故这台空调的进价是1000元.故答案为:1000.17.解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.18.解:设该件服装的成本价是x元,依题意得:200×80%﹣x=50,解得:x=110.∴该件服装的成本价是110元.故答案为:110.19.解:设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150.答:该商品的标价为每件150元.故答案为:150.20.解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,根据题意可得:60x=720(x﹣1),解得:x=.故答案为:.21.解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=229.4,解得:x=57.35(舍去);②当<x≤时,x+×3x=229.4,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=229.4,解得:x=74,此时两次购书原价总和为:4x=4×74=296;④当100<x≤200时,x+×3x=229.4,解得:x≈76.47(舍去);⑤当x>200时,x+×3x=229.4,解得:x≈81.93(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.22.解:设该件服装的成本价是x元,依题意得:300×﹣x=60,解得:x=180.∴该件服装的成本价是180元.故答案为:180.23.解:设购置的笔记本电脑有x台,则购置的台式电脑为(100﹣x)台,依题意得:x=(100﹣x)﹣5,即20﹣x=0,解得:x=16.∴购置的笔记本电脑有16台.故答案为:16.24.5解:设买了甲种药材x千克,乙种药材(x﹣2)千克,依题意,得20x+60(x﹣2)=280,解得:x=5.即:甲种药材5千克.故答案是:5.。

一元一次方程题高题1

一元一次方程题高题1

一元一次方程题高题一、填空题(每题2分,共32分)1.在①21x -;②213x x +=;③π3π3-=-;④13t +=中,等式有_______,方程有_______.(填入式子的序号)2.如果33-=-b a ,那么a = ,其根据是 .3.方程434x x =-的解是x =_______.4.当x = 时,代数式354-x 的值是1-. 5.已知等式0352=++m x 是关于x 的一元一次方程,则m =____________.6.当x = 时,代数式2+x 与代数式28x -的值相等. 7.根据“x 的2倍与5的和比x 的12小10”,可列方程为____ ___. 8.若423x =与3()5x a a x +=-有相同的解,那么1a -=___ _ ___. 9.关于方程543=+-x 的解为___________________________.10.若关于x 的方程a x x -=+332的解是2x =-,则代数式21aa -的值是_________. 11.代数式12+a 与a 21+互为相反数,则=a .12.已知三个连续奇数的和是51,则中间的那个数是_______.13.某工厂引进了一批设备,使今年单位成品的成本较去年降低了20%.已知今年单位成品的成本为8元,则去年单位成品的成本为_______元.15.假定每人的工作效率都相同,如果个人天做个玩具熊,那么个人做个玩具熊需要______天.16.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/小时,水速为2千米/时,则A 港和B 港相距______千米.二、解答题(共68分)76163x x +=-; 463127.253.13⨯-⨯-=-+-x x x x .;7232=+x x 2385--=-x x ; x x 23273-=+。

x x -=-32; x x 21-=-; x 355-=;x x x 3212-=-; x x x 58.42.13-=--17.(3分)如果方程21x a x +=-的解是4x =-,求32a -的值.18.(6分)你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价(3千米以内)10元,超过3千米的部分每千米1.20元,小明乘坐了(3)x x >千米的路程.(1)请写出他应该去付费用的表达式;(2)若他支付的费用是23.2元,你能算出他乘坐的路程吗?19.甲、乙两地相距460千米,A 、B 两车分别从甲、乙两地开出,•A•车每小时行驶60千米,B 车每小时行驶48千米.(1)两车同时出发,相向而行,出发多少小时两车相遇?(2)两车相向而行,A 车提前半小时出发,则在B 车出发后多少小时两车相遇?相遇地点距离甲地多远?20.甲、乙二人从A 地去B 地,甲步行每小时走4千米,乙骑车每小时比甲多走8千米,甲出发半小时后乙出发,恰好二人同时到达B 地,求A 、B 两地之间的距离.21.一条环形跑道长400米,甲练习骑自行车,平均每分钟行驶550米;乙练习长跑,平均每分钟跑250米,两人同时、同地、同向出发,经过多少时间,两人首次相遇?22.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务,已知甲每小时比乙每小时多加工2个零件,求甲、乙每小时各加工多少零件?23.学校开展植树活动,甲班和乙班共植树31株,其中甲班植树数比乙班植树数的2倍多1株,求两班各植树多少株?24.某商店购买大件商品实行分期付款,小明的爸爸买了一台9000元的电脑,第一次付款30%, 以后每月付450元,需要多长时间才能付完?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程练习(二)
一、填空题(每题3分,共30分):
1.若方程12ax x b -=+有无数多个解,则 ( )
A 、0a ≠,1b ≠-
B 、2a ≠,1b =-
C 、2a =,1b ≠-
D 、2a =,1b =-
2、把方程0.10.5 1.20.2x -=化为 ①0.5 1.22x -=;②5122x -=;③5 1.22x -=;④0.10.50.24x -=,其中,正确的是( ) A 、③和④ B 、只有③ C 、②和④ D 、只有②
3、某企业今年的产值为a 万元,比四年前增加了25%,则四年前的产值为 ( )
A 、(25%)a -万元
B 、(125%)a -万元
C 、125%a +万元
D 、125%
a -万元 4、一只小艇在逆水中航行速度为16km /h ,水流速度为4km /h ,往返于A 、B 两地之间共用5h ,则A 、B 两地间距离为 ( ) A 、40km B 、42km C 、46km D 、48km
5、小强与叔叔沿400m 跑道跑步,叔叔速度为3m /s ,小强速度为2m /s ,若小强与叔叔同时同地同向跑,( )秒后第二次相遇。

A 、800 B 、600 C 、400 D 、200
6、某幼儿园过“六·一”去金石滩旅游,开始时每组6人,后来又调整为每组8人,结果组数比开始时减少了3组,则这个幼儿园的人数为 ( ) A 、48人 B 、62人 C 、72人 D 、74人
7、某汽车停车场预计“十·一”国庆节这天将停放大小汽车1200辆次,该停车场的收费标准为:大车每辆次10元,小车每辆次5元.若国庆节这天停车场的收费金额为10000元,则小车停放辆次为 ( )
A 、100辆
B 、200辆
C 、300辆
D 、400辆
8.已知关于x 的方程5324x k +=与530x +=的解相同,则k 的值为( )
A 、7
B 、8-
C 、9
D 、10-
9、某项工作,甲单独做需要x 天完成,乙单独做需y 天完成,两人合做完成这项任务的天数为( )
A 、11x y +
B 、xy x y +
C 、1x y +
D 、1xy
10.某商品,若单价降低
110
,要保持销售总收入不变,销售量应增加( ) A 、110 B 、19 C 、18 D 、17
二、选择题(每题3分,共30分):
1、当a = 时,代数式12x x --与代数式223x +-的值相等。

2、若2(6)2a a b -+++=0,则2a b -= 。

3、若单项式32x ya b 与331x a b +-和为0,则71x +的值为 。

4、若1m +比12
m -的相反数大1,则m 的值为 。

5、晶晶的妈妈给晶晶存了一个2年期教育储蓄(年利率为2.7%),2年后取出了1054元,请问晶晶妈妈开始时存了 元。

6、小白、小红相距200米,已知小白速度3m /s ,小红速度2m /s ,若让小白去追小红, 秒追上。

7、甲、乙二人同时从A 地出发去B 地,甲骑自行车,乙骑摩托车,乙到达B 地后立即返回,途中与甲相遇,已知两地间的距离为a ,则从出发到相遇,二人共走的路程为 千米。

8、有一根铁丝,用掉了它的一半多1米之后,还剩5.5米,求这根铁丝原来有多长.设原来长x 米.列出方程 为 。

9、若a 、b 、c 为整数,且19951a b c a -+-=,则c a a b b c -+-+-= 。

10、让我们轻松一下,做一个数字游戏:
第一步:取一个自然数15n = ,计算211n +得1a ;
第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;
第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;
………… 依此类推,则2011a = 。

三、 解答题(共40分):
1、(每题4分,共8分)解方程:
(1)
30928500522x x -+-= (2)11121117252x x ⎧⎫⎡-⎤⎛⎫+-+=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭
2、(6分)已知A B +=2351x x -+,A C -=2235x x -+-,则当2x =时,求B C +的值。

3、(6分)七年级有三个班.要完成甲、乙两项任务,(一)班有45人,(二)班有50人,(三)班有43人,现因任务的需要,需将(三)班人数分配到(一)、(二)两个班,且使得分配后(二)班总人数是(一)班的总人数的2倍少36人。

问应将(三)班各分配多少名学生到(一)、(二)两班?
4、(5分)小明利用暑假到一家餐馆干零杂工,讲好干7个星期,老板付他一辆新自行车外加200元,后因他只干了4个星期,老板给他一辆新自行车外加20元钱,请问一辆新的自行车值多少钱?
5、(7分)某个体户进了40套服装,以高出进价40元的售价卖出了30套,后因换季,剩下的10套服装以原售价的六折售出,结果40套服装共收款4320元,问每套服装进价是多少元?这位个体户是赚了还是亏了?
6、(8分)某市出租车收费标准是:起步价(3km 以内)10元,超过3km 的部分每千米1.20元,小明乘坐了x km 的路程。

(1)请写出他应该去付费用的表达式;(2)若他支付的费用是23.2元,请算出他乘坐的路程?。

相关文档
最新文档