第四章 流体动力学基础

合集下载

工程流体力学 第4章 粘性流体动力学基础

工程流体力学 第4章 粘性流体动力学基础

沿程损失水头 (hf):
hf

LV2 D 2g
达西(Darcy)公式
λ:为沿程损失系数,与流动状态、管壁的粗糙度等有关
hf不仅与管段长度成正比,还与管道直径成反比
2020年1月10日
FESTO气动中心
局部阻力水头损失 :当流体在运动中遇到局部障 碍(半开阀门、管道弯头、粗细管接口、滤网等)时, 流线会发生局部变形,并且由于流动分离、二次流等 原因产生漩涡运动,从而耗散一部分机械能,造成水 头损失。
2020年1月10日
FESTO气动中心
解 :(1)求管中心最大流速 umax 2V 2 6.35 12.7cm/s
(2)离管中心 r=20mm 处的流速
u

umax

p
4L
r2
当r=50mm时,管轴处u=0,则有
0 12.7 p 52
4L
p 0.51
4L
则r=20mm在处的流速 u 12.7 0.51 22 10.7cm/s
LV2
d 2g

64 / Re
2020年1月10日
FESTO气动中心
克服沿程阻力而消耗的功率
W

ghf Q

pQ

128 LQ 2 d 4
动能修正系数


1
R2
R u 32rdr 2
0 V
2020年1月10日
FESTO气动中心
例: 设有一恒定有压均匀管流,已知管径d=20mm,管长l=20m, 管 中 水 流 流 速 V=0.12m/s , 水 温 t=10℃ 时 水 的 运 动 粘 度 ν=1.306×10-6m2/s。求沿程阻力损失

李玉柱流体力学课后题标准答案第四章

李玉柱流体力学课后题标准答案第四章

第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max /2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A A B y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。

试求(1)在倾斜角45θ=o 处的平均流速V ;(2)该处的水股厚度δ。

解:(1)由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s (2)水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。

4-3 如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。

试求此时压力表的读数。

解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速s m 51=V ,由上述两个方程可得压力表的读数(相对压强):222112212wV V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭, 上式计算结果为:2.48at 。

流体力学第4章9

流体力学第4章9

2014-10-1
28
通过流管中有效截面面积为A的流体体积流量和质量流量分 别积分求得,即
qV vdA
qm vdA
在工程计算中为了方便起见,引入平均流速的概念。平均 流速是一个假想的流速,即假定在有效截面上各点都以相 同的平均流速流过,这时通过该有效截面上的体积流量仍
A
A
与各点以真实流速流动时所得到的体积流量相同。
述三点原因,欧拉法在流体力学研究中广泛被采用。当然
拉格朗日法在研究爆炸现象以及计算流体力学的某些问题 中还是方便的。
2014-10-1 11
第二节 流体运动的一些基本概念
一、流动的分类 (1)按照流体性质分为理想流体的流动和粘性流体的流动, 不可压缩流体的流动和可压缩流体的流动。 (2)按照运动状态分为定常流动和非定常流动,有旋流动 和无旋流动,层流流动和紊流流动,亚声速流动和超声速 流动
在流场中的一些点,流体质点不断流过空间点,空间点上 的速度指流体质点正好流过此空间点时的速度。
用欧拉法求流体质点其他物理量的时间变化率也可以采用
下式的形式,即
D( ) ( ) (V )( ) Dt t
式中,括弧内可以代表描述流体运动的任一物理量,如密
D( ) 度、温度、压强,可以是标量,也可以是矢量。 称为 Dt ( ) 全导数, 称为当地导数, (V )( )称为迁移导数。 t
1、系统:包含确定不变的物质的任何集合。 系统以外的一切称为外界。 边界的性质: ① 边界随流体一起运动; ② 边界面的形状和大小可随时间变化; ③ 系统是封闭的,没有质量交换,可以有能 量交换; ④ 边界上受到外界作用在系统上的表面力;
2014-10-1 31
2、控制体:被流体所流过的,相对于某 个坐标系来讲,固定不变的任何体积。 控制面的性质: ① 总是封闭表面; ② 相对于坐标系是固定的; ③ 在控制面上可以有质量、能量交换; ④ 在控制面上受到控制体以外物体加在 控制体内物体上的力;

4工程流体力学 第四章流体动力学基础

4工程流体力学 第四章流体动力学基础
因为 F 沿 y 轴正向,所以 Fy 取正值
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS

p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:

流体动力学基础

流体动力学基础

流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。

本文将介绍流体动力学的基础概念、基本方程以及常用方法。

一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。

2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。

常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。

3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。

流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。

二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。

对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。

2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。

对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。

3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。

三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。

2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。

3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。

流体力学第四章

流体力学第四章

• 在每一个微元流束的有效截面上,各点的速度可认为是相同的 总流:无数微元流束的总和。
38
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
均匀流与非均匀流·渐变流和急变流
均匀流——同一条流线上各空间点上的流速相 同的流动,流线是平行直线,各有效截面上的 流速分布沿程不变 非均匀流——同一条流线上各空间点上的流速不 同的流动,流线不是平行直线,即沿流程方向速 度分布不均
迹线· 流线 1、迹线 1)定义:某一质点在某一时段内的运动轨迹 线。 2)迹线的微分方程
dx dy dz dt ux u y uz
烟火的轨迹为迹线
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
25
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
一维、二维和三维流动
三维流动:流动参数是x、y、z三个坐标的函数
的流动。
二维流动:流动参数是x、y两个坐标的函数的
流动。
一维流动:是一个坐标的函数的流动。
26
2016/12/26
流体运动学和动力学基础(Fluid Kinematics and Dynamics)
x= x (t)
dux ux ux dx ux dy ux dz ax dt t x dt y dt z dt
(1)当地加速度(时变加速度):流动过程中流体 由于速度随时间变化而引起的加速度; (2)迁移加速度(位变加速度):流动过程中流体 由于速度随位置变化而引起的加速度。

流体动力学基础

流体动力学基础

ax

u t

2x t 2

ax (a,b, c,t)
3)
ay

v t

2 y t 2

ay (a,b,c,t)
(3-
az

w t

2z t 2

az (a,b,c,t)
4
同样,流体的密度、压强和温度也可写成a、b、c、 的函数,即ρ= ρ (a,b,c,),P=P (a,b,c,),t=t (a,b,c,)。
式中,括弧内D可D( t以) 代 表(描t )述 (流V体 运)(动)的任一物理(量3-,10)
如密度、温度、压强,可以是标量,也可以是矢量。
D( )
称为全导数, 称为当地导数,
称为迁移导D数t 。
( )
(V )( )
t
11
2019/6/14
由上述可知,采用欧拉法描述流体的流动,常常比采 用拉格朗日法优越,其原因有三。一是利用欧拉法得到的 是场,便于采用场论这一数学工具来研究。二是采用欧拉 法,加速度是一阶导数,而拉格朗日法,加速度是二阶导 数,所得的运动微分方程分别是一阶偏微分方程和二阶偏 微分方程,在数学上一阶偏微分方程比二阶偏微分方程求 解容易。三是在工程实际中,并不关心每一质点的来龙去 脉。基于上述三点原因,欧拉法在流体力学研究中广泛被 采用。当然拉格朗日法在研究爆炸现象以及计算流体力学 的某些问题中还是方便的。
零,即
0
t
因此,定常流动时流体加速度可简化成 a (V )V
(3-12) (3-13)
2019/6/14
由式(3-13)可知,在定常流动中只有迁移加速度。例 如图3-2中,当水箱的水位保持不变时,2点到3点流体质 点的速度减小,而4点到5点速度增加,都是由于截面变化 而引起的迁移加速度。若迁移加速度为零,则为均匀流动,

李玉柱流体力学课后题答案-第四章

李玉柱流体力学课后题答案-第四章

第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max /2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A A B y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。

试求(1)在倾斜角45θ=o 处的平均流速V ;(2)该处的水股厚度δ。

解:(1)由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s (2)水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。

4-3 如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。

试求此时压力表的读数。

解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速s m 51=V ,由上述两个方程可得压力表的读数(相对压强):222112212w V V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭,上式计算结果为:2.48at 。

流体力学第四章

流体力学第四章
流体力学
动量方程16-运动控制体
已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 已知V = 30m/s,U = 10m/s,忽略重力和摩擦力, 出口截面A11= 0.003m22,求Rxx和 Ryy 出口截面A = 0.003m ,求R 和 R
解:(1) 坐标系 (2) 控制体
r r r Vr = V − U
流体力学
动量方程15-运动控制体
∂ ∂t

CV
r r r r r ρVr dτ + ∫ ρVrVr ⋅ ndS = ΣF
CS
流体仅在控制面的有限个区域流入流出且 ρ,V 在进出口截面均布,定常流动
r r & ∑ F = ∑ mriVri
(
)
out
−∑
(
r & mriVri
)
in
r r r 其中 Vr = V − VCV
φ
流体力学
雷诺输运方程1
欧拉方法描述系统物理量对时间的变化率
CSIII CSI I
t
r V
II
III
dS3
dS1 r n
r n
r V
t +δ t
DN sys Dt
流体力学
= lim
N sys (t + δt ) − N sys (t )
δt → 0
δt
雷诺输运方程2
DN sys Dt
DN sys Dt
流体力学
质点导数与系统导数
质点导数
r Dφ ∂φ = + (V ⋅ ∇ )φ Dt ∂t
流体质点某物理量随时间的变化率同空 间点上物理量之间的关系 系统导数
DN ∂ = Dt ∂t r r φV ⋅ ndS

流体力学

流体力学
第四章 流体流体运动学和流体动 力学基础
流体力学基本方程
连 续 性 方 程
动 量 方 程
动 量 矩 方 程
伯 努 利 方 程
能 量 方 程
第一节 描述流体运动的两种方法
流体的流动是由充满整个流动空间的无限多个流体 质点的运动构成的。充满运动流体的的空间称为流场。

欧拉法


着眼于整个流场的状态,即研究表征流场内流体流动 特性的各种物理量的矢量场与标量场
7.湿周 水力半径 当量直径
湿周——在总流的有效截面上,流体与固体壁面的接触长度。
水力半径——总流的有效截面积A和湿周之比。
圆形截面管道的几何直径
d 2 4A d 4R d x
D
R
A x
非圆形截面管道的当量直径
4A 4R x
关于湿周和水力半径的概念在非圆截面管道的水力计算中常常用到。
二、欧拉法
欧拉法(euler method)是以流体质点流经流场中 各空间点的运动来研究流动的方法。 ——流场法
研究对象:流场
它不直接追究质点的运动过程,而是以充满运动
流体质点的空间——流场为对象。研究各时刻质点在 流场中的变化规律。将个别流体质点运动过程置之不 理,而固守于流场各空间点。通过观察在流动空间中 的每一个空间点上运动要素随时间的变化,把足够多 的空间点综合起来而得出的整个流体的运动情况。
由欧拉法的特点可知,各物理量是空间点x,y,z和时 间t的函数。所以速度、密度、压强和温度可表示为:
v v x,y,z,t = x,y,z,t p p x,y,z,t T T x,y,z,t
1.速度
u ux, y, z, t

第4章流体动力学基础1

第4章流体动力学基础1

2、连续性微分方程有哪几种形式?不可压缩流体的连续性 、连续性微分方程有哪几种形式? 微分方程说明了什么问题? 微分方程说明了什么问题? 质量守恒
第二节 元流的伯努利方程
欧拉运动微分方程组各式分别乘以 , , ( 欧拉运动微分方程组各式分别乘以dx,dy,dz(流场任意相邻两点间距 各式分别乘以 ds的坐标分量): 的坐标分量): 的坐标分量
1 ( Xdx +Ydy + Zdz) − ρ ( ∂p dx + ∂p dy + ∂p dz) = dux dx + ∂x ∂y ∂z dt duy dt
dy + duz dz dt
<I> 考虑条件 、 考虑条件 1、恒定流
<II>
<III>
一、在势流条件下的积分
∂p ∂p =0 ∂t
∂ux ∂uy ∂uz = = =0 ∂t ∂t ∂t
∂ux ∂y ∂uy ∂z ∂ux ∂z
= = =
∂uy ∂x ∂uz ∂y ∂uz ∂x
积分得:
z+γ +
p
u2 2g
=c

理想势流(无黏性) 理想势流(无黏性)伯努利方程
z+γ +
p

u2 2g
=c
p2 u22 2g
z1 + γ +
p1
u12 2g
= z2 + γ +
在同一恒定不可压缩流体重力势流 恒定不可压缩流体重力势流中 物理意义:在同一恒定不可压缩流体重力势流中 ,各点的总比能值相等 即在整个势流场中,伯努利常数 均相等。(应用条件 均相等。(应用条件: 即在整个势流场中,伯努利常数C均相等。(应用条件:“——”所示) ”所示)

空气动力学第四章粘性流体动力学基础

空气动力学第四章粘性流体动力学基础
v(x x, y y, z z,t) v(x, y, z,t) v x v y v z x y z
v(x, y, z,t) (zx xz) xyx yyy zyz
w(x x, y y, z z,t) w(x, y, z,t) w x w y w z x y z
4.2、流体微团的运动形式与速度分解定理
以x方向速度分量为例,由泰勒级数展开,有
u(x x, y y, z z,t) u(x, y, z,t) u x u y u z
x y z 将上式分别加、减下列两项
1 v y , 1 w z
得到
2 x
2 x
u(x x, y y, z z,t)
1 0 0
0
2
0
0 0 3
I1 1 2 3 I2 1 2 23 13 I3 1 23
4.3、粘性流体的应力状态
1、理想流体和粘性流体作用面受力差别 流体处于静止状态,只能承受压力,几乎不能承受拉力和剪力,不具有 抵抗剪切变形的能力。理想流体在运动状态下,流体质点之间可以存在 相对运动,但不具有抵抗剪切变形的能力。因此,作用于流体内部任意 面上的力只有正向力,无切向力。 粘性流体在运动状态下,流体质点之间可以存在相对运动,流体具有 抵抗剪切变形的能力。因此,作用于流体内部任意面上力既有正向力, 也有切向力。
D ( ps cos )ds 0 2R
4.1、流体的粘性及其对流动的影响
对于粘性流体的绕流,与理想流体绕流存在很大的差别。由于流体 与固壁表面的粘附作用,在物面近区将产生边界层,受流体粘性的 阻滞作用,流体质点在由A点到B点的流程中,将消耗部分动能用之 克服摩擦阻力做功,以至使其无法满足由B点到D点压力升高的要求 ,导致流体质点在BD流程内,流经一段距离就会将全部动能消耗殆 尽(一部分转化为压能,一部分克服摩擦阻力做功),于是在壁面 某点速度变为零(S点),以后流来的流体质点将从这里离开物面进 入主流场中,这一点称为分离点。这种现象称为边界层分离。在分 离点之间的空腔内流体质点发生倒流,由下游高压区流向低压区, 从而在圆柱后面形成了旋涡区。这个旋涡涡区的出现,使得圆柱壁 面压强分布发生了变化,前后不对称(如前驻点的压强要明显大于 后驻点的压强),因此出现了阻力D。

流体力学 第四章 (2)讲解

流体力学 第四章 (2)讲解

沿AB流线写元流能量方程:
zA
+
pA γ
+
uA2 2g
=
zB
+
pB γ
+
uB2 2g
zA = zB , uB = 0
uA
2g pB - pA

2gh
毕托管
四、粘性流体元流的伯努利方程
Z1
P1 r
1v12
2g
Z2

P2 r
2v22
2g
hw '
第三节 恒定总流的伯努利方程
称为为 总水头,表明单位重量流体具有的总能量,称为 单位总能量。
方程含义
能量方程式说明,理想不可压缩流 体恒定元流中,各断面总水头相等, 单位重量的总能量保持不变。
三、元流能量方程的应用——毕托管
毕托管
用于测量水流 和气流点流速 的仪器。
测压管:两端开口并与流向正交;
测速管:两端开口并成直角弯曲,下端 开口正对来流。
一定从高处向低处流动;(2)水一定从压强大的地 方向压强小的地方流动;(3)水总是从流速大的地 方向流速小的地方流动?
3-5什么是水头线和水力坡度?总水头线、测压管水 头线和位置水头线三者有什么关系?沿程变化特征是 什么?
作业
P105-4.8、4.10、4.11 ,P1064.17、4.19
vy z

fy

1

p y


2 y
x2
2y
y 2
2y
z 2

vz t
vx
vz x
vy
vz y
vz
vz z

工程流体力学(孔珑版)第四章-题解

工程流体力学(孔珑版)第四章-题解

第四章 流体运动学和流体动力学基础【4-2】 已知平面流动的速度分布规律为j yx xi y x y v 222222+++-=πΓπΓ 式中Γ为常数。

求流线方程并画出若干条流线。

【解】 由题设,()222,y x y y x v x +-=πΓ,()222,y x xy x v y+=πΓ 代入流线的微分方程()()t z y x v yt z y x v x y x ,,,d ,,,d =得222222d y x x y x yx+=+-πΓπΓxy y d -=yy x x d d -=⎰⎰-=y y x x d dC y x +-=22212'22C y x =+【4-4】 已知流场的速度分布为k xy j y i xy v +-=3231(1)问属于几维流动?(2)求(x , y , z )=(1, 2, 3)点的加速度。

【解】 (1)由于速度分布可以写为()()()k y x v j y x v i y x v v z y x,,,++= (1) 流动参量是两个坐标的函数,因此属于二维流动。

(2)由题设,()2,xy y x v x = (2)()331,y y x v y -= (3)()xy y x v z =, (4)()()()()4322223222310231031d d xy xy y y xy xy zxyxy y y xy x xy xy t z vv y v v x v v t v t v a x z x y x x x x x =+⋅-+=∂∂+∂∂-∂∂+∂∂=∂∂+∂∂+∂∂+∂∂==(5)()52333332331031003131313131d d y y y y z xy y y y y x xy y t zv v yv v xv v tv tv a y zy yy xy y y =+-⋅-+=⎪⎭⎫ ⎝⎛-∂∂+⎪⎭⎫ ⎝⎛-∂∂-⎪⎭⎫ ⎝⎛-∂∂+⎪⎭⎫ ⎝⎛-∂∂=∂∂+∂∂+∂∂+∂∂== (6)()()()()3323232031031d d xy x y y xy xy zxy xy y y xy x xy xy t z vv y v v x v v t v t v a z z z y z x z z z =+⋅-⋅+=∂∂+∂∂-∂∂+∂∂=∂∂+∂∂+∂∂+∂∂==(7)将x =1,y=2,z =3代入式(5)(6)(7),得31621313144=⨯⨯==xy a x3322313155=⨯==y a y 31621323233=⨯⨯==xy a z【4-15】 图4-28所示为一文丘里管和压强计,试推导体积流量和压强计读数之间的关系式。

李玉柱流体力学课后题解答-第四章

李玉柱流体力学课后题解答-第四章

第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max/2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A AB y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。

试求(1)在倾斜角45θ=处的平均流速V ;(2)该处的水股厚度δ。

解:〔1〕由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s 〔2〕水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。

4-3 如下图管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。

试求此时压力表的读数。

解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速m 51=V ,由上述两个方程可得压力表的读数〔相对压强〕:222112212wV V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭, 上式计算结果为:2.48at 。

李玉柱流体力学课后题解答第四章

李玉柱流体力学课后题解答第四章

李玉柱流体力学课后题解答-第四章————————————————————————————————作者:————————————————————————————————日期:第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max /2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A AB y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。

试求(1)在倾斜角45θ=处的平均流速V ;(2)该处的水股厚度δ。

解:(1)由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s (2)水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。

4-3 如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d1=0.1m,管嘴出口直径d 2=0.05m,压力表断面至出口断面高差H=5m ,两断面间的水头损失为210.5(/2)V g 。

试求此时压力表的读数。

解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速s m 51=V ,由上述两个方程可得压力表的读数(相对压强):222112212w V V p p z z h g g ρ⎛⎫-'-=+-+⎪⎝⎭, 上式计算结果为:2.48at 。

流体力学第四章

流体力学第四章

1.渐变流及其特性
渐变流过水断面近似为平面,即渐变流是流线接近于
平行直线的流动。均匀流是渐变流的极限。
动压强特性:在渐变流同一过水断面上,各点动压强
按静压强的规律式分布,即
注:上述结论只适用于渐变流或均匀流的同一过水断面上 的 各点,对不同过水断面,其单位势能往往不同。
选取:控制断面一般取在渐变流过水断面或其极限情况均匀 流断面上。
即J=JP。 5.总水头线和测压管水头线之间的距离为相应段
的流速水头。
6.如果测压管水头线在总流中心线以上,压强就 是正职;如相反,则压强为负值,则有真空。
4.总流能量方程在推导过程中的限制条件
(1)不可压缩流体;
(2)恒定流;
(3)质量力只有重力,所研究的流体边界是静止 的(或处于平衡状态);
取管轴0-0为基准面,测压管所在断面
1,2为计算断面(符合渐变流),断面的形
心点为计算点,对断面1,2写能量方程(4-
15),由于断面1,2间的水头损失很小,
可视
,取α1=α2=1,得
由此得:
故可解得:
式中,K对给定管径是常量,称为文丘里流 量计常数。
实际流量 : μ——文丘里流量计系数,随流动情况和管
流体力学
第四章 流体动力学基础
本章是工程流体力学课程中最重要的一 章。本章建立了控制流体运动的微分方程, 即理想流体运动微分方程和实际流体的运 动微分方程;并介绍了求解理想流体运动 微分方程的伯努利积分形式;构建了工程 流体力学中应用最广的恒定总流运动的三 大基本方程:连续性方程、伯努利方程 (即能量方程)和动量方程。通过本章的 学习要培养综合运用三大基本方程分析、 计算实际总流运动问题的能力。
道收缩的几何形状而不同。

流体力学四章节流体运动学

流体力学四章节流体运动学

(4.6)
w
iw x
jw y
k
w
z
w
w
2 x
w
2 y
w
2 z
ppx,y,z,t
(4.7)
x,y,z,t
第7页
退出 返回
(4.8)
第四章 流体运动学
第一节 流体运动的描述
因为质点在流场内是连续的,所以流体加速度的各分量为
同样
dwx wx wx x wx y wx z dt t x t y t z t
A
a
t0 et0
1
B
b
t0 1 et0
将A,B,C值代入前式得到
Cc
xaett00 1et t1
ybet0t01et t1 zc
这就是流场中的迹线方程式,也就是质点空间坐标的拉格朗日表达式,它
表示一迹线族。若某一个质点,当 t0 0时其起始位置 a 1,b2,c 3,
则这个质点的迹线方程式为 x2et t1 y3et t1 z 3
D D B t B tw x B xw y B yw z B zB t wBtwB (4.11)
(三)两种描述方法的关系 拉格朗日法和欧拉法两种表达式可以互换。例如,从拉格朗日法的坐标 位置表达式(4.1),可以求出用x,y,z,t 表示的拉格朗日变数a,b, c 的关系式
第9页 退出 返回
第四章 流体运动学
y,
z, t
wz
z t
wz x,
y,
z,
t
(b)
第10页 退出 返回
第四章 流体运动学
第一节 流体运动的描述
将(b)式进行积分,则
x F1C1, C2, C3, t

流体力学-第四章 流体动力学基础

流体力学-第四章 流体动力学基础

Dt t CV
CS
单位质量流体的能量 e (u V 2 gz) 流体系统的总能量
2
DE ed eV ndS
Dt t CV
CS
E ed
初始时刻系统与控制体重合
Q WSYS Q WCV
ed eV ndS Q W
t CV
CS
§4.2 对控制体的流体力学积分方程
§4.1 系统和控制体,雷诺输运定理
雷诺输运定理:
举例:动量定理运用于流体系统
F Dk Dt
F 是外界作用系统的合力,K 是系统的动量,
k Vd
由于系统不断改变位置、形状大小,组成系统的流体质点的密度和速度随
时间也是变化的,所以系统的动量也是变化的,求其对时间的变化率,即
求该流体系统体积分的物质导数。
取 N M 单位体积的质量
DM 0 Dt
d V ndS 0
t CV
CS
d V ndS 0
t CV
CS
积分形式的连续性方程
§4.2 对控制体的流体力学积分方程
非定常流动情况下:
d V ndS 0
t CV
CS
即单位时间内控制体内流体质量的增加或减少等于同时间内通过控制面流入 或流出的净流体质量。如果控制体内的流体质量不变,则必然同一时间内流 入与流出控制体的流体质量相等。
左端第一项——是控制体内流体动量随时间变化而产生的力,它反映流体运动的非定常性
左端第二项——是单位时间内流体流入和流出控制体的动量之差,它表示流入动量与流出动量
不等所产生的力。
§4.2 对控制体的流体力学积分方程
定常流动条件:
F
FB FS
VV ndS
CS
VV ndS

流体力学_04_流体动力学-1

流体力学_04_流体动力学-1
u x u x u x u x =dxdydz t u x x u y y u z z
质量力 时变加速度
u x u x u x 1 p u x X ux uy uz x t x y z
表面力
Y
1 p ux uy uz y t x y z
速度水头
p
ቤተ መጻሕፍቲ ባይዱ伯 努 利 方 程
****************
u2 H z 2g
总水头
14
第四节 伯诺里方程的能量意义和几何意义
总机械能不变,并 不是各部分能量都保 持不变。三种形式的 能量可以各有消长, 相互转换,但总量不 会增减。 伯努利方程是能量守恒原理在流体力 学中的具体体现,故被称之为能量方程。 伯努利方程在流线上成立,也可认为 在元流上成立,所以伯努利方程也就是 理想流体恒定元流的能量方程。
u2 gz Cl 2 p
流线
2
1 o o

u2 z Cl 2g p
对同一流线上任意两点 1 和 2 利用 伯努利积分,即有 伯 努 p1 u12 p2 u22 利 z1 z2 2g 2g 方 程 这是流体力学中普遍使用的方程。
10
第三节 理想流体的伯诺里方程
**************** 实际使用中,在测得 h,计算流速 u 时,还 要加上毕托管修正系数 c,即 u c 2 gh
实用的毕托管常将测压 管和总压管结合在一起。
Ⅱ管 Ⅰ管 Ⅰ管测压孔
Ⅱ管测压孔
18
第四节 伯诺里方程的能量意义和几何意义
补充例题一 测量流速的皮托管如图所示,设被测流 体密度为ρ,测压管内液体密度为ρ1,测压管中液面高 差为h。试证明所测流速 p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

fz
1 p dvz z dt
2
江苏大学
Jiangsu University
二、葛罗米柯——兰姆运动微分方程
v v v 1 p v x fx vx x v y x vz x x t x y z
vy
v y x
vz
v z x
v y v y v x v x v x v v z v (v x vy vz ) (v y vy ) (v z x v z z ) t x x x y x z x
v x v x
v x vy x v y vy x
v x 1 p y x v y 1 p y y
v r 0 v r
v x y v y x
11
江苏大学
Jiangsu University
2.动能修正系数
1 2 dQv A 2 2 1 Q v 2
v2 A 2 g gdQ v gQ 2g
2
3.总流伯努利方程的导出 总流是无数微小流束的总和,总流的 伯努利方程只要对微小流束的伯努利 积分在整个断面上积分便可求出:
2 p1 v12 p2 v2 z1 z2 hw g 2 g g 2 g 2 p1 v12 p2 v2 ) gdQ A1 ( z1 g 2g )gdQ A2 ( z 2 g 2g hw
10
江苏大学
Jiangsu University
在涡核边界上:
p p
1 1 2 v0 p 2 R 2 2 2
r R 区域为恒定有旋流动,可以用伯努利积分(沿流线),且不计质量力 1 p v2 C 2
式中p,v为这一区域内任一点的压强和流速,在圆形旋涡内部,流线为同心 圆,所以应用伯努利积分无法求出压强沿径向的变化。 直接用欧拉运动微分方程求解(不计质量力 vx y ) z 2
v2 v2 v2 (W PF )dx (W PF )dy (W PF )dz x 2 y 2 z 2
(vz y v yz )dx (vxz vzx )dy (v yx vx y )dz (vz y v yz )vx dt (vxz vzx )v y dt (v yx vx y )vz dt 0
3
江苏大学
Jiangsu University
三、葛罗米柯—兰姆运动微分方程(形式二) v 0 (1) 定常流动 t (2)质量力有势,存在力势函数W (3)正压流体
f W
PF
dp ( p)
W x W fy y W fz z fx
2 2 2 v x v x v y v z ( ) v y 2 z v z 2 y t x 2
v x v 2 ( ) 2(v z y v y z ) t x 2
1 p v x v 2 fx ( ) 2(v z y v y z ) x t x 2
7
江苏大学
Jiangsu University
二、欧拉积分 (4)无旋流动
x y z 0
v2 (W PF ) 2(vz y v y z ) x 2
v2 (W PF ) 2(vx z vzx ) y 2
v2 (W PF ) 2(v y x vx y ) z 2
rR
z 0
9
江苏大学
Jiangsu University
2) 求压强分布
r R 无旋流动,可用欧拉积分。
v2 W C 2 p
W 0
v2 C 2 p
p
1 v2 C 2
理想流体、定常流动、质量力有势、不可压缩流体、无旋流动对整个流场 适用。 1 1 2 2 p v p v 2 2 1 p p v 2 2
16
江苏大学
Jiangsu University
1)缓变流的过流断面近于平面,过流断面 上各点的速度方向近于平行。 2)恒定缓变流过流断面上的动压强按静压 强的规律分布。
pdA ( p dp)dA gdAdlcos 0
dp gdz 0
p z c g
17
江苏大学
Jiangsu University
当r=R,p=p0,v=v0
1 p v2 C 2 1 2 C p0 v0 2 1 1 2 2 p p0 v v0 2 2 1 2 p v0 v 2 2
12
江苏大学
Jiangsu University
三、重力作用下的伯努利方程 对前面的伯努利积分和欧拉积分,对其中的2)有势的质量力3)正压流体再 引入限制: a)作用在流体上的质量力只有重力:
18
江苏大学
Jiangsu University
(z
p ) gdQ g
缓变流 z
v2 2 g gdQ
p C g
h gdQ
w
(z
2
2 p p p ) gdQ ( z ) gdQ ( z ) gQ v v2 g g g 代替 2g 2g
v2 (W PF ) 2(v y x v x y ) z 2
5
江苏大学
Jiangsu University
第二节 伯努利方程
一、伯努利积分 (4)沿流线积分
v2 (W PF ) 2(vz y v y z ) x 2
v2 (W PF ) 2(vx z vzx ) y 2
v v gdQ gQ 2g 2g
gdQ hw gQ hw
将以上结果代入方程,并同时除以 gQ
2
hw
h gdQ
w
gQ
19
江苏大学
Jiangsu University
z1
p1 v p v z 2 2 2 hw g 2 g g 2g
第四章
流体动力学基础
江苏大学
Jiangsu University
第一节 理想流体运动微分方程 一、方程的推导 1.表面力 左边: 右边:
p dx (p )dydz x 2 (p p dx )dydz x 2
在x方向的表面力合力为: p dx p dx p Px ( p )dydz ( p )dydz dxdydz x 2 x 2 x
江苏大学
Jiangsu University
15
江苏大学
Jiangsu University
:从1至2断面的能量损 hw
失(单位重量流体)
六、实际微小流束的伯努利方程 1. 急变流与缓变流 缓变流:流线之间的夹角很小,流线间几乎是平行的,且流线曲率半径 很大。即:流线近似平行直线的流动。 急变流:不满足缓变流条件之一的流动。
( v )v 0?
vr 0 v r 0 r R v r v 2 r 2 求:1)判别流动是否有旋, 2)求压场分布 ( 2 R )
1)判别流动是否有旋
rR
z [
1 (rv ) v r ] 2 rr r
rR
z
14
江苏大学
Jiangsu University
物理意义 几何意义
五、实际微小流束的伯努利方程 在不考虑流体粘性的基础上,流动过程中并未产生损失。但在实际流体流 动的过程中,由于粘性的作用,流体所具有的总能量沿程将不断降低。对 于实际微小流束上的伯努利方程有:
2 p1 v12 p2 v2 z1 z2 hw g 2 g g 2 g
p v2 z C g 2g
四、伯努利方程的意义
2 p1 v12 p2 v2 z1 z2 g 2 g g 2 g
1. 几何意义: 对有旋流动:在同一条微小流束上,总水头是个常数。 对有势流动:流场中任意点总水头是个常数。 2.能量意义 对有旋流动:在同一微小流束上总机械能保持不变。 对有势流动:在流场中任一点,总机械能保持不变。
2 1 1
2 2
方程的意义:断面1单位重量流体的机械能=断面2单位重量流体的机械能+ 断面之间单位重量流体的机械能损失 伯努利方程的适用条件: 1)定常流动 ;2)不可压缩均质流体 ;3)重力流体,质量力只受重力 4)缓变流断面 伯努利方程应用注意: 1)方程式不是对任何流动都适用的,注意其使用条件;2)常常和一元 连续性方程连用 ;3)方程中的位臵水头是相对的,通常取在轴线或较 低断面上;4)两个断面的压强标准必须一致,一般用表压(相对压强) ;5)在选取二个过流断面时,尽可能只包含一个未知数,如水库水面、 大容器水面、出口断面等;6)方程要求二个断面都是缓变流断面,但并 不要求二个断面之间是缓变流 ;7)在多数工程计算中,位臵水头或压 20 强水头都较大,而流速水头都较小 ,动能修正系数为1.0
6
江苏大学
Jiangsu University
v2 v2 v2 (W PF )dx (W PF )dy (W PF )dz 0 x 2 y 2 z 2
v2 d (W PF ) 0 2
v2 W PF Cl 2
上式称为伯努利积分,它是在定常条件下,正压流体在有势的质量力作用 下欧拉运动微分方程沿流线的积分。 它表明:对不可压缩流体或可压缩的正压流体,在有势的质量力作用下 ,沿同一条流线,单位质量流体的势能、压能、动能之和为一常数。
fx f y 0
f z g
W W W dW dx dy dz f x dx f y dy f z dz gdz x y z
相关文档
最新文档