八年级几何辅助线专题训练

合集下载

八年级上册几何辅助线专题讲解和练习

八年级上册几何辅助线专题讲解和练习

八上数学辅助线的添加浅谈一、添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线;2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”这样可防止乱添线,添辅助线也有规律可循;举例如下:1平行线是个基本图形:当几何中出现平行线时添辅助线的关键,是添与二条平行线都相交的等第三条直线2等腰三角形是个简单的基本图形:出现一点发出的二条相等线段时,往往要连结已知点补完整等腰三角形;3等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点,添底边上的中线;4直角三角形斜边上中线基本图形出现直角三角形斜边上的中点,往往添斜边上的中线;出现线段倍半关系且倍线段是直角三角形的斜边,要添直角三角形斜边上的中线;5全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个相等角关于某一直线成轴对称,就可以添加辅助线构造轴对称形全等三角形;或添对称轴,对应点连线的中垂线即为对称轴;当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加辅助线构造中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线6特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明二、基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:倍长中线法;有关三角形中线的题目,常将中线倍长构造全等三角形;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质定理和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用角平分线、垂直平分线的性质定理进行转换;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法进行转换,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.三、作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、角平分线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;四、三角形中作辅助线的常用方法举例一、在证明三角形中多条线段的不等量关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:法一将DE 两边延长分别交AB 、AC 于M 、N,在△AMN 中,AM +AN > MD +DE +NE;1 在△BDM 中,MB +MD >BD ; 2 在△CEN 中,CN +NE >CE ; 3 由1+2+3得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC法二:如图1-2, 延长BD 交 AC 于F,延长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF 三角形两边之和大于第三边1 GF +FC >GE +CE 同上………………………………2 DG +GE >DE 同上……………………………………3 由1+2+3得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +EC;二、在证明三角形中某些角的不等量关系时,如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC;BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角,A BCDEN M 11-图ABCDEF G21-图AD E G∴∠BDC >∠DEC,同理∠DEC >∠BAC,∴∠BDC >∠BAC 证法二:连接AD,并延长交BC 于F ∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD,同理,∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF;分析:要证BE +CF >EF ,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同一个三角形中;证明:在DA 上截取DN =DB,连接NE,NF,则DN =DC, 在△DBE 和△DNE 中:∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法ED ED DB DN ∴△DBE ≌△DNE SAS∴BE =NE 全等三角形对应边相等 同理可得:CF =NF在△EFN 中EN +FN >EF 三角形两边之和大于第三边 ∴BE +CF >EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等;四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形; 例如:如图4-1:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 证明:延长ED 至M,使DM=DE,连接 CM,MF;在△BDE 和△CDM 中,AB CD E FN13-图1234ACE F1234∵⎪⎩⎪⎨⎧=∠=∠=)()(1)(辅助线的作法对顶角相等中点的定义MD ED CDM CD BD ∴△BDE ≌△CDM SAS又∵∠1=∠2,∠3=∠4 已知 ∠1+∠2+∠3+∠4=180°平角的定义 ∴∠3+∠2=90°,即:∠EDF =90° ∴∠FDM =∠EDF =90° 在△EDF 和△MDF 中∵⎪⎩⎪⎨⎧=∠=∠=)()()(公共边已证辅助线的作法DF DF FDM EDF MD ED∴△EDF ≌△MDF SAS∴EF =MF 全等三角形对应边相等∵在△CMF 中,CF +CM >MF 三角形两边之和大于第三边 ∴BE +CF >EF注:上题也可加倍FD,证法同上;注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中;五、有三角形中线时,常延长加倍中线,构造全等三角形; 例如:如图5-1:AD 为 △ABC 的中线,求证:AB +AC >2AD;分析:要证AB +AC >2AD,由图想到: AB +BD >AD,AC +CD >AD,所以有AB +AC + BD +CD >AD +AD =2AD,左边比要证结论多BD +CD,故不能直接证出此题,而由2AD 想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去;证明:延长AD 至E,使DE=AD,连接BE,则AE =2AD ∵AD 为△ABC 的中线 已知 ∴BD =CD 中线定义 在△ACD 和△EBD 中⎪⎩⎪⎨⎧=∠=∠=)()()(辅助线的作法对顶角相等已证ED AD EDB ADC CD BD∴△ACD ≌△EBD SAS∴BE =CA 全等三角形对应边相等∵在△ABE 中有:AB +BE >AE 三角形两边之和大于第三边ABCDE15-图AEF∴AB +AC >2AD;练习:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD;六、截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任一点;求证:AB -AC >PB -PC;分析:要证:AB -AC >PB -PC,想到利用三角形三边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边AB -AC,故可在AB 上截取AN 等于AC,得AB -AC =BN, 再连接PN,则PC =PN,又在△PNB 中,PB -PN <BN,即:AB -AC >PB -PC;证明:截长法在AB 上截取AN =AC 连接PN , 在△APN 和△APC 中∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AC AN ∴△APN ≌△APC SAS∴PC =PN 全等三角形对应边相等∵在△BPN 中,有 PB -PN <BN 三角形两边之差小于第三边 ∴BP -PC <AB -AC证明:补短法 延长AC 至M,使AM =AB,连接PM, 在△ABP 和△AMP 中∵ ⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AM AB∴△ABP ≌△AMP SAS∴PB =PM 全等三角形对应边相等又∵在△PCM 中有:CM >PM -PC 三角形两边之差小于第三边 ∴AB -AC >PB -PC;七、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BCA BCDNMP 16-图12分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知 ∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;八 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等九、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长;证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知DAEFA BCD 18-图1234ABCDE17-图O∴∠BEF =∠BEC =90° 垂直的定义 在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE十、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D;证明:连接BC,在△ABC 和△DCB 中 ∵ ⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等十一、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中DCBA110-图ODAN∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;五、巧求三角形中线段的比值例1. 如图1,在△ABC中,BD:DC=1:3,AE:ED=2:3,求AF:FC;解:过点D作DG如图2,BC=CD,AF=FC,求EF:FD解:过点C作CG如图3,BD:DC=1:3,AE:EB=2:3,求AF:FD;解:过点B作BG如图4,BD:DC=1:3,AF=FD,求EF:FC;解:过点D作DG如图5,BD=DC,AE:ED=1:5,求AF:FB;2. 如图6,AD:DB=1:3,AE:EC=3:1,求BF:FC;答案:1、1:10; 2. 9:1六、辅助线总结一、 由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边; 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍;如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件;如图1-2,ABAC;3.已知:如图2-5, ∠BAC=∠CAD,AB>AD,CE ⊥AB,AE=21AB+AD.求证:∠D+∠B=180 ;4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE;求证:AF=AD+CF;图1-1BDBC已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB,垂足为D,AE 平分∠CAB 交CD 于F,过F 作FH 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,于M;求证:AM=ME;分析:由AD 、AE 是∠BAC AF,从而BF2121图4-2图4-1ABBG已知,如图,∠C=2∠A,AC=2BC;求证:△ABC 是直角三角形;2.已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC ⊥ACCABA 图2-6ECD图3-2CE3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD 4.已知:如图在△ABC 中,∠A=90°,AB=AC,BD 是∠ABC 的平分线,求证:BC=AB+AD二、由线段和差想到的辅助线 口诀:线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去; 遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法: 1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段;对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明;在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:已知如图1-1:D 、E 为△ABC 内两点,求证:AB+AC>BD+DE+CE. 证明:法一将DE 两边延长分别交AB 、AC 于M 、N, 在△AMN 中,AM+AN>MD+DE+NE;1 在△BDM 中,MB+MD>BD ;2 在△CEN 中,CN+NE>CE ;3 由1+2+3得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+ECA BC D AEB D CABCD EN M 11-图AF法二:图1-2延长BD 交AC 于F,廷长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有: AB+AF>BD+DG+GF 三角形两边之和大于第三边…1 GF+FC>GE+CE 同上2 DG+GE>DE 同上3 由1+2+3得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC;在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC>∠BAC;BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角, ∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接AD,并廷长交BC 于F,这时∠BDF 是△ABD 的 外角,∴∠BDF>∠BAD,同理,∠CDF>∠CAD,∴∠BDF+ ∠CDF>∠BAD+∠CAD,即:∠BDC>∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF;BE+CF>EF,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同个三角形中;证明:在DN 上截取DN=DB,连接NE,NF,则DN=DC, 在△DBE 和△NDE 中: DN=DB 辅助线作法 ∠1=∠2已知 ED=ED 公共边AB CD E F G12-图ABCD E FN13-图1234∴△DBE ≌△NDESAS∴BE=NE 全等三角形对应边相等 同理可得:CF=NF在△EFN 中EN+FN>EF 三角形两边之和大于第三边 ∴BE+CF>EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的对应性质得到相等元素;截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB>AC,∠1=∠2,P 为AD 上任一点求证:AB-AC>PB-PC;要证:AB-AC>PB-PC,想到利用三角形三边关系,定理证之,因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB 上截取AN 等于AC,得AB-AC=BN,再连接PN,则PC=PN,又在△PNB 中,PB-PN<BN,即:AB-AC>PB-PC;证明:截长法在AB 上截取AN=AC 连接PN,在△APN 和△APC 中 AN=AC 辅助线作法 ∠1=∠2已知 AP=AP 公共边∴△APN ≌△APCSAS,∴PC=PN 全等三角形对应边相等 ∵在△BPN 中,有PB-PN<BN 三角形两边之差小于第三边∴BP-PC<AB-AC 证明:补短法延长AC 至M,使AM=AB,连接PM,在△ABP 和△AMP 中ABCDNMP 16 图12AB=AM 辅助线作法 ∠1=∠2已知 AP=AP 公共边 ∴△ABP ≌△AMPSAS∴PB=PM 全等三角形对应边相等又∵在△PCM 中有:CM>PM-PC 三角形两边之差小于第三边 ∴AB-AC>PB-PC;例1.如图,AC 平分∠BAD,CE ⊥AB,且∠B+∠D=180°,求证:AE=AD+BE;例2如图,在四边形ABCD 中,AC 平分∠BAD,CE ⊥AB 于E,AD+AB=2AE,求证:∠ADC+∠B=180º例3已知:如图,等腰三角形ABC 中,AB=AC,∠A=108°,BD 平分∠ABC;求证:BC=AB+DC;例4如图,已知Rt △ABC 中,∠ACB=90°,AD 是∠CAB 的平分线,DM ⊥AB 于M,且AM=MB;求证:CD=21DB;1.如图,AB ∥CD,AE 、DE 分别平分∠BAD 各∠ADE,求证:AD=AB+CD;DECB AE BCDCM BDCA2.如图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧,BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE三、由中点想到的辅助线 口诀:三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质直角三角形斜边中线性质、等腰三角形底边中线性质,然后通过探索,找到解决问题的方法;一中线把原三角形分成两个面积相等的小三角形即如图1,AD 是ΔABC 的中线,则S ΔABD =S ΔACD =S ΔABC 因为ΔABD 与ΔACD 是等底同高的;例1.如图2,ΔABC 中,AD 是中线,延长AD 到E,使DE=AD,DF 是ΔDCE 的中线;已知ΔABC 的面积为2,求:ΔCDF 的面积;解:因为AD 是ΔABC 的中线,所以S ΔACD =S ΔABC =×2=1,又因CD 是ΔACE 的中线,故S ΔCDE =S ΔACD =1,因DF 是ΔCDE 的中线,所以S ΔCDF =S ΔCDE =×1=;∴ΔCDF 的面积为;二由中点应想到利用三角形的中位线ED CB A例2.如图3,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD的中点为M,连结ME、MF,∵ME是ΔBCD的中位线,∴ME CD,∴∠MEF=∠CHE,∵MF是ΔABD的中位线,∴MF AB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,从而∠BGE=∠CHE;三由中线应想到延长中线例3.图4,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长;解:延长AD到E,使DE=AD,则AE=2AD=2×2=4;在ΔACD和ΔEBD中,∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,从而BE=AC=3;在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线;求证:ΔABC是等腰三角形;证明:延长AD到E,使DE=AD;仿例3可证:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形;D CB A EDF CBA四直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.EDCB A中考应用09崇文二模以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变 并说明理由.14-图A B CD EFM1234A BCDE 15-图DMCE AB BA D C86B E CDA ABCD EF25-图 AB DC EFDAEDCBAP QCBA二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD3:如图,已知在ABC内,060BAC ∠=,040C ∠=,P,Q 分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠的角平分线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD =CD,BD 平分ABC ∠,求证:0180=∠+∠C ACDBAP 21DCBA5:如图在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC中考应用 08海淀一模三、平移变换为△ABC 的角平分线,直线MN ⊥AD 于为MN 上一点,△ABC 周长记为AP ,△EBC 周长记为BP .求证BP >AP .2:如图,在△ABC 的边上取两点D 、E,且BD=CE,求证:AB+AC>AD+AE.ED CB A四、借助角平分线造全等CBAFED CBA 1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD ∠BAC,DG ⊥BC 且平分BC,DE ⊥AB 于E,DF ⊥AC 于明BE=CF 的理由;2如果AB=a ,AC=b ,求AE 、BE 的长.中考应用06北京中考如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立 若成立,请证明;若不成立,请说明理由;五、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;当MDN ∠绕点D 转动时,求证DE=DF; 若AB=2,求四边形DECF 的面积;EDGFCBA第23题OPAMN EB CD FACEFBD图图图3.如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060角,使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆的周长为 ;BCNM中考应用 07佳木斯已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立 若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系 请写出你的猜想,不需证明.西城09年一模已知2,PB=4,以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1如图,当∠APB=45°时,求AB 及PD 的长;2当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.图1A BC D E FMN 图2 A BC D E FMN 图3ABC D EF M N。

初二数学辅助线题大全

初二数学辅助线题大全

10 道初二数学辅助线题题目一已知在三角形ABC 中,AB = AC,D 是BC 中点,求证:AD⊥BC。

解析:连接AD,因为AB = AC,D 是BC 中点,根据等腰三角形三线合一的性质,可知AD⊥BC。

题目二在平行四边形ABCD 中,E 是AB 中点,F 是CD 中点,连接EF,求证:EF 平行且等于AD 的一半。

解析:连接AF、EC,因为四边形ABCD 是平行四边形,所以AB⊥CD,AB = CD。

又因为E 是AB 中点,F 是CD 中点,所以AE = CF。

可得四边形AECF 是平行四边形,所以EF⊥AC,EF = AC 的一半。

又因为平行四边形ABCD 中,AD = BC,AC = 2AO(O 为对角线交点),所以EF 平行且等于AD 的一半。

题目三在三角形ABC 中,⊥A = 90°,AB = AC,D 是BC 中点,连接AD,E、F 分别是AB、AC 上的点,且BE = AF,求证:ED⊥DF。

解析:连接AD,因为AB = AC,⊥A = 90°,D 是BC 中点,所以AD = BD = CD,且AD⊥BC,⊥BAD = ⊥CAD = 45°。

可证⊥BDE⊥⊥ADF(SAS),所以⊥BDE = ⊥ADF,又因为⊥ADB = 90°,所以⊥EDF = 90°,即ED⊥DF。

题目四在梯形ABCD 中,AB⊥CD,⊥A + ⊥B = 90°,E、F 分别是AB、CD 的中点,求证:EF = (AB - CD) / 2。

解析:延长AD、BC 交于点G,因为AB⊥CD,所以⊥GDC = ⊥A,⊥GCD = ⊥B。

又因为⊥A + ⊥B = 90°,所以⊥G = 90°。

因为E、F 分别是AB、CD 的中点,所以EF 是梯形ABCD 的中位线,所以EF = (AB + CD) / 2。

在直角三角形GDC 和直角三角形GAB 中,F、E 分别是斜边CD、AB 的中点,所以GF = CD/2,GE = AB/2。

八年级全等三角形----辅助线篇(含答案)

八年级全等三角形----辅助线篇(含答案)

八年级数学全等三角形---辅助线复习切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。

例 1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=o。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF =。

例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的平分线,它们交于点P 。

求证:BP 为MBN ∠的平分线。

例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。

求证:2AC AE =。

例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

求证:AB AC PB PC ->-。

同步练习一、选择题:1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等 C. 两锐角对应相等D. 斜边相等2. 根据下列条件,能画出唯一ABC ∆的是( ) A. 3AB =,4BC =,8CA =B. 4AB =,3BC =,30A ∠=oC. 60C ∠=o ,45B ∠=o ,4AB =D. 90C ∠=o ,6AB =3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠。

其中能使ABC AED ∆≅∆的条件有( )A. 4个B. 3个C. 2个D. 1个(第3题) (第4题) (第5题) (第6题) 4. 如图,已知AB CD =,BC AD =,23B ∠=o ,则D ∠等于( )A. 67oB. 46oC. 23oD. 无法确定二、填空题:5. 如图,在ABC ∆中,90C ∠=o ,ABC ∠的平分线BD 交AC 于点D ,且:2:3CD AD =,10AC cm =,则点D 到AB 的距离等于__________cm ;6. 将一张正方形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为_________; 三、解答题:7. 如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题

全等三角形问题中常有的协助线的作法(有答案)总论:全等三角形问题最主要的是结构全等三角形,结构二条边之间的相等,结构二个角之间的相等【三角形协助线做法】图中有角均分线,可向两边作垂线。

也可将图对折看,对称此后关系现。

角均分线平行线,等腰三角形来添。

角均分线加垂线,三线合一试一试看。

线段垂直均分线,常向两头把线连。

要证线段倍与半,延伸缩短可试验。

三角形中两中点,连结则成中位线。

三角形中有中线,延伸中线等中线。

1.等腰三角形“三线合一”法:碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延伸线段与原中线长相等,结构全等三角形3.角均分线在三种添协助线4.垂直均分线联络线段两头5.用“截长法”或“补短法” :碰到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为 60 度或 120 度的把该角添线后组成等边三角形7. 角度数为 30、60 度的作垂线法:碰到三角形中的一个角为 30 度或 60 度,可以从角一边上一点向角的另一边作垂线,目的是组成30-60-90 的特别直角三角形,而后计算边的长度与角的度数,这样能够获得在数值上相等的二条边或二个角。

进而为证明全等三条边或二个角,进而为证明全等三角形创建边、角之间的相等条件。

常有协助线的作法有以下几种:最主要的是结构全等三角形,结构二条边之间的相等,二个角之间的相等。

1)碰到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思想模式是全等变换中的“对折”法结构全等三角形.2)碰到三角形的中线,倍长中线,使延伸线段与原中线长相等,结构全等三角形,利用的思想模式是全等变换中的“旋转”法结构全等三角形.3)碰到角均分线在三种添协助线的方法,( 1)能够自角均分线上的某一点向角的两边作垂线,利用的思想模式是三角形全等变换中的“对折” ,所考知识点经常是角均分线的性质定理或逆定理.( 2)能够在角均分线上的一点作该角均分线的垂线与角的两边订交,形成一对全等三角形。

初中数学几何辅助线经典100题

初中数学几何辅助线经典100题

初中数学几何辅助线经典100题摘要:初中数学几何辅助线经典100题一、几何辅助线的概念和作用1.几何辅助线的定义2.几何辅助线在解题中的作用二、几何辅助线的常见类型及应用1.角平分线2.线段和差3.中点定理4.倍长中线5.相似三角形6.判定条件7.证明定理三、初中数学几何辅助线经典100题1.题目1-102.题目11-203.题目21-304.题目31-405.题目41-506.题目51-607.题目61-708.题目71-809.题目81-9010.题目91-100正文:初中数学几何辅助线经典100题一、几何辅助线的概念和作用几何辅助线是在解决几何问题时,通过在图形上添加一些特殊的线段,来帮助我们更好地理解和解题的一种工具。

它可以将复杂的几何问题简化为更简单的形式,使问题更容易解决。

几何辅助线在解题中的作用主要体现在以下几个方面:1.揭示图形中隐含的性质:通过添加辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的。

2.聚拢集中原则:通过添置适当的辅助线,将图形中分散、远离的元素相对集中、聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。

3.化繁为简原则:对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,通过添加辅助线,将复杂图形转化为简单图形,从而简化问题,使解题更加顺利。

二、几何辅助线的常见类型及应用几何辅助线有很多种,这里我们列举几种常见的类型及其应用:1.角平分线:角平分线是将一个角平分成两个相等的角的线段。

在解题中,我们常常利用角平分线的性质来证明两个角相等或求解某个角的度数。

2.线段和差:线段和差是指通过两个线段的和与差来求解几何问题。

在解题过程中,我们通常利用线段和差的性质来证明线段相等或求解线段的长度。

3.中点定理:中点定理是指在一个线段上,如果有一个点是线段中点,那么这个点到线段两端的距离相等。

在解题中,我们常常利用中点定理来证明线段相等或求解线段的长度。

初中数学几何辅助线经典100题

初中数学几何辅助线经典100题

初中数学几何辅助线经典100题摘要:1.引言:初中数学几何辅助线的重要性2.初中数学几何辅助线的作用1.揭示图形中隐含的性质2.聚拢集中原则3.化繁为简原则3.初中数学几何辅助线的应用实例1.添加辅助线求解几何问题2.利用辅助线解决复杂几何题目4.如何掌握初中数学几何辅助线的技巧1.多做练习题2.分析错题,总结经验3.参加培训课程,寻求专业指导5.结论:初中数学几何辅助线对于提高几何成绩的重要性正文:初中数学几何辅助线在解决几何问题中起到了至关重要的作用。

它可以帮助学生更好地理解题目,清晰地揭示图形中隐含的性质,从而更容易地找到解决问题的方法。

本文将从以下几个方面详细介绍初中数学几何辅助线的作用和应用技巧。

首先,初中数学几何辅助线的作用主要体现在三个方面:揭示图形中隐含的性质、聚拢集中原则和化繁为简原则。

当我们在解决几何问题时,如果条件与结论间的逻辑关系不明朗,可以通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的。

同时,通过添置适当的辅助线,可以将图形中分散、远离的元素聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。

对于一些复杂的几何题目,我们可以通过添加辅助线将问题化繁为简,更容易地找到解题思路。

其次,初中数学几何辅助线的应用实例有很多。

例如,在解决一些求解几何问题的题目时,我们可以通过添加辅助线找到图形中的关键点,从而简化问题。

同样,在解决复杂几何题目时,我们可以利用辅助线将问题分解为若干个简单的部分,逐步解决,最终得出结论。

那么,如何掌握初中数学几何辅助线的技巧呢?首先,我们需要多做练习题,熟能生巧。

通过不断地练习,我们可以更好地理解几何辅助线的作用,掌握添加辅助线的方法。

其次,我们需要分析错题,总结经验。

在解决几何问题时,如果遇到困难,我们可以回顾一下之前做过的类似题目,看看是否有可以借鉴的地方。

同时,我们也可以参加培训课程,寻求专业指导,了解一些解题技巧和方法。

八年级上册数学几何辅助线经典题

八年级上册数学几何辅助线经典题

八年级上册数学几何辅助线经典题一、概述在数学几何学科中,辅助线是解决问题的重要方法之一。

在八年级上册数学教材中,有许多经典的数学几何辅助线题目,通过这些题目的练习,可以帮助学生更好地掌握辅助线的运用方法,提高解题能力。

本文将针对八年级上册数学几何辅助线经典题进行详细介绍和解析。

二、题目一:相似三角形的辅助线应用题目描述:如图所示,∠ABC=∠ACD=90°,AB=4cm,AC=6cm,CD=9cm,求AD的长度。

解析:根据题目给出的信息,我们可以通过绘制辅助线来解决这道题。

连接BD并延长至E点,使得BE=BC。

接下来,连接AE,可得到相似三角形ABE与ACD。

根据相似三角形的性质,我们可以得出以下等式:AB/AC=BE/AD,即4/6=4/(4+AD)。

通过解方程,可以求得AD=8cm。

三、题目二:三角形中的中位线问题题目描述:如图所示,△ABC中,D为AB的中点,E为AC的中点,连接DE,求证:DE//BC。

解析:这道题目考察了中位线的性质和应用。

根据△ABC的性质,可以得出AD=DC,AE=EB,通过连接DE可以得到四边形ADBE。

根据四边形的性质,可以得出ADBE是一个平行四边形,而平行四边形的对角线互相平分,因此DE//BC。

四、题目三:正方形中的选点问题题目描述:如图所示,ABCD为正方形,E为BC的中点,连接AE,求证:AE⊥CD。

解析:这道题目是典型的正方形中的选点问题。

首先根据正方形的性质可以得出AB⊥BC,BC⊥CD,AD⊥DC,因此AD//BC。

接下来连接AE,并可得到△ADE与△CDE,由△ADE≌△CDE,可得出AE⊥CD。

五、结语通过以上三道典型的数学几何辅助线经典题目的解析,我们可以看到辅助线在解决问题中的重要作用。

通过练习和掌握这些经典题目,不仅可以提高学生的数学运算能力,还可以加深对数学几何知识的理解。

希望学生能够在课堂上认真学习,多加练习,提高自己的解题能力,取得好成绩。

2022-2023学年人教版八年级数学上册《轴对称》辅助线专题练习(含答案)

2022-2023学年人教版八年级数学上册《轴对称》辅助线专题练习(含答案)

辅助线专题练习1.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =10,DE =4,则△BCE 的面积等于( )A .16B .20C .28D .402.如图,△ABC 内有一点D ,AD 平分∠CAB ,CD ⊥AD 于点D ,连接DB ,若△ADB 的面积为3cm 2,则△ABC 的面积为( )A .5cm 2B .6cm 2C .7cm 2D .8cm 23.如图,点P 是∠BAC 平分线AD 上的一点,AC =9,AB =5,PB =3,则PC 的长不可能是( )A .4B .5C .6D .74.如图.四边形ABCD 中,AD ∥BC ,BC =3,AB =5,AD =6.若点M 是线段BD 的中点,则CM 的长为( )A .32B .2C .52D .3`5.已知△ABC是等边三角形,点P在AB上,过点P作PD⊥AC,垂足为D,延长BC至点Q,使CQ=AP,连接PQ交AC于点E,如图所示.如果等边三角形ABC的边长为4,那么线段DE的长为()A.1B.2C.1.8D.2.56.如图,△ABC中,AD为中线,AD⊥AC,∠BAD=30°,AB=3,则AC长()A.2.5B.2C.1D.1.57.如图,∠B=∠C=90°,M为是BC的中点,AM平分∠BAD,且∠CDM=55°,则∠AMB的度数是()A.35°B.45°C.55°D.65°8.如图,AD是△ABC的角平分线,DE⊥AB于E,点F,G分别在边AB,AC上,且DF =DG,△ADG与△ADF的面积分别是14和4,则△DEF的面积是()A.10B.6C.5D.49.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为H,若BC=6,AB=8,AC=10,那么IH的值为()A.2B.3C.4D.510.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论,其中错误的是()A.AC=BD B.∠AMB=36°C.MO平分∠AMD D.OM平分∠AOD 11.已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F.若AB=8,AC=4,则AE=.12.如图,把△ABC放置在平面直角坐标系中,已知AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),点C在第四象限,则点C的坐标是.13.如图,在同一平面内,直线l同侧有三个正方形A,B,C,若A,C的面积分别为9和4,则阴影部分的总面积为.14.如图,已知AB=BC=AD,AD⊥BC于点E,AC⊥CD,若CD=53,则△ACD的面积为.15.如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC =24°,∠EBC=32°,则∠ACB=.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM=.17.如图,△ABC是等边三角形,延长BC到点E,使CE=12BC,若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)证明:DE=2DF.18.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.19.已知A(﹣10,0),以OA为边在第二象限作等边△AOB.(1)求点B的横坐标;(2)如下图,点M、N分别为OA、OB边上的动点,以MN为边在x轴上方作等边△MNE,连结OE,当∠EMO=45°时,求∠MEO的度数.20.如图所示,已知△ABC中,AB=AC,∠DBC=∠D=60°,AE平分∠BAC,若BD=8cm,DE=3cm,求BC的长.21.如图,AB=BD,AE=EB,∠ACB=∠ABC,证明:CD=2CE.辅助线专题练习(答案)1.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =10,DE =4,则△BCE 的面积等于( )A .16B .20C .28D .40【解答】解:过E 作EM ⊥BC 于M ,∵CD ⊥AB ,EM ⊥BC ,BE 平分∠ABC ,DE =4,∴EM =DE =4,∵BC =10,∴△BCE 的面积是12×BC ×EM =12×10×4 =20,故选:B .2.如图,△ABC 内有一点D ,AD 平分∠CAB ,CD ⊥AD 于点D ,连接DB ,若△ADB 的面积为3cm 2,则△ABC 的面积为( )A .5cm 2B .6cm 2C .7cm 2D .8cm 2【解答】解:延长CD 交AB 于E ,∵AD 平分∠CAB ,CD ⊥AD 于点D ,∴∠CAD =∠EAD ,∠ADC =∠ADE =90°,在△ADC 与△ADE 中,{∠CAD =∠EAD AD =AD ∠ADC =∠ADE,∴△ADC≌△ADE(ASA),∴CD=DE,∴S△ACD=S△ADE,S△BCD=S△BDE,∴S△ABC=2S△ADB,∵△ADB的面积为3cm2,∴△ABC的面积为6cm2,故选:B.3.如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长不可能是()A.4B.5C.6D.7【解答】解:在AC上截取AE=AB=5,连接PE,∵AC=9,∴CE=AC﹣AE=9﹣5=4,∵点P是∠BAC平分线AD上的一点,∴∠CAD=∠BAD,在△APE和△APB中,{AE =AB ∠CAP =∠BAD AP =AP,∴△APE ≌△APB (SAS ),∴PE =PB =3,∵4﹣3<PC <4+3,解得1<PC <7,∴PC 不可能为7,故选:D .4.如图.四边形ABCD 中,AD ∥BC ,BC =3,AB =5,AD =6.若点M 是线段BD 的中点,则CM 的长为( )A .32B .2C .52D .3【解答】解:延长CM 交AD 于N ,如图所示:∵点M 是线段BD 的中点,∴BM =DM ,∵AD ∥BC ,∴∠CBM =∠NDM ,∠BCM =∠DNM ,在△BCM 和△DNM 中,{∠CBM =∠NDM ∠BCM =∠DNM BM =DM,∴△BCM ≌△DNM (AAS ),∴NM =CM =12CN ,DN =BC =3,∴AN =AD ﹣DN =6﹣3=3,∴AN =BC ,∵AD ∥BC ,∴四边形ABCN 是平行四边形,∴CN =AB =5,∴CM =52,故选:C .5.已知△ABC是等边三角形,点P在AB上,过点P作PD⊥AC,垂足为D,延长BC至点Q,使CQ=AP,连接PQ交AC于点E,如图所示.如果等边三角形ABC的边长为4,那么线段DE的长为()A.1B.2C.1.8D.2.5【解答】解:如图,过点P作PF∥BC,交AC于点F,则∠EPF=∠Q,∠APF=∠ABC∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠APF=∠AFP=60°,∴△APF也是等边三角形,而CQ=AP∴PF=AP=CQ,又∵∠PEF=∠QEC,∴△PEF≌△QEC,∴EF=EC,∵PD⊥AC于D,△APF是等边三角形,∴AD=DF,∴AD+EC=DF+EF=DE=12AF+12CF=12(AF+CF)=12AC,∴DE=12AC=2.故选:B.6.如图,△ABC 中,AD 为中线,AD ⊥AC ,∠BAD =30°,AB =3,则AC 长( )A .2.5B .2C .1D .1.5【解答】解:如图,延长AD ,使AD =DE ,连接CE ,∵AD 为中线,∴BD =CD ,在△ABD 与△ECD 中,{AD =ED ∠ADB =∠EDC BD =CD,∴△ABD ≌△ECD (SAS ),∴∠BAD =∠CED ,AB =EC ,∵∠BAD =30°,∴∠CED =30°,∵AD ⊥AC ,∴∠CAD =90°,∴AC =12EC ,∴AB =EC ,∴AC =12AB =32,即AC =1.5,故选:D .7.如图,∠B =∠C =90°,M 为是BC 的中点,AM 平分∠BAD ,且∠CDM =55°,则∠AMB 的度数是( )A.35°B.45°C.55°D.65°【解答】解:过M作MN⊥AD于N,则∠MNA=∠MND=90°,∵∠B=90°,∴MB⊥AB,∵AM平分∠BAD,∴MN=MB,∵M为是BC的中点,∴MB=MC,∴MN=MC,在Rt△MND和Rt△MCD中,{MD=MDMN=MC,∴Rt△MND≌Rt△MCD(HL),∴∠NDM=∠CDM=55°,∴∠CDA=∠NDM+∠CDM=110°,∵∠B=∠C=90°,∴∠B+∠C=180°,∴CD∥AB,∴∠BAD+∠CDA=180°,∴∠BAD=180°﹣∠CDA=180°﹣110°=70°,∵AM平分∠BAD,∴∠BAM=12∠BAD=35°,∴∠AMB=90°﹣∠BAM=90°﹣35°=55°,故选:C.8.如图,AD是△ABC的角平分线,DE⊥AB于E,点F,G分别在边AB,AC上,且DF =DG,△ADG与△ADF的面积分别是14和4,则△DEF的面积是()A.10B.6C.5D.4【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DH,在Rt△DEF和Rt△DHG中,{DE=DHDF=DG,∴Rt△DEF≌Rt△DHG(HL),∴S△EDF=S△HGD,同理Rt△ADE≌Rt△ADH,∴S△ADE=S△ADH,∵△ADG与△ADF的面积分别是14和4,∴S△DEF=14−42=5,故选:C.9.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为H,若BC=6,AB=8,AC=10,那么IH的值为()A.2B.3C.4D.5【解答】解:连接IA、IB、IC,过I作IM⊥AB于M,IN⊥BC于N,∵点I 为△ABC 各内角平分线的交点,IM ⊥AB ,IN ⊥BC ,IH ⊥AC ,∴IH =IM =IN ,∵AB =8,BC =6,∠ABC =90°,∴S △ABC =12×AB ×BC =12×8×6=24,∵S △ABC =S △AIB +S △BIC +S △AIC ,∴24=12×AB ×IM +12×BC ×IN +12×AC ×IH ,∵AB =8,BC =6,AC =10,IH =IM =IN ,∴24=12×8×IH +12×6×IH +12×10×IH , ∴IH =2,故选:A .10.如图,在△AOB 和△COD 中,OA =OB ,OC =OD ,OA <OC ,∠AOB =∠COD =36°.连接AC ,BD 交于点M ,连接OM .下列结论,其中错误的是( )A .AC =BDB .∠AMB =36°C .MO 平分∠AMD D .OM 平分∠AOD【解答】解:∵∠AOB =∠COD =36°,∴∠AOC =∠BOD ,在△AOC 和△BOD 中,{OA =OB ∠AOC =∠BOD OC =OD,∴△AOC ≌△BOD (SAS ),∴AC =BD ,∠OAC =∠OBD ,故A 选项不符合题意;∵∠OAB +∠ABO =180°﹣36°=144°,∴∠MAB +∠ABM =144°,∴∠AMB =180°﹣144°=36°,故B 选项不符合题意;过点O 作OG ⊥AC 于点G ,过点O 作OH ⊥BD 于点H ,如图所示:∵△AOC ≌△BOD ,∴S △AOC =S △BOD ,即12AC ⋅OG =12BD ⋅OH ,∵AC =BD ,∴OH =OG ,在Rt △OHM 和Rt △OGM 中,{OG =OH OM =OM, ∴Rt △OHM ≌Rt △OGM (HL ),∴∠OMG =∠OMH ,即OM 平分∠AMD ,故C 选项不符合题意;假设OM 平分∠AOD ,则∠AOM =∠DOM ,∵OM 平分∠AMD ,∴∠AMO =∠DMO ,∵OM =OM ,∴△AMO ≌△DMO (ASA ),∴AO =DO ,∵OD =OC ,AO <OC ,∴AO <DO ,∴假设不成立,∴OM 不平分∠AOD ,故D 选项符合题意,故选:D .11.已知:如图,∠BAC 的平分线与BC 的垂直平分线相交于点P ,PE ⊥AB ,PF ⊥AC ,垂足分别为E 、F .若AB =8,AC =4,则AE = 6 .【解答】解:连接PB,PC,∵点P在BC的垂直平分线上,∴PB=PC,∵AC平分∠BAC,PE⊥AB,PF⊥AC,∴PE=PF,∠PEB=∠PFC=90°,∴∠APE=∠APF,∴AE=AF,在Rt△PBE和Rt△PCF中,{PB=PCPE=PF,∴Rt△PBE≌Rt△PCF(HL),∴BE=CF,∵AB=AE+BE,AF=AC+CF,∴AB=AC+CF+BE,∵AB=8,AC=4,∴BE=CF=2,∴AE=AC+CF=6.故答案为:6.12.如图,把△ABC放置在平面直角坐标系中,已知AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),点C在第四象限,则点C的坐标是(1,﹣4).【解答】解:过点C 作CD ⊥y 轴于点D ,如图所示.∵∠ABC =90°,∠AOB =90°,∴∠OAB +∠OBA =90°,∠OBA +∠DBC =90°,∴∠OAB =∠DBC .在△OAB 和△DBC 中,{∠AOB =∠BDC =90°∠OAB =∠DBC AB =BC,∴△OAB ≌△DBC (AAS ),∴BD =AO ,DC =OB .∵A (3,0),B (0,﹣1),∴BD =AO =3,DC =OB =1,OD =OB +BD =4,∴点C 的坐标为(1,﹣4).故答案为:(1,﹣4).13.如图,在同一平面内,直线l 同侧有三个正方形A ,B ,C ,若A ,C 的面积分别为9和4,则阴影部分的总面积为 6 .【解答】解:如图,作LM ⊥FE 交FE 的延长线于点M ,交JI 的延长线于点N , ∵四边形A 、B 、C 都是正方形,且正方形A 、C 的面积分别为9、4,∴∠EKI =∠EDR =∠IHG =90°,DE 2=9,HI 2=4,∴DE =3,HI =2,∵∠EDK =∠KHI =180°﹣90°=90°,∴∠DKE =90°﹣∠KHI =∠HIK ,在△EDK 和△KHI 中,{∠EDK =∠KHI ∠DKE =∠HIK EK =KI,∴△EDK ≌△KHI (AAS ),∴DK =HI =2,DE =HK =3,∴S △EDK =S △KHI =12×3×2=3;∵∠DEF =∠HIJ =90°,∴∠DEM =180°﹣∠DEF =90°,∠HIN =180°﹣∠HIJ =90°,∵∠KEL =∠KIL =90°,∴∠MEL =∠DEK =90°﹣∠KEM ,∠NIL =∠HIK =90°﹣∠KIN ,∵EF ∥l ,IJ ∥l ,∴EF ∥IJ ,∴∠EML =∠EMN =∠N =90°,在△EML 和△EDK 中,{∠MIL =∠DEK ∠EML =∠EDK EL =EK,∴△EML ≌△EDK (AAS ),∴EM =ED =EF ,∴S △EFL =S △EML =S △EDK =3;在△LNI 和△KHI 中,{∠NIL =∠HIK ∠N =∠KHI IL =IK,∴△LNI ≌△KHI (AAS ),∵IN =IE =IJ ,∴S △LJI =S △LNI =S △KHI =3,∴S △EFL +S △LJI =3+3=6,∴阴影部分的总面积为6.14.如图,已知AB =BC =AD ,AD ⊥BC 于点E ,AC ⊥CD ,若CD =53,则△ACD 的面积为 259 .【解答】解:∵AD ⊥BC ,AC ⊥CD ,∴∠ACD =∠AEC =90°,∴∠D +∠DCE =∠DCE +∠ACE =90°,∴∠D =∠ACB ,∵AB =BC ,∴∠BAH =∠BCA ,∴∠D =∠BAC ,过B 作BH ⊥AC 于H ,∴∠AHB =90°,AH =12AC ,在△ABH 与△DAC 中,{∠AHB =∠DCA =90°∠BAH =∠D AB =AD,∴△ABH ≌△DAC (AAS ),∴BH =AC ,AH =CD ,∴AC =2CD =103,∴△ACD 的面积=12AC •CD =12×103×53=259,故答案为:259.15.如图,已知AD 是△ABC 的中线,E 是AC 上的一点,BE 交AD 于F ,AC =BF ,∠DAC=24°,∠EBC =32°,则∠ACB = 100° .【解答】解:如图,延长AD 到M ,使得DM =AD ,连接BM ,如图所示:在△BDM 和△CDA 中,{DM =∠DA ∠BDM =∠CDA BD =CD,∴△BDM ≌△CDA (SAS ),∴BM =AC =BF ,∠M =∠DAC =24°,∠C =∠DBM ,∵BF =AC ,∴BF =BM ,∴∠M =∠BFM =24°,∴∠MBF =180°﹣∠M ﹣∠BFM =132°,∵∠EBC =32°,∴∠DBM =∠MBF ﹣∠EBC =100°,∴∠C =∠DBM =100°,故答案为:100°.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM=3.【解答】解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC=12MN=1,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=12OP=4,则OM=OC﹣MC=4﹣1=3,故答案为:317.如图,△ABC是等边三角形,延长BC到点E,使CE=12BC,若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)证明:DE=2DF.【解答】(1)解:∵△ABC为等边三角形,∴AC=BC,∠A=∠ACB=60°,∵D为AC中点,∴CD=AD=12AC,∵CE=12BC,∴CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠E=∠CDE=30°,∴∠ADF=∠CDE=30°,∵∠A=60°∴∠AFD=180°﹣∠A﹣∠ADF=90°,∵AF=3∴AD=2AF=6;(2)证明:连接BD,∵△ABC为等边三角形,D为AC中点,∴BD平分∠ABC,∠ABC=60°,∴∠DBC=∠ABD=12∠ABC=30°,∵∠BFD=90°∴BD=2DF∵∠DBC=∠E=30°∴BD=DE∴DE=2DF.18.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B +∠BED =∠H +∠HEC ,∴∠BED =∠HEC ,在△BDE 和△HCE 中,{BE =HE ∠BED =∠HEC ED =EC,∴△BDE ≌△HCE (SAS ),∴BD =HC =BH ﹣BC =3﹣2=1,∴CD =BH ﹣BD ﹣HC =3﹣1﹣1=1.综上所述,CD 的长为1或3.19.已知A (﹣10,0),以OA 为边在第二象限作等边△AOB .(1)求点B 的横坐标;(2)如下图,点M 、N 分别为OA 、OB 边上的动点,以MN 为边在x 轴上方作等边△MNE ,连结OE ,当∠EMO =45°时,求∠MEO 的度数.【解答】解:(1)如图,过B 作BD ⊥OA 于点D ,∵△AOB 为等边三角形,点A (﹣10,0),∴OA =OB =AB =10,∠BAO =∠ABO =∠AOB =60°,∵BD ⊥OA ,∴AD =OD =12OA =12×10=5, ∴点B 的横坐标为﹣5;(2)如图2,过点M 作MF ∥AB 交OA 于点F ,∵MF ∥AB ,∴∠MFO =∠BAO =∠AOB =60°,∴△MOF 为等边三角形,∴∠FMO =60°,MF =MO ,∵△MNE 是等边三角形,∴∠NME =60°,MN =ME ,∴∠FMN +∠NMO =∠NMO +∠OME =60°,∴∠FMN =∠OME ,在△MFN 和△MOE 中,{MF =MO ∠FMN =∠OME MN =ME,∴△MFN≌△MOE(SAS),∴∠MFN=∠MOE=60°,∵∠EMO=45°,∴∠MEO=180°﹣∠MOE﹣∠EMO=180°﹣60°﹣45°=75°.20.如图所示,已知△ABC中,AB=AC,∠DBC=∠D=60°,AE平分∠BAC,若BD=8cm,DE=3cm,求BC的长.【解答】解:延长DE交BC于M,延长AE交BC于N,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴BD=DM=BM=8cm,∵DE=3cm,∴EM=5cm,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=2.5 cm,∴BN=5.5 cm,∴BC=2BN=11(cm).21.如图,AB =BD ,AE =EB ,∠ACB =∠ABC ,证明:CD =2CE .【解答】证明:如图,延长CE 至点F ,使EF =CE ,连接BF ,在△BEF 和△AEC 中{BE =AE ∠BEF =∠AEC EF =CE∴△BEF ≌△AEC (SAS ),∴BF =AC ,∠FBE =∠A ,又∵∠ACB =∠ABC ,∴AB =AC ,∴BF =AC =AB =BD ,∠DBC =∠A +∠ACB =∠FBE +∠ACB =∠FBE +∠ABC =∠FBC ,CB =CB , 在△CBF 和△CBD 中,{BF =BD ∠FBC =∠CBD CB =CB,∴△CBF ≌△CBD (SAS ),∴CD =CF =2CE .。

初中数学几何辅助线作法大全及专题训练(含答案)

初中数学几何辅助线作法大全及专题训练(含答案)

图1 2 C
(法二:)如图 1-2, 延长 BD 交 AC 于 F,延长 CE 交 BF 于 G,
在△ABF 和△GFC 和△GDE 中有: AB+AF> BD+DG+GF (三角形两边之和大于第三边)(1) GF+FC>GE+CE(同上)………………………………(2) DG+GE>DE(同上)……………………………………(3) 由(1)+(2)+(3)得: AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC。
DF DF(公共边)
∴△EDF≌△MDF (SAS) ∴EF=MF (全等三角形对应边相等) ∵在△CMF 中,CF+CM>MF(三角形两边之和大于第三边) ∴BE+CF>EF 注:上题也可加倍 FD,证法同上。 注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形, 使题中分散的条件集中。
五、有三角形中线时,常延长加倍中线,构造全等三角形。
例如:如图 5-1:AD 为 △ABC 的中线,求证:AB+AC>2AD。
A
分析:要证 AB+AC>2AD,由图想到: AB+BD>AD,AC+CD >AD,所以有 AB+AC+ BD+CD>AD+AD=2AD,左边比要证
B
D
C
E
结论多 BD+CD,故不能直接证出此题,而由 2AD 想到要构造 2AD,即加倍中线,把所要证的 线段转移到同一个三角形中去。
证法一:延长 BD 交 AC 于点 E,这时∠BDC 是△EDC 的外角,
A
G
E
D
∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接 AD,并延长交 BC 于 F
B
F

初中几何辅助线的例题与练习

初中几何辅助线的例题与练习
证明:延长 BA,CE 交于点 F,在 ΔBEF 和 ΔBEC 中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而 CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在 ΔABD 和 ΔACF 中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,
A
BC。
求证:∠ADC+∠B=180
E
B
分析:可由 C 向∠BAD 的两边作垂线。近而证
∠ADC 与∠B 之和为平角。
D F
C
图2-1
练习:
1.如图 2-4∠AOP=∠BOP=15 ,PC//O
B
A,PD⊥OA, 如果 PC=4,则 PD=( )
C
P
A
O
图2-4 D
例 4 如图 7,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交 AC 于点 D,CE 垂直于 BD,交 BD 的延长线于点 E。求证:BD=2CE。
初中几何辅助线的例题及练习
例1. 如图 1-2,AB//CD,BE 平分∠BCD,CE 平分∠BCD,点 E 在 AD 上,
求证:BC=AB+CD。 A
分析:在此题中可在长线段 BC 上截取 B
E
D
F=AB,再证明 CF=CD,从而达到证明的目的。 这里面用到了角平分线来构造全等三角形。 B 另外一个全等自
A
1 (BC AD) 1 (3 1) 1
2
2
练习: 1. 若等腰梯形的锐角是 60°,它的两底分别 B 为 11cm,35cm,则它的腰长为__________cm.
2. 如图所示,AB∥CD,AE⊥DC,AE=12,BD=20,AC

初二数学辅助线常用做法及例题(含答案)

初二数学辅助线常用做法及例题(含答案)

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题2345EDF CBA例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 解:(倍长中线,等腰三角形“三线合一”法)延长FD 至G 使FG =2EF ,连BG ,EG, 显然BG =FC , 在△EFG 中,注意到DE ⊥DF ,由等腰三角形的三线合一知 EG =EF 在△BEG 中,由三角形性质知EG<BG+BE 故:EF<BE+FC例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.E D CBA解:延长AE 至G 使AG =2AE ,连BG ,DG, 显然DG =AC , ∠GDC=∠ACD由于DC=AC ,故 ∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG ,AD =AD ,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG 故△ADB ≌△ADG ,故有∠BAD=∠DAG ,即AD 平分∠BAE 二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC解:(截长法)在AB 上取中点F ,连FD △ADB 是等腰三角形,F 是底AB 中点,由三线合一知DF ⊥AB ,故∠AFD =90°△ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC6EDCBADCBAPQCBA2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 解:(截长法)在AB 上取点F ,使AF=AD ,连FE△ADE ≌△AFE (SAS ) ∠ADE =∠AFE , ∠ADE+∠BCE =180°∠AFE+∠BFE =180°故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC∠的角平分线。

初二数学练习四:辅助线

初二数学练习四:辅助线

初二数学练习四:与全等相关的几何辅导线1.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CDE DAB C2.已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC⊥ACA1 2CDB3.已知:在△ABC中,AD平分∠BAC,∠B=2∠C。

求证:AB+BD=ACAB D C4.已知:∠1=∠2,CD=BC,求证:∠ADC+∠B=180A1 2 DB C5.在△ABC中,∠A=90度,AB=AC,∠1=∠2。

求证:BC=AB+ADAD1B 2 C6已知:如图,在正方形ABCD中,E为CD中点,F为BC上的点,∠FAE=∠DAE,求证:AF=AD+CFF7.已知:如图,AB=AC,∠BAC=90度,∠1=∠2,CE⊥BE,求证:(1)△ABD≌△ACF;(2)BD=2CEFAED1B 2 C8.如图,在△ABC中,∠B=60度,BAC和BCA的平分线AD、CE交于点0,猜想OE与OD的大小关系,并进行证明。

AEOB D C9,如图,已知点P是∠AOB的平分线上一点,PC⊥OA,PD⊥BO,垂足分别为C、D(1)∠PCD和∠PDC相等吗?为什么。

(2)OP是CD的垂直平分线吗?为什么?ACPO D B10已知:如图,AB=AC,∠BAC=90度,∠1=∠2,CE⊥BE,求证:BD=2CEAED1B 2 C11如图,AD是△ABC的中线,E在BC的延长线上,CE=AB,∠BAC=∠BCA。

求证:AE=2ADAB DC E。

(完整版)八年级几何辅助线专题训练

(完整版)八年级几何辅助线专题训练

常见的辅助线的作法1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2. 倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线:(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

4. 垂直平分线联结线段两端:在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

5. 用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60度或120 度的把该角添线后构成等边三角形.7. 角度数为30度、60度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8. 面积方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、等腰三角形“三线合一”法1. 如图,已知△ABC 中,∠A =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BD 于E , 求证: CE= BD.中考连接:(2014?扬州,第 7题, 3分)如图,已知∠ AOB=60°,点 P 在边OAOP=12,点 M ,N 在边 OB 上, PM=PN ,若 MN=2,则 OM=()A .3B .4C . 5D .6 二、倍长中线(线段)造全等例 1、(“希望杯”试题)已知,如图△则中线 AD 的取值范围是 ______ .例 2、如图,△ABC 中,E 、F 分别在 AB 、AC 上,DE ⊥DF ,D 是中点,试比较 BE+CF例 3、如图,△ ABC 中, BD=DC=A ,CE 是 DC 的中点,求证: AD 平分∠ BAE.ABC 中, AB=5,AC=3,与 EF 的大小DEC B中考连接:09 崇文)以的两边AB、AC 为腰分别向外作等腰Rt ABC和等腰Rt ACE,BAD CAE 90 ,连接DE,M、N 分别是BC、DE的中点.探究:AM 与DE 的关系.(1)如图① 当ABC为直角三角形时,AM 与DE 的位置关系是,线段AM 与DE 的数量关系是;(2)将图①中的等腰Rt ABD绕点A沿逆时针方向旋转(0< <90)后,如图三、借助角平分线造全等1、如图,已知在△ ABC中,∠ B=60°,△ ABC的角平分线AD,CE相交于点O,求证:OE=ODA B2、如图,已知点C 是∠ MAN 的平分线上一点,CE⊥AB 于E,B、D 分别在AM、AN 上,且AE= (AD+AB ).问:∠1和∠2有何关系?中考连接:(2012年北京)如图①,OP是∠ MON 的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。

(word完整版)八年级数学上册几何添辅助线专题

(word完整版)八年级数学上册几何添辅助线专题

全等三角形问题中常见的辅助线的作法(有答案)条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之 间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

1.等腰三角形“三线合一”法: 遇到等腰三角形,可作底边上的高,利用“三线 合一”的性质解题 2•倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线4. 垂直平分线联结线段两端5. 用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7. 角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三 角形创造边、角之间的相等条件。

8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个 角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法 构造全等三角形•2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形•3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交, 形成一对全等三角形。

初二数学几何辅助线专题练习

初二数学几何辅助线专题练习

1 / 1
D
C
B
A
通过线段的“截长”和“补短”方法来证明两条线段之和(差)等于另一条线段。

例题:1、如图已知AB ∥CD ,∠1=∠2,∠3=∠4;
求证:BC=AB+CD
2、如图,过线段AB 的两个端点作射线AM 、BN ,使AM ∥BN,按下列要求画图并回答: 画∠MAB 、∠NBA 的平分线交于E 。

(1)∠AEB 是什么角?
(2)过点E 作一直线交AM 于D ,交BN 于C ,观察线段DE 、CE ,你有何发现?
(3)无论DC 的两端点在AM 、BN 如何移动,只要DC 经过点E ,①AD+BC=AB ;②AD+BC=CD 谁成立?并说明理由。

练习:1、已知E 是正方形ABCD 的边CD 的中点,点F 在BC 上且∠DAE=∠FAE 求证:AF=AD+CF
2、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证: 0
180=∠+∠C A
最新文件 仅供参考 已改成word 文本 。

方便更改
4
32
1D
C
B A
E
C
B A E。

八年级数学全等三角形辅助线——截长补短专项训练

八年级数学全等三角形辅助线——截长补短专项训练

八年级数学全等三角形辅助线——截长补短专项训练1.【初步探索】(1)如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.2.已知△ABC中,AB=AC,BE平分∠ABC交边AC于E.(1)如图(1),当∠BAC=108°时,证明:BC=AB+CE;(2)如图(2),当∠BAC=100°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.3.如图,在Rt△ABC中,∠C=90°,∠B=45°,AD平分∠BAC,交BC于点D.如果作辅助线DE⊥AB于点E。

(1)猜想AC、CD、AB三条线段之间的数量关系为_____________。

(2)如图,△ABC中,∠C=2∠B,AD平分∠BAC,交BC于点D.(1)中的结论是否仍然成立?若不成立,试说明理由;若成立,请证明。

(3)把题目中“∠B=45°”去掉,换上条件“AC=3,BC=4”,其它条件不变,则CD=_______。

第2页,共31页4.(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90∘,E,F分别是边BC,∠BAD.求证:EF=BE+DF.CD上的点,且∠EAF=12(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180∘,E,F分别是边BC,∠BAD,(1)中的结论是否仍然成立?CD上的点,且∠EAF=12(3)如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180∘,E,F分别是边BC,∠BAD,(1)中的结论是否仍然成立?若成立,请证明;CD延长线上的点,且∠EAF=12若不成立,请写出它们之间的数量关系,并证明.5.(1)如图1,四边形ABCD中,∠BAD=∠ADC=∠CBA=90°,AB=AD,点E、F分别在四边形ABCD的边BC、CD上,∠EAF=45°,点G在CD的延长线上,BE=DG,连接AG,求证:EF=BE+FD.(2)如图2,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F 分别在边BC、CD上,则当∠BAD=2∠EAF时,仍有EF=BE+FD成立吗?说明理由.(3)如图3,四边形ABCD中,∠BAD≠90°,AB=AD,AC平分∠BCD,AE⊥BC 于E,AF⊥CD交CD延长线于F,若BC=9,CD=4,则CE=______.(不需证明)6.如图,△ABC为等腰直角三角形,∠ACB=90°,直线l经过点A且绕点A在△ABC所在平面内转动,作BD⊥l,CE⊥l,D、E为垂足.(1)如图a,求证:DA+DB=2DE;(2)在图b和图c中,(1)的结论是否成立?若成立,请说明理由;若不成立?直接写出DE、DA、DB三条线段的数量关系.第4页,共31页7.如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,AD,CE相交于点F.请你判断并写出FE与FD之间的数量关系;(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.8.如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由;(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.9.(1)如图①,在四边形ABCD中,AB=AD,∠B=∠D=90°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD.请直接写出线段EF,BE,FD之间的数量关系:2____;(2)如图②,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?请写出证明过程;2(3)在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD所在直线上的点,且∠EAF=1∠BAD.请直接写出线段EF,BE,FD之间的数量关2系:____第6页,共31页10.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),求证:AE+CF=EF.(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,给出证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,并给予证明.小明第(1)问的证明步骤是这样的:延长DC到Q使CQ=AE,连接BQ,证出△BAE≌△BCQ得到BE=BQ,∠ABE=∠CBQ;再证△BEF≌△BQF,得到EF=FQ,证出EF=CF+CQ,即EF=CF+AE.请你仿照小明的证题步骤完成第(2)问的证明.11.阅读理解:【问题情境】小明和小军比赛同题不同证明方法.题目如下:如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=AC.【证明思路】小明的证明思路是:如图2,在AC上截取AE=AB,连接DE.……小军的证明思路是:如图3,延长CB至点E,使BE=AB,连接AE.可以证得:AE=DE.……请你从他们的思路中,任意选择一种思路继续完成下一步的证明.【变式探究】小明把“AD是∠BAC的平分线”改成“AD是BC边上的高”,其它条件不变,问小军:AB+BD=AC还成立吗?若成立,请证明;若不成立,请问AB+BD 等于图中哪一条线段?并说明理由.小军正在思考中,请你帮助小军完成此题.第8页,共31页12.据图回答问题(1)如图1,四边形ABCD中,∠A=∠B=90°,∠ADC,∠BCD的角平分线交于AB边上的点E,求证:①CD=AD+BC;②E是AB的中点;(2)如图2,(1)中的条件“∠A=∠B=90°”改为“条件AD∥BC”,其他条件不变,(1)中的结论是否都依然成立?请说明理由.13.如图,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?请说明理由.14.如图,已知∠AOB=120°,OP平分∠AOB.D,E分别在射线OA,OB上.(1)在图1中,当∠ODP=∠OEP=90°时,求证:OD+OE=OP;(2)若把图1中的条件“∠ODP=∠OEP=90°”改为∠ODP+∠OEP=180°,其他条件不变,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.15.【问题背景】如图1:在四边形ABCD中,AB=AD,∠BAD=120∘,∠B=∠ADC=90∘,E、F分别是BC、CD上的点,且∠EAF=60∘,试探究图中线段BE、EF、FD之间的数量关系。

初二数学上辅助线练习题

初二数学上辅助线练习题

初二数学上辅助线练习题在初二数学学习中,辅助线是一个重要的概念和应用技巧。

它可以帮助我们解决一些数学问题,简化计算过程,提高解题效率。

本文将通过几个实际的练习题来帮助同学们理解和应用辅助线的方法。

练习题一:求平行四边形的对角线长度已知平行四边形ABCD的边长分别为5cm和8cm,求其对角线BD 的长度。

解题思路:我们可以通过连结该平行四边形的两组对边,构造两条相交的辅助线,形成两个三角形。

利用三角形的性质,我们可以求得辅助线的长度,进而得到对角线的长度。

解题步骤:1. 以点A为起点,向右方向画一条线段AE,长度为8cm。

2. 以点C为起点,向右方向画一条线段CF,长度为5cm。

3. 连接点E和点F,得到线段EF。

4. 观察三角形ABE和三角形DCF,它们都是直角三角形,可以使用勾股定理求得线段EF的长度。

AB = 5cm, AE = 8cm,根据勾股定理得到BE = √(AE^2 - AB^2)即BE = √(8^2 - 5^2) = √39cm。

CD = 5cm, CF = 8cm,同样应用勾股定理得到DF = √(CF^2 - CD^2)即DF = √(8^2 - 5^2) = √39cm。

5. 根据平行四边形的性质,对角线BD是辅助线EF的一半。

因此,BD的长度为1/2 * EF,即BD = 1/2 * √39cm ≈ 3.93cm。

练习题二:求等腰三角形的高已知等腰三角形ABC,AB = AC = 6cm,BC = 8cm,求其高AD的长度。

解题思路:对于等腰三角形,辅助线可以通过连接底边的中点与顶点来构造。

利用辅助线,我们可以将等腰三角形分成两个全等的直角三角形,进而求得高的长度。

解题步骤:1. 连接顶点A与底边中点D。

2. 观察三角形ABD,它是一个直角三角形。

根据勾股定理,可以求得高AD的长度。

AB = 6cm, BD = 1/2 * BC = 1/2 * 8cm = 4cm,根据勾股定理得到AD = √(AB^2 - BD^2)即AD = √(6^2 - 4^2) = √20cm ≈ 4.47cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见的辅助线的作法1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线:(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

4.垂直平分线联结线段两端:在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。

5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形.7.角度数为30度、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.面积方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、等腰三角形“三线合一”法1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:CE=BD.中考连接:E DFCBAOECBABC∆(2014•扬州,第7题,3分)如图,已知∠AOB =60°,点P 在边OA 上, OP =12,点M ,N 在边OB 上,PM =PN ,若MN =2,则OM =( )A . 3B . 4C . 5D . 6二、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3, 则中线AD 的取值范围是_________.例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.中考连接:(09崇文)以的两边AB 、AC 为腰分别向外作等腰Rt 和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 三、借助角平分线造全等1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD2、如图,已知点C 是∠MAN 的平分线上一点,CE ⊥AB 于E ,B 、D 分别在AM 、AN 上,AE=(AD+AB ).问:∠1和∠2有何关系?且中考连接:()如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全DCBAPQCBAEDGFC BA等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。

请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

四, 垂直平分线联结线段两端1. ( 2014•广西贺州,第17题3分)如图,等腰△ABC 中,AB =AC ,∠DBC =15°,AB 的垂直平分线MN 交AC 于点D , 则∠A 的度数是 .2、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长. 中考连接: (2014年广东汕尾,第19题7分)如图,在Rt △ABC 中,∠B =90°,分别以点A 、C 为圆心,大于AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE . (1)求∠ADE ;(直接写出结果)(2)当AB =3,AC =5时,求△ABE 的周长.补充:尺规作图过直线外一点做已知直线的垂线 五、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 。

3、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

求证:BQ+AQ=AB+BP4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0180=∠+∠C A5. 如图,已知正方形ABCD 中,E 为BC 边上任意一点,AF平分∠DAE .求证:AE -BE =DF .O PAM NEB C DF ACEF B D图①图②图③FE DC B AN MEFACBA6.如图,△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC ,∠ACB ,判断AC 的长与AE+CD 的大小关系并证明.7.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G ,判断CF 与GB 的大小关系并证明。

六、综合1、正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.2、如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。

求AQN ∠的度数。

3、已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =o ∠,60MBN =o ∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,.当MBN ∠绕B 点旋转到AE CF =时(如图1),易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的猜想,不需证明.4、D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

(1) 当MDN ∠绕点D 转动时,求证DE=DF 。

(2) 若AB=2,求四边形DECF 的面积。

5、在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N ,D为ABC V 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系. 图 1 图2 图3 (I )如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量是 ; 此时=LQ;关系(II )如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还成立吗?写出你的猜想并加以证明;(III ) 如图3,当M 、N 分别在边AB 、CA 的延长线上时,(图1) (图2) (图3)D C BAED F CB A若AN=x,则Q= (用x、L表示).中考连接:(2014•抚顺第25题(12分))已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.参考答案与提示一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.解:延长AD至E使AE=2AD,连BE,由三角形性质知AB-BE <2AD<AB+BE 故AD的取值范围是1<AD<4例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF 与EF的大小.解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG,显然BG=FC,在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知EG=EF在△BEG中,由三角形性质知EG<BG+BE故:EF<BE+FC例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. 解:延长AE 至G 使AG =2AE ,连BG ,DG, 显然DG =AC , ∠GDC=∠ACD 由于DC=AC ,故 ∠ADC=∠DAC 在△ADB 与△ADG 中, BD =AC=DG ,AD =AD ,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG故△ADB ≌△ADG ,故有∠BAD=∠DAG ,即AD 平分∠BAE 应用:1、(09崇文二模)以的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.ABC ∆∴DE AM ⊥,DE AM 21= 二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC 解:(截长法)在AB 上取中点F ,连FD△ADB 是等腰三角形,F 是底AB 中点,由三线合一知CCBADF ⊥AB ,故∠AFD =90° △ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC解:(截长法)在AB 上取点F ,使AF =AD ,连FE △ADE ≌△AFE (SAS ) ∠ADE =∠AFE ,∠ADE+∠BCE =180° ∠AFE+∠BFE =180° 故∠ECB =∠EFB △FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

相关文档
最新文档