千锤百炼-高考数学100个热点问题——第10炼 函数零点的个数问题

合集下载

函数的零点个数问题-含答案

函数的零点个数问题-含答案

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.方法三 方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x =,重新构造方程()()g x h x =,再画函数(),()y g x y h x ==的图像分析解答.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个【点评】(1)本题主要考察零点的个数,但是方程f(x)lg cos 0x x =-=也不好解,直接研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1)+∞;【反馈检测3答案】(1)单调递增区间是(),m+∞, 单调递减区间是()0,m;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x的定义域为()()()()0,,'x m x mf xx+-+∞=.当0x m<<时,()'0f x<,函数()f x单调递减,当x m>时,()'0f x>函数()f x单调递增,综上,函数()f x的单调递增区间是(),m+∞, 单调递减区间是()0,m.(2)令()()()()211ln,02F x f x g x x m x m x x=-=-++->,问题等价于求函数()F x的零点个数,()()()1'x x mF xx--=-,当1m=时,()'0F x≤,函数()F x为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。

千题百炼——高考数学个热点问题一第炼复合函数零点问题

千题百炼——高考数学个热点问题一第炼复合函数零点问题

第12炼复合函数零点问题一、基础知识: 1、复合函数定义:设()y f t =,()t g x =,且函数()g x 的值域为()f t 定义域的子集,那么y 通过t 的联系而得到自变量x 的函数,称y 是x 的复合函数,记为()y f g x =⎡⎤⎣⎦2、复合函数函数值计算的步骤:求()y g f x =⎡⎤⎣⎦函数值遵循“由内到外”的顺序,一层层求出函数值。

例如:已知()()22,x f x g x x x ==-,计算()2g f ⎡⎤⎣⎦ 解:()2224f ==()()2412g f g ∴==⎡⎤⎣⎦3、已知函数值求自变量的步骤:若已知函数值求x 的解,则遵循“由外到内”的顺序,一层层拆解直到求出x 的值。

例如:已知()2x f x =,()22g x x x =-,若()0g f x =⎡⎤⎣⎦,求x解:令()t f x =,则()2020g t t t =⇒-=解得0,2t t ==当()0020x t f x =⇒=⇒=,则x ∈∅ 当()2222x tf x =⇒=⇒=,则1x =综上所述:1x =由上例可得,要想求出()0g fx =⎡⎤⎣⎦的根,则需要先将()f x 视为整体,先求出()f x 的值,再求对应x 的解,这种思路也用来解决复合函数零点问题,先回顾零点的定义: 4、函数的零点:设()f x 的定义域为D ,若存在0x D ∈,使得()00f x =,则称0x x =为()f x 的一个零点5、复合函数零点问题的特点:考虑关于x 的方程()0g f x =⎡⎤⎣⎦根的个数,在解此类问题时,要分为两层来分析,第一层是解关于()f x 的方程,观察有几个()f x 的值使得等式成立;第二层是结合着第一层()f x 的值求出每一个()f x 被几个x 对应,将x 的个数汇总后即为()0g f x =⎡⎤⎣⎦的根的个数6、求解复合函数()y g f x =⎡⎤⎣⎦零点问题的技巧:(1)此类问题与函数图象结合较为紧密,在处理问题的开始要作出()(),f x g x 的图像(2)若已知零点个数求参数的范围,则先估计关于()f x 的方程()0g f x =⎡⎤⎣⎦中()f x 解的个数,再根据个数与()f x 的图像特点,分配每个函数值()i f x 被几个x 所对应,从而确定()i f x 的取值范围,进而决定参数的范围复合函数: 二、典型例题例1:设定义域为R 的函数()1,111,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程()()20f x bf x c ++=由3个不同的解123,,x x x ,则222123x x x ++=______ 思路:先作出()f x 的图像如图:观察可发现对于任意的0y ,满足()0y f x =的x 的个数分别为2个(000,1y y >≠)和3个(01y =),已知有3个解,从而可得()1f x =必为()()20f x bf x c ++=的根,而另一根为1或者是负数。

千题百炼高考数学个热点问题第炼复合函数零点问题

千题百炼高考数学个热点问题第炼复合函数零点问题

第12炼 复合函数零点问题一、基础知识:1、复合函数定义:设()y f t =;()t g x =;且函数()g x 的值域为()f t 定义域的子集;那么y 通过t 的联系而得到自变量x 的函数;称y 是x 的复合函数;记为()y f g x =⎡⎤⎣⎦2、复合函数函数值计算的步骤:求()y g f x =⎡⎤⎣⎦函数值遵循“由内到外”的顺序;一层层求出函数值..例如:已知()()22,x f x g x x x ==-;计算()2g f ⎡⎤⎣⎦解:()2224f == ()()2412g f g ∴==⎡⎤⎣⎦3、已知函数值求自变量的步骤:若已知函数值求x 的解;则遵循“由外到内”的顺序;一层层拆解直到求出x 的值..例如:已知()2x f x =;()22g x x x =-;若()0g f x =⎡⎤⎣⎦;求x解:令()t f x =;则()2020g t t t =⇒-=解得0,2t t == 当()0020x t f x =⇒=⇒=;则x ∈∅ 当()2222x t f x =⇒=⇒=;则1x = 综上所述:1x =由上例可得;要想求出()0g f x =⎡⎤⎣⎦的根;则需要先将()f x 视为整体;先求出()f x 的值;再求对应x 的解;这种思路也用来解决复合函数零点问题;先回顾零点的定义:4、函数的零点:设()f x 的定义域为D ;若存在0x D ∈;使得()00f x =;则称0x x =为()f x 的一个零点5、复合函数零点问题的特点:考虑关于x 的方程()0g f x =⎡⎤⎣⎦根的个数;在解此类问题时;要分为两层来分析;第一层是解关于()f x 的方程;观察有几个()f x 的值使得等式成立;第二层是结合着第一层()f x 的值求出每一个()f x 被几个x 对应;将x 的个数汇总后即为()0g f x =⎡⎤⎣⎦的根的个数6、求解复合函数()y g f x =⎡⎤⎣⎦零点问题的技巧:1此类问题与函数图象结合较为紧密;在处理问题的开始要作出()(),f x g x 的图像2若已知零点个数求参数的范围;则先估计关于()f x 的方程()0g f x =⎡⎤⎣⎦中()f x 解的个数;再根据个数与()f x 的图像特点;分配每个函数值()i f x 被几个x 所对应;从而确定()i f x 的取值范围;进而决定参数的范围 复合函数: 二、典型例题例1:设定义域为R 的函数()1,111,1x x f x x ⎧≠⎪-=⎨⎪=⎩;若关于x 的方程()()20f x bf x c ++=由3个不同的解123,,x x x ;则222123x x x ++=______ 思路:先作出()f x 的图像如图:观察可发现对于任意的0y ;满足()0y f x =的x 的个数分别为2个000,1y y >≠和3个01y =;已知有3个解;从而可得()1f x =必为 ()()20f x bf x c ++=的根;而另一根为1或者是负数..所以()1i f x =;可解得:1230,1,2x x x ===;所以2221235x x x ++= 答案:5例2:关于x 的方程()22213120x x ---+=的不相同实根的个数是A. 3B. 4C. 5D. 8思路:可将21x -视为一个整体;即()21t x x =-;则方程变为2320t t -+=可解得:1t =或2t =;则只需作出()21t x x =-的图像;然后统计与1t =与2t =的交点总数即可;共有5个 答案:C 例3:已知函数11()||||f x x x xx=+--;关于x 的方程2()()0f x a f x b ++=,a b R ∈恰有6个不同实数解;则a 的取值范围是 .思路:所解方程2()()0f x a f x b ++=可视为()()20f x a f x b ++=;故考虑作出()f x 的图像:()2,12,012,102,1x x x x f x x x x x⎧>⎪⎪<≤⎪=⎨--≤<⎪⎪-<-⎪⎩; 则()f x 的图像如图;由图像可知;若有6个不同实数解;则必有()()122,02f x f x =<<;所以()()()122,4a f x f x -=+∈;解得42a -<<-答案:42a -<<-例4:已知定义在R 上的奇函数;当0x >时;()()121,0212,22x x f x f x x -⎧-<≤⎪=⎨->⎪⎩;则关于x 的方程()()2610f x f x --=⎡⎤⎣⎦的实数根个数为A. 6B. 7C. 8D.9思路:已知方程()()2610f x f x --=⎡⎤⎣⎦可解;得()()1211,23f x f x ==-;只需统计11,23y y ==-与()y f x =的交点个数即可..由奇函数可先做出0x >的图像;2x >时;()()122f x f x =-;则(]2,4x ∈的图像只需将(]0,2x ∈的图像纵坐标缩为一半即可..正半轴图像完成后可再利用奇函数的性质作出负半轴图像..通过数形结合可得共有7个交点 答案:B小炼有话说:在作图的过程中;注意确定分段函数的边界点属于哪一段区间..例5:若函数()32f x x ax bx c =+++有极值点12,x x ;且()11f x x =;则关于x 的方程()()()2320f x af x b ++=的不同实根的个数是 A .3 B .4 C .5 D .6思路:()'232f x x ax b =++由极值点可得:12,x x 为2320x ax b ++= ①的两根;观察到方程①与()()()2320f x af x b ++=结构完全相同;所以可得()()()2320f x af x b ++=的两根为()()1122,f x x f x x ==;其中()111f x x =;若12x x <;可判断出1x 是极大值点;2x 是极小值点..且()()2211f x x x f x =>=;所以()1y f x =与()f x 有两个交点;而()2f x 与()f x 有一个交点;共计3个;若12x x >;可判断出1x 是极小值点;2x 是极大值点..且()()2211f x x x f x =<=;所以()1y f x =与()f x 有两个交点;而()2f x 与()f x 有一个交点;共计3个..综上所述;共有3个交点 答案:A例6:已知函数()243f x x x =-+;若方程()()20f x bf x c ++=⎡⎤⎣⎦恰有七个不相同的实根;则实数b 的取值范围是A. ()2,0-B. ()2,1--C. ()0,1D. ()0,2思路:考虑通过图像变换作出()f x 的图像如图;因为()()20f x bf x c ++=⎡⎤⎣⎦最多只能解出2个()f x ;若要出七个根;则()()()121,0,1f x f x =∈;所以()()()121,2b f x f x -=+∈;解得:()2,1b ∈--答案:B例7:已知函数()xx f x e=;若关于x 的方程()()210f x mf x m -+-=恰有4个不相等的实数根;则实数m 的取值范围是A. ()1,22,e e ⎛⎫ ⎪⎝⎭B. 1,1e ⎛⎫ ⎪⎝⎭C. 11,1e⎛⎫+ ⎪⎝⎭D. 1,e e ⎛⎫⎪⎝⎭思路:(),0,0x xxx e f x x x e ⎧≥⎪⎪=⎨⎪-<⎪⎩;分析()f x 的图像以便于作图;0x ≥时;()()'1x f x x e -=-;从而()f x 在()0,1单调递增;在()1,+∞单调递减;()11f e=;且当,0x y →+∞→;所以x 正半轴为水平渐近线;当0x <时;()()'1x f x x e -=-;所以()f x 在(),0-∞单调递减..由此作图;从图像可得;若恰有4个不等实根;则关于()f x 的方程()()210f x mf x m -+-=中;()()12110,,,f x f x e e ⎛⎫⎛⎫∈∈+∞ ⎪ ⎪⎝⎭⎝⎭;从而将问题转化为根分布问题;设()t f x =;则210t mt m -+-=的两根12110,,,t t e e ⎛⎫⎛⎫∈∈+∞ ⎪ ⎪⎝⎭⎝⎭;设()21g t t mt m =-+-;则有()20010111100g m m m g e e e >⎧->⎧⎪⎪⇒⎨⎨⎛⎫-⋅+-=< ⎪⎪⎪⎩⎝⎭⎩;解得11,1m e ⎛⎫∈+ ⎪⎝⎭ 答案:C小炼有话说:本题是作图与根分布综合的题目;其中作图是通过分析函数的单调性和关键点来进行作图;在作图的过程中还要注意渐近线的细节;从而保证图像的准确.. 例8:已知函数()21,0log ,0ax x f x x x +≤⎧=⎨>⎩;则下列关于函数()()1y f f x =+的零点个数判断正确的是A. 当0a >时;有4个零点;当0a <时;有1个零点B. 当0a >时;有3个零点;当0a <时;有2个零点C. 无论a 为何值;均有2个零点D. 无论a 为何值;均有4个零点思路:所求函数的零点;即方程()1f f x =-⎡⎤⎣⎦的解的个数;先作出()f x 的图像;直线1y ax =+为过定点()0,1的一条直线;但需要对a 的符号进行分类讨论..当0a >时;图像如图所示;先拆外层可得()()12210,2f x f x a =-<=;而()1f x 有两个对应的x ;()2f x 也有两个对应的x ;共计4个;当0a <时;()f x 的图像如图所示;先拆外层可得()12f x =;且()12f x =只有一个满足的x ;所以共一个零点..结合选项;可判断出A 正确 答案:A例9:已知函数()()()232211,0231,31,0x x f x x x g x x x ⎧⎛⎫-+>⎪ ⎪=-+=⎝⎭⎨⎪-++≤⎩;则方程()0g f x a -=⎡⎤⎣⎦a 为正实数的实数根最多有___________个思路:先通过分析()(),f x g x 的性质以便于作图;()()'23632f x x x x x =-=-;从而()f x 在()(),0,2,-∞+∞单增;在()0,2单减;且()()01,23f f ==-;()g x 为分段函数;作出每段图像即可;如图所示;若要实数根最多;则要优先选取()f x 能对应x 较多的情况;由()f x 图像可得;当()()3,1f x ∈-时;每个()f x 可对应3个x ..只需判断()g f x a =⎡⎤⎣⎦中;()f x 能在()3,1-取得的值的个数即可;观察()g x 图像可得;当51,4a ⎛⎫∈ ⎪⎝⎭时;可以有2个()()3,1f x ∈-;从而能够找到6个根;即最多的根的个数 答案:6个例10:已知函数()y f x =和()y g x =在[]2,2-的图像如下;给出下列四个命题:1方程()0f g x =⎡⎤⎣⎦有且只有6个根 2方程()0g f x =⎡⎤⎣⎦有且只有3个根 3方程()0f f x =⎡⎤⎣⎦有且只有5个根 4方程()0g g x =⎡⎤⎣⎦有且只有4个根 则正确命题的个数是A. 1B. 2C. 3D. 4思路:每个方程都可通过图像先拆掉第一层;找到内层函数能取得的值;从而统计出x 的总数..1中可得()()()()()1232,1,0,1,2g x g x g x ∈--=∈;进而()1g x 有2个对应的x ;()2g x 有3个;()3g x 有2个;总计7个;1错误;2中可得()()()()122,1,0,1f x f x ∈--∈;进而()1f x 有1个对应的x ;()2f x 有3个;总计4个;2错误;3中可得()()()()()1232,1,0,1,2f x f x f x ∈--=∈;进而()1f x 有1个对应的x ;()2f x 有3个;()3f x 有1个;总计5个;3正确;4中可得:()()()()122,1,0,1g x g x ∈--∈;进而()1g x 有2个对应的x ;()2g x 有2个;共计4个;4正确 则综上所述;正确的命题共有2个 答案:B。

函数零点的个数问题

函数零点的个数问题

2x 2 x
2
2m
2x 2 x 2m2 8
0,利用换元设
t 2x 2x ( t 2 ),则问题转化为只需让方程 t2 2mt 2m2 8 0 存在大于等于 2 的解
即可,故分一个解和两个解来进行分类讨论。设 g t t2 2mt 2m2 8 0 。
(1)若方程有一个解,则有相切(切点 x m 大于等于 2)或相交(其中交点在 x 2 两侧),
3:已知函数
f
x
kx ln x,
2, x x
0
0k
R
,若函数
y
f x k 有三个零点,则实数 k
的取值范围是(

A. k 2
B. 1 k 0
C. 2 k 1
D. k 2
思路:函数 y f x k 有三个零点,等价于方程 f x k 有三个不同实数根,进而等
价于 f x 与 y k 图像有三个不同交点,作出 f x 的图像,则 k 的正负会导致 f x 图
A.
ln 3 3
,
1 e
B.
ln 3 9
,
1 3e
C.
ln 3 9
,
1 2e
D.
ln 3 9
,
ln 3 3
思路:
f x
f 3x
f x
f
x 3
,当
x
3,
9
时,
f
x
f
x 3
ln
x 3
,所以
- 4 - / 18
ln x,1 x 3
f
x
ln
x ,3 3
x
,而 g x
9
f
区间 a,b 内至少有函数 f x 的一个零点,即至少有一点 x0 a,b ,使得 f x0 0 。 (1) f x 在a,b 上连续是使用零点存在性定理判定零点的前提

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。

高考数学 黄金100题系列 第20题 函数零点的个数问题 理

高考数学 黄金100题系列 第20题 函数零点的个数问题 理

第20题 函数零点的个数问题I .题源探究·黄金母题【例1】求函数()ln 26f x x x =+-的零点的个数. 【答案】1.【解析】()f x 的定义域为()0,+∞.()(),,2ln24603ln3660f f =+-<=+->由零点存在性定理知()f x 有零点.又()()120,f x f x x'=+>∴在()0,+∞上是单调递增函数,()f x ∴只有一个零点.精彩解读【试题来源】人教版A 版必修1第88页例1. 【母题评析】本题考查了零点存在性定理、函数零点个数的判断.【思路方法】判断函数是否存在零点可用零点存在性定理或利用数形结合法.而要判断函数有几个零点,还需要借助函数的单调性.II .考场精彩·真题回放【例2】【2017高考江苏卷第14题】设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,,(),,x x D f x x x D ⎧∈⎪=⎨∉⎪⎩其中集合1,*n D x x n n -⎧⎫==∈⎨⎬⎩⎭N ,则方程()lg 0f x x -=的解的个数是 . 【答案】8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况,在此范围内,x Q ∈且x ∈Z 时,设*,,,2q x p q p p =∈≥N ,且,p q 互质.若lg x Q ∈,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质.因此10n mq p =,则10()nm q p=,此时左边为整数,右边非整数,矛盾,因此lg x Q ∉.因此lg x 不可能与每个周期内x D ∈对应的部分相等,只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图中交点除()1,0外其它交点横坐标均为无理数,属于每个周期x D ∉的部分,且1x =处()11lg 1ln10ln10x x '==<,则在1x =附近仅有一个交点,【命题意图】本题主要考查考查了零点存在性定理、函数零点个数的判断.本题能较好的考查考生分析问题解决问题的能力. 【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度中等偏易,考查基础知识的识记、理解与应用. 【难点中心】解答此类问题,关键在于灵活选择方法,如直接求解,或数形结合转化为两个函数图象的交点个数问题,或借助于导数研究函数的单调性,得到函数的零点个数.一次方程解的个数为8.【例3】【2016高考新课标I 改编】函数()22xf x x e =-在[]2,2-有 个零点.【答案】D .【解析】函数()22x f x x e=-|在[]2,2-上是偶函数,其图象关于y 轴对称,故先考虑其在[]0,2上有几个零点.()()()200,10,(2)80,<<=->∴f f f e f x 在[]0,2上有零点.设()()4x g x f x x e '==-.()()()()00,10,20,g g g g x <>>∴在[]0,2上有零点.又由()0g x '=,可得40x e -=,设其解为1x ,易知()11,2x ∈且()()10,g x g x >∴在[]0,2上有唯一零点,设为0x 且()00,1x ∈.从而当00x x <<时,()0g x <,即()0f x '<;当02x x <<时,()0g x >,即()0f x '>,故0(0,)x x ∈时,()f x 为单调递减函数;当0(,2)x x ∈时,()f x 为单调递增函数.又()()()000,10,()0,f f f x f x <<∴<∴在[]0,2上有唯一零点.由函数图象的对称性可知()f x 在[]0,2上有两个零点. 【例4】【2015年高考江苏卷】已知函数()ln f x x =,()20,0142,1x g x x x <≤⎧⎪=⎨-->⎪⎩,则方程()()1f x g x +=实根的个数为__________. 【答案】4.【解析】方程等价于()()1f x g x +=±,即()()1f x g x =-+或()()1f x g x =--共多少个根,【命题意图】本题主要考查考查了零点存在性定理、函数零点个数的判断.本题能较好的考查考生分析问题解决问题的能力. 【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,难度较大.【难点中心】一些对数型方程不能直接求出()221,0111,127,2x y g x x x x x <≤⎧⎪=-=-<<⎨⎪-≥⎩,数形结合可得:()f x 与()1y g x =-有两个交点;()221,0113,125,2x y g x x x x x -<≤⎧⎪=--=-<<⎨⎪-≥⎩,同理可得()f x 与()1y g x =--有两个交点,所以共计4个.其零点,常通过平移、对称变换转化为相应的函数图像问题,利用数形结合法将方程根的个数转化为对应函数零点个数,而函数零点个数的判断通常转化为两函数图像交点的个数.这时函数图像是解题关键,不仅要研究其走势(单调性,极值点、渐近线等),而且要明确其变化速度快慢.III .理论基础·解题原理1.零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点.2.函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =. (1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提; (2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个; ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点; ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号.3.若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一. 4.函数的零点、方程的根、两图像交点之间的联系:设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到. 由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化. 5.函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理;作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内;缺点:方法单一,只能判定零点存在而无法判断个数,且能否得到结论与代入的特殊值有关.(2)方程的根: 工具:方程的等价变形;作用:当所给函数不易于分析性质和图像时,可将函数转化为方程,从而利用等式的性质可对方程进行变形,构造出便于分析的函数;缺点:能够直接求解的方程种类较少,很多转化后的方程无法用传统方法求出根,也无法判断根的个数. (3)两函数的交点: 工具:数形结合;作用:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现.通过图像可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围; 缺点:数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x 的函数可作出图像,那么因为另外一个只含参数的图像为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡. IV .题型攻略·深度挖掘 【考试方向】这类试题在考查题型上,通常基本以选择题或填空题的形式出现,一般难度较小.若涉及的函数为分段函数,则难度加大. 【技能方法】1.零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内.例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫ ⎪⎝⎭中. 2.判断函数在某个区间上是否存在零点的方法(1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间上. (2)利用零点存在性定理进行判断;(3)画出函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断. 3.断函数零点个数的常见方法(1)直接法:解方程()0f x =,方程有几个解,函数()f x 就有几个零点;(2)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴的交点个数即为函数()f x 的零点个数; (3)将函数()f x 拆成两个常见函数()g x 和()h x 的差,从而()()()()()00f x g x h x g x h x =⇔-=⇔=,则函数()f x 的零点个数即为函数()y g x =与函数()y h x =的图象的交点个数;(4)二次函数()()20f x ax bx c a =++≠的零点问题主要从三个方面考虑:①判别式∆确定零点是否存在;②对称轴的位置控制零点的位置;③端点值的符号确定零点的个数. 【易错指导】对函数零点存在的判断需要注意以下两点:(1)函数()f x 在[],a b 上连续;(2)满足()()0f a f b ⋅<. 上述方法只能求变号零点,对于非变号零点不能用上述方法求解.另外需要注意的是:(1)若函数()f x 的图象在0x x =与x 轴相切,则零点0x 通常称为不变号零点; (2)函数的零点不是点,它是函()y f x =数与x 轴的交点的横坐标,是方程()0f x =的根. V .举一反三·触类旁通【例1】【2018云南昆明一中高三一模】若函数()f x x =,则函数()12log y f x x =-的零点个数是( )A .5个B .4个C .3个D .2个 【答案】D【解析】如图:函数()f x 与函数()12log g x x =有2个交点,所以选D .【例2】【2018河南漯河高中高三上学期二模】已知函数是上的偶函数,且,当时,,则函数的零点个数是( )A .3B .4C .5D .6 【答案】B【例3】【2018辽宁庄河高中、沈阳二十中高三上学期第一次联考】函数()()()820{ 1022sin x x f x f x x π-≤=⎛⎫-> ⎪⎝⎭,则函数()()4log h x f x x =-的零点个数为( ) A .2个 B .3个 C .4个 D .5个 【答案】D()114sin22sin22222f x f x x x ππ⎛⎫⎛⎫=-=⨯-=- ⎪ ⎪⎝⎭⎝⎭;当32x ππ<≤时, 22x πππ<-≤,据此可得:()112sin2sin22222f x f x x x ππ⎡⎤⎛⎫⎛⎫=-=⨯--= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;当54x π=时, 55sin 2144f ππ⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭,而445log log 414π<=,则函数4log y x =与函数()f x 在区间3,2ππ⎛⎫⎪⎝⎭上有2个交点,很明显,当32x π>时,函数图象没有交点,绘制函数图象如图所示,观察可得:函数()()4h x f x log x =-的零点个数为5个.【名师点睛】函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.【例4】【2018贵州黔东南州第一次联考】已知函数()29,0{ 42,0x x x f x x x +-≤=->,若方程()f x a =有两个不相等的实数根,则实数a 的取值范围是( ) A .[)59,2,24⎡⎫--⋃-+∞⎪⎢⎣⎭ B .()2,-+∞ C .()59,2,24⎛⎤--⋃-+∞ ⎥⎝⎦ D .()59,2,24⎡⎫--⋃-+∞⎪⎢⎣⎭【答案】C【解析】作出函数()29,0{ 42,0x x x f x x x +-≤=->的图象如下:【名师点睛】方程的根或函数有零点求参数范围常用方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一直角坐标系中,画出函数的图象,然后数形结合求解. 【例5】【2018黑龙江海林模拟】设()32f x x bx cx d =+++,又k 是一个常数,已知0k <或4k >时,()0f x k -=只有一个实根,当04k <<时, ()0f x k -=有三个相异实根,给出下列命题:①()40f x -=和()'0f x =有一个相同的实根; ②()0f x =和()'0f x =有一个相同的实根;③()30f x +=的任一实根大于()10f x -=的任一实根; ④()50f x +=的任一实根小于()20f x -=的任一实根. 其中正确命题的个数为( ) A .3 B .2 C .1 D .0 【答案】A()32f x x bx cx d =+++,当04k k 或时, ()0f x k -=只有一个实数根;当04k <<时, ()0f x k -=有三个相异实根,故函数即有极大值,又有极小值,且极小值为0,极大值为4,故()40f x -= 与()0f x '=有一个相同的实数根,即极大值点,故(1)正确.()0f x =与()0f x '= 有一个相同的实根,即极小值点,故(2)正确; ()30f x +=有一实根且函数最小的零点,()10f x -=有3个实根均大于函数的最小零点,故(3)错误; ()50f x +=有一实根且小于函数最小零点,()20f x -=有三个实根均大于函数最小的零点,故(4)正确;所以A 选项正确.【点睛】三次函数图象时,要关注三次函数的极值点个数,三次函数的三次项系数为正,如果有两个极值点,那么函数为先再减最后增,满足对k 是一个常数,当0k <或4k >时, ()0f x k -=只有一个实根,当04k <<时, ()0f x k -=有三个相异实根这样的条件,说明有极小值为0,极大值为4,据此可画出函数的模拟图像,数形结合,逐一验证.【例6】【2018安徽阜阳临泉一中高三上学期二模】已知,若关于的方程恰好有 个不相等的实数根,则实数的取值范围是______________.【答案】令,则当时,方程有一解;当时,方程有两解;时,方程有三解.∵关于的方程,恰好有4个不相等实数根,∴关于的方程在和上各有一解,∴,解得,故答案为.【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:①直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围;②分离参数法:先将参数分离,转化成求函数值域问题加以解决;③数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.【例7】【2018江苏南通如皋高三第一次联考】已知函数()211{ 52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.【答案】714⎛⎤ ⎥⎝⎦,【解析】()()g x f x m =-有三个零点,根据题意可得1x >时,函数有一个零点; 1x ≤时,函数有两个零点.当1x >时, ()1ln f x x x =+, ()221110x f x x x x'-=-=>恒成立()()1,f x ∈+∞,故1m >;当1x ≤时, ()25228m f x x mx =-++,要使得()()g x f x m =-有两个零点,需满足714m <≤,综上可得714⎛⎤ ⎥⎝⎦,,故答案为714⎛⎤⎥⎝⎦,. 【例8】【2017江西宜春丰城九中、高安二中、宜春一中、万载中学、樟树中学、宜丰中学届高三六校联考】已知函数()ln 1||f x x =-, ()f x m -的四个零点1x , 2x , 3x , 4x ,且12341111k x x x x =+++,则()k f k e -的值是__________.【答案】2e -【例9】【2018辽宁庄河高中、沈阳二十中高三上学期第一次联考】已知函数将的图象向右平移两个单位,得到函数的图象.(1)求函数的解析式; (2)若方程在上有且仅有一个实根,求的取值范围.【答案】(1)(2)【解析】试题分析:(1)借助平移的知识可以直接求出函数解析式 (2)先换元将问题转化为有且只有一个根,再运用函数方程思想建立不等式组分析求解.(1)(2)设,则,原方程可化为,于是只须在上有且仅有一个实根.法1:设,对称轴,则①.或②由①得,即,.由②得无解,则.法2:由,,得,,设,则,.记,则在上是单调函数,因为故要使题设成立,只须.即.从而.【名师点睛】在解答指数函数的综合题目时可以采用换元法,转化为一元二次函数的问题,根据题目要求,如需要分类讨论,再加入分类讨论.【例10】【江苏扬州模拟】设()2f x x x a x =-+ (a ∈R) (1) 若2a =,求()f x 在区间[]0,3上的最大值; (2) 若2a >,写出()f x 的单调区间;(3) 若存在[]2,4a ∈-,使得方程()()f x tf a =有三个不相等的实数解,求t 的取值范围. 【答案】(1) ()()max 39f x f == (2) ()f x 的单调增区间为2,2a +⎛⎫-∞ ⎪⎝⎭和(),a +∞,单调减区间2,2a a +⎛⎫⎪⎝⎭(3) 918t <<试题解析:(1)当2a =时,()22f x x x x =-+=224,2{ ,2x x x x x -+<≥,∴ ()f x 在R 上为增函数,∴ ()f x 在[]0,3上为增函数,则()()max 39f x f == .(2)()()()222,{ 2,x a x x a f x x a x x a-++<=+-≥,2a >,022a a a ∴<-<<+,当x a ≥时, 22a a ->, ∴ ()f x 在(),a +∞为增函数 , 当x a <时,22022a a a +--=<,即22a a +<,∴()f x 在2,2a +⎛⎫-∞ ⎪⎝⎭为增函数,在2,2a a +⎛⎫ ⎪⎝⎭为减函数,则()f x 的单调增区间为2,2a +⎛⎫-∞ ⎪⎝⎭和(),a +∞,单调减区间2,2a a +⎛⎫⎪⎝⎭. (3)由(2)可知,当22a -≤≤时, ()f x 为增函数,方程不可能有三个不相等实数根,当24a <≤时,由(2)得 ()()22a f a tf a f +⎛⎫<< ⎪⎝⎭,()22224a a at +<<, 即()2218a t a+<<在(]2,4有解,由()22118822a a aa +=++在(]2,4上为增函数, ∴当4a =时,()228a a+的最大值为98,则918t << . 【例11】【2018海南中学、文昌中学、海口市第一中学、农垦中学等八校联考】设函数()32231,0{ 21,0xx x x f x axe x -->=-≤,其中0a >. (1)若直线y m =与函数()f x 的图象在(]0,2上只有一个交点,求m 的取值范围; (2)若()f x a ≥-对x R ∈恒成立,求实数a 的取值范围. 【答案】(1) 13m -≤≤或2m =-;(2) ,2e a e ⎡⎫∈+∞⎪⎢-⎣⎭.令()'0f x <得01x <<, ()f x 递减,∴()f x 在1x =处取得极小值,且极小值为()12f =-, ∵()01f =-, ()23f =,∴由数形结合可得13m -≤≤或2m =-. (2)当0x ≤时, ()()'21xf x a x e =+, 0a >,令()'0f x =得1x =-;令()'0f x >得10x -<≤, ()f x 递增;令()'0f x <得1x <-, ()f x 递减,∴()f x 在1x =-处取得极小值,且极小值为()211a f e -=--,∵0a >,∴210a e --<,∵当212a e --≥-即02ea <≤时,()()min 12f x f ==-,∴2a -≤-,即2a ≥,∴无解,当212a e --<-即2ea >时, ()()max 211a f x f e =-=--,∴21a a e -≤--,即2e a e ≥-,又22e e e >-,∴2e a e ≥-. 综上, ,2e a e ⎡⎫∈+∞⎪⎢-⎣⎭. 【名师点睛】函数交点问题,研究函数的单调性找函数最值,求参;恒成立求参,对于分段函数来讲,分段讨论最值即可. 【跟踪练习】1.【2018江苏南宁模拟】设函数,则零点的个数为( )A .3B .2C .1D .0 【答案】B【点睛】函数数零点问题,常根据零点存在性定理来判断,如果函数y =f(x)在区间[a ,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a ,b)内有零点,即存在c ∈(a ,b)使得f(c)=0,这个c 也就是方程f(x)=0的根.2.已知函数)(x f 是定义在()()+∞∞-,00, 上的偶函数,当0>x 时,()⎪⎩⎪⎨⎧>-≤<-=-2,22120,12)(|1|x x f x x f x ,则函数1)(4)(-=x f x g 的零点个数为 ( ) A . 4 B .6C .8D .10【答案】D .【解析】由()f x 为偶函数可得:只需作出正半轴的图像,再利用对称性作另一半图像即可,当(]0,2x ∈时,可以利用2xy =利用图像变换作出图像,2x >时,()()122f x f x =-,即自变量差2个单位,函数值折半,进而可作出(]2,4,(]4,6,……的图像,()g x 的零点个数即为()14f x =根的个数,即()f x 与14y =的交点个数,观察图像在0x >时,有5个交点,根据对称性可得0x <时,也有5个交点.共计10个交点. 【评注】 (1)()()122f x f x =-类似函数的周期性,但有一个倍数关系.依然可以考虑利用周期性的思想,在作图时,以一个“周期”图像为基础,其余各部分按照倍数调整图像即可;(2)周期性函数作图时,若函数图像不连续,则要注意每个周期的边界值是属于哪一段周期,在图像中要准确标出,便于数形结合;(3)巧妙利用()f x 的奇偶性,可以简化解题步骤.例如本题中求交点个数时,只需分析正半轴的情况,而负半轴可用对称性解决.3.已知函数()y f x =的图像为R 上的一条连续不断的曲线,当0x ≠时,()()'0f x f x x+>,则关于x 的函数()()1g x f x x=+的零点的个数为 ( ) A .0 B .1 C .2 D .0或2【答案】A . 【评注】(1)本题由于()f x 解析式未知,故无法利用图像解决,所以根据条件考虑构造函数,利用单调性与零点存在性定理进行解决; (2)所给不等式()()'0f x fx x+>呈现出()f x 轮流求导的特点,猜想可能是符合导数的乘法法则,变形后可得()()'0xf x x>,而()g x 的零点问题可利用方程进行变形,从而与条件中的()xf x 相联系,从而构造出()h x .4.定义域为R 的偶函数()f x 满足对x R ∀∈,有()()()21f x f x f +=-,且当[]2,3x ∈时,()221218f x x x =-+-,若函数()()log 1a y f x x =-+在()0,+∞上至少有三个零点,则a 的取值范围是 ( )A . ⎛ ⎝⎭B . ⎛ ⎝⎭C . ⎛ ⎝⎭D . ⎛ ⎝⎭【答案】B .【评注】本题有以下几个亮点:(1)()f x 的周期性的判定: ()()()21f x f x f +=-可猜想与()f x 周期性有关,可带入特殊值,解出()1f ,进而判定周期,配合对称性作图;(2)在选择出交点的函数时,若要数形结合,则要选择能够做出图像的函数,例如在本题中,()f x 的图像可做,且()log 1a y x =+可通过图像变换做出.5.已知定义在R 上的函数()f x 满足()()2f x f x +=-,当(]1,3x ∈-时,()(]()(]1,112,1,3x f x t x x ∈-=--∈⎪⎩,其中0t >,若方程()3f x x =恰有三个不同的实数根,则实数t 的取值范围是 ( ) A . 40,3⎛⎫ ⎪⎝⎭ B . 2,23⎛⎫ ⎪⎝⎭C . 4,33⎛⎫ ⎪⎝⎭D . 2,3⎛⎫+∞ ⎪⎝⎭【答案】B .()()()()6622f g f g <⎧⎪⇒⎨>⎪⎩(6)(2)22(2)3f f t f t ==<⎧⎪⎨=>⎪⎩,即223t <<.6.【2018广东广州模拟】已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()()22xg x f x =-的零点个数为 个. 【答案】2.【解析】()()22xg x f x =-的零点个数,即是方程()22x f x =的根的个数,也就是()y f x =与22xy =的图象的交点个数,分别作出()y f x =与22x y =的图象,如图所示,由图象知()y f x =与22xy =的图象有两个交点,所以函数()g x 有2个零点.7.【2018全国名校第二次大联考】函数()f x 有4个零点,其图象如下图,和图象吻合的函数解析式是( )A .()sin lg f x x x =-B .()sin lg f x x x =-C .()sin lg f x x x =-D .()sin lg f x x x =-【答案】D得解:本函数图象的交点、函数的零点、方程的根往往是“知一求二”,解答时要先判断哪个好求解就转化为哪个,判断函数()y f x =零点个数的常用方法:(1) 直接法: 令()0,f x =则方程实根的个数就是函数零点的个;(2) 零点存在性定理法:判断函数在区间[],a b 上是连续不断的曲线,且()()0,f a f b <再结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;(3) 数形结合法:转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,在一个区间上单调的函数在该区间内至多只有一个零点,在确定函数零点的唯一性时往往要利用函数的单调性,确定函数零点所在区间主要利用函数零点存在定理,有时可结合函数的图象辅助解题. 8.【2018四川绵阳高三第一次诊断性考试】函数满足,且当时,.若函数的图象与函数(,且)的图象有且仅有4个交点,则的取值集合为( )A .B .C .D .【答案】C 【解析】因为函数满足,所以函数的周期为又在一个周期内,函数解析式为,所以可作出函数图象,在同一坐标系内作函数的图象,要使两个函数图象有且仅有四个交点,只需,所以,故选C .9.【2018安徽十大名校高三11月联考】若函数()32,1{ 924,1sinx x x f x x x x m x -<=-++≥有4个零点,则实数m 的取值范围是( )A .()16,20B .()20,16--C .()(),2016,-∞-⋃-+∞D .()(),1620,-∞⋃+∞ 【答案】B【解析】 当1x <时, ()cos 10f x x =-≤'恒成立,又()00f =,则函数()f x 在(),1-∞上有且只有1个零点;当1x ≥时,函数()()()231824324f x x x x x =-+=--',则函数()f x 在()1,2上单调递增,在()2,4上单调递减,在()4,+∞上单调递增,所以此时函数()f x 的极大值为()22f m =-+,极小值为()()4161f m f =+=, 要使得()f x 有4个零点,则160{200m m +<+>,解得2016m -<<-,故选B .【名师点睛】本题主要考查了根据函数的零点求解参数的取值范围问题,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的极值等知识点的综合应用,着重考查了数形结合思想和转化与化归思想的应用,解答中把函数的零点问题转化为函数的图象与x 的交点个数,利用函数的极值求解是解答的关键,试题有一定的难度,属于中档试题.10.【2018江苏淮安盱眙中学高三第一次学情调研】已知函数()22f x x m =+的图象与函数()ln g x x =的图象有四个交点,则实数m 的取值范围为________. 【答案】1,ln22⎛⎫-∞-- ⎪⎝⎭1+2⎛⎫∞ ⎪⎝⎭, 上个递增,由()1'40h x x x =-<可得函数()22ln h x x m x =+- 在102⎛⎫ ⎪⎝⎭, 上个递减,所以函数()22ln h x x m x =+-最小值为21112ln 222h m ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,令102h ⎛⎫< ⎪⎝⎭ ,可得1ln22m <-,此时函数()22ln h x x m x =+-有两个零点,故函数()22f x x m =+的图象与函数()ln g x x =的图象有四个交点,实数m 的取值范围为1,ln22⎛⎫-∞-- ⎪⎝⎭,故答案为1,ln22⎛⎫-∞-- ⎪⎝⎭. 【方法点睛】本题主要考查函数图象的交点、函数的零点、方程的根,属于难题.函数图象的交点、函数的零点、方程的根往往是“知一求二”,解答时要先判断哪个好求解就转化为哪个,判断函数()y f x =零点个数的常用方法:(1) 直接法: 令()0,f x =则方程实根的个数就是函数零点的个;(2) 零点存在性定理法:判断函数在区间[],a b 上是连续不断的曲线,且()()0,f a f b <再结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;(3) 数形结合法:转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,在一个区间上单调的函数在该区间内至多只有一个零点,在确定函数零点的唯一性时往往要利用函数的单调性,确定函数零点所在区间主要利用函数零点存在定理,有时可结合函数的图象辅助解题.11.【2018安徽滁州高三9月联合质量检测】已知()()11,011{ ,10x f x f x x x +<<-=-<≤,若方程()()200f x ax a a -+=≠有唯一解,则实数a 的取值范围是__________.【答案】1,3⎡⎫+∞⎪⎢⎣⎭由图可知: 13a ≤. 【名师点睛】根据函数零点求参数取值,也是高考经常涉及的重点问题, (1)利用零点存在的判定定理构建不等式求解;(2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.12.【2018辽宁庄河高中、沈阳二十中高三上学期第一次联考】已知函数()()2x x af x a R x=-∈将()y f x =的图象向右平移两个单位,得到函数()y g x =的图象.(1)求函数()y g x =的解析式;(2)若方程()f x a =在[]0,1x ∈上有且仅有一个实根,求a 的取值范围. 【答案】(1)()2222x x ag x --=-(2)1423a ≤≤(1)()2222x x a g x --=-(2)设2x t =,则[]1,2t ∈,原方程可化为20t at a --=,于是只须20t at a --=在[]1,2t ∈上有且仅有一个实根.法1:设()2k t t at a =--,对称轴2a t =,则()()120k k ⋅≤①.或0{ 122a∆=≤≤② 由①得()()12430a a --≤,即()()21340a a --≤,1423a ≤≤. 由②得240{ 24a a a +=≤≤无解,则1423a ≤≤.法2:由20t a t a --=, []1,2t ∈,得2111a t t ⎛⎫=+ ⎪⎝⎭, []1,2t ∈,设1u t =,则1,12u ⎡⎤∈⎢⎥⎣⎦, 21u u a =+.记()2g u u u =+,则()2g u u u =+在1,12⎡⎤⎢⎥⎣⎦上是单调函数,因为故要使题设成立,只须()1112g g a⎛⎫≤≤ ⎪⎝⎭.即4123a ≤≤.从而1423a ≤≤.【名师点睛】在解答指数函数的综合题目时可以采用换元法,转化为一元二次函数的问题,根据题目要求,如需要分类讨论,再加入分类讨论.13.【2018河南林州一中高三8月调研】已知函数()cos sin xf x ae x x x =⋅-⋅,且曲线()y f x =在()()0,0f 处的切线与0x y -=平行. (1)求a 的值; (2)当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,试探究函数()f x 的零点个数,并说明理由. 【答案】(1)1a =(2)见解析【解析】试题分析: (1)根据曲线()y f x =在()()0,0f 处的切线与0x y -=平行可得: ()0f a '=,进而求出a 值;(2)①当,02x π⎡⎤∈-⎢⎥⎣⎦时, ()()()cos 1sin 0x x f x e x x e x -+'=-≥,函数()f x 在,02π⎡⎤-⎢⎥⎣⎦单调递增,根据零点存在性定理可得: ()f x 在,02π⎡⎤-⎢⎥⎣⎦上只有一个零点.②当0,4x π⎛⎤∈ ⎥⎝⎦时, ()0f x >恒成立,构造函数(),0,4x x e x x πϕ⎡⎤=-∈⎢⎥⎣⎦,求导判断单调性与最值可得0x e x >>, 又0,4x π⎛⎤∈ ⎥⎝⎦时, cos sin 0x x ≥>,所以cos sin x e x x x >,即()()f x g x >,故函数()f x 在0,4π⎛⎤ ⎥⎝⎦上没有零点,③当,42x ππ⎛⎤∈ ⎥⎝⎦时, ()()cos sin sin cos 0x f x e x x x x x '=---<, 所以函数()f x 在,42ππ⎛⎤ ⎥⎝⎦上单调递减,根据零点存在性定理可得:函数()f x 在,42ππ⎡⎤⎢⎥⎣⎦上有且只有一个零点,综上所述,22x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 有两个零点. 试题解析:解:(1)依题意()01f '=,故()()cos sin sin cos x f x ae x x x x x '=⋅---,故()0f a '=,解得1a =.(2)①当,02x π⎡⎤∈-⎢⎥⎣⎦时, ()()()cos 1sin x x f x e x x e x =--+',此时()cos 0x e x x -≥, ()1sin 0x e x +≤,函数()f x 在,02π⎡⎤-⎢⎥⎣⎦单调递增, 故函数()f x 在,02π⎡⎤-⎢⎥⎣⎦至多有一个零点,又()010,022f f ππ⎛⎫=>-=-< ⎪⎝⎭, 而且函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上是连续不断的,因此函数()f x 在,02π⎡⎤-⎢⎥⎣⎦上只有一个零点. ②当0,4x π⎛⎤∈ ⎥⎝⎦时, ()0f x >恒成立,证明如下:设(),0,4x x e x x πϕ⎡⎤=-∈⎢⎥⎣⎦,则()10x x e ϕ='-≥,所以()x ϕ在0,4π⎡⎤⎢⎥⎣⎦上单调递增,所以0,4x π⎛⎤∈ ⎥⎝⎦时, ()()00x ϕϕ>=,所以0x e x >>,又0,4x π⎛⎤∈ ⎥⎝⎦时, cos sin 0x x ≥>,所以cos sin x e x x x >,即()()f x g x >,故函数()f x 在0,4π⎛⎤ ⎥⎝⎦上没有零点,③当,42x ππ⎛⎤∈ ⎥⎝⎦时, ()()cos sin sin cos 0x f x e x x x x x '=---<,所以函数()f x 在,42ππ⎛⎤⎥⎝⎦上单调递减,故函数()f x 在,42ππ⎛⎤⎥⎝⎦至多有一个零点,又40,042422f e f πππππ⎫⎛⎫⎛⎫=->-=-<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,而且函数()f x 在,42ππ⎡⎤⎢⎥⎣⎦上是连续不断的,因此,函数()f x 在,42ππ⎡⎤⎢⎥⎣⎦上有且只有一个零点. 综上所述,22x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 有两个零点.。

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

函数的零点个数问题、隐零点及零点赋值问题(学生版)-高中数学

函数的零点个数问题、隐零点及零点赋值问题(学生版)-高中数学

函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一)确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2.判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x轴交点的个数问题.(2)分离出参数,转化为a=g(x),根据导数的知识求出函数g(x)在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y=a与函数y=g(x)图象交点的个数问题.只需要用a与函数g(x)的极值和最值进行比较即可.3. 处理函数y=f(x)与y=g(x)图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f(x)=g(x)根的个数问题,也通过构造函数y=f(x)-g(x),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.1(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数f x =ax2e xa≠0,a∈R.(1)求f x 的极大值;(2)若a=1,求g x =f x -cos x在区间-π2,2024π上的零点个数.(二)根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.2(2024届天津市民族中学高三下学期5月模拟)已知函数f x =ln x+2(1)求曲线y=f x 在x=-1处的切线方程;(2)求证:e x≥x+1;(3)函数h x =f x -a x+2有且只有两个零点,求a的取值范围.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性);求含参函数的极值或最值;证明一类超越不等式;求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知f(a)的符号,探求赋值点m(假定m<a)使得f(m)与f(a)异号,则在(m,a)上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值;确保赋值点x0落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.3(2024届山东省烟台招远市高考三模)已知函数f x =x+ae x a∈R.(1)讨论函数f x 的单调性;(2)当a=3时,若方程xf x -x +f x -xf x=m+1有三个不等的实根,求实数m的取值范围.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为x 0,再利用导函数的单调性确定x 0所在区间,最后根据fx 0 =0,研究f x 0 ,我们把这类问题称为隐零点问题. 注意若f (x )中含有参数a ,关系式f '(x 0)=0是关于x 0,a 的关系式,确定x 0的合适范围,往往和a 的范围有关.4(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数f x =e x ,g x =ln x .(1)若函数h x =ag x -1 -x +1x -1,a ∈R ,讨论函数h x 的单调性;(2)证明:142x -1 f 2x -f x >2g x -2.(参考数据:e 45≈2.23,e 12≈1.65)1(2024届山西省晋中市平遥县高考冲刺调研)已知函数f x =ln x+sin x+sin π10.(1)求函数f x 在区间1,e上的最小值;(2)判断函数f x 的零点个数,并证明.2(2024届江西省九江市高三三模)已知函数f x =e ax+e-ax(a∈R,且a≠0).(1)讨论f x 的单调性;(2)若方程f x =x+x-1有三个不同的实数解,求a的取值范围.3(2024届重庆市第一中学校高三下学期模拟预测)已知函数f(x)=a(ln x+1)+1x3(a>0).(1)求证:1+x ln x>0;(2)若x1,x2是f(x)的两个相异零点,求证:x2-x1<1-1 a.4(2022高考全国卷乙理)已知函数f x =ln1+x+axe-x (1)当a=1时,求曲线y=f x 在点0,f0处的切线方程;(2)若f x在区间-1,0,0,+∞各恰有一个零点,求a取值范围.5(2024届辽宁省凤城市高三下学期考试)已知函数f x =xe x -1-ln x -x .(1)求函数f x 的最小值;(2)求证:e f x +x >e x -e -1 ln x -12.6(2024届湖南省长沙市第一中学高考最后一卷)已知函数f x =xe x-1,g x =ln x-mx,m∈R.(1)求f x 的最小值;(2)设函数h x =f x -g x ,讨论h x 零点的个数.7(2024届河南省信阳市高三下学期三模)已知函数f x =ax-ln1-x.a∈R(1)若f x ≥0恒成立,求a的值;(2)若f x 有两个不同的零点x1,x2,且x2-x1>e-1,求a的取值范围.8(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数f x =e x-1-ax-a a∈R.(1)当a=2时,求曲线y=f x 在x=1处的切线方程;(2)若函数f x 有2个零点,求a的取值范围.9(2024届广东省茂名市高州市高三第一次模拟)设函数f x =e x+a sin x,x∈0,+∞.(1)当a=-1时,f x ≥bx+1在0,+∞上恒成立,求实数b的取值范围;(2)若a>0,f x 在0,+∞上存在零点,求实数a的取值范围.10(2024届河北省张家口市高三下学期第三次模)已知函数f(x)=ln x+5x-4.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;-2.(2)证明:f(x)>-35x11(2024届上海市格致中学高三下学期三模)已知f x =e x-ax-1,a∈R,e是自然对数的底数.(1)当a=1时,求函数y=f x 的极值;(2)若关于x的方程f x +1=0有两个不等实根,求a的取值范围;(3)当a>0时,若满足f x1,求证:x1+x2<2ln a.=f x2x1<x212(2024届河南师范大学附属中学高三下学期最后一卷)函数f (x )=e λx -4sin x +λ-2的图象在x =0处的切线为y =ax -a -3,a ∈R .(1)求λ的值;(2)求f (x )在(0,+∞)上零点的个数.13(2024年天津高考数学真题)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的值;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.14(2024届河北省高三学生全过程纵向评价六)已知函数f x =axe x,g x =sin x+cos x.(1)当a=1时,求f x 的极值;(2)当x∈0,π时,f x ≤g x 恒成立,求a的取值范围.15(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数f x =a ln x-1x+x a∈R.(1)讨论f x 的零点个数;(2)若关于x的不等式f x ≤2x-2e在0,+∞上恒成立,求a的取值范围.16(2024届四川省成都石室中学高三下学期高考适应性考试)设f x =(a2-1)e x+sin x-3(1)当a=2,求函数f(x)的零点个数.(2)函数h(x)=f(x)-sin x-x2+2ax+2,若对任意x≥0,恒有h(x)>0,求实数a的取值范围17(2023届云南省保山市高三上学期期末质量监测)已知函数f x =2ax-sin x.(1)当a=1时,求曲线y=f x 在点0,f0处的切线方程;(2)当x>0时,f x ≥ax cos x恒成立,求实数a的取值范围.18(2024届广东省揭阳市高三上学期开学考试)已知函数f x =2ln x-12mx2+1m∈R.(1)当m=1时,证明:f x <1;(2)若关于x的不等式f x <m-2x恒成立,求整数m的最小值.19(2023届黑龙江省哈尔滨市高三月考)设函数f x =x3-3ax2+3b2x(1)若a=1,b=0,求曲线y=f x 在点处的切线方程;(2)若,不等式对任意恒成立,求整数k的最大值.20(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数f x 零点的个数,并证明;(2)证明:.。

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数

专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。

高考数学复习考点知识剖析解题方法与技巧专题讲解10---函数零点的个数问题

高考数学复习考点知识剖析解题方法与技巧专题讲解10---函数零点的个数问题

为 f (1) = −2 ,做出草图。而 y = a 为一条水平线,通过图像可得, y = a 介于极
大值与极小值之间,则有在三个相异交点。可得: a ∈ (−2, 2)
答案:A 小炼有话说:作图时可先作常系数函数图象,对于含有参数的函数,先分析参数
所扮演的角色,然后数形结合,即可求出参数范围。
例 2:设函数 f ( x) = x2 + 2x − 2 ln ( x + 1) ,若关于 x 的方程 f ( x) = x2 + x + a 在[0, 2]
个只含参数的图像为直线,所以便于观察),另一方面取决于作图的精确度,所
以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡(作图问题详见:
1.7 函数的图像)
3、在高中阶段主要考察三个方面:(1)零点所在区间——零点存在性定理,(2)
二次方程根分布问题,(3)数形结合解决根的个数问题或求参数的值。其中第(3)
个类型常要用到函数零点,方程,与图像交点的转化,请通过例题体会如何利用
方程构造出函数,进而通过图像解决问题的。
三、例题精析:
例 1:直线 y = a 与函数 y = x3 − 3x 的图象有三个相异的交点,则 a 的取值范围为
( ).
A. (−2, 2)
B. [ −2, 2]
C.[2, +∞)
D. (−∞, −2]
内。例如:对于方程 ln x + x = 0 ,无法直接求出根,构造函数 f ( x) = ln x + x ,

f
(1)
>
0,
f
1 2
<
0
即可判定其零点必在
1 2

函数零点问题的题型归类及解题策略

函数零点问题的题型归类及解题策略

函数零点问题的题型归类及解题策略一、函数零点问题的题型归类在数学中,函数零点问题是一个常见的题型,通常是要求求出一个函数的零点或根。

根据不同的函数形式和解法,可以将这些题型分为以下几类:1. 多项式函数的零点问题:多项式函数是指由一系列单项式相加或相减而成的函数,例如f(x) = 2x^3 - 3x^2 + 4x - 5就是一个三次多项式函数。

对于多项式函数而言,求解它的零点通常使用因式分解、配方法、牛顿迭代法等方法。

2. 三角函数的零点问题:三角函数包括正弦、余弦、正切等等,例如f(x) = sin(x) - x就是一个三角函数。

对于三角函数而言,求解它的零点通常使用周期性、奇偶性等特征来进行简化。

3. 指数和对数函数的零点问题:指数和对数函数包括指数、自然对数等等,例如f(x) = e^x - x就是一个指数和对数函数。

对于指数和对数函数而言,求解它们的零点通常需要使用到特殊技巧如换底公式、取对数等方法。

4. 分段定义的复合函数的零点问题:分段定义的复合函数是指一个函数在不同的区间内采用不同的定义方式,例如f(x) = {x^2 + 1, x < 0; x - 1, x >= 0}就是一个分段定义的复合函数。

对于这类函数,求解它们的零点通常需要将其分成不同的部分进行讨论。

二、解题策略针对以上不同类型的函数零点问题,我们可以采用以下几种解题策略:1. 因式分解法因式分解法是一种常见的求多项式函数零点的方法。

对于一个多项式函数f(x),我们可以先将其进行因式分解,然后再求出每个因子的零点。

例如f(x) = x^3 - 3x^2 + 2x可以写成f(x) = x(x-1)(x-2),然后再求出每个因子的零点即可得到f(x)在实数范围内所有的零点。

2. 配方法配方法也是一种常见的求多项式函数零点的方法。

对于一个二次或三次多项式函数,我们可以通过配方将其转化为完全平方或完全立方形式,然后再根据完全平方或完全立方公式来求解它们的零点。

专题02函数零点问题-2024高考数学尖子生辅导专题

专题02函数零点问题-2024高考数学尖子生辅导专题

专题02函数零点问题-2024高考数学尖子生辅导专题函数的零点问题在数学中是一个非常重要的概念和问题。

而在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个重点内容。

下面,我们来详细探讨一下这个问题。

函数的零点问题即是求解函数的解析式方程$f(x)=0$的解$x$。

在实际问题中,函数的零点往往表示了其中一种特定情况下的平衡点或者特殊点,因此求解函数的零点问题是非常实用和重要的。

那么,如何求解函数的零点问题呢?下面,我们将从三个方面进行讨论。

首先,我们可以通过图像来求解函数的零点问题。

对于一般的函数,我们可以通过画出函数的图像来判断函数的零点。

函数的零点为函数与$x$轴相交的点,在图像上表现为函数曲线与$x$轴的交点。

通过观察函数图像上哪些点与$x$轴相交,我们可以找到函数的零点。

对于简单的函数,我们可以手工画出函数图像,对于复杂的函数,我们可以借助计算机软件进行绘图。

其次,我们可以通过函数的解析式来求解函数的零点问题。

对于一般的函数,我们可以通过解方程$f(x)=0$来求解函数的零点。

通过将方程变形化简,最终得到$x$的解析表达式。

这种方法适用于存在解析解的函数,对于一些特殊函数,解析解并不存在,我们需要采用其他方法进行求解。

最后,我们可以通过数值计算方法来求解函数的零点问题。

对于一些无法通过解析式求解的函数,我们可以采用数值计算方法进行求解。

数值计算方法包括二分法、不动点迭代法、牛顿迭代法等。

这些方法通过迭代计算,逐渐接近函数的零点。

在实际计算中,我们可以通过计算机软件来进行数值计算,以提高计算的精度和效率。

综上所述,函数的零点问题在数学中具有重要的意义,我们可以通过图像、解析式和数值计算方法等多种途径来求解函数的零点。

在2024高考的数学尖子生辅导专题中,函数的零点问题无疑是一个关键的内容,掌握这个问题对于学生的数学能力提高和应试能力提升都具有重要作用。

因此,我们应该重视并加以学习和实践。

函数的零点个数问题-含答案

函数的零点个数问题-含答案

【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;。

千题百炼高考数学个热点问题一 第炼 复合函数零点问题

千题百炼高考数学个热点问题一 第炼 复合函数零点问题

第12炼 复合函数零点问题一、基础知识:1、复合函数定义:设()y f t =,()t g x =,且函数()g x 的值域为()f t 定义域的子集,那么y 通过t 的联系而得到自变量x 的函数,称y 是x 的复合函数,记为()y f g x =⎡⎤⎣⎦2、复合函数函数值计算的步骤:求()y g f x =⎡⎤⎣⎦函数值遵循“由内到外”的顺序,一层层求出函数值。

例如:已知()()22,x f x g x x x ==-,计算()2g f ⎡⎤⎣⎦ 解:()2224f == ()()2412g f g ∴==⎡⎤⎣⎦3、已知函数值求自变量的步骤:若已知函数值求x 的解,则遵循“由外到内”的顺序,一层层拆解直到求出x 的值。

例如:已知()2xf x =,()22g x x x =-,若()0g f x =⎡⎤⎣⎦,求x解:令()t f x =,则()2020g t t t =⇒-=解得0,2t t ==当()0020xt f x =⇒=⇒=,则x ∈∅当()2222xt f x =⇒=⇒=,则1x =综上所述:1x =由上例可得,要想求出()0g f x =⎡⎤⎣⎦的根,则需要先将()f x 视为整体,先求出()f x 的值,再求对应x 的解,这种思路也用来解决复合函数零点问题,先回顾零点的定义: 4、函数的零点:设()f x 的定义域为D ,若存在0x D ∈,使得()00f x =,则称0x x =为()f x 的一个零点5、复合函数零点问题的特点:考虑关于x 的方程()0g f x =⎡⎤⎣⎦根的个数,在解此类问题时,要分为两层来分析,第一层是解关于()f x 的方程,观察有几个()f x 的值使得等式成立;第二层是结合着第一层()f x 的值求出每一个()f x 被几个x 对应,将x 的个数汇总后即为()0g f x =⎡⎤⎣⎦的根的个数6、求解复合函数()y g f x =⎡⎤⎣⎦零点问题的技巧:(1)此类问题与函数图象结合较为紧密,在处理问题的开始要作出()(),f x g x 的图像 (2)若已知零点个数求参数的范围,则先估计关于()f x 的方程()0g f x =⎡⎤⎣⎦中()f x 解的个数,再根据个数与()f x 的图像特点,分配每个函数值()i f x 被几个x 所对应,从而确定()i f x 的取值范围,进而决定参数的范围 复合函数: 二、典型例题例1:设定义域为R 的函数()1,111,1x x f x x ⎧≠⎪-=⎨⎪=⎩,若关于x 的方程()()20f x bf x c ++=由3个不同的解123,,x x x ,则222123x x x ++=______ 思路:先作出()f x 的图像如图:观察可发现对于任意的0y ,满足()0y f x =的x 的个数分别为2个(000,1y y >≠)和3个(01y =),已知有3个解,从而可得()1f x =必为()()20f x bf x c ++=的根,而另一根为1或者是负数。

函数的零点个数问题(一)专练

函数的零点个数问题(一)专练

函数的零点个数问题(一)专练1.设函数3()3sin f x x x =-,23()2x g x e-=.(1)证明:当[1x ∈-,0]时,()0f x ;(2)判断函数()()()F x f x g x =-在(2,)-+∞上的零点个数. 解:(1)证明:22()3cos 33(cos )f x x x x x '=-=- 令2()cos h x x x =-,()sin 20h x x x '=--, ()h x ∴在[1-,0]上单调递增注意到(1)cos110h -=-<,(0)10h =>∴存在唯一的0(1,0)x ∈-使0()0h x =且当01x x -<时,()0h x <,()0f x '<,()f x 单调递减; 当00x x <时,()0h x >,()0f x '>,()f x 单调递增; 注意到(1)3sin11f -=-+,(0)0f =, 3sin110-+<,()0f x ∴.(2)233()3sin 2x F x x x e-=--,223()3cos 32x F x x x e-'=--,当21x -<-时,223()3(cos )20x F x x x e -'=--<,()F x ∴单调递减.83(2)3sin 2820F e--=-+->,53(1)3sin1120F e --=-+-<()F x ∴在(2,1)--上有一个零点1x当10x -时,由(1)知3()3sin 0f x x x =-,()0F x ∴<,()F x 无零点 当0x >时,2333312()3sin 232()33x F x x x ex x x x x -=--<--+=--令32()3x x x ϕ=--,2()130x x x ϕ'=-=⇒=且当0x <<时,()0x ϕ'>,()x ϕ单调递增;当x 时,()0x ϕ'<,()x ϕ单调递减.∴32()()033x ϕϕ-<,∴当0x >时,()F x 也无零点 综上:()F x 在(2,)-+∞上有唯一的零点1x .2.已知函数32()2(0)f x ax ax b a =-+≠在区间[1-,2]上的最小值为2-,最大值为1. (1)求实数a ,b 的值;(2)若函数()()g x f x m =-有且仅有三个零点,求实数m 的取值范围. 解:(1)函数32()2f x ax ax b =-+,则2()34(34)f x ax ax ax x '=-=-, ①当0a >时,令()0f x '>,可得43x >或0x <, 此时函数()f x 的增区间为(,0)-∞,4(,)3+∞,()f x 的减区间为4(0,)3,由(0)f b =,(1)23f a a b b a -=--+=-,4643232()327927f a a b b a =-+=-,f (2)88a a b b =-+=, 因为函数32()2(0)f x ax ax b a =-+≠在区间[1-,2]上的最小值为2-,最大值为1, 则有132b b a =⎧⎨-=-⎩,解得1a =,1b =;②当0a <时,令()0f x '>,可得403x <<, 此时函数()f x 的减区间为(,0)-∞,4(,)3+∞,()f x 的增区间为4(0,)3,由(0)f b =,(1)23f a a b b a -=--+=-,4643232()327927f a a b b a =-+=-,f (2)88a a b b =-+=, 因为函数32()2(0)f x ax ax b a =-+≠在区间[1-,2]上的最小值为2-,最大值为1, 则有231b b a =-⎧⎨-=⎩,解得1a =-,2b =-.综上所述,1a =,1b =或1a =-,2b =-;(2)①当1a b ==时,(0)1f =,4325()132727f =-=-,若函数()g x 有且仅有三个零点,实数m 的取值范围为5(,1)27-; 当1a =-,2b =-时,(0)2f =-,43222()232727f =-+=-,若函数()g x 有且仅有三个零点,实数m 的取值范围为22(2,)27--.3.已知函数21()22x a af x e lnx +=-+.(1)若函数()y f x =在1(0,)2上单调递减,求a 的取值范围;(2)若函数()y f x =在定义域内没有零点,求a 的取值范围.解:(1)因为函数()y f x =在1(0,)2上单调递减,所以()0f x '在1(0,)2上恒成立,由21()22x a af x e lnx +=-+,0x >,可得22141()222x a x axe f x e x x++-'=-=, 由于0x >,则2410x a xe +-在1(0,)2上恒成立,令2()41x a F x xe +=-,2()(84)0x a F x x e +'=+>, 故()F x 在1(0,)2上单调递增,所以只需1()02F 即可,11()2102a F e +=-,所以12a ln --,所以a 的取值范围是(-∞,12]ln --.(2)21()22x a af x e lnx +=-+的定义域为(0,)+∞,21()22x a f x e x+'=-,令2()2x a g x e +=,1()2h x x =,当0x >时,()g x 单调递增,()(2a g x e ∈,)+∞,()(0h x ∈,)+∞, 故存在0(0,)x ∈+∞,使得0()0f x '=,即0201202x a e x +-=, 即02014x a e x +=①,两边取对数得0042ln x a lnx ++=-②, 而()f x 在0(0,)x 上单调递减,在0(x ,)+∞上单调递增,故0()()0min f x f x =>,故0201022x a ae lnx +-+>,将①②代入上式得004210422ln x a a x ++++>,化简得00124a x ln x >---,因为00114x x +,当且仅当0014x x =,即012x =时取等号, 所以0012124x ln ln x -----, 故12a ln >--,即a 的取值范围是(12,)ln --+∞.4.设a ,b 为实数,且1a >,函数2()()x f x a bx e x R =-+∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(Ⅲ)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点1x ,2x ,满足22122blnb e x x e b>+.(注: 2.71828e =是自然对数的底数)解:(Ⅰ)()x f x a lna b '=-,①当0b 时,由于1a >,则0x a lna >,故()0f x '>,此时()f x 在R 上单调递增; ②当0b >时,令()0f x '>,解得b lnlna x lna >,令()0f x '<,解得blnlna x lna<,∴此时()f x 在(,)b lnlna lna -∞单调递减,在(,)b lnlna lna+∞单调递增;综上,当0b 时,()f x 的单调递增区间为(,)-∞+∞;当0b >时,()f x 的单调递减区间为(,)blnlna lna-∞,单调递增区间为(,)blnlna lna+∞;(Ⅱ)由(Ⅰ)知,要使函数()f x 有两个不同的零点,只需()()0min blnlna f x f lna=<即可,∴20b blnlnlna lna a b e lna lna-⋅+<对任意22b e >均成立,令b lnlna t lna =,则20t a bt e -+<,即20tlna e bt e -+<,即20bln lna b ln lna e b e lna -⋅+<,即20bln blna b e lna lna-⋅+<,∴20bb b lne lna lna-⋅+<对任意22b e >均成立, 记22(),2b g b b b lne lna b e lna =-⋅+>,则1()1()()b lna g b ln b ln lna lnb lna b lna'=-+⋅⋅=-, 令g '(b )0=,得b lna =,①当22lna e >,即22e a e >时,易知g (b )在2(2e ,)lna 单调递增,在(,)lna +∞单调递减, 此时g (b )22()1(1)0g lna lna lna ln e lna lna e =-⋅+=⋅+>,不合题意; ②当22lna e ,即221e a e <时,易知g (b )在2(2e ,)+∞单调递减,此时2222222222()(2)2222[(2)()]e g b g e e e ln e lna e e ln e ln lna e lna lna<=-⋅+=--+,故只需22[22()]0ln ln lna lna -+-+,即2()222lna ln lna ln ++,则2lna ,即2a e ; 综上,实数a 的取值范围为(1,2]e ;(Ⅲ)证明:当a e =时,2()x f x e bx e =-+,()x f x e b '=-,令()0f x '=,解得4x lnb =>, 易知22222422()()433(13)0lnb min f x f lnb e b lnb e b blnb e b b e e b e e e e ==-⋅+=-+<-+=-<-=-<, ()f x ∴有两个零点,不妨设为1x ,2x ,且12x lnb x <<, 由2222()0x f x e bx e =-+=,可得222x e e x b b=+,∴要证22122blnb e x x e b >+,即证2122x e blnb x b e >,即证22122x b lnb e x e >, 而222222222222()20e eb b e e f e e e e e e e b =-+=-<-<,则212e x b<, ∴要证22122x b lnb e x e >,即证2x e blnb >,即证2()x ln blnb >, 而()222221(())()()(4)404ln blnb f ln blnb e bln blnb e blnb bln blnb e blnb bln b e b ln e e bln =-+=-+<-+=⋅+=-<,2()x ln blnb ∴>,即得证.5.已知函数21()(1)2f x x a x alnx =-++. (Ⅰ)若1a =,求曲线()y f x =在点(1,f (1))处的切线方程; (Ⅱ)当1a <时,求函数()f x 的零点个数,并说明理由. 解:(Ⅰ)当1a =时,13(1)2122f ln =-+=-, 2(1)()x f x x-'=,则切线的斜率k f '=(1)0=, 所以切线方程为3()(1)2y k x --=-,即32y =-,所以曲线()y f x =在点(1,f (1))处的切线方程为32y =-.(Ⅱ)()f x 的定义域为(0,)+∞,()(1)()x a x f x x--'=, 令()(1)()0x a x f x x--'==,解得1x a =,21x =,①当01a <<时,()f x 与()f x '在区间(0,)+∞上的情况如下:()f x 在(0,)a 上递增,在(,1)a 上递减,在(1,)+∞上递增.此时()21()02f x f a a a alna ==--+<极大值,(22)(22)20f a aln a aln +=+>>,所以()f x 在(0,)+∞上只有一个零点, ②当0a =时,21()2f x x x =-,由()0f x =,得12x =,20x =(舍), 所以()f x 在(0,)+∞上有一个零点;③当0a <时,()f x 与()f x '在区间(0,)+∞上的情况如下:此时()1()12f x f a ==--极小值, 若12a <-时,1()(1)02min f x f a ==-->,所以()f x 在(0,)+∞上无零点,若12a =-时,1()(1)02min f x f a ==--=,所以()f x 在(0,)+∞上有一个零点,若102a -<<时,1()(1)02min f x f a ==--<,1211112111()1(1)0222aa a a a af e e e ae e ae =--+=--+>,1(4)84(1)4444202f a aln ln ln =-++>-=->,所以()f x 有两个零点.综上所述,当01a <或12a =-时,()f x 在(0,)+∞上有一个零点;当102a -<<时,()f x 在(0,)+∞上有两个零点;,当12a <-时,()f x 在(0,)+∞上无零点.6.已知函数()(1)x f x e a x -=+-. (1)若0a =,求函数()f x 的极值;(2)若函数()f x 无零点,求实数a 的取值范围. 解:(1)当0a =时,()x f x e x -=+,所以1()1x xx e f x e e--'=-+=,令()0f x '=,得0x =,当(0,)x ∈+∞时,()0f x '>,()f x 单调递增.所以0x =为函数()f x 的极小值点,极小值为(0)1f =;()f x 无极大值.(2)由()(1)xf x e a x -=+-,得(1)1()(1)x xxa e f x e a e---'=-+-=. ①当1a =时,()0x f x e -=>,此时函数()f x 没有零点,符合题意; ②当1a >时,()0f x '<,所以函数()f x 单调递减.又(0)10f =>,且111()101a f e a -=-<-,所以函数()f x 有零点,不符合题意;③当1a <时,令(1)1()0x xa e f x e --'==,则(1)x ln a =--.当(x ∈-∞,(1))ln a --时,()0f x '<,所以函数()f x 单调递减; 当((1)x ln a ∈--,)+∞时,()0f x '>,所以函数()f x 单调递增. 所以()((1))(1)[1(1)]min f x f ln a a ln a =--=---,若函数()f x 没有零点,则需()0min f x >,即(1)[1(1)]0a ln a --->,得11e a -<<. 综上所述,若函数()f x 无零点,则实数a 的取值范围为(1e -,1].。

高考培优微专题《讨论零点个数》解析版

高考培优微专题《讨论零点个数》解析版

【例题讲解】
类型一:分离构造处理零点个数问题(曲线定水平线动) 1. 已知函数 f(x) = x2 + xln x.若关于 x 的方程 f(x) = ax3 有两个不相等的实数根,求实数 a 的取值
范围.
【解析】解 函数 f(x) = x2 + xln x 的定义域为 (0,+∞),

f(x) = ax3 可得 a =
(ln
a) = aln
a-
1 2
a(ln
a + 1)2 < 0,所以函数 f
(x) 在 (-∞,+∞) 上至多有一个零点,故不
符合题意.
若 ln
a =-1,即 a =
1 e
,当 x ∈ (-∞,+∞) 时,f
′ (x) ≥ 0,f
(x) 单调递增,故不符合题意.
若 ln
a >-1,即 a >
1 e
,当 x ∈ (-∞,-1) ∪ (ln
f(x) = ln
x - aex + 1 = 0,则 a =
lnx + 1 ex
.
令 y = a,g(x) =
lnx + 1 ex

g′ (x) =
1 x
- lnx - 1
ex
(x > 0).

h(x) =
1 x
-
ln
x - 1,
则 h′ (x) =-
1 x2
-
1 x
< 0,
所以 h(x) 在 (0,+∞) 上单调递减,而 h(1) = 0,
由题意可知,直线 y = a 与函数 g(x) 的图象有两个交点,如图所示.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10炼 函数零点的个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫ ⎪⎝⎭中2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

缺点:方法单一,只能判定零点存在而无法判断个数,且能否得到结论与代入的特殊值有关 (2)方程的根: 工具:方程的等价变形作用:当所给函数不易于分析性质和图像时,可将函数转化为方程,从而利用等式的性质可对方程进行变形,构造出便于分析的函数缺点:能够直接求解的方程种类较少,很多转化后的方程无法用传统方法求出根,也无法判断根的个数(3)两函数的交点: 工具:数形结合作用:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现。

通过图像可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围。

缺点:数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x 的函数可作出图像,那么因为另外一个只含参数的图像为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡(作图问题详见:1.7 函数的图像)3、在高中阶段主要考察三个方面:(1)零点所在区间——零点存在性定理,(2)二次方程根分布问题,(3)数形结合解决根的个数问题或求参数的值。

其中第(3)个类型常要用到函数零点,方程,与图像交点的转化,请通过例题体会如何利用方程构造出函数,进而通过图像解决问题的。

三、例题精析:例1:直线y a =与函数33y x x =-的图象有三个相异的交点,则a 的取值范围为 ( ).A .()2,2-B .[]2,2-C .[)2,+∞D .(],2-∞-思路:考虑数形结合,先做出33y x x =-的图像,()()'233311y x x x =-=-+,令'0y >可解得:1x <-或1x >,故33y xx =-在()(),1,1,-∞-+∞单调递增,在()1,1-单调递减,函数的极大值为()12f -=,极小值为()12f =-,做出草图。

而y a =为一条水平线,通过图像可得,y a =介于极大值与极小值之间,则有在三个相异交点。

可得:()2,2a ∈- 答案:A小炼有话说:作图时可先作常系数函数图象,对于含有参数的函数,先分析参数所扮演的角色,然后数形结合,即可求出参数范围。

例2:设函数()()222ln 1f x x x x =+-+,若关于x 的方程()2f x x x a =++在[]0,2上恰有两个相异实根,则实数a 的取值范围是_________思路:方程等价于:()()2222ln 12ln 1x x x x x a a x x +-+=++⇒=-+,即函数y a=与()()2ln 1g x x x =-+的图像恰有两个交点,分析()g x 的单调性并作出草图:()'21111x g x x x -=-=++ ∴令()'0g x >解得:1x > ()g x ∴在()0,1单调递减,在()1,2单调递增,()()()112ln2,00,222ln3g g g =-==-,由图像可得,水平线y a =位于()()1,2g g 之间时,恰好与()g x 有两个不同的交点。

∴12ln 222ln 3a -<≤- 答案:12ln 222ln 3a -<≤-小炼有话说:(1)本题中的方程为()2222ln 1x x x x x a +-+=++,在构造函数时,进行了x 与a 的分离,此法的好处在于一侧函数图像为一条曲线,而含参数的函数图像由于不含x 所以为一条水平线,便于上下平移,进行数形结合。

由此可得:若关于x 的函数易于作出图像,则优先进行参变分离。

所以在本题中将方程转变为()2ln 1a x x =-+,构造函数()()2l n 1g x x x =-+并进行数形结合。

(2)在作出函数草图时要注意边界值是否能够取到,数形结合时也要注意a 能否取到边界值。

例3:已知函数()()2,0ln ,0kx x f x k R x x +≤⎧=∈⎨>⎩,若函数()y f x k =+有三个零点,则实数k的取值范围是( ) A. 2k ≤B. 10k -<<C. 21k -≤<-D.2k ≤-思路:函数()y f x k =+有三个零点,等价于方程()f x k =-有三个不同实数根,进而等价于()f x 与y k =-图像有三个不同交点,作出()f x 的图像,则k 的正负会导致()f x 图像不同,且会影响y k =-的位置,所以按0,0k k ><进行分类讨论,然后通过图像求出k 的范围为2k ≤-。

答案:D小炼有话说:(1)本题体现了三类问题之间的联系:即函数的零点⇔方程的根⇔函数图象的交点,运用方程可进行等式的变形进而构造函数进行数形结合,解决这类问题要选择合适的函数,以便于作图,便于求出参数的取值范围为原则。

(2)本题所求k 在图像中扮演两个角色,一方面决定()f x 左侧图像直线的倾斜角,另一方面决定水平线的位置与x 轴的关系,所以在作图时要兼顾这两方面,进行数形结合。

例4:已知函数()f x 满足()()3f x f x =,当[)()1,3,ln x f x x ∈=,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( )A .ln 31,3e ⎛⎫⎪⎝⎭B. ln 31,93e ⎛⎫ ⎪⎝⎭ C .ln 31,92e ⎛⎫ ⎪⎝⎭ D .ln3ln3,93⎛⎫ ⎪⎝⎭思路:()()()33x f x f x f x f ⎛⎫=⇒= ⎪⎝⎭,当[)3,9x ∈时,()ln 33x x f x f ⎛⎫== ⎪⎝⎭,所以()ln ,13ln ,393x x f x x x ≤<⎧⎪=⎨≤<⎪⎩,而()()g x f x a x =-有三个不同零点⇔()y f x =与y ax =有三个不同交点,如图所示,可得直线y ax =应在图中两条虚线之间,所以可解得:ln 3193a e<<答案:B小炼有话说:本题有以下两个亮点。

(1)如何利用 ()3x f x f ⎛⎫=⎪⎝⎭,已知[)()1,3,x f x ∈的解析式求[)()3,9,x f x ∈的解析式。

(2)参数a 的作用为直线y ax =的斜率,故数形结合求出三个交点时a 的范围例5:已知函数)(x f 是定义在()()+∞∞-,00, 上的偶函数,当0>x 时,()⎪⎩⎪⎨⎧>-≤<-=-2,22120,12)(|1|x x f x x f x ,则函数1)(4)(-=x f x g 的零点个数为( )A . 4B .6C .8D .10思路:由()f x 为偶函数可得:只需作出正半轴的图像,再利用对称性作另一半图像即可,当(]0,2x ∈时,可以利用2x y =利用图像变换作出图像,2x >时,()()122f x f x =-,即自变量差2个单位,函数值折半,进而可作出(]2,4,(]4,6,……的图像,()g x 的零点个数即为()14f x =根的个数,即()f x 与14y =的交点个数,观察图像在0x >时,有5个交点,根据对称性可得0x <时,也有5个交点。

共计10个交点答案:D 小炼有话说:(1)()()122f x f x =-类似函数的周期性,但有一个倍数关系。

依然可以考虑利用周期性的思想,在作图时,以一个“周期”图像为基础,其余各部分按照倍数调整图像即可 (2)周期性函数作图时,若函数图像不连续,则要注意每个周期的边界值是属于哪一段周期,在图像中要准确标出,便于数形结合。

(3)巧妙利用()f x 的奇偶性,可以简化解题步骤。

例如本题中求交点个数时,只需分析正半轴的情况,而负半轴可用对称性解决例6:对于函数()f x ,若在定义域内存在..实数x ,满足()()f x f x -=-,称()f x 为“局部奇函数”,若()12423xx f x m m +=-+-为定义域R 上的“局部奇函数”,则实数m 的取值范围是( )A.11m ≤≤B. 1m ≤≤C. m -≤≤D. 1m -≤ 思路:由“局部奇函数”可得: 22422342230xxxx m m m m ---⋅+-+-⋅+-=,整理可得:()()244222260x xxxm m--+-++-=,考虑到()244222xxxx --+=+-,从而可将22x x -+视为整体,方程转化为:()()2222222280x x x x m m --+-++-=,利用换元设22x x t -=+(2t ≥),则问题转化为只需让方程222280t mt m -+-=存在大于等于2的解即可,故分一个解和两个解来进行分类讨论。

相关文档
最新文档